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NUMERICAL PROBLEM SOLVING
FOR UNDERGRADUATE CORE
COURSES
By Michael E. Peskin

Editor: Denis Donnelly, donnelly@siena.edu

EDUCATIONE D U C A T I O N

solve Laplace’s equation in rectangular
and cylindrical coordinates, with Bessel
functions and Legendre polynomials.
These methods are important in their
own right and provide examples to il-
lustrate central physical concepts.

But students would benefit more 
if we discussed numerical problem-
solving methods at a similar level. To-
day, students often have computers in
their dorm rooms and backpacks that
have the power of a typical 1970s uni-
versity mainframe. It would be helpful
if we could use computing power for
explicit problem-solving and to de-
velop students’ intuition.

In this article, I explain a method
that uses the Java programming lan-
guage’s built-in class structure to do
this. I also supply a Java class library
that can assist instructors in writing
programs of this type.

Current Approaches
Including numerical calculations in a
physics or engineering curriculum is
important because students typically go
on to careers in research or  industrial
settings in which their basic tasks are to
model physical systems. Analytic meth-
ods are useful for estimates or for work-
ing out the dependence on parameters,
but understanding a realistic system in

detail typically requires a computer
simulation. So, we should make it clear
to our students that it’s straight forward
to put the equations that appear in their
classes onto their computers to obtain
sensible physical results.

We currently address this curriculum
issue in two ways. First, we encode spe-
cific problems into computer programs,
which students can run as black boxes,
changing the parameters and seeing
what consequences develop. Davidson
College’s scripted applets provide note-
worthy examples of this approach.2

Black-box programs are useful in in-
troductory courses but, for upper-
division courses, they do not teach all
the skills we would like students to de-
velop. These programs also are time-
consuming to write. We often provide
them under the philosophy that stu-
dents should not modify the code.
(The Davidson applets do not even al-
low professors to modify the code.) But
I would like students to write some
code, and to understand how simple
sets of instructions can iterate to the
patterns that solve interesting equa-
tions of nature.

In undergraduate mechanics courses,
instructors often give students differ-
ential equations to integrate into com-
mercial packages such as Maple or

Mathematica. Such projects have a sim-
ilar black-box approach.

In the other common approach, pro-
fessors teach computational physics
courses modeled, for example, on the
textbooks by Gould and Tobochnik3 or
Koonin.4 Such courses often revolve
around major projects as students
spend a large part of a semester learn-
ing a computer environment and con-
structing elaborate code for one par-
ticular application. These courses are
important for giving students experi-
ence with large-scale computer appli-
cations and beginning to study sophis-
ticated numerical methods. But it also
would be advantageous to let students
do simpler numerical problems that tie
in directly to their core courses. 

Ideally, a weekly problem set in me-
chanics or electrodynamics should con-
sist of several analytical and one nu-
merical problem. The reason we do not
usually see this is that it is difficult to
have students master the task’s purely
computer-programming aspects.

A Java Solution
Java is an object-oriented (OO) com-
puter language that lets programs
have hierarchical structures. Using
Java, you can assign students to write
small pieces of code, perhaps a sub-
routine that carries out a numerical
computation. They will then compile
their code together with a larger pro-
gram that implements a GUI for visu-
alizing the program’s results. You can
assemble the user-interface code
yourself, so that students do not have
to confront its complexity. Finally,
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you can simplify writing this larger
program by drawing various user-in-
terface elements from a preassembled
class library. 

This is a version of the familiar strat-
egy of asking students to write subrou-
tines that tie to a larger code package.
Java assists this strategy in two ways.
First, it lets you neatly encapsulate the
student’s code, hiding the details of the
graphical elements and user interface.
Second, it provides you with a pro-
gramming library that makes it simpler
to write interesting and pleasing graph-
ical elements. 

We also could use this strategy in
other programming languages that al-
low easy access to GUI components—
for example, Visual Basic. The Con-
sortium for Upper-Level Physics
Software (CUPS; www.wiley.com/
college/math/phys/cg/sales/CUPS.
html) project has created a range of ef-
fective simulations in Pascal5 that are
extensible at the code level.

An advantage of Java is that the
same code runs on Unix, Windows, or
Macintosh systems, so students can
put together their assignments on
whatever operating system (OS) is
most convenient. Additionally, Java
belongs to a family of computer lan-
guages, including C, C++, and Pascal,
in which numerical computations have
a common syntax. The part of the
code that students must write is almost
indistinguishable among these four
languages, so students need no prior
Java experience.

As a part of their work for the second
edition of the textbook,3 Christian,
Gould, and Tobochnik are putting to-
gether an extensive set of software re-
sources for creating educational simula-
tions in Java (www.opensourcephysics.
org/). In contrast to their work, I provide
here a minimal set of Java resources to
provide exercises of the type I describe.

You can find the Java code for the class
library and example programs in a tar file
at http://arXiv.org/ps/physics/0302044,
as well as more complete software doc-
umentation and example programs.

Laplace Applet Example
Textbook discussions of Laplace’s equa-
tion say that a solution φ(x) is the aver-
age of the solution at neighboring
points. This fact can be the basis for a

numerical solution of Laplace’s equa-
tion.1 Here, I present a homework
problem that lets students implement
this observation in a numerical pro-
gram and see it work. Figure 1 shows
the program.

The program sweeps through an ar-
ray phi[i][j], updating successive
values. The program tests for the max-
imum change across the array and quits
when the change is sufficiently small.

import java.awt.*;

import java.awt.event.*;

import java.applet.Applet;

public class Laplace extends LaplaceGUI{

double criterion = 1.0e-2;

void solve(){

double maxdiff = 1.0;

int iteration = 0;

while ( maxdiff > criterion){

for (int n = 1; n <= 20; n++){

maxdiff = 0.0;

for (int i = 1; i < Nx; i++){

for (int j =1 ; j < Ny; j++){

/* check whether (i,j) is a cathode or ground point */

if (normal(i,j) == false) continue;

/* update the phi array  */

double oldphi = phi[i][j];

/*  put something more sensible here  : */

double newphi = 33.0;

phi[i][j] = newphi;

/*  compute the criterion for stopping */

double delta = Math.abs(newphi-oldphi);

if (delta > maxdiff) maxdiff = delta;

}

}

iteration++;

} 

refreshPicture();

Legend.write(“max. diff : “+maxdiff+ 

“    “+iteration);

if (timetostop) break;

}

}

Figure 1. The Laplace.java program. This program gives a simple realization of the
solution of Laplace’s equation by the relaxation method. The potential is carried in a
preassigned lattice phi[i][j]. Note that students must supply the one line of
code that updates phi correctly.
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The criterion for stopping is the vari-
able criterion. The algorithm for
updating the array is missing.

In the problem set, you would tell
your students that the missing algo-
rithm successively sets each array ele-
ment equal to the average of its neigh-
bors, and that the equilibration of this
process yields a solution to the Laplace
equation. To implement this algorithm,
students must modify only one line of
the code, replacing the assignment to
newphi by

double newphi = (0.25)*

(phi[i+1][j]+phi[i][j+1]

+phi[i-1][j]+phi[i][j-1]);.

This statement has the same form in C,
C++, Pascal, or Java. It should be at
least recognizable by students whose
only programming experience is in Ba-
sic or Fortran.

The class Laplace extends

LaplaceGUI statement indicates that
the simple program Laplace.java in
Figure 1 works with functions and data

structures defined in a parent program
LaplaceGUI.java. This program, its
parent PhysicsApplet.java, and a small
file, Laplace.html, are given the direc-
tory Laplace and are available at the
URL previously mentioned. You could
make these files available for download
on the course’s Web page.

When you compile these programs
together, you get a working simulation
toy. Program linking depends on the
OS, but under Unix or Macintosh OS
X, you simply put the four files in the
same directory and type javac

Laplace.java. You run the compiled
program, or applet, by viewing the file
Laplace.html with a Web browser. You
would not expect students to modify, or
even open, any of these files except for
the original Laplace.java. This file con-
tains all the physics; the others simply
supply the computer interface.

The outcome of this process is a
working application (see Figure 2).
The applet shows a figure with a box
that displays the values of the array phi
in gray scale. In the example shown,

phi is a 100 × 100 array. Fiducial dots
mark each 10th grid point to facilitate
specific numerical computations.

By clicking on the Cathode and
Ground buttons, you can paint a set of
boundary conditions with the mouse.
Clicking on the Solve Laplace button
calls the method solve() in the
Laplace.java program. As the phi
[i] [j] array updates, the values of
phi display on the screen in gray scale.
Clicking on the Measure Voltage but-
ton and then clicking on the screen
causes phi’s value at that point to ap-
pear as a  label under the box.

Once the applet is programmed and
working correctly, you can use it for
many illuminating exercises. Some of
these are qualitative problems, such as
illustrating the Faraday cage principle
by placing small, grounded conductors
around a cathode. Others are quantita-
tive, such as determining the size of
edge effects on the capacitance of a 
finite-sized capacitor. 

To aid in the latter calculation, the
Compute Energy button computes the
electrostatic energy stored in the config-
uration shown from a discrete approxi-
mation to the expression ∫d2x1/2ε0E2.
The problem set that contained this ap-
plet asks students to implement an En-
ergy() function, called by this button,
and returns the result. The GUI then
writes the result to the screen.

You can construct many other com-
putational exercises along these lines.
Let’s look at two of these. (The online
software distribution has nine applets,
including those I present here.)

Further Examples
Figure 3a shows an applet that com-
putes the magnetic fields in an array of
wires and magnetic material that you
draw on the screen. The situation is
uniform in the third dimension, with
current flowing up or down through

E D U C A T I O N

Figure 2. A working version of the Laplace applet. The program implements the
method given in Figure 1 with a graphical user interface provided by the instructor.
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the screen. You can assign a fixed cur-
rent, up or down, to green or red
squares, respectively. Students can
paint the squares via a mouse. They
also can color in regions to be filled
with a linear magnetic material (iron)
with adjustable permeability µ.

The applet generates magnetic fields
from a vector potential A = (0, 0, A),
where A solves the Poisson equation:
–∇2A = µJ in which J is the current
density in the wires. We can solve this
equation with the relaxation method
used for the Laplace equation. The
problem set containing this applet ex-
plains the strategy, then asks students to
work out the details using their experi-
ence with the Laplace applet. Next, the
problem set asks them to use this Mag-
net applet to solve qualitative examples
in the theory of magnetism and quanti-
tative problems of magnet design.

Figure 3b shows an applet that illus-
trates basic signal-analysis principles.
The applet displays three boxes on the
screen. In the upper box, students can
enter a waveform, either from the com-
puter program as a mathematical func-
tion or by drawing it with a mouse. The
center box shows the modulus of the
waveform Fourier transform. We can
multiply this by a filter function supplied
by the program or drawn on the screen.
The bottom box shows the filtered
waveform in real space.

To present this applet in a problem
set, I supply my students with five files:
FourierLab.java, FourierTransform.java,
FourierLabGUI.java, PhysicsApplet.
java, and FourierLab. html. The Fouri-
erLab.java file contains the functions
defining the initial waveform and filter.
The file FourierTransform.java contains
the methods called by the Transform
button. The next two Java programs
define the GUI; they do not contain
any of the computation’s physics and
cannot be modified by students. The

last file displays the compiled program.
Figure 4 shows the contents of the

FourierTransform.java file I give to my
students. The program’s structure uses
OO programming concepts and is self-
explanatory. The real-space function is
a real-valued function f (x), represented
as an array f [n], n = 0, . . . , N – 1. The
real and imaginary parts of the Fourier
transform are represented as arrays
fcos[m] and fsin[m], m = 0, . . . , N/2.

Using their basic understanding of ar-
ray treatments in any familiar pro-
gramming language, students can com-
plete the Fourier transform algorithms
so that they work correctly. (You do
need to tell students that Java has the
peculiar feature that sin x, cos x, and π
are written Math.Sin(x), Math.
Cos(x), and Math.PI.) You could
build different versions of Fourier-
Transform.java from this basic struc-

Figure 3. Working versions of the (a) Magnet and (b) FourierLab applets. These pro-
grams illustrate concepts of magnetostatics and signal analysis, respectively.

(a)

(b)
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ture, incorporating different algo-
rithms for computing the Fourier
transform.

I constructed the set of programs we
have just discussed from a simple, stu-
dent-accessible physics program and a
more complex user-interface program
whose contents are unimportant to the
students. I have not yet discussed any
aspect of the Java programming lan-
guage, but its OO nature is key to these
programs’ structure.

Constructing 
Example Applets
In OO programming, the basic ele-
ment of a program is a class—a set of
data variables together with functions
(methods) that act on these variables.
You can create one class from another
in a parent-child relation. The child
class is said to inherit the parent’s
variables and methods; you can add
new variables and methods intrinsic
to the child. In this way, you can build

a complex structure in stages.
You can define an abstract class in

which one or more methods are defined
in principle but are not implemented.
You cannot create (instantiate) an ab-
stract class in a computer program, but
you can create and use a child of the ab-
stract class that defines the required
methods. In Java, each individual class
A is defined in a separate file A.java.

The Java language defines an applet—
a mini-program accessible through a
Web browser—as a predefined parent
class. This Applet class manages the win-
dow in which the program appears and
provides methods to draw in this window. 

The definition of the Laplace applet,
and of the other examples discussed
here, starts from a parent class Physics-
Applet, which is a child class of Applet.
This class defines various user-interface
elements useful in constructing prob-
lem-set applets of the type that I have
already presented. The Java language
already contains many hooks to graph-
ical elements, making it straightforward
to construct basic user interfaces. Many
excellent books describe user-interface
programming in Java,6,7 but I hope that
the collection of specialized elements
contained in PhysicsApplet will make it
one step easier for instructors to build
their own programs. 

Figure 1 shows the Laplace applet
constructed as a daughter class of a class
LaplaceGUI, which is constructed as a
child class of PhysicsApplet. The
LaplaceGUI class puts into the applet
the specific displays and buttons de-
scribed earlier. LaplaceGUI still is an ab-
stract class. It defines almost all of the
methods of PhysicsApplet but leaves un-
defined the methods solve(), which
actually carries out the solution of
Laplace’s equation, and Energy(),
which computes the electrostatic energy.

When the class Laplace adds a defin-
ition of solve() to this structure (as in

E D U C A T I O N

public class FourierTransform{

int Nx, N2; 

double[] f, fcos, fsin;

FourierTransform(int N){

Nx = N;

N2 = Nx/2;

f = new double[Nx];

fcos = new double[N2+1];

fsin = new double[N2+1];

}

void Transform(){

for (int i = 0; i <= N2 ; i++){

double Tc = 0.0;

double Ts = 0.0;

for (int j = 0; j < Nx ; j++){

/*  do something intelligent here   */

}

fcos[i] = Tc;

fsin[i] = Ts;

}

}

void InverseTransform(){

for (int i = 0; i < Nx ; i++){

double T = fcos[0] + fcos[N2];

for (int j = 1; j < N2 ; j++){

/*  do something intelligent here   */

}

f[i] = 0.0;

}

}

}

Figure 4. The class FourierTransform.java presented to students. This program is a
shell illustrating calls to a predefined array. Students should fill in the Fourier trans-
form algorithms. Figure 3b shows a working version of this program with its GUI.
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Figure 1), and a definition of Energy(),
all needed methods are defined and the
class can be instantiated. The construc-
tion hides the definitions of all the other
methods of LaplaceGUI. 

I present and describe in detail the
code for class LaplaceGUI in the online
version (http://arXiv.org/ps/physics/
0302044). The program is about 150
lines of code, but it is all straightforward
bookkeeping, written by calling out the
graphical elements one by one and spec-
ifying their appearance and function.

You should note two peculiar features
of the programming style. First, all the
graphic elements rely on modes of op-
eration specified by integer labels. Many
GUI books (Macintosh Human Interface
Guidelines,8 for example) ask that a user
interface be modeless, so a user will have
as many options as possible at any given
time. The price of this feature is a com-
plex programming style. My philosophy
is just the reverse. I want to simplify an
instructor’s programming task, even if it
costs users some flexibility.

Second, I defined the graphical ele-
ments, such as buttons and drawing ar-
eas, as internal classes of the class

PhysicsApplet. This approach goes
against Java programming’s usual con-
ventions, but it lets you pack the class
library into a single file, which students
easily can copy without the need for a
development environment.

Online Appendix A documents the
class PhysicsApplet in detail, including
a description of all internal classes. 

W ith the system I described,
students can get a taste of

numerical problem solving, including
programming, as an integrated part
of their core courses. I hope that this
system will give instructors the op-
portunity to present more robust and
vivid examples to their classes, and
that it will motivate students to learn
more about computation as applied to
problems in physical science.
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