Numerical Multilinear Algebra I

Lek-Heng Lim
University of California, Berkeley
January 5-7, 2009

Hope

Past 50 years, Numerical Linear Algebra played indispensable role in

- the statistical analysis of two-way data,
- the numerical solution of partial differential equations arising from vector fields,
- the numerical solution of second-order optimization methods.

Next step - development of Numerical Multilinear Algebra for

- the statistical analysis of multi-way data,
- the numerical solution of partial differential equations arising from tensor fields,
- the numerical solution of higher-order optimization methods.

DARPA mathematical challenge eight

One of the twenty three mathematical challenges announced at DARPA Tech 2007.

Problem

Beyond convex optimization: can linear algebra be replaced by algebraic geometry in a systematic way?

- Algebraic geometry in a slogan: polynomials are to algebraic geometry what matrices are to linear algebra.
- Polynomial $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ of degree d can be expressed as

$$
f(\mathbf{x})=a_{0}+\mathbf{a}_{1}^{\top} \mathbf{x}+\mathbf{x}^{\top} A_{2} \mathbf{x}+\mathcal{A}_{3}(\mathbf{x}, \mathbf{x}, \mathbf{x})+\cdots+\mathcal{A}_{d}(\mathbf{x}, \ldots, \mathbf{x})
$$

$a_{0} \in \mathbb{R}, \mathbf{a}_{1} \in \mathbb{R}^{n}, A_{2} \in \mathbb{R}^{n \times n}, \mathcal{A}_{3} \in \mathbb{R}^{n \times n \times n}, \ldots, \mathcal{A}_{d} \in \mathbb{R}^{n \times \cdots \times n}$.

- Numerical linear algebra: $d=2$.
- Numerical multilinear algebra: $d>2$.

Motivation

Why multilinear:

- "Classification of mathematical problems as linear and nonlinear is like classification of the Universe as bananas and non-bananas."
- Nonlinear - too general. Multilinear - next natural step.

Why numerical:

- Different from Computer Algebra.
- Numerical rather than symbolic: floating point operations - cheap and abundant; symbolic operations - expensive.
- Like other areas in numerical analysis, will entail the approximate solution of approximate multilinear problems with approximate data but under controllable and rigorous confidence bounds on the errors involved.

Tensors: mathematician's definition

- U, V, W vector spaces. Think of $U \otimes V \otimes W$ as the vector space of all formal linear combinations of terms of the form $\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}$,

$$
\sum \alpha \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}
$$

where $\alpha \in \mathbb{R}, \mathbf{u} \in U, \mathbf{v} \in V, \mathbf{w} \in W$.

- One condition: \otimes decreed to have the multilinear property

$$
\begin{array}{r}
\left(\alpha \mathbf{u}_{1}+\beta \mathbf{u}_{2}\right) \otimes \mathbf{v} \otimes \mathbf{w}=\alpha \mathbf{u}_{1} \otimes \mathbf{v} \otimes \mathbf{w}+\beta \mathbf{u}_{2} \otimes \mathbf{v} \otimes \mathbf{w} \\
\mathbf{u} \otimes\left(\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}\right) \otimes \mathbf{w}=\alpha \mathbf{u} \otimes \mathbf{v}_{1} \otimes \mathbf{w}+\beta \mathbf{u} \otimes \mathbf{v}_{2} \otimes \mathbf{w} \\
\mathbf{u} \otimes \mathbf{v} \otimes\left(\alpha \mathbf{w}_{1}+\beta \mathbf{w}_{2}\right)=\alpha \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}_{1}+\beta \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}_{2}
\end{array}
$$

- Up to a choice of bases on $U, V, W, \mathbf{A} \in U \otimes V \otimes W$ can be represented by a 3-hypermatrix $A=\llbracket a_{i j k} \rrbracket_{i, j, k=1}^{l, m, n} \in \mathbb{R}^{1 \times m \times n}$.

Tensors: physicist's definition

- "What are tensors?" 三"What kind of physical quantities can be represented by tensors?"
- Usual answer: if they satisfy some 'transformation rules' under a change-of-coordinates.

Theorem (Change-of-basis)

Two representations A, A^{\prime} of \mathbf{A} in different bases are related by

$$
(L, M, N) \cdot A=A^{\prime}
$$

with L, M, N respective change-of-basis matrices (non-singular).

- Pitfall: tensor fields (roughly, tensor-valued functions on manifolds) often referred to as tensors - stress tensor, piezoelectric tensor, moment-of-inertia tensor, gravitational field tensor, metric tensor, curvature tensor.

Tensors: data analyst's definition

- Data structure: k-array $A=\llbracket a_{i j k} \rrbracket_{i, j, k=1}^{l, m, n} \in \mathbb{R}^{1 \times m \times n}$
- Algebraic structure:
(1) Addition/scalar multiplication: for $\llbracket b_{i j k} \rrbracket \in \mathbb{R}^{1 \times m \times n}, \lambda \in \mathbb{R}$,

$$
\llbracket a_{i j k} \rrbracket+\llbracket b_{i j k} \rrbracket:=\llbracket a_{i j k}+b_{i j k} \rrbracket \quad \text { and } \quad \lambda \llbracket a_{i j k} \rrbracket:=\llbracket \lambda a_{i j k} \rrbracket \in \mathbb{R}^{\prime \times m \times n}
$$

(2) Multilinear matrix multiplication: for matrices $L=\left[\lambda_{i^{\prime}}\right] \in \mathbb{R}^{p \times 1}, M=\left[\mu_{j^{\prime} j}\right] \in \mathbb{R}^{q \times m}, N=\left[\nu_{k^{\prime} k}\right] \in \mathbb{R}^{r \times n}$,

$$
(L, M, N) \cdot A:=\llbracket c_{i^{\prime} j^{\prime} k^{\prime}} \rrbracket \in \mathbb{R}^{p \times q \times r}
$$

where

$$
c_{i^{\prime} j^{\prime} k^{\prime}}:=\sum_{i=1}^{\prime} \sum_{j=1}^{m} \sum_{k=1}^{n} \lambda_{i^{\prime} i} \mu_{j^{\prime} j} \nu_{k^{\prime} k} a_{i j k} .
$$

- Think of A as 3-dimensional hypermatrix. $(L, M, N) \cdot A$ as multiplication on '3 sides' by matrices L, M, N.
- Generalizes to arbitrary order k. If $k=2$, ie. matrix, then $(M, N) \cdot A=M A N^{\top}$.

Hypermatrices

Totally ordered finite sets: $[n]=\{1<2<\cdots<n\}, n \in \mathbb{N}$.

- Vector or n-tuple

$$
f:[n] \rightarrow \mathbb{R}
$$

If $f(i)=a_{i}$, then f is represented by $\mathbf{a}=\left[a_{1}, \ldots, a_{n}\right]^{\top} \in \mathbb{R}^{n}$.

- Matrix

$$
f:[m] \times[n] \rightarrow \mathbb{R}
$$

If $f(i, j)=a_{i j}$, then f is represented by $A=\left[a_{i j}\right]_{i, j=1}^{m, n} \in \mathbb{R}^{m \times n}$.

- Hypermatrix (order 3)

$$
f:[/] \times[m] \times[n] \rightarrow \mathbb{R}
$$

If $f(i, j, k)=a_{i j k}$, then f is represented by $\mathcal{A}=\llbracket a_{i j k} \rrbracket_{i, j, k=1}^{l, m, n} \in \mathbb{R}^{I \times m \times n}$. Normally $\mathbb{R}^{X}=\{f: X \rightarrow \mathbb{R}\}$. Ought to be $\mathbb{R}^{[n]}, \mathbb{R}^{[m] \times[n]}, \mathbb{R}^{[l] \times[m] \times[n]}$.

Hypermatrices and tensors

Up to choice of bases

- $\mathbf{a} \in \mathbb{R}^{n}$ can represent a vector in V (contravariant) or a linear functional in V^{*} (covariant).
- $A \in \mathbb{R}^{m \times n}$ can represent a bilinear form $V^{*} \times W^{*} \rightarrow \mathbb{R}$ (contravariant), a bilinear form $V \times W \rightarrow \mathbb{R}$ (covariant), or a linear operator $V \rightarrow W$ (mixed).
- $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$ can represent trilinear form $U \times V \times W \rightarrow \mathbb{R}$ (covariant), bilinear operators $V \times W \rightarrow U$ (mixed), etc.
A hypermatrix is the same as a tensor if
(1) we give it coordinates (represent with respect to some bases);
(2) we ignore covariance and contravariance.

Basic operation on a hypermatrix

- A matrix can be multiplied on the left and right: $A \in \mathbb{R}^{m \times n}$, $X \in \mathbb{R}^{p \times m}, Y \in \mathbb{R}^{q \times n}$,

$$
(X, Y) \cdot A=X A Y^{\top}=\left[c_{\alpha \beta}\right] \in \mathbb{R}^{p \times q}
$$

where

$$
c_{\alpha \beta}=\sum_{i, j=1}^{m, n} x_{\alpha i} y_{\beta j} a_{i j} .
$$

- A hypermatrix can be multiplied on three sides: $\mathcal{A}=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{I \times m \times n}$, $X \in \mathbb{R}^{p \times 1}, Y \in \mathbb{R}^{q \times m}, Z \in \mathbb{R}^{r \times n}$,

$$
(X, Y, Z) \cdot \mathcal{A}=\llbracket c_{\alpha \beta \gamma} \rrbracket \in \mathbb{R}^{p \times q \times r}
$$

where

$$
c_{\alpha \beta \gamma}=\sum_{i, j, k=1}^{l, m, n} x_{\alpha i} y_{\beta j} z_{\gamma k} a_{i j k}
$$

Basic operation on a hypermatrix

- Covariant version:

$$
\mathcal{A} \cdot\left(X^{\top}, Y^{\top}, Z^{\top}\right):=(X, Y, Z) \cdot \mathcal{A}
$$

- Gives convenient notations for multilinear functionals and multilinear operators. For $\mathbf{x} \in \mathbb{R}^{\prime}, \mathbf{y} \in \mathbb{R}^{m}, \mathbf{z} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& \mathcal{A}(\mathbf{x}, \mathbf{y}, \mathbf{z}):=\mathcal{A} \cdot(\mathbf{x}, \mathbf{y}, \mathbf{z})=\sum_{i, j, k=1}^{I, m, n} a_{i j k} x_{i} y_{j} z_{k} \\
& \mathcal{A}(I, \mathbf{y}, \mathbf{z}):=\mathcal{A} \cdot(I, \mathbf{y}, \mathbf{z})=\sum_{j, k=1}^{m, n} a_{i j k} y_{j} z_{k}
\end{aligned}
$$

Segre outer product

If $U=\mathbb{R}^{\prime}, V=\mathbb{R}^{m}, W=\mathbb{R}^{n}, \mathbb{R}^{\prime} \otimes \mathbb{R}^{m} \otimes \mathbb{R}^{n}$ may be identified with $\mathbb{R}^{I \times m \times n}$ if we define \otimes by

$$
\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}=\llbracket u_{i} v_{j} w_{k} \rrbracket_{i, j, k=1}^{l, m, n} .
$$

A tensor $A \in \mathbb{R}^{1 \times m \times n}$ is said to be decomposable if it can be written in the form

$$
A=\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}
$$

for some $\mathbf{u} \in \mathbb{R}^{I}, \mathbf{v} \in \mathbb{R}^{m}, \mathbf{w} \in \mathbb{R}^{n}$.
The set of all decomposable tensors is known as the Segre variety in algebraic geometry. It is a closed set (in both the Euclidean and Zariski sense) as it can be described algebraically:

$$
\operatorname{Seg}\left(\mathbb{R}^{\prime}, \mathbb{R}^{m}, \mathbb{R}^{n}\right)=\left\{A \in \mathbb{R}^{\prime \times m \times n} \mid a_{i_{1} i_{2} i_{3}} a_{j_{1} j_{2} j_{3}}=a_{k_{1} k_{2} k_{3}} a_{l_{1} l_{2} / 3},\left\{i_{\alpha}, j_{\alpha}\right\}=\left\{k_{\alpha}, l_{\alpha}\right\}\right\}
$$

Symmetric hypermatrices

- Cubical hypermatrix $\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{n \times n \times n}$ is symmetric if

$$
a_{i j k}=a_{i k j}=a_{j i k}=a_{j k i}=a_{k i j}=a_{k j i}
$$

- Invariant under all permutations $\sigma \in \mathfrak{S}_{k}$ on indices.
- $S^{k}\left(\mathbb{R}^{n}\right)$ denotes set of all order- k symmetric hypermatrices.

Example

Higher order derivatives of multivariate functions.

Example

Moments of a random vector $\mathbf{x}=\left(X_{1}, \ldots, X_{n}\right)$:

$$
m_{k}(\mathbf{x})=\left[E\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}\right)\right]_{i_{1}, \ldots, i_{k}=1}^{n}=\left[\int \cdots \int x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} d \mu\left(x_{i_{1}}\right) \cdots d \mu\left(x_{i_{k}}\right)\right]_{i_{1}, \ldots, i_{k}=1}^{n} .
$$

Symmetric hypermatrices

Example

Cumulants of a random vector $\mathbf{x}=\left(X_{1}, \ldots, X_{n}\right)$:

$$
\kappa_{k}(\mathbf{x})=\left[\sum_{A_{1} \sqcup \ldots \mathcal{A}_{p}=\left\{i_{1}, \ldots, i_{k}\right\}}(-1)^{p-1}(p-1)!E\left(\prod_{i \in A_{1}} x_{i}\right) \cdots E\left(\prod_{i \in A_{p}} x_{i}\right)\right]_{i_{1}, \ldots, i_{k}=1}^{n} .
$$

For $n=1, \kappa_{k}(x)$ for $k=1,2,3,4$ are the expectation, variance, skewness, and kurtosis.

- Important in Independent Component Analysis (ICA).

Inner products and norms

- $\ell^{2}([n]): \mathbf{a}, \mathbf{b} \in \mathbb{R}^{n},\langle\mathbf{a}, \mathbf{b}\rangle=\mathbf{a}^{\top} \mathbf{b}=\sum_{i=1}^{n} a_{i} b_{i}$.
- $\ell^{2}([m] \times[n]): A, B \in \mathbb{R}^{m \times n},\langle A, B\rangle=\operatorname{tr}\left(A^{\top} B\right)=\sum_{i, j=1}^{m, n} a_{i j} b_{i j}$.
- $\ell^{2}([/] \times[m] \times[n]): \mathcal{A}, \mathcal{B} \in \mathbb{R}^{\prime \times m \times n},\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i, j, k=1}^{l, m, n} a_{i j k} b_{i j k}$.
- In general,

$$
\begin{aligned}
\ell^{2}([m] \times[n]) & =\ell^{2}([m]) \otimes \ell^{2}([n]), \\
\ell^{2}([/] \times[m] \times[n]) & =\ell^{2}([/]) \otimes \ell^{2}([m]) \otimes \ell^{2}([n]) .
\end{aligned}
$$

- Frobenius norm

$$
\|\mathcal{A}\|_{F}^{2}=\sum_{i, j, k=1}^{1, m, n} a_{i j k}^{2}
$$

- Norm topology often more directly relevant to engineering applications than Zariski toplogy.

Other norms

- Let $\|\cdot\|_{\alpha_{i}}$ be a norm on $\mathbb{R}^{d_{i}}, i=1, \ldots, k$. Then operator norm of multilinear functional $A: \mathbb{R}^{d_{1}} \times \cdots \times \mathbb{R}^{d_{k}} \rightarrow \mathbb{R}$ is

$$
\|A\|_{\alpha_{1}, \ldots, \alpha_{k}}:=\sup \frac{\left|A\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)\right|}{\left\|\mathbf{x}_{1}\right\|_{\alpha_{1}} \cdots\left\|\mathbf{x}_{k}\right\|_{\alpha_{k}}}
$$

- Deep and important results about such norms in functional analysis.
- E-norm and G-norm:

$$
\|A\|_{E}=\sum_{i_{1}, \ldots, i_{k}=1}^{d_{1}, \ldots, d_{k}}\left|a_{j_{1} \ldots j_{k}}\right|
$$

and

$$
\|A\|_{G}=\max \left\{\left|a_{j_{1} \cdots j_{k}}\right| \mid j_{1}=1, \ldots, d_{1} ; \ldots ; j_{k}=1, \ldots, d_{k}\right\} .
$$

- Multiplicative on rank-1 tensors:

$$
\begin{aligned}
\|\mathbf{u} \otimes \mathbf{v} \otimes \cdots \otimes \mathbf{z}\|_{E} & =\|\mathbf{u}\|_{1}\|\mathbf{v}\|_{1} \cdots\|\mathbf{z}\|_{1}, \\
\|\mathbf{u} \otimes \mathbf{v} \otimes \cdots \otimes \mathbf{z}\|_{F} & =\|\mathbf{u}\|_{2}\|\mathbf{v}\|_{2} \cdots\|\mathbf{z}\|_{2}, \\
\|\mathbf{u} \otimes \mathbf{v} \otimes \cdots \otimes \mathbf{z}\|_{G} & =\|\mathbf{u}\|_{\infty}\|\mathbf{v}\|_{\infty} \cdots\|\mathbf{z}\|_{\infty} .
\end{aligned}
$$

Tensor ranks (Hitchcock, 1927)

- Matrix rank. $A \in \mathbb{R}^{m \times n}$.

$$
\begin{aligned}
\operatorname{rank}(A) & =\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{\bullet 1}, \ldots, A_{\bullet n}\right\}\right) & & \text { (column rank) } \\
& =\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{A_{1 \bullet}, \ldots, A_{m \bullet}\right\}\right) & & \text { (row rank) } \\
& =\min \left\{r \mid A=\sum_{i=1}^{r} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}\right\} & & \text { (outer product rank). }
\end{aligned}
$$

- Multilinear rank. $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$. $\operatorname{rank}_{\boxplus}(\mathcal{A})=\left(r_{1}(\mathcal{A}), r_{2}(\mathcal{A}), r_{3}(\mathcal{A})\right)$,

$$
\begin{aligned}
& r_{1}(\mathcal{A})=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{\mathcal{A}_{1 \bullet \bullet}, \ldots, \mathcal{A}_{\bullet \bullet \bullet}\right\}\right) \\
& r_{2}(\mathcal{A})=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{\mathcal{A}_{\bullet 1 \bullet}, \ldots, \mathcal{A}_{\bullet \bullet \bullet}\right\}\right) \\
& r_{3}(\mathcal{A})=\operatorname{dim}\left(\operatorname{span}_{\mathbb{R}}\left\{\mathcal{A}_{\bullet \bullet 1}, \ldots, \mathcal{A}_{\bullet \bullet n}\right\}\right)
\end{aligned}
$$

- Outer product rank. $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$.

$$
\operatorname{rank}_{\otimes}(\mathcal{A})=\min \left\{r \mid \mathcal{A}=\sum_{i=1}^{r} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}\right\}
$$

where $\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}:=\llbracket u_{i} v_{j} w_{k} \rrbracket_{i, j, k=1}^{l, m, n}$.

Properties of matrix rank

(1) Rank of $A \in \mathbb{R}^{m \times n}$ easy to determine (Gaussian elimination)
(2) Best rank- r approximation to $A \in \mathbb{R}^{m \times n}$ always exist (Eckart-Young theorem)
(3) Best rank- r approximation to $A \in \mathbb{R}^{m \times n}$ easy to find (singular value decomposition)
(1) Pick $A \in \mathbb{R}^{m \times n}$ at random, then A has full rank with probability 1 , ie. $\operatorname{rank}(A)=\min \{m, n\}$
(6) $\operatorname{rank}(A)$ from a non-orthogonal rank-revealing decomposition (e.g. $A=L_{1} D L_{2}^{\top}$) and $\operatorname{rank}(A)$ from an orthogonal rank-revealing decomposition (e.g. $A=Q_{1} R Q_{2}^{\top}$) are equal
(0) $\operatorname{rank}(A)$ is base field independent, ie. same value whether we regard A as an element of $\mathbb{R}^{m \times n}$ or as an element of $\mathbb{C}^{m \times n}$

Properties of outer product rank

(1) Computing $\operatorname{rank}_{\otimes}(A)$ for $A \in \mathbb{R}^{I \times m \times n}$ is NP-hard [Håstad 1990]
(2) For some $A \in \mathbb{R}^{1 \times m \times n}, \operatorname{argmin}_{\text {rank }_{\otimes}(B) \leq r}\|A-B\|_{F}$ does not have a solution
(3) When $\operatorname{argmin}_{\text {rank }_{\otimes}(B) \leq r}\|A-B\|_{F}$ does have a solution, computing the solution is an NP-complete problem in general
(9) For some I, m, n, if we sample $A \in \mathbb{R}^{I \times m \times n}$ at random, there is no r such that $\operatorname{rank}_{\otimes}(A)=r$ with probability 1
(5) An outer product decomposition of $A \in \mathbb{R}^{1 \times m \times n}$ with orthogonality constraints on X, Y, Z will in general require a sum with more than rank $_{\otimes}(A)$ number of terms
(6) $\operatorname{rank}_{\otimes}(A)$ is base field dependent, ie. value depends on whether we $\operatorname{regard} A \in \mathbb{R}^{1 \times m \times n}$ or $A \in \mathbb{C}^{1 \times m \times n}$

Properties of multilinear rank

(1) Computing rank $_{\boxplus}(A)$ for $A \in \mathbb{R}^{I \times m \times n}$ is easy
(2) Solution to $\operatorname{argmin}_{\text {rank }_{\boxplus}(B) \leq\left(r_{1}, r_{2}, r_{3}\right)}\|A-B\|_{F}$ always exist
(3) Solution to $\operatorname{argmin}_{\text {rank }_{\boxplus}(B) \leq\left(r_{1}, r_{2}, r_{3}\right)}\|A-B\|_{F}$ easy to find
(9) Pick $A \in \mathbb{R}^{I \times m \times n}$ at random, then A has

$$
\operatorname{rank}_{\boxplus}(A)=(\min (I, m n), \min (m, I n), \min (n, I m))
$$

with probability 1

(5) If $A \in \mathbb{R}^{I \times m \times n}$ has rank $\boxplus(A)=\left(r_{1}, r_{2}, r_{3}\right)$. Then there exist full-rank matrices $X \in \mathbb{R}^{\prime \times r_{1}}, Y \in \mathbb{R}^{m \times r_{2}}, Z \in \mathbb{R}^{n \times r_{3}}$ and core tensor $C \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$ such that $A=(X, Y, Z) \cdot C . X, Y, Z$ may be chosen to have orthonormal columns
(0) rank $_{\boxplus}(A)$ is base field independent, ie. same value whether we regard $A \in \mathbb{R}^{1 \times m \times n}$ or $A \in \mathbb{C}^{1 \times m \times n}$

Algebraic computational complexity

- For $A=\left(a_{i j}\right), B=\left(b_{j k}\right) \in \mathbb{R}^{n \times n}$,

$$
A B=\sum_{i, j, k=1}^{n} a_{i k} b_{k j} E_{i j}=\sum_{i, j, k=1}^{n} \varphi_{i k}(A) \varphi_{k j}(B) E_{i j}
$$

where $E_{i j}=\mathbf{e}_{i} \mathbf{e}_{j}^{\top} \in \mathbb{R}^{n \times n}$. Let

$$
T=\sum_{i, j, k=1}^{n} \varphi_{i k} \otimes \varphi_{k j} \otimes E_{i j}
$$

- $O\left(n^{2+\varepsilon}\right)$ algorithm for multiplying two $n \times n$ matrices gives $O\left(n^{2+\varepsilon}\right)$ algorithm for solving system of n linear equations [Strassen 1969].
- Conjecture. $\log _{2}\left(\operatorname{rank}_{\otimes}(T)\right) \leq 2+\varepsilon$.
- Best known result. $O\left(n^{2.376}\right)$ [Coppersmith-Winograd 1987; Cohn-Kleinberg-Szegedy-Umans 2005].

More tensor ranks

- For $\mathbf{u} \in \mathbb{R}^{\prime}, \mathbf{v} \in \mathbb{R}^{m}, \mathbf{w} \in \mathbb{R}^{n}$,

$$
\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}:=\llbracket u_{i} v_{j} w_{k} \rrbracket_{i, j, k=1}^{l, m, n} \in \mathbb{R}^{I \times m \times n}
$$

- Outer product rank. $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$,

$$
\operatorname{rank}_{\otimes}(\mathcal{A})=\min \left\{r \mid \mathcal{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}, \quad \sigma_{i} \in \mathbb{R}\right\}
$$

- Symmetric outer product rank. $\mathcal{A} \in \mathrm{S}^{k}\left(\mathbb{R}^{n}\right)$,

$$
\operatorname{rank}_{s}(\mathcal{A})=\min \left\{r \mid \mathcal{A}=\sum_{i=1}^{r} \lambda_{i} \mathbf{v}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{v}_{i}, \quad \lambda_{i} \in \mathbb{R}\right\}
$$

- Nonnegative outer product rank. $\mathcal{A} \in \mathbb{R}_{+}^{I \times m \times n}$,

$$
\operatorname{rank}_{+}(\mathcal{A})=\min \left\{r \mid \mathcal{A}=\sum_{i=1}^{r} \delta_{i} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}, \quad \delta_{i} \in \mathbb{R}_{+}\right\}
$$

SVD, EVD, NMF of a matrix

- Singular value decomposition of $A \in \mathbb{R}^{m \times n}$,

$$
A=U \Sigma V^{\top}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i}
$$

where $\operatorname{rank}(\mathcal{A})=r, U \in \mathrm{O}(m)$ left singular vectors, $V \in \mathrm{O}(n)$ right singular vectors, Σ singular values.

- Symmetric eigenvalue decomposition of $A \in S^{2}\left(\mathbb{R}^{n}\right)$,

$$
A=V \wedge V^{\top}=\sum_{i=1}^{r} \lambda_{i} \mathbf{v}_{i} \otimes \mathbf{v}_{i}
$$

where $\operatorname{rank}(A)=r, V \in O(n)$ eigenvectors, Λ eigenvalues.

- Nonnegative matrix factorization of $A \in \mathbb{R}_{+}^{n \times n}$,

$$
A=X \Delta Y^{\top}=\sum_{i=1}^{r} \delta_{i} \mathbf{x}_{i} \otimes \mathbf{y}_{i}
$$

where rank $_{+}(A)=r, X, Y \in \mathbb{R}_{+}^{m \times r}$ unit column vectors (in the 1-norm), Δ positive values.

SVD, EVD, NMF of a hypermatrix

- Outer product decomposition of $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$,

$$
\mathcal{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{w}_{i}
$$

where $\operatorname{rank}_{\otimes}(\mathcal{A})=r, \mathbf{u}_{i} \in \mathbb{R}^{\prime}, \mathbf{v}_{i} \in \mathbb{R}^{m}, \mathbf{w}_{i} \in \mathbb{R}^{n}$ unit vectors, $\sigma_{i} \in \mathbb{R}$.

- Symmetric outer product decomposition of $\mathcal{A} \in S^{3}\left(\mathbb{R}^{n}\right)$,

$$
\mathcal{A}=\sum_{i=1}^{r} \lambda_{i} \mathbf{v}_{i} \otimes \mathbf{v}_{i} \otimes \mathbf{v}_{i}
$$

where $\operatorname{ranks}_{s}(A)=r, \mathbf{v}_{i}$ unit vector, $\lambda_{i} \in \mathbb{R}$.

- Nonnegative outer product decomposition for hypermatrix $\mathcal{A} \in \mathbb{R}_{+} \times m \times n$ is

$$
\mathcal{A}=\sum_{i=1}^{r} \delta_{i} \mathbf{x}_{i} \otimes \mathbf{y}_{i} \otimes \mathbf{z}_{i}
$$

where $\operatorname{rank}_{+}(A)=r, \mathbf{x}_{i} \in \mathbb{R}_{+}^{\prime}, \mathbf{y}_{i} \in \mathbb{R}_{+}^{m}, \mathbf{z}_{i} \in \mathbb{R}_{+}^{n}$ unit vectors, $\delta_{i} \in \mathbb{R}_{+}$.

Best low rank approximation of a matrix

- Given $A \in \mathbb{R}^{m \times n}$. Want

$$
\operatorname{argmin}_{\operatorname{rank}(B) \leq r}\|A-B\| .
$$

- More precisely, find $\sigma_{i}, \mathbf{u}_{i}, \mathbf{v}_{i}, i=1, \ldots, r$, that minimizes

$$
\left\|\mathcal{A}-\sigma_{1} \mathbf{u}_{1} \otimes \mathbf{v}_{1}-\sigma_{2} \mathbf{u}_{2} \otimes \mathbf{v}_{2}-\cdots-\sigma_{r} \mathbf{u}_{r} \otimes \mathbf{v}_{r}\right\| .
$$

Theorem (Eckart-Young)
Let $A=U \Sigma V^{\top}=\sum_{i=1}^{r a n k(A)} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}$ be singular value decomposition. For $r \leq \operatorname{rank}(A)$, let

$$
A_{r}:=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}
$$

Then

$$
\left\|A-A_{r}\right\|_{F}=\min _{\operatorname{rank}(B) \leq r}\|A-B\|_{F} .
$$

- No such thing for hypermatrices of order 3 or higher.

Segre variety and its secant varieties

- The set of all rank-1 hypermatrices is known as the Segre variety in algebraic geometry.
- It is a closed set (in both the Euclidean and Zariski sense) as it can be described algebraically:

$$
\begin{aligned}
& \operatorname{Seg}\left(\mathbb{R}^{\prime}, \mathbb{R}^{m}, \mathbb{R}^{n}\right)=\left\{\mathcal{A} \in \mathbb{R}^{\prime \times m \times n} \mid \mathcal{A}=\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}\right\}= \\
& \quad\left\{\mathcal{A} \in \mathbb{R}^{l \times m \times n} \mid a_{i_{1} i_{2} i_{3}} a_{j_{1} j_{2} j_{3}}=a_{k_{1} k_{2} k_{3}} a_{1} i_{2} /_{3},\left\{i_{\alpha}, j_{\alpha}\right\}=\left\{k_{\alpha}, l_{\alpha}\right\}\right\}
\end{aligned}
$$

- Hypermatrices that have rank >1 are elements on the higher secant varieties of $\mathscr{S}=\operatorname{Seg}\left(\mathbb{R}^{I}, \mathbb{R}^{m}, \mathbb{R}^{n}\right)$.
- E.g. a hypermatrix has rank 2 if it sits on a secant line through two points in \mathscr{S} but not on \mathscr{S}, rank 3 if it sits on a secant plane through three points in \mathscr{S} but not on any secant lines, etc.
- Minor technicality: should really be secant quasiprojective variety.

Scientific data mining

- Spectroscopy: measure light absorption/emission of specimen as function of energy.
- Typical specimen contains 10^{13} to 10^{16} light absorbing entities or chromophores (molecules, amino acids, etc).

Fact (Beer's Law)

$A(\lambda)=-\log \left(I_{1} / I_{0}\right)=\varepsilon(\lambda) c$. $A=$ absorbance, $I_{1} / I_{0}=$ fraction of intensity of light of wavelength λ that passes through specimen, $c=$ concentration of chromophores.

- Multiple chromophores $(f=1, \ldots, r)$ and wavelengths $(i=1, \ldots, m)$ and specimens/experimental conditions $(j=1, \ldots, n)$,

$$
A\left(\lambda_{i}, s_{j}\right)=\sum_{f=1}^{r} \varepsilon_{f}\left(\lambda_{i}\right) c_{f}\left(s_{j}\right)
$$

- Bilinear model aka factor analysis: $A_{m \times n}=E_{m \times r} C_{r \times n}$ rank-revealing factorization or, in the presence of noise, low-rank approximation $\min \left\|A_{m \times n}-E_{m \times r} C_{r \times n}\right\|$.

Modern data mining

- Text mining is the spectroscopy of documents.
- Specimens $=$ documents.
- Chromophores $=$ terms.
- Absorbance $=$ inverse document frequency:

$$
A\left(t_{i}\right)=-\log \left(\sum_{j} \chi\left(f_{i j}\right) / n\right)
$$

- Concentration $=$ term frequency: $f_{i j}$.
- $\sum_{j} \chi\left(f_{i j}\right) / n=$ fraction of documents containing t_{i}.
- $A \in \mathbb{R}^{m \times n}$ term-document matrix. $A=Q R=U \Sigma V^{\top}$ rank-revealing factorizations.
- Bilinear model aka vector space model.
- Due to Gerald Salton and colleagues: SMART (system for the mechanical analysis and retrieval of text).

Bilinear models

- Bilinear models work on 'two-way' data:
- measurements on object i (genomes, chemical samples, images, webpages, consumers, etc) yield a vector $\mathbf{a}_{i} \in \mathbb{R}^{n}$ where $n=$ number of features of i;
- collection of m such objects, $A=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right]$ may be regarded as an m-by- n matrix, e.g. gene \times microarray matrices in bioinformatics, terms \times documents matrices in text mining, facial images \times individuals matrices in computer vision.
- Various matrix techniques may be applied to extract useful information: QR, EVD, SVD, NMF, CUR, compressed sensing techniques, etc.
- Examples: vector space model, factor analysis, principal component analysis, latent semantic indexing, PageRank, EigenFaces.
- Some problems: factor indeterminacy $-A=X Y$ rank-revealing factorization not unique; unnatural for k-way data when $k>2$.

Ubiquity of multiway data

- Batch data: batch \times time \times variable
- Time-series analysis: time \times variable \times lag
- Computer vision: people \times view \times illumination \times expression \times pixel
- Bioinformatics: gene \times microarray \times oxidative stress
- Phylogenetics: codon \times codon \times codon
- Analytical chemistry: sample \times elution time \times wavelength
- Atmospheric science: location \times variable \times time \times observation
- Psychometrics: individual \times variable \times time
- Sensory analysis: sample \times attribute \times judge
- Marketing: product \times product \times consumer

Fact (Inevitable consequence of technological advancement)
Increasingly sophisticated instruments, sensor devices, data collecting and experimental methodologies lead to increasingly complex data.

Fundamental problem of multiway data analysis

- \mathcal{A} hypermatrix, symmetric hypermatrix, or nonnegative hypermatrix.
- Solve

$$
\operatorname{argmin}_{\operatorname{rank}(\mathcal{B}) \leq r}\|\mathcal{A}-\mathcal{B}\| .
$$

- rank may be outer product rank, multilinear rank, symmetric rank (for symmetric hypermatrix), or nonnegative rank (nonnegative hypermatrix).

Example

Given $\mathcal{A} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$, find $\mathbf{u}_{i}, \mathbf{v}_{i}, \mathbf{w}_{i}, i=1, \ldots, r$, that minimizes

$$
\left\|\mathcal{A}-\mathbf{u}_{1} \otimes \mathbf{v}_{1} \otimes \mathbf{w}_{1}-\mathbf{u}_{2} \otimes \mathbf{v}_{2} \otimes \mathbf{w}_{2}-\cdots-\mathbf{u}_{r} \otimes \mathbf{v}_{r} \otimes \mathbf{z}_{r}\right\|
$$

or $\mathcal{C} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$ and $U \in \mathbb{R}^{d_{1} \times r_{1}}, V \in \mathbb{R}^{d_{2} \times r_{2}}, W \in \mathbb{R}^{d_{3} \times r_{3}}$, that minimizes

$$
\|\mathcal{A}-(U, V, W) \cdot \mathcal{C}\|
$$

Fundamental problem of multiway data analysis

Example

Given $\mathcal{A} \in \mathrm{S}^{k}\left(\mathbb{C}^{n}\right)$, find $\mathbf{u}_{i}, i=1, \ldots, r$, that minimizes

$$
\left\|\mathcal{A}-\mathbf{u}_{1}^{\otimes k}-\mathbf{u}_{2}^{\otimes k}-\cdots-\mathbf{u}_{r}^{\otimes k}\right\|
$$

or $\mathcal{C} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$ and $U \in \mathbb{R}^{n \times r_{i}}$ that minimizes

$$
\|\mathcal{A}-(U, U, U) \cdot \mathcal{C}\|
$$

Outer product decomposition in spectroscopy

- Application to fluorescence spectral analysis by [Bro; 1997].
- Specimens with a number of pure substances in different concentration
- $a_{i j k}=$ fluorescence emission intensity at wavelength $\lambda_{j}^{e m}$ of i th sample excited with light at wavelength $\lambda_{k}^{\mathrm{ex}}$.
- Get 3 -way data $\mathcal{A}=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{1 \times m \times n}$.
- Get outer product decomposition of \mathcal{A}

$$
\mathcal{A}=\mathbf{x}_{1} \otimes \mathbf{y}_{1} \otimes \mathbf{z}_{1}+\cdots+\mathbf{x}_{r} \otimes \mathbf{y}_{r} \otimes \mathbf{z}_{r}
$$

- Get the true chemical factors responsible for the data.
- r : number of pure substances in the mixtures,
- $\mathbf{x}_{\alpha}=\left(x_{1 \alpha}, \ldots, x_{l \alpha}\right)$: relative concentrations of α th substance in specimens $1, \ldots, l$,
- $\mathbf{y}_{\alpha}=\left(y_{1 \alpha}, \ldots, y_{m \alpha}\right)$: excitation spectrum of α th substance,
- $\mathbf{z}_{\alpha}=\left(z_{1 \alpha}, \ldots, z_{n \alpha}\right)$: emission spectrum of α th substance.
- Noisy case: find best rank- r approximation (CANDECOMP/PARAFAC).

Uniqueness of tensor decompositions

- $M \in \mathbb{R}^{m \times n}, \operatorname{spark}(M)=$ size of minimal linearly dependent subset of column vectors [Donoho, Elad; 2003].

Theorem (Kruskal)

$X=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right], Y=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{r}\right], Z=\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{r}\right]$. Decomposition is unique up to scaling if

$$
\operatorname{spark}(X)+\operatorname{spark}(Y)+\operatorname{spark}(Z) \geq 2 r+5
$$

- May be generalized to arbitrary order [Sidiroupoulos, Bro; 2000].
- Avoids factor indeterminacy under mild conditions.

Multilinear decomposition in bioinformatics

- Application to cell cycle studies [Omberg, Golub, Alter; 2008].
- Collection of gene-by-microarray matrices $A_{1}, \ldots, A_{l} \in \mathbb{R}^{m \times n}$ obtained under varying oxidative stress.
- $a_{i j k}=$ expression level of j th gene in k th microarray under i th stress.
- Get 3-way data array $\mathcal{A}=\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{1 \times m \times n}$.
- Get multilinear decomposition of \mathcal{A}

$$
\mathcal{A}=(X, Y, Z) \cdot \mathcal{C}
$$

to get orthogonal matrices X, Y, Z and core tensor \mathcal{C} by applying SVD to various 'flattenings' of A.

- Column vectors of X, Y, Z are 'principal components' or 'parameterizing factors' of the spaces of stress, genes, and microarrays; \mathcal{C} governs interactions between these factors.
- Noisy case: approximate by discarding small $c_{i j k}$ (Tucker Model).

Code of life is a 3-tensor

- Codons: triplets of nucleotides, (i, j, k) where $i, j, k \in\{A, C, G, U\}$.
- Genetic code: these $4^{3}=64$ codons encode the 20 amino acids.

Second letter

Tensors in algebraic statistical biology

Problem (Salmon conjecture)

Find the polynomial equations that defines the set

$$
\left\{P \in \mathbb{C}^{4 \times 4 \times 4} \mid \operatorname{rank}_{\otimes}(P) \leq 4\right\}
$$

- Why interested? Here $P=\llbracket p_{i j k} \rrbracket$ is understood to mean 'complexified' probability density values with $i, j, k \in\{A, C, G, T\}$ and we want to study tensors that are of the form
$P=\boldsymbol{\rho}_{\boldsymbol{A}} \otimes \boldsymbol{\sigma}_{A} \otimes \boldsymbol{\theta}_{A}+\boldsymbol{\rho}_{C} \otimes \boldsymbol{\sigma}_{C} \otimes \boldsymbol{\theta}_{C}+\boldsymbol{\rho}_{G} \otimes \boldsymbol{\sigma}_{G} \otimes \boldsymbol{\theta}_{G}+\boldsymbol{\rho}_{\boldsymbol{T}} \otimes \boldsymbol{\sigma}_{\boldsymbol{T}} \otimes \boldsymbol{\theta}_{T}$,
in other words,

$$
p_{i j k}=\rho_{A i} \sigma_{A j} \theta_{A k}+\rho_{C i} \sigma_{C_{j}} \theta_{C k}+\rho_{G i} \sigma_{G j} \theta_{G k}+\rho_{T i} \sigma_{T j} \theta_{T k} .
$$

- Why over \mathbb{C} ? Easier to deal with mathematically.
- Ultimately, want to study this over \mathbb{R}_{+}.

