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Optimal Control Problem

OCP definition
Simplified definition

An optimal control problem is a constrained optimisation problem
with a dynamical system as constraint.

Dynamical system:

x′(t) = f (x(t),u(t), t) , t ∈ (0, T )

with initial condition x(0) = x0.
x(t) ∈ Rn: the states of the dynamical system
u(t) ∈ U ⊂ Rm: the controls (piecewise continuous)
If u(t) and f(x,u, t) are regular enough has an unique solution.

The target or the performance functional index:

J(u) =M(x(T ))︸ ︷︷ ︸
Mayer term

+

∫ T

0

`(x,u, t)︸ ︷︷ ︸
Lagrange term

dt

The OCP: find u that minimizes the target subject to the
dynamical system
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Optimal Control Problem

OCP definition
Complications

States and controls may be constrained:

g(x(t),u(t), t) ≥ 0, h(x(t),u(t), t) = 0∫ T
0
e(x(t),u(t), t)dt = 0,

T may be fixed or part of the problem of minimization.
Constants parameters may be part of the problem, e.g.

x′(t) = f (x(t),u(t),p, t) ,

where p = (p1, p2, . . . , pr).
Problem may contains interfaces, e.g.

x′(t) = fk (x(t),u(t), t) , t ∈ (tk−1, tk) x+(tk) = Φ(x−(tk), tk),

Enrico Bertolazzi — Numerical Optimal Control 4/35



Optimal Control Problem

OCP definition
Simpification

Some complication may be reduced by simple tricks
Integral constraints may be eliminated by adding states∫ T

0

ek(x(t),u(t))dt = 0 ⇒

z′(t) = ek(x(t),u(t)), z(0) = z(T ) = 0

Constants parameters may be treated as additional constants
stated, e.g. pk is a parameter define pk(t) as a new state:

p′k(t) = 0,

If T is free by a change of variable t = ξ T the problem is
transformed to a fixed boundary problem in the interval [0, 1].
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Optimal Control Problem

OCP definition
Simpification (slack variables)

Inequalities

gk(x(t),u(t)) ≥ 0 ⇒ gk(x(t),u(t)) = εk(t), εk(t) ≥ 0

Controls are better treated if are bounded in a ipercube

uk,min ≤ uk(t) ≤ uk,max

Dynamical system may have more complex BC than x(0) = x0,
e.g. b(x(0),x(T )) = 0:

b(x(0),x(T )) = 0,

∂Tx(0)b(x(0),x(T )) · ω = λ(0),

∂Tx(T )b(x(0),x(T )) · ω = −∂TxM(x(T ))− λ(T ),

additional Lagrange multiplier are introduced.
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Optimal Control Problem

Demonstration example
Point mass maximum travel

s(t)
v(t)

u(t) �k0 � k1v(t)

s(T ) maximized

Find the force u that moves a mass to the longest distance (T fixed):

min
u∈U

∫ T

0

(−v(t))dt = min
u∈U

(s(0)− s(T ))

subject to:

s′(t) = v(t), v′(t) = u(t)− k0 − k1v(t)− k2v(t)2 system dynamics

s(0) = 0, v(0) = 0, v(T ) = 0 boundary conditions

|u(t)| ≤ g + k3v(t)2 control bounds
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Solution Methods for Optimal Control Problems

General overview of Solution Methods
Classification of solution methods

CONTINUOUS TIME OPTIMAL CONTROL PROBLEM

DYNAMIC PROGRAMMING
Hamilton-Jacobin-Belman Euquation

INDIRECT METHOD
Pontryagin Minimum Principle 

Two Point Boundary Value Problem 
(TPBVP) DIRECT METHOD

Transformation into NonLinear 
Programming (NLP)

SINGLE SHOOTING METHOD

FINITE DISCRETIZATION
 or COLLOCATION

MULTIPLE SHOOTING

DIRECT SINGLE SHOOTING METHOD
Discretised controls in NLP  (sequential)

DIRECT COLLOCATION
Discretized controls and states in NLP 

(simultaneous)

A
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IO
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S
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T
IO

N
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DIRECT MULTIPLE SHOOTING
Control and state nodes start value in NLP 

(simultaneous)

A) OPTIMIZATION PROBLEM or
B) OPTIMIZATION PROBLEM + IVP

A) NON LINEAR SYSTEM
B) OPTIMIZATION PROBLEM + IVP

PDE

DIFFERENTIAL DYNAMIC 
PROGRAMMING

...
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Solution Methods for Optimal Control Problems

Dynamic Programming

Principle of Optimality
Each sub-trajectory of an optimal trajectory is an optimal trajectory.

This provides a solution method for Hamilton-Jacobi-Bellman (HJB)
equation:

− ∂

∂t
J(x, t) = min

u∈U

{
`(x,u, t) +∇xJ(x, t)f(x,u, t)

}
that can be solved on a shortened horizon starting from the end
J(x, T ) = M(xf ) and recursively find the complete solution back-
ward.
J(x, t): value function is the cost-to-go to the end when starting at
a given state.
The optimal feedback control ufb for the state x at time t is then
obtained from:

ufb(x, t) = arg min
u∈U

{
`(x,u, t) +∇xJ(x, t)f(x,u, t)

}
.
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Solution Methods for Optimal Control Problems

Pontryagin Minimum Principle
Necessary conditions for optimality

Let us define H = `(x,u, t) + λ · f(x,u, t) the first variation provides
the following necessary conditions (Boundary Value Problem, BVP):

x′(t) = ∂TλH (x,u,λ, t)

λ′(t) = −∂TxH (x,u,λ, t)

x(0) = x0, −λ(T ) = ∂Txf
M(xf )

and a local optimisation of the Hamiltonian at each time instant:

ufb(x,λ, t) = arg min
u∈U

{
`(x,u, t) + λ · f(x,u, t)

}
.

or when U = Rm

u(x,λ, t) is a solution of ∂TuH (x,u,λ, t) = 0,
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Solution Methods for Optimal Control Problems

Pontryagin Minimum Principle
Solution Methods

Analytical solution: possible for simple cases
Numerical solution:

finite difference approximation of BVP + minimisation (optional)
approximation of BVP via collocation + minimisation (optional)
single shooting + minimisation
multiple shooting + minimisation
...
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Solution Methods for Optimal Control Problems

Demo Example with PMP
Analytical solution 1/3

From first variation we get the following BVP:

Dynamical system equations:

x′ = v

v′ = u− k0 − k1v − k2v2

Adjoint equations:

λ′1 = 0

λ′2 = 1− λ1 + λ2 (k1 + 2k2v)

�2(⇣)
v(⇣)

u(⇣) = +1

u(⇣) = �1

T

⇣s

t = ⇣

Boundary conditions:

x(0) = v(0) = v(T ) = λ1(T ) = 0

Optimal control law:

u(v, λ2) = −
(
g + k3v

2
)

sign(λ2)
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Solution Methods for Optimal Control Problems

Demo Example with PMP
Analytical solution 2/3

Integrate forward from left and backward from right and match in-
terface conditions, we get switching point (for k2 = k3 = 0):

ts =
1

k1
ln
g − k0 + (g + k0)e−k1T

2g

Then we get the analytical solution:

s(t)=
1

k21


(
k1t+ e−k1t − 1

)
(g − k0) t ≤ ts

g
(

1 + k1(2T − t) + 2 ln e−k1T (g−k0)+g+k0
2g

)
otherwise

v(t)=
1

k1


(
e−k1t − g

)
(k0 − g) t ≤ ts

(ek1(T−t) − 1)(k0 + g) otherwise

λ1(t)= 0, λ2(t) =
1

k1

(
2 g ek1(t−T )

(g − k0)e−k1T + k0 + g
− 1

)
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Solution Methods for Optimal Control Problems

Demo Example with PMP
Analytical solution 3/3

The exact solution for an horizon of T = 2s, k0 = 0.1, k1 = 0.2, k2 =
0, k3 = 0:

u 
λ2
v()

−1

0

1

(m
/s

)

0

0.5

1.0

ζ(time)
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

The optimal control is:

u(t) =

{
1 t ≤ ts
−1 ts < t ≤ T
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Solution Methods for Optimal Control Problems

Analytical solution with PMP
A general approach

Analytical solutions can be found even for system with more switch-
ing points (when their number is known). However process can be
complex.

Partial knowledge of exact solution may be used in the discretiza-
tion process.

Enrico Bertolazzi — Numerical Optimal Control 15/35



Solution Methods for Optimal Control Problems

Non Linear Programming (NLP)
Direct (Transcription) Methods

The original optimal control problem is discretized and transcribed
to a Non Linear Programming (NLP).
The NLP is solved using well-established optimization methods.
Methods differs for the variables to be discretized (i.e. control and
states) and how to approximate the continuous time dynamics.

single shooting, multiple shooting
only controls are parameterized. ODE solvers + sensitivity analysis
required

collocation
states and controls are parameterized with polynomial functions.
If orthogonal polyniomial are used: pseudo-spectral methods.

Available software based on indirect methods are ACADO, GPOPS-
III, PSOPT, MISER, SOCS, DIRCOL, PROPT, RIOTS.
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Solution Methods for Optimal Control Problems

Demo example with NLP
Direct transcription with finite difference

Original problem is transcribed into a NLP:

min
uk,k=0,...,N−1

N−1∑
k=0

−vk+1 + vk
h

subject to:

sk+1 − sk
h

=
vk+1 + vk

2
= v̄k+1/2

vk+1 − vk
h

= −k0 − k1v̄k+1/2 − k2v̄2k+1/2 + uk+1/2

s0 = 0, v0 = 0, vN = 0

−g − k3v2k+1/2 ≤ uk+1/2 ≤ 1 + k3v
2
k+1/2, k = 0, . . . , N − 1

where h = T
N . SQP (Sequential Quadratic Programming) method is

used to solve the problem.
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Solution Methods for Optimal Control Problems

Demo example with NLP
Direct transcription with finite difference

This problem can be solved using available NLP solver. For reference
the state of art nonlinear optimization code are

IPOPT
KNITRO
LOQO
WORHP

In this case IPOPT was used to find the numerical solution via its Mat-
lab interface.
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Solution Methods for Optimal Control Problems

Demo example with NLP
Direct transcription with finite difference
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Figure: NLP solution using IPOPT in Matlab with N = 100 and also providing
the jacobian. Dent in the control solution at the jump location is due to
control discretisation.
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Solution Methods for Optimal Control Problems

Demo example with NLP
NLP vs PMP with Finite Difference Approximation

NLP solves a smaller problem (if NLP method does not use
lagrange multipliers)
NLP naturally treat inequalities
NLP can use robust well developed optimization software
NLP is fast (0.02s for Demo problem solution)
NLP is less accurate
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Solution Methods for Optimal Control Problems

Demo example with NLP
Local collocation

implicit Runge Kutta

at interface imposed continuity conditions

x�
k = x+

k

u0
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u1

uN�1

collocation points

LOCAL COLLOCATION SCHEME
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. . .
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Solution Methods for Optimal Control Problems

Direct Method: collocation
Brief description

A specific variant of implicit RK methods is called collocation and is
derived as follows:

solution x is approximated by polynomial of m− th order in the
collocation interval t ∈ [tk, tk+1].
a grid of collocation points t(i) = tk + ci∆t is chosen as above,
using 0 ≤ c1 < c2 · · · < cm ≤ 1.
The (m+ 1) unknown vector coefficients v0, . . . , vm are
determined via the (m+ 1) vector equations that require that
the polynomial starts at xk and its derivative at each
collocation point matches the function f at the corresponding
value of the polynomial.

Enrico Bertolazzi — Numerical Optimal Control 22/35



Solution Methods for Optimal Control Problems

Demo example with NLP
Multiple shooting

implicit Runge Kutta

at interface imposed continuity conditions
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Solution Methods for Optimal Control Problems

Demo example with NLP
Multiple shooting: discussion

It is called Sequential Approach because the simulation problem
and optimization problem are solved sequentially, one after the other.

all states are eliminated via forward integration (i.e. Runge
Kutta)
Minimum number of variables: controls uk and interface states xk

sensitivity analysis is necessary to compute derivatives of
interface conditionsw x−k = x+

k w.r.t. interface state.
Interface conditions may be more general x+

k = Φ(x−k )
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Solution Methods for Optimal Control Problems

Demo example with PMP
Solution with Finite Difference 1/3

Finite difference discretization of the BVP from Pontryagin max prin-
ciple:

d
dts(tk+1/2) ≈ sk+1 − sk

h
s(tk+1/2) ≈ s̄k+1/2 =

sk+1 + sk
2

d
dtv(tk+1/2) ≈ vk+1 − sk

h
v(tk+1/2) ≈ v̄k+1/2 =

vk+1 + vk
2

d
dtλ1(tk+1/2) ≈ λ1k+1

− λ1k
h

λ1(tk+1/2) ≈ λ̄1,k+1/2 =
λ1k+1

+ λ1k
2

d
dtλ2(tk+1/2) ≈ λ2k+1

− λ2k
h

λ2(tk+1/2) ≈ λ̄2,k+1/2 =
λ2k+1

+ λ2k
2

Enrico Bertolazzi — Numerical Optimal Control 25/35



Solution Methods for Optimal Control Problems

Demo example with PMP
Solution with Finite Difference 2/3

Discretized BVP with explicit control law:

sk+1 = sk + hv̄k+1/2

vk+1 = vk + h
(
uk+1/2 − k0 − k1v̄k+1/2 − k2v̄2k+1/2

)
λk+1 = λk

µk+1 = µk + h
(
1− λ̄k+1/2 + µ̄k+1/2

(
k1 + 2v̄k+1/2k2

))
s0 = 0, v0 = 0, vN = 0, λN = 0,

with k = 0, . . . , N − 1.
Control is explicit but discontinuous

uk+1/2 = −sign
(
µ̄k+1/2

) (
g + k3v̄

2
1/2

)
in this form the problem is hard to solve/approximate.
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Solution Methods for Optimal Control Problems

Demo example with PMP
Solution with Finite Difference 3/3

The unknowns of the problem are collected in z ∈ R4N :

z = (x0, . . . , xN , v0, . . . , vN , λ0, . . . , λN , µ0, . . . , µN )T

The nonlinear system contains discontinuous function sign(x) which make it
hard or impossible to solve. A working strategy is to smooth the Hamiltonian
minimization with interior point approach

u? ≈ argmin
u∈R

(
H(x, v, λ1, λ2, u) + b(u)

)
where b(u) is a barrier function:

b(u) = −ε(g + k3v
2) log cos

(
π

2

u

g + k3v2

)
and the minima satisfy ∂

∂u

(
H(x, v, λ, µ, u) + b(u)

)
= 0, so that control u as a

function of µ and v can be easily computed

u(µ, v) = − 2

π

(
g + k3v

2) arctan(2λ2

πε

)
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Solution Methods for Optimal Control Problems

Demo example with PMP
Discrete Solution
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Figure: Solution with 100 intervals
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Solution Methods for Optimal Control Problems

Demo example with PMP
Solution comparison
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Figure: Solution comparison vs exact solution sampled
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Solution Methods for Optimal Control Problems

Demo example with PMP
Discussion: numerical issues

Method Solver cpu time (s) cpu time (s) cpu time (s)
N = 100 N = 1000 N = 1000

Direct IPOPT 0.08 0.6 ≈8
Indirect (u-solved) lsqnonlin 6.1 — —
Indirect (u-solved) STRSCNE 0.16 1.2 ≈15
Indirect (u-solved) newton 0.19 1.1 ≈11
Indirect (u-solved) PINS 0.05 0.2 0.85

Table: Computational time among different solution method and solver
adopted. Newton solver is a simplified version of HYNESS solver as pure
Matlab code. STRSCNE is a Scaled Trust-Region Solver for Constrained
Nonlinear Equations as pure Matlab code. PINS is C++ indirect solver.
lsqnonlin() do not converge for N = 1000, N = 10000.

.
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Application Examples

CN-Optimal Control: CNOC
Brief summary

The whole tool trajectory is optimized, and not only the feed-rate
profile.
Lateral tracking tolerance on the tool-path can be defined (physi-
cally related to the workpiece design tolerance).

min
js,jn

∫ tf

0

(√
vs(t)2 + vn(t)2

f(s(t))
− 1

)2

dt,

subject to a set of constraints on the
dynamics of physical actuators (limits
in speed, acceleration, and jerk) and
on the maximum allowed tracking
error.

workpiece

Roughing

Finishing

nmax,i

nmax,i

nmin,i

nmin,i+1

nmax,i+1

nmax,i+1

P (t�k ) = P (t+k )

V (t�k ) = V (t+k )

A(t�k ) = A(t+k )

P ⇤
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Application Examples

CN-Optimal Control: CNOC
Brief summary

Problem solved faster than realtime with free formulation geometri-
cal space domain.
Speed (feed rate) can go to zero when necessary

a x
 =

 a
y

a s
 ≠

a n

iTNC
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CNOC@±0.300 mm

f (
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)
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m
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)
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as,max=2.16 m/s2, an,max=1.22 m/s2
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Application Examples

Minimum Lap Time Application
Brief summary

Minimum lap time problem but with human-like manoeuvre:

min
Sr,Sf ,τ

∫ L

0

1

vs(ζ)
dζ

subject to:

A(ζ)x′ = f(x,u)

ax(ζ) ≥ −ay0 − |
ay(ζ))

ayL
|nB

c(x,u) ≥ 0

ay0 and nB are parameters
that define the shape of the
envelope.
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a x
/g

−1

0

1

ay/g
−2 −1 0 1 2

g-g plot for rider 1
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4
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−1

0
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g-g plot rider 1 manoeuvre

Enrico Bertolazzi — Numerical Optimal Control 33/35



Application Examples

Minimum Lap Time Application
Brief summary
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Conclusion

Conclusion

NLP + SQP is easier to implement, is fast for medium problem but
PMP can be still employed with some advantages:

the PMP provides more accurate solutions
the PMP allows to derive symbolic/approximated symbolic
explicit optimal control laws
FD approximation of BVP, with penalty functions and robust
solver can be faster than NLP.
the PMP allows to derive symbolic optimal control solutions
PMP+FD approximation can handle very large problems.
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