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Abstract 

 A numerical model for orthogonal cutting using the material point method (MPM) was 
applied to woodcutting using a bench plane. The cutting process was modeled by accounting for 
surface energy associated with wood fracture toughness for crack growth parallel to the grain. By 
using damping to deal with dynamic crack propagation and modeling all contact between wood 
and the plane, simulations could initiate chip formation and proceed into steady-state chip 
propagation including chip curling. Once steady state conditions were achieved, the cutting 
forces became constant and could be determined as a function of various simulation variables. 
The modeling details included a cutting tool, the tool’s rake and grinding angles, a chip breaker, 
a base plate, and a mouth opening between the base plate and the tool. The wood was modeled as 
an anisotropic elastic-plastic material. The simulations were verified by comparison to an 
analytical model and then used to conduct virtual experiments on wood planing. The virtual 
experiments showed interactions between depth of cut, chip breaker location, and mouth 
opening. Additional simulations investigated the role of tool grinding angle, tool sharpness, and 
friction. 
Keywords: Cutting, Wood, Material Point Method, Numerical Modeling, Cohesive Zone 
Modeling 

Introduction 

 Cutting of materials always involves separation of two surfaces and inclusion of surface 
energy for that separation (i.e., the material’s fracture toughness) into models has led to new 
insights about cutting [1-4]. For example, Atkins [1] shows that incorporating surface fracture 
energy into models can explain several longstanding issues, such as material dependence of the 
shear plane angle, that have eluded historical methods based on plasticity and friction alone. 
Incorporating fracture energy also predicts that cutting force as a function of depth of cut should 
have a non-zero intercept [1,4]. This prediction is consistent with many cutting experiments.  
Furthermore, if the non-zero intercept is found by extrapolating cutting force per unit width of 
cut, the intercept is equal to the material’s fracture toughness [1,4]. Several groups have 
exploited this observation to measure fracture toughness of materials using instrumented cutting 
experiments [5-8]. This approach is particularly attractive for materials where it is difficult to 
achieve crack propagation with remote loading, such as soft materials [7,9]. The cutting tool 
enters the material and provides crack propagation. Analyzing the resulting cutting forces as a 
function depth of cut can provide information about toughness and potentially other material 
properties [6.9]. 
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 Including fracture surface energy in 
analytical or numerical models opens up 
new potential for those models to improve 
realism. For example, Williams et al. [9,10] 
developed analytical models for orthogonal 
cutting with crack propagation including 
plastic shearing and plastic bending modes. 
The initial model was for isotropic materials 
with elastic plastic behavior, although it is 
easily extended to plastic hardening [11]. 
The addition of explicit crack growth is also 
an important concept for numerical 
modeling. Many past numerical models have 
focused on plasticity behavior, but because 
cutting cannot progress without separating 
elements (in finite element methods), most 
had to introduce ad hoc separation criteria [1]. When explicit crack growth is directly included in 
the model, those separation criteria can be based on physically justifiable fracture mechanics 
criteria [1]. For example, Ref. [11] describes a material point method (MPM) simulation of 
orthogonal cutting. The crack growth was modeling by explicit crack growth using cohesive 
zone methods. This numerical scheme was able to simulate full chip formation and propagation 
into steady state cutting conditions for both plastic shearing and plastic bending modes. The 
contact capabilities of MPM were helpful for providing stable simulations even when the tool tip 
touches the crack tip (e.g., when the gap between the tool tip and crack tip shown in Fig. 2 below 
disappears). 
 One motivation for developing numerical simulations of cutting is to handle complexities 
that are beyond the capabilities of analytical models. For example, Fig. 1 shows a woodworking 
bench plane (or Jack plane) and Fig. 2 shows geometry of the cutting region of such a plane 
including a cutting tool, a chip breaker, and a base plate (or sole). This problem introduces 
several complexities. First, the material being cut (wood) is an anisotropic material with 
anisotropic plasticity and failure criteria. Second, a chip breaker and base plate introduce new 
contact surfaces that will influence the cutting process. Third, with the additional contact 
surfaces, frictional contact may become more important and may need to involve non-Coulomb 
friction processes. All these issue, and more, can potentially be included into numerical 
simulations of cutting. 
 This work’s goal was to demonstrate that MPM modeling can incorporate sufficient realism 
into cutting models to develop computer simulations for analyzing a wood working bench plane. 
Such simulations can then be used to optimize wood planing, which has historically been done 
through trial and error. Some examples are the importance of tool angles, the proper adjustments 
that should be made to set chip breaker location or mouth opening, the effect of planing direction 
in the wood (with the grain or cross grain), the role of friction on all surfaces, and the effects of 
tool sharpness. This paper describes an MPM model for a bench plane and addresses several of 
these issues. The new features in this paper compared to Ref. [11] are to model cutting of an 
anisotropic material (wood) and to incorporate realistic effects of cutting equipment, such as a 
chip breaker and a base plate in a bench plane. 

 
Figure 1. A picture of a typical bench plane or Jack 
plane. (from http://4mechtech.blogspot.com/2013/ 
12/Jack-plane.html). 
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Materials and methods 

Numerical Modeling 
 This numerical model for wood planing used the material point method (MPM). The details 
for MPM modeling of orthogonal cutting are given in Ref. [11]. This section summarizes some 
key points and describes additions needed for modeling a bench plane. MPM is a particle-based 
method for computational mechanics [12,13]. It is analogous to finite element method (FEM), 
but the particle nature gives it different properties for certain problems. In particular, MPM has 
some advantages for modeling problems involving large deformations [14], explicit cracks [15-
17], and contact [18-20]. All these issues are present when modeling cutting using explicit 
fracture criteria for crack growth. 
 The wood material was modeled as an orthotropic, elastic-plastic material in 2D plane-strain 
conditions. The orthotropic symmetry directions in wood are the longitudinal or grain direction 
(L), radial direction (R), and tangential directions (T). These directions refer to cylindrical tree 
structure, but when modeling a board, wood is usually treated as approximately rectilinearly 
orthotropic depending on how it was cut from the tree. Figure 3 shows approximately “RL” and 
“TL” boards to be planed in the grain direction along the top narrow edge indicated with dashed 
lines. The first letter is the normal to the narrow edge (and the cut plane) while the second letter 
is the cutting direction. The simulations here assigned properties similar to Douglas-fir softwood 
[21-23] and are given in Table 1. For RL, the directions are x = L, y = R, and z = T and for TL 
they are x = L, y = T, and z = R. RL boards correspond to radial sawn boards while TL boards are 
flat sawn. Approximately TL boards are more common and are emphasized in these simulations. 
 

 
Figure 2. Key geometric features of a bench plane showing a cutting tool, a base plate of the plane, 
and the beginning of a chip breaker; α, β, and ψ are rake, grinding, and clearance angles, respectively; 
d, m, and b are depth of cut, mouth opening, and chip breaker location, respectively. 
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Table 1. Elastic, plastic, and fracture properties of Douglas-fir wood for simulations of planing in the 
TL and RL directions. 

 
Property TL RL 

EL, ER, and ET (MPa) 14500, 960, and 620 
GLR, GLT, and GTR (MPa) 830, 760, and 80 
νLR, νLT, and νLR 0.37, 0.42, and 0.35 
σY,LL, σY,RR, and σY,TT (MPa) 100, 10, and 10 
τY,LR, τY,LR, and τY,TR (MPa) 30, 30,  and 4 
K and n 2 and 1 
Mode I Ginit and Gb (J/m2) 215 and 405 158 and 0 
Mode I σc and σb (MPa) 4.65 and 0.8 6.24 and 0 
Mode I δ1/δc and δ2/δc 0.05 and 0.1 0.1 and 1 
Mode I δc (mm) 1.0125 0.051 
Mode II Gtotal (J/m2) 645 474 
Mode II σc (MPa) 4.65 6.24 
Mode II δc (mm) 0.278 0.152 

 

 
Figure 3. The growth ring orientations for two board types to be planed along the top narrow 
edge. RL and TL indicate top surface normals in the radial direction (R) and tangential 
direction (T) with planing to be in the longitudinal direction (L). The x-y-z coordinate axes 
show the coordinates used in the numerical simulations. 
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 To account for anisotropic plastic properties of wood, especially the large difference between 
yielding parallel and perpendicular to the grain, the wood was modeled as a Hill plastic material 
[24] with yielding criterion: 

 

where 

 

 

Here σii and τij are current stresses, σY,ii and τY,ij are material yield strengths for loading in one 
direction, εp is cumulative plastic strain, and K and n are material hardening parameters. The 
yield strengths for Douglas-fir wood, which are based on failure loads in the different directions 
[21,22], are given in Table 1. This small-strain material used approximate polar decomposition 
methods to allow for large displacements and rotations during chip formation (i.e., a standard 
hypoelastic material implementation [25]). 
 The cutting region geometry for a bench plane with a “bevel-down” style blade is shown in 
Fig. 2. The most important features are the cutting tool, a chip breaker, and a base plate (or sole). 
The rake angle, α, is typically fixed at 45˚. The tool bevel or grinding angle, β, is set when 
sharpening the tool and common wood recommendations are to grind the bevel between 25˚ and 
30˚. The remaining clearance angle is ψ = 90-α-β. Different plane conditions can be modeled by 
adjusting tool angles, by adjusting distance to the chip breaker (b), or by setting the mouth 
opening (m). 
 A challenge in modeling cutting is dealing with all the contact situations. Although MPM 
handles contact well, its accuracy is determined by accuracy in determining the normals on 
contacting surfaces [19,20]. When possible, the contact normal on the tool was set using the 
input rake angle while the contact normal on the base plate and bearing surfaces was set to 
vertical. But, as the geometry of the plane gets more complex, more surfaces may come into 
contact making it difficult to hard code simple contact angles. Thus, when the simulations added 
a chip breaker and a base plate or when the tool was modeled with rounded edge to model a 
blunt tool, all contact normals were calculated by MPM methods based on volume gradients of 
the materials [19,20]. Because the tool was modeled as a rigid material (see below), its surface 
normals should be more reliable then normals calculated from the highly deforming cut material. 
Thus, the contact normals were calculated from the volume gradients of the tool material 
whenever possible [19]. The contact was either frictionless or added Coulomb friction. 
 A challenge combining contact and cracks in MPM is to allow the tool material to be inside 
the crack but to only allow the MPM explicit crack algorithm [15] to affect the material being 
cut. This challenge is most easily met with rigid materials [11]. Therefore, all components of the 
plane were modeled as rigid materials (note: modeling effects such as tool wear would require 
use of non-rigid materials in cracks, which will be the subject of future work).  As explained in 
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Ref. [11], the rigid material velocity was ramped up to 2 m/sec and a kinetic energy “thermostat” 
[26] was used to control start-up inertial effects. After reaching final velocity, the damping 
thermostat was turned off and the cutting soon established steady state conditions. All cutting 
forces were evaluated from simulation forces during this steady state phase. Note that 2 m/sec is 
much faster then ever expected with a hand bench plane, but this speed is much slower than the 
longitudinal wave speed in the wood (about 6000 m/sec) and therefore sufficiently slow to model 
quasi-static cutting. Because the orthotropic, elastic-plastic material model has no inherent rate 
dependence, the numerical results would not change at slower speeds. A numerical model to 
study such rate effects in cutting would require new material models that capture the underlying 
rate dependence of wood. 
 Explicit crack propagation was modeled using MPM cohesive zones [11,27,28]. In brief, an 
initial crack was introduced along the entire cutting path and the crack plane was modeled with a 
cohesive law determined by fracture experiments in the appropriate failure plane for solid wood 
(see below). This approach limited simulations to straight crack growth and therefore could not 
model chip fracture caused by fracture paths diverting toward the surface [4].  
 All numerical models simulating dynamic crack growth must incorporate a scheme for 
extending the crack. For example, in FEM, a node is released in the crack plane or in explicit 
MPM cracks the crack path is extended by a small amount [15,16]. Even in cohesive zone 
modeling, a crack grows when the crack opening displacement at the crack root reaches the 
cohesive law’s critical value (δc) and traction drops to zero. In computational mechanics code 
that correctly conserves total energy, all these virtual crack extension can cause an increase in 
kinetic energy that can quickly deteriorate numerical results. But, this conversion to kinetic 
energy does not reflect crack extension in real materials where that energy is instead absorbed by 
some surface processes representing the material’s fracture toughness. One solution to dealing 
with artifacts in dynamic crack propagation simulations is to add damping to mimic energy 
absorption in real materials, but it is challenging to add realistic damping. In previous orthogonal 
cutting simulations, it was noticed that a new form of damping, denoted as PIC damping [11], 
worked very well for crack propagation simulations. In brief, this damping focuses damping 
effects in regions with high velocity gradients and therefore selectively dampens regions around 
a propagating crack tip. Simulations with PIC damping enabled are extremely stable for all 
cutting conditions, while simulations without PIC damping were only stable for a few conditions. 
When they both work, they give nearly identical cutting forces except for far less noise when 
using PIC damping. All simulations here used the PIC damping method [11]. 
 Finally, resolution (which used 15 particles in the thickness direction of the chips) and 
boundary conditions (fixed displacements on the bottom) were selected using the same methods 
as in Ref [11]. Each simulation propagated the cut surface a distance equal to 50 times the depth 
of cut. Typical simulations took 30 hours using 20 cores on computer nodes with Intel® Xeon® 
E5-2698 v3 processors and the MPM software OSParticulas [29]. More than one third the 
processing time was numerically solving equations to implement anisotropic plasticity. Work in 
progress may improve efficiency for this task. 

Analytical Modeling 

 Due to the high longitudinal stiffness of wood when planing in the grain direction, 
woodcutting is predominantly in the plastic bending mode where the tool wedges open the crack 
but the tool tip does not reach the crack tip (see crack tip region in Fig. 2). Williams et al. [9,10] 
derived an analytical model for cutting by plastic bending. Nairn [11] extended that model to 
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allow for plastic hardening and to account for bearing forces seen on the bottom of the tool in 
numerical solutions. The plastic bending analysis includes a χ factor introduced by Williams [30] 
to account for crack-root rotation effects. For isotropic materials χ = 0.67, but it changes to 

     
and

      
for anistropic materials where x and y refer to cutting and transverse directions, respectively. For 
planing wood in the grain direction (and using plane-strain properties deduced from Table 1 
properties), χRL = 1.59 and χTL = 1.7. Analytical calculations done here for RL cutting used this 
χRL, estimated bearing forces from numerical results, and used the expressions given in section 3 
of Ref. [11] to find cutting forces 

Results and discussion 

Solid Wood Fracture Properties 

 One goal of numerical simulations for cutting wood is to predict how cutting and machining 
methods change with wood properties. Then, by using wood fracture properties for different 
wood species or for wood under various conditions (e.g., temperature and moisture content), one 
could optimize machining techniques. To model wood planing, the first need was to know 
Douglas-fir fracture properties for crack growth in the RL and TL modes. Matsumoto and Nairn 
[31] did those experiments using compact tension specimens; their experimental results are 
shown in Fig. 4A (solid lines). For both RL and TL directions, the fracture initiates at a low 
value (150-200 J/m2) and then increases as a function of crack length (which is known as the 
material’s R curve). The increases in toughness are likely caused by fiber bridging. The increase 
for RL crack growth was small, but was dramatic for TL growth. A physical interpretation is that 
TL fiber bridging is much more effective at increasing toughness because it includes fibers from 
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Figure 4. A. Experimental results for Douglas-fir mode I fracture in the TL and RL directions. The 
dashed lines are numerical simulations assuming fracture initiation followed by linear softening fiber 
bridging. B. Trilinear traction law used to model crack propagation in cutting simulations. 
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the higher-density late wood zones in the growth rings (i.e., the crack front spans the growth 
rings — see Fig. 3). In contrast, an RL crack can remain mostly within a single low-density, 
early wood region and those fibers are less effective at increasing toughness. 
 To implement these fracture properties into modeling based on cohesive zones, the 
experimental results were fit to a fracture model that assumes fracture initiations at some 
initiation toughness (Ginit) and then toughness increases due to fiber bridging in the wake of the 
crack tip and modeled by a linear softening behavior with total bridging toughness Gb [27,31]. 
The TL experiments could be fit to an MPM crack propagation simulation [31] using Ginit = 215 
J/m2 and Gb = 405 J/m2. The RL experiments could be fit well enough with Ginit = 158 J/m2 and 
no bridging (fits are dashed lines in Fig. 4). Alternatively, Douglas-fir fracture behavior can be 
modeled solely with a cohesive law by using the trilinear cohesive law shown in Fig. 4B. Such a 
law can represent two physical mechanisms. The high first peak represents fracture initiation 
while the long tail is softening behavior due to fiber bridging. The triangular areas under these 
peaks are: 

       
and

       

 The resulting cohesive law properties derived from these experiments and used for cutting 
simulations are given Table 1. Although experiments provide Ginit and Gb, the specific values for 
cohesive stresses and critical crack opening displacements are less certain. Some consequences 
of changing these values are discussed below and in Ref. [11]. 
 The experiments from Ref. [31] were mode I failure, but cutting is not pure mode I. Although 
mode II R curves are not available for Douglas-fir wood, experiments on Balsa wood suggest 
mode II initiation toughness is about three times higher than mode I and that mode II crack 
propagation is unaffected by fiber bridging [32]. These cutting simulations therefore set mode II 
toughness to three times the mode I initiation toughness and ignored fiber bridging effects (the 
mode II cohesive law properties are in Table 1). 
 Finally, for mixed-mode failure, the cohesive law was determined to have failed using a 
decoupled elliptical failure criterion [33]: 

  
(1)

 

where  GI and GII are areas under the cohesive law up to the current normal and tangential crack 
opening displacements, respectively, and GIc and GIIc are total areas under the mode I and mode 
II cohesive laws. For simplicity, all simulations here used n = m = 1. When the crack grows, the 
mode I character of the crack growth is given by GI/(GI+GII). Simulations show that wood 
planing is predominantly mode I, but ranged from 65% to 99% mode I depending on various 
cutting parameters. 

Verification Simulations 

 In numerical modeling, it is important to verify simulation methods by comparison to known 
solutions, such as analytical models. Unfortunately, no model is available for cutting wood with 
anisotropic yielding, but if the failure is converted to an isotropic von Mises yield criterion (by 
setting σY,xx = σY,yy = σY,zz = σY and τY,ij = σY/√3), numerical results can be compared to the 
Williams et al. [9,10] analytical model provided χ is adjusted for anisotropic material properties 
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and the model is modified to account for bearing forces observed in simulation results [11]. The 
results for simulation of RL fracture as a function of depth of cut using σY = 60 MPa are in Fig 5. 
To better match analytical modeling assumptions, the RL cohesive law for mode II was changed 
to match the RL mode I cohesive law in Table 1 such that the crack always propagates at 
constant Gc = 158 J/m2 (see Eq. (1)). These initial results were 20 to 40% higher than the 
analytical model (solid line), but changing the cohesive stress could eliminate the entire 
difference. By reducing the cohesive stress by a factor of two (to σc = 3.12 MPa) while 
maintaining constant overall toughness (by doubling δc), the numerical and analytical models 
agreed well. Although these simulations verify the the sensitivity of results to details of cohesive 
law parameters raises concerns about reliance on cohesive zone models without sufficient 
validation of all its parameters. 

Bare Cutting Tool 

 These simulations switched to TL planing and restored anisotropic yielding properties. The 
TL mode is more common in lumber and also has more fiber bridging effects. In fact, the fiber 
bridging is so extensive that the tool enters the fiber-bridging zone (as shown in Fig. 6A). This 
situation raises another issue with cohesive zone modeling. If a tool enters a cohesive zone and 
that zone is meant to represent a real physical process, like fiber bridging, one might expect that 
the tool will alter the cohesive zone process. For fiber bridging in wood, one might expect that 
the tool will cut the bridging fibers. Figure 6B shows steady state chip formation for a simulation 
in which the cohesive zone fails if it either reaches critical crack opening displacement or if the 
leading edge of the tool crosses the current location of the zone/crack particle. 
 To assess the effects of cutting the cohesive zone, Fig. 7 compares cutting forces as function 
of depth of cut for simulations in which the tool either ignores or cuts the bridging fibers. 

 
Figure 5. Cutting force, Fc, per unit width (B) as a function of depth of cut for RL cutting using an 
isotropic yield strength (σY = 60 MPa). The symbols are numerical simulations for two different 
cohesive stresses but constant Gtotal = 158 J/m2. The solid line is analytical model for an anisotropic 
material with isotropic yielding. 
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Because some of wood’s toughness is due to fiber bridging [31], when the tool cuts that zone, the 
effective toughness is reduced, as are the total cutting forces. Extrapolating to zero depth of cut 
(using quadratic fits), a tool that ignores the zone extrapolates to the expected total mode I 
toughness (area under the cohesive law). When the tool cuts the zone, however, the force 
extrapolates to close to the mode I initiation toughness. In other words, the tool has eliminated 
most of the Douglas-fir toughness attributed to fiber bridging. The difference between the two 
curves was larger for thin cuts because the tool gets closer to the crack tip and therefore when the 

 
Figure 6. Steady state chips for TL planing. A. Simulation where the tool is allowed to enter the 
cohesive zone. B. Simulation where the tool’s leading edge cuts the bridging fibers in the cohesive 
zone. 

A B

 
Figure 7. Cutting force, Fc, per unit width (B) as a function of depth of cut for TL planing for 
simulations where the tool either ignores or cuts the cohesive zone. The dashed extensions are 
quadratic extrapolations to zero depth of cut. The horizontal lines are for total mode I toughness and 
initiation mode I toughness. 
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tool cuts the zone, more bridging fibers are cut. These simulations highlight an important 
difference between remote-loading fracture experiments and fracture experiments based on 
cutting experiments. Although both are controlled by the material’s toughness, if a cutting tool 
alters a process zone around the crack tip, such as cutting bridging fibers, the toughness 
measured by cutting may differ from (and likely be lower than) the toughness measured by 
remote loading. 

Add Chip Breaker and Base Plate 

 Because of wood’s high longitudinal stiffness in the grain direction, the steady state chips 
formed with the tool alone have low curvature and the crack tip has potential to be far ahead of 
the tool tip (see Fig. 6). Adding a chip breaker and base plate will alter the process. A chip 
breaker, if positioned correctly, will force the chip to curl. A base plate will put downward 
pressure on the wood preventing the crack from propagating too far from the tool perhaps 
enhancing control of the cutting process. The next simulations added a chip breaker and a base 
plate. The chip breaker was positioned b =1.59 mm (1/16 inch) from the tool tip. Only a small 
and approximately vertical portion of the chip breaker was needed because only that region 
contacts the chip. The base plate was added to give various mouth openings (m). Only the base 
plate in front of the tool tip contacts the wood. 
 Figure 8 shows steady state chips for a 0.3 mm depth of cut, constant chip breaker position (b 
= 1.59 mm) and variable ratio of mouth opening to the depth of cut. With no base plate (m/d = 
∞), the chip runs up the tool but then is bent by the chip breaker. The resulting chip curvature is 
much higher then without a chip breaker (c.f., chips in Fig. 6). These simulations used 
anisotropic yielding with plasticity and therefore had no scheme to actually break the chip or to 
draw conclusions about ideal chip shape for smooth cuts, but the effect of the chip breaker is 
captured by its large affect on increased final chip curvature. The extra chip curvature when m/d 
= ∞ is only slightly modified when m/d = 4, but when m/d = 1.5 the chip curvature is greatly 
increased and no longer even contacts the chip breaker. It was not possible to run simulations 
with m/d = 1 or less because the chip did not fit through the opening. These simulations indicate 
that both chip breaker location and mouth opening affect chip curvature and they interact. When 
the mouth opening is narrow, the chip breaker serves no function unless it is moved sufficient 
close to the tool tip. 
 Figure 9 shows steady state chips as a function of the depth of cut (from 0.05 mm to 0.5 mm) 
for constant chip breaker location (b = 1.59 mm) and constant mouth opening (m = 1.2 mm, 
which means m/d varied from 24 to 2.4). For depths of cut 0.05 and 0.1 mm, the chips curl 

 
Figure 8. Steady state chips for TL planing when using a chip breaker located 1.59 mm from the tool 
tip for depth of cut of 0.3 mm and for various mouth openings. 
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before reaching the chip breaker, while the chip breaker contacts, and therefore alters the chip for 
all other depths of cut. Starting at about 0.3 mm, the chip breaker/mouth opening combinations 
caused the chip to lose contact with the tool. In these frictionless simulations, this loss of contact 
eliminates all vertical force on the tool. The tool/chip breaker combination has only horizontal 
force while the base plate carries only vertical force. Although more simulations are required to 
optimize all settings, these simulations show that both chip breaker location and mouth opening 
should be adjusted whenever the depth of cut is changed. As the depth of cut gets thinner, the 
chip breaker needs to be moved closer to the tool tip otherwise it serves no purpose. Assuming 
that the tool should contact the chip to provide the best cut quality, for a given chip breaker 
location, the mouth opening must either be wide enough to retain that contact (see m/d >4 for d < 
0.3 mm in Fig. 9), or narrow enough to control chip curvature without using a chip breaker (see 
m/d = 1.5 in Fig 8). The latter option also gets the tool tip the closest to the crack tip, which may 
or may not be advantageous for high quality cuts. 
 Figure 10 shows the cutting force as a function of depth of cut for the chips in Fig. 9, which 
used constant m = 1.2 mm (unfilled square symbols). Unlike all cutting models for a bare tool 
(e.g., Figs. 5 and 7) and for experiments with a bare tool, where cutting forces increase linearly 
or less then linearly, these cutting forces increased (empirically) exponentially as a function of 
depth of cut. The solid line shows a fit to exponential increase of Fc/B = Aekd where A = 233 J/m2 
and k = 6.72 mm-1. The intercept (A) is close to the mode I initiation toughness (as indicated on 
the plot). To test if the exponential increase for thick cuts is caused by lower m/d for thick cuts, 

 
Figure 9. Steady state chips for TL planing with a chip breaker located b = 1.59 mm from the tool tip, 
a fixed m = 1.2 mm mouth opening and various depths of cut (as indicated in mm). 
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the simulations were repeated for constant m/d = 4 (see unfilled circle symbols in Fig. 10). For 
thin cuts, the cutting force was unchanged because that force is unaffected by m/d > 4 (see Fig. 
8). For depths of cut 0.4 and 0.5 mm the cutting force is reduced due to larger m/d. The 
transverse force on the tool was also affected by mouth setting and it increased as m/d decreased. 
Thus the simulations with m/d = 4 had higher transverse force for thin cuts (d < 0.3 mm) but 
lower transverse force for thick cuts (d > 0.3 mm). 

Grinding Angle 

 The tool’s grinding or bevel angle is set when the tool is ground and sharpened and most 
bevel-down, bench plane blades are ground to 25˚ to 30˚. Numerical simulations, however, 
suggest the grinding angle has essentially no effect on cutting performance. Changing that angle 
from a low value to close the maximum value of 45˚ in simulations showed no effect on chip 
formation or on cutting forces. This result was not unexpected. All cutting theories assume that 
the dominant tool angle variable is the rake angle. The only effect of changing grinding angle at 
constant rake angle is to change clearance angle, and that angle has much less effect on cutting 
mechanics. Apart from cutting mechanics, several issues could make the grinding angle 
important. First, a large grinding angle might eventually lead to more tool rubbing on the cut 
surface; it is likely that some tool clearance angle is beneficial. Second, a small grinding angle 
will probably weaken the tool tip resulting in reduced tool durability (this effect cannot be 
modeled with rigid tools used here). Third, some woodworking planes use a bevel-up tool 
placement. In this arrangement, the grinding angle would change the rake angle, which would 
clearly make it an important variable. 

 
Figure 10. Cutting force, Fc, per unit width (B) as a function of depth of cut for TL planing for 
conditions shown in Fig. 9 (m = 1.2 mm) and for m/d = 4 without friction (unfilled symbols) or with 
friction (filled symbols). The dotted horizontal line shows the mode I initiation toughness. The solid 
line is exponential fit to cutting forces for m = 1.2 mm. 
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Tool Sharpness 

 To simulate tool sharpness effects, the tool’s tip was rounded to radii of 60, 120, 180, and 
240 µm. Cutting simulations were run for depth of cut d = 0.3 mm, chip breaker location b = 
1.59 mm, and m/d = 4. Tool sharpness effects on cutting forces were very small. Comparing a 
simulation for a sharp tool and one for a blunt, 240 µm radius tool, the cutting forces only 
increased 5% while the transverse forces on the tool decreased 17%. Figure 11 shows steady 
state chips for 120 µm and 240 µm radius tool tips to be compared to sharp tool in Fig. 8 (for m/d 
= 4). As seen in these chips, contact between the tool and the chip is about half way between the 
sharp tool tip and the chip breaker (about 0.8 mm from the tip). Because the region near the tool 
tip is not contacting the chip, its removal when simulating a blunt tip had very little effect. In all 
simulations, the tool’s leading edge was assumed to cut the bridging fibers when in reached those 
fibers. The only reason the force increased for blunt tips was that a blunt tool’s leading edge 
reached the cohesive zone later then a sharp tool tip and therefore would cut fewer bridging 
fibers. 
 The simulation result that tool sharpness has little or no effect, contrasts with practical 
woodworking experience that sharp tools cut better. One possibility is that blunt tools, unlike 
sharp tools, would not be able to cut the bridging fibers. If a blunt tool leaves those fibers intact, 
or even bends those fibers pulling on the chip surfaces, then blunt tools could result in much 
higher cutting forces. A second possibility is that all these tools are rather sharp (it was difficult 
to simulate tools blunter then 240 µm radius tip and still get the tool to start the cutting process). 
Individual wood cells (or wood fibers) in Douglas-fir wood are hollow cells with diameters 
around 60 µm [34]. It is unlikely that sharpening tools beyond the dimension of elements in the 
morphology of the material being cut could improve cutting performance. Perhaps the 240 µm 
radius tool simulated here corresponds to sufficiently sharp tools in practical woodworking. 
These two possibilities could be addressed by quantitative comparison to experimental results as 
a function of tool bluntness. 

 
Figure 11. Steady state chips for TL planing with a chip breaker located b = 1.59 mm from the tool tip, 
a fixed m/d = 4 mouth opening and depth of cut of 0.3 mm. The two chips are for tools with 120 µm or 
240 µm radii. 

120 µm 240 µm
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Effects of Friction 
 Although all previous simulations used frictionless contact, because a bench plane has much 
more surface area in contact with the material being cut, it is likely important to account for 
friction. The filled diamond symbols in Fig. 10 repeat the m/d = 4 simulations as a function of 
depth of cut for friction coefficient equal 0.3 on all contacting surfaces. The forces are nearly 
double those from simulations with frictionless contact. For depth of cut of 0.5 mm, the forces in 
the presence of friction were too high to finish a stable simulation. The frictional contact used 
simple Coulomb friction. It is easy to extend to non-Coulomb friction (such as friction with 
adhesion [9] or velocity-dependent coefficient of friction). The exploration of such laws is best 
coupled to experimental results for metal/wood frictional properties. 
 Finally, note that all simulations vs. depth of cut are consistent with extrapolation of Fc/B to 
zero depth of cut being equal to the material’s toughness. Here the extrapolations are close to the 
initiation toughness because the tool has cut most of the bridging fibers. Furthermore, the tool 
cuts more bridging fibers for thin cuts because the tool gets closer to the crack tip. An 
experimental challenge when doing extrapolations is how best to extrapolate cutting forces. The 
exponential extrapolation worked well for m = 1.2 mm, but that was purely an empirical 
observation. For constant m/d = 4 (with or without friction), the simulations results look close to 
linear, but a linear extrapolation to zero depth of cut gives a large uncertainty. Perhaps rather the 
trying to develop methods for extrapolating experimental results to zero depth of cut, a better 
approach would be to couple numerical simulations to experiment results at various depths of cut 
and find toughness by inverse simulation procedures. 

Conclusions 

 This numerical modeling combined the long-held belief that cutting is determined by elastic-
plastic properties of the chip and frictional properties of the contact surfaces with the newer 
concept that surface energy (or fracture properties of the cut material) also plays a significant 
role [1,4]. These concepts were implemented in Material Pont Method (MPM) simulations to 
take advantage of that method’s capabilities for handling explicit cracks, complex contact 
conditions, and large displacements and rotations. Accepting the implementation concepts and 
modeling details, the MPM simulations are best viewed as an experimental method, albeit a 
virtual one. The virtual experimental results for a bench plane show that chip breaker location, 
mouth opening, and depth of cut are interrelated suggesting that the former two should be 
adjusted whenever the depth of cut is changed. More simulations would be needed before 
modeling could recommend how they should be adjusted. Other results suggest that grinding 
angle is unimportant and tool sharpness plays a secondary role in cutting forces for tip radii 
under 240 µm. 
 The ability to model a complex process such as wood planing, suggests a future potential to 
address other areas in wood machining such as non-orthogonal cutting, sawing, drilling, and 
veneer peeling. Two important questions to answer when modeling wood machining are to 
determine the conditions that provide the highest quality cut surfaces and, for some problems, to 
determine the conditions that give the lowest energy process. The answer to such questions will 
likely require coupling of experiments to modeling. Once experimental conditions are found for 
high-quality or low-energy cuts, numerical simulation results can be interrogated to determine 
which details of cutting force or other simulation output correlate with those desirable machining 
qualities. 
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