
École Polytechnique Fédérale de Lausanne

Bachelor Semester Project

Numerical simulation of power systems
for real-time simulation applications

Author:

Marc Mitjans

Professor:

Prof. Mario Paolone

Supervisor:

Reza Razzaghi

A report submitted in fulfilment of the requirements

for the degree in Engineering in Industrial Technologies

in the

Escola Tècnica Superior d’Enginyeria Industrial de Barcelona, UPC

July 2014

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Abstract

Distributed Electrical Systems Laboratory

Engineering in Industrial Technologies

Numerical simulation of power systems for real-time simulation applications

by Marc Mitjans

This report concerns to the study of FPGA-based electromagnetic transient simulations

of power systems. Along its content, the discretization of electric circuits concerning

power systems will be treated for RLC circuits and transmission lines. Our goal is to be

able to define a program that, by reading a text file with the information of a certain

network, computes the nodal admittance matrix for the Fixed Admittance Matrix Nodal

Method.

Several examples will be shown with the comparison between the values obtained from

the EMTP-RV simulator software and the ones obtained from our solver in order to

validate the model.

Finally, the nodal admittance matrix (NAM) will be used in the code programmed for

the CompactRIO and its FPGA for real-time simulations.

Contents

Abstract i

Contents ii

List of Figures iv

1 Introduction 1

2 Numerical Solvers and Discretized Models 2

2.1 Integration Methods . 3

2.2 Discrete models for lumped elements . 4

2.2.1 RLC models . 4

2.2.2 Switch model . 5

2.2.3 Transmission lines - Bergeron model 6

2.2.3.1 Single transmission lines 6

2.2.3.2 Multiconductor transmission lines 7

3 The Modified Nodal Analysis LabVIEW Solver 9

3.1 The gathering of data . 10

3.2 The nodal admittance matrix for RLC circuits 11

3.2.1 Values . 11

3.2.2 The NAM . 12

3.2.3 The right-hand side of the equation 13

3.3 The nodal admittance matrix for transmission lines 13

3.3.1 The NAM . 14

3.3.2 The right-hand side equation . 15

3.3.2.1 Interpolation method . 15

4 Simulation Results 17

4.1 Example 1: A three phase inverter . 17

4.2 Example 2: RLC circuit with Pejovic model for switches 21

4.3 Example 3: Transmission lines simulation 23

4.3.1 EMTP-RV Backward Euler . 23

4.3.2 EMTP-RV Trapezoidal . 25

5 Real-time simulation in FPGA 27

5.1 Simulation code for RLC circuits . 28

5.2 Simulation code for transmission lines . 30

ii

Contents iii

6 Conclusive remarks and future work 34

Bibliography 36

List of Figures

2.1 Backward Euler vs. Trapezoidal method 3

2.2 Discrete RLC . 5

2.3 Pejovic model . 5

2.4 Two-port network for line with lumped lossess 6

3.1 Flow of data for RLC circuit . 10

3.2 An example of the Data 2D array . 11

3.3 Flow of data for circuits with transmission lines 14

4.1 The schematic of a 3 phase inverter . 18

4.2 Data for 3 phase inverter . 18

4.3 NAM for 3 phase inverter . 19

4.4 Voltage 2 for the 3 phase inverter . 20

4.5 Voltage 2 for the 3 phase inverter . 20

4.6 A second RLC example . 21

4.7 Pejovic model . 22

4.8 The two curves for voltage 1 for the second RLC circuit 22

4.9 Voltage 1 zoomed in for the second RLC circuit 22

4.10 MTDC circuit for transmission lines . 24

4.11 MTDC. V4 using Backward Euler . 24

4.12 MTDC. V4 using Backward Euler. Zoomed in 25

4.13 MTDC. V4 using the Trapezoidal method 26

4.14 MTDC. V4 using the Trapezoidal method. Zoomed in 26

5.1 RLC circuit for CompactRIO NI 9068 . 29

5.2 Voltage 4 for the RLC circuit . 29

5.3 Voltage 4 for the RLC circuit. Zoomed in 30

5.4 Voltage 4 for the MTDC circuit . 33

5.5 Voltage 4 for the MTDC circuit. Zoomed in 33

iv

Chapter 1

Introduction

Electromagnetic transient simulations in power systems are widely used in many power

applications. The so-called real-time simulators allow an exact imitation on a smaller

scale of the transient and steady-state behavior of the real power system, which will

allow to directly control and protect the system. As it is explained in [5] and [6], despite

the advantages of the usage of real-time simulators in convential processors, it has also

certain drawbacks that have to be taken into account:

1. The real-time simulation time step is lower-bounded due to the limited power of

the simulation hardware.

2. The degree of complexity of real power system might be too high to be simulated

with exact precision, and thus the accuracy of the results can be affected.

In order to overcome to a great extent the mentioned problems, a new hardware simula-

tor has been introduced, the Field Programmable Gate Array (FPGA). Unlike general

processors, the FPGA architecture allows parallel execution of instructions, overcoming

the limitation that resides in the general processing units (series execution of informa-

tion). This great advantage, among others, will allow a considerable decrease in the

minimum simulation time step to orders of one microsecond or even of hundreds of

nanoseconds.

The study presented in this report will be focused on FPGA-based real-time simulation.

The main objective is to develop a code in LabVIEW that, by reading a file which

contains all the information regarding a certain electric network, is able to compute the

nodal admittance matrix for the Fixed Admittance Matrix Nodal Method, to be able to

use it in a FPGA hardware for real-time simulations.

1

Chapter 2

Numerical Solvers and

Discretized Models

For the study of the behavior of a certain electric network, not only its design has to

be specified, but it is also needed to define a proper method to compute the numerical

solution for the network. In order to do so, there are two numerical solvers that accom-

plish with that purpose: the state-space representation and the Modified Nodal Analysis

(MNA).

The first approach is based on solving directly the several differential equations that

govern the behavior of the network. This method can be described by the following

equation:

ẋ = Akx+Bku (2.1)

Where x is the vector of states, u the vector of control inputs, and Ak and Bk the

matrices that set their relation. Even though this method gives very exact results, the

formation of both matrices and the following resolution can be quite computationally

expensive. The Modified Nodal Analysis approach, however, overcomes some of these

difficulties. This method can be represented as follows:

[A][xn] = [bn] (2.2)

Where [A] corresponds to the fixed matrix of a discretized model of the network elements,

called the Nodal Admittance Matrix (NAM), and [bn] to the current history terms related

to each element and the independent sources. This solver computes for every time step

2

Chapter 2. Solvers and Models 3

the new values for the unknown vector [xn], which may correspond to the node voltages

and some of the currents in the circuit, and updates at every iteration the history terms

in [bn].

Regarding the advantages and disadvantages of both integration methods, in this study

we will focus on the MNA.

2.1 Integration Methods

In order to discretize the differential equations for the network elements, among all the

techniques proposed in [2] the two methods in [8] stand out: the Backward Euler and

the Trapezoidal techniques are described in this section.

Let the purple line in Figure 2.1 be the real curve of a certain node voltage of a circuit

between times (t − 4t) and t, where 4t corresponds to the time step used in the

simulation:

Figure 2.1: Backward Euler vs Trapezoidal.

The Trapezoidal integration method corresponds to the computation of the area inside

the quadrilateral ABCE. This is represented by following equation:

∫ t

t−4t
[vk(t)− vm(t)]dt =

4t
2
{[vk(t)− vm(t)] + [vk(t−4t)− vm(t−4t)]} (2.3)

On the other hand, the Backward Euler method computes the area inside the ABCD

quadrilateral:

∫ t

t−4t
[vk(t)− vm(t)]dt = 4t · [vk(t)− vm(t)] (2.4)

Chapter 2. Solvers and Models 4

As it can be seen from Figure 2.1, the Trapezoidal method usually has a better resem-

blance to the exact integral than the Backward Euler, but the computation is also more

costly than the second one ((2.3) versus (2.4)). Also, the trapezoidal method applied

for switches can produce an undesired underdamping. For these reasons, the discrete

models of the lumped elements will be based on the Backward Euler method.

2.2 Discrete models for lumped elements

In this section, the discretization of the several lumped elements that are considered will

be treated, in order to both go from continuous to discrete time and to linearize the

voltage-current relation. At first, the resistor, the inductor, the capacitor and voltage

sources will be considered. Then, the model used for discretizing an ideal switch will be

described. Finally, the last part will be dedicated to modelling single and multiconductor

transmission lines.

2.2.1 RLC models

For an RLC model, recall the relation between the voltage drop across the terminals of

the element and the current going through it:

1. Resistor: vR = iRR

2. Inductor: vI = L
diI
dt

3. Capacitor: iC = C
dvC
dt

These relations, however, correspond to a continuous time model. Thus, in [8] the

discretized models of an RLC element can be represented by an equivalent resistor Req

and a current source Ihist in parallel, as depicted in Figure 2.2.

The equivalent resistance and the history term for the independent current source vary

for every one of the three elements. Their corresponding values are presented in Ta-

ble 2.1, where 4VC corresponds to [vk(t − 4t) − vm(t − 4t)], and inL to the current

through the inductor at the previous state.

In order to model the voltage sources, only the voltage drop across its terminals will

be taken into account. Thus, a direct source and an alternating voltage source will be

modeled similarly.

Chapter 2. Solvers and Models 5

Figure 2.2: Discretized model of an RLC element.

Element Req Ihist

Resistor R -

Inductor
L

4t
inL

Capacitor
4t
C

− C

4t
· (4VC)

Table 2.1: Backward Euler models for RLC elements.

2.2.2 Switch model

Even though the ideal switch representation is often used to easily describe the behavior

of a switch element, this model would require 2n different nodal admittance matrices

(where n is the number of switches that are present in the network), one for each combi-

nation of on/off states. In this study, the approach to model real switches proposed by

Dr. Predrag Pejovic, from the University of Belgrad, will be applied. This technique will

allow us to model the switches with just one single and fixed matrix. As it is described

in [3], a real switch can be approximated by the circuit in Figure 2.3:

Figure 2.3: Discrete-time representation of a real switch.

This representation can be obtained by adding, in parallel, an ideal switch and an

inductance (in series) with an ideal switch and a capacitor (also in series). Then, the

Chapter 2. Solvers and Models 6

value of the equivalent resistance Gs corresponds to both
Cs

4t
and

4t
Ls

. The value of the

independent source Jn+1
s is defined as follows:

Jn+1
s = −ins for the ’on’ state

Jn+1
s = GsV

n
s for the ’off’ state

(2.5)

Where −ins corresponds to the current going through the switch across the negative

terminal at the previous state (t−4t); and V n
s , to the voltage drop across its terminals.

This model will allow us to fix the nodal admittance matrix during the whole simulation.

Otherwise, one matrix for every single combination of all switches would be needed, and

this cannot be done in FPGA.

2.2.3 Transmission lines - Bergeron model

Concerning the case of single and multiconductor transmission lines, [1] and [4] propose

a very simple and commonly used method to model a good representation of a constant

transmission line, the so-called Bergeron model.

2.2.3.1 Single transmission lines

As it is described in [4], the losses along the transmission line can be considered by

splitting the line in four parts and adding three lumped resistors, two at the terminals

and one at the center. This model can be simplified by adding half of the middle

resistance to each one of the terminals. Then, the equivalent Bergeron model of a

single transmission line is the one depicted at Figure 2.4. This model works under the

assumption that ZC >> R/4.

Figure 2.4: Equivalent two-port network for line with lumped losses.

Chapter 2. Solvers and Models 7

The equations governing the history term in the independent current sources are the

following:

I ′k(t− τ) =
ZC

(ZC +R/4)2
[Vm(t− τ) + (ZC −R/4)Imk(t− τ)]+

+
R/4

(ZC +R/4)2
[Vk(t− τ) + (ZC −R/4)Ikm(t− τ)]

(2.6)

I ′m(t− τ) =
ZC

(ZC +R/4)2
[Vk(t− τ) + (ZC −R/4)Ikm(t− τ)]+

+
R/4

(ZC +R/4)2
[Vm(t− τ) + (ZC −R/4)Imk(t− τ)]

(2.7)

Where R corresponds to the resistance modelling the total loss along the line, tau to

the travelling time and ZC to the characteristic impedance of the line. Ikm and Imk are

the currents entering the positive and negative terminals of the line respectively.

2.2.3.2 Multiconductor transmission lines

In the case of multiconductor transmission lines, where multiple lines are coupled among

them, an additional step must be taken in order to decouple them an proceed with the

approach mentioned in the above section for every independent line.

The equations governing the behavior of the wave propagations of voltages and currents

are described as follows:

−
[
dvp
dx

]
= [Z ′p][ip] (2.8)

−
[
dip
dx

]
= [Y ′p][vp] (2.9)

Where vp and ip are the phase voltage and current vectors, and [Z ′p] and [Y ′p] the longi-

tudinal impedances and transvere addmitances respectively.

These equations can be transformed using the eigenvalues of the matrices to obtain the

final relations that will be used throughout the rest of the report:

[vp] = [Tv][vm] (2.10)

[ip] = [Ti][im] (2.11)

Chapter 2. Solvers and Models 8

Where [Tv] and [Ti] are the so-called transformation matrices, and vm and im correspond

to the voltages and currents at the terminals of the transmission lines (modal values),

while vp and ip again correspond to the phase voltages and currents. This method allows

us to decouple a multiconductor transmission line, and linearly and independently obtain

the values for all the variables used to model transmission line.

Chapter 3

The Modified Nodal Analysis

LabVIEW Solver

Taking into account all the models mentioned in Chapter 2, a network solver has been

created by means of the software LabVIEW which, in rough outlines, computes the

nodal admittance matrix (NAM) for a given electric circuit, the vector of history terms

[bn] described at the beginning of Chapter 2 and solves the equation [xn] = [A]−1[bn] for

every iteration, allowing us to obtain the transient and steady-state values for all the

unknown variables.

In order to run correctly the program, the netlist file of the circuit must be provided.

This file can be obtained as an output file from the EMTP-RV software.

This chapter will cover all the details concerning the code. Regarding the section for the

nodal admittance matrix itself, the first part will mainly be referred to RLC circuits with

switches, and the second part will include the single and multiconductor transmission

lines.

The main code, named Simulation, needs several funtions (VIs in the LabVIEW lan-

guage) to be able to run properly. The main structure of the algorithm is the following:

The Data VI is in charge of gathering all the needed information for the construction

of the main code. Then, another VI named Values gathers the output of the Data and

computes all the needed values for the construction of the NAM. Finally, this matrix

is sent to every iteration in the Simulation VI, where the right-hand side equation is

continuously computed. Figure 3.1 shows a schematic of the actual structure of the

main program.

9

Chapter 3. Modified Nodal Analysis 10

Figure 3.1: All the information about the circuit is obtained from the .net file, and
is processed to calculate the unknown values of the variables at every iteration.

3.1 The gathering of data

When a certain circuit is design in the EMTP-RV environment, a .net file is created

with the name of the EMTP-RV design. This file contains all the information about the

circuit. For every element, two lines are written: The first one contains the information

about the type of element and the node pins between which it is connected; the second

one contains the specific value of the element in question (for R,L or C).

The Data VI was built to read that .net file and arrange all the needed data in a two-

dimensional array, so that all this information can be easily accessed any time it is

needed. It is important to mention that certain specifications have to be met, as the

code reads one line at a time and compares the characters with some predefined ones.

Then, the following assumptions have to be made:

1. The nodes have to be named with the letter V , followed by the number of the

node i, ∀i = 1...N , where N is the number of nodes to be considered.

2. The resistors, inductors, capacitors, switches and voltage sources have to be named

with the letter which indicates the type of the element (R, L, C, SW, DC or AC)

followed by its corresponding number i, defined in the same way as in the previous

point.

3. The numbers for each element must have a consecutive order inside their element

type (e.g. R1, R2, L1, C1, C2, C3).

Chapter 3. Modified Nodal Analysis 11

RLC elements are identified by the keyword RLC at the beginning of their correspond-

ing line. This indicates the VI that the following line will have to be properly scanned.

Then, it obtains the name of the element and the names of the nodes and stores them in

a 1D array. Next, the code jumps to the following line, and reads and stores the value of

the element at the end of that 1D array. Finally, this array is appended to a previously

created 2D array, which contains all the elements that had already been checked.

Switches and DC and AC sources are differentiated by the keywords SW0, Vp and

Vsine respectively. The procedure to obtain the data is the same as for RLC elements,

but in these cases no special value will be read (as the several Gs and the values for the

voltage sources will be set manually).

Finally, the columns of the final 2D array that outputs the Data VI correspond to

the following information: Name, V +, V − and Value. An example is depicted in the

Figure 3.2. This VI also outputs other 2D arrays of information, but that are formed

from this general array.

Figure 3.2: Among other information, the Data VI outputs a 2D array of the infor-
mation concerning all the elements in the circuit.

3.2 The nodal admittance matrix for RLC circuits

3.2.1 Values

One of the destinations of the main 2D array that is output from Data is the Values

VI. This function uses the information of all the elements to compute some values that

will be needed in the construction of the NAM, so that they have to be computed just

once, gaining some computational speed. Some of these values might be the number of

Chapter 3. Modified Nodal Analysis 12

nodes of the circuit, the number of additional currents that are defined or even an array

containing all the information about the elements with an additional current associated.

This list of values will not only be used for the construction of the NAM, but also in

the main code Simulation.

3.2.2 The NAM

The building of this square matrix is mainly the center of the Solver. It is a n×n matrix,

where n corresponds to the number of unknown variables that will be computed at each

iteration.

The total number of variables will be composed by all the node voltages and some

additional currents that have to be defined. Every one of this currents will be associated

only to an inductor, switch or voltage source (either DC or AC), and will be set as

entering to the positive terminal of the element. This matrix is computed generally

based on the KCL equations (and KVL for voltage sources), and can be devided in three

main parts. In order to build the matrix, each one of them has to follow its respective

rule:

1. The top-left part: It corresponds to the portion that covers the rows and columns

corresponding to the unknown potential of the nodes. For the elements in the

diagonal, each one is equal to the sum of conductances (just for resistors and

capacitors) connected to that node. The off diagonal elements correspond to the

negative conductances of the elements connected between nodes i and j, which are

the nodes corresponding to the row and column respectively.

2. The top-right part: This part covers the last group of columns (corresponding

to the additional currents), but the same rows as before. In this case, for every

current (column), a +1 number has to be placed in the row that corresponds to

the voltage from which that current is “leaving”, and a −1 to the voltage that it

is arriving to.

3. The bottom part: This one covers all the columns, and the rows referred to the

additional currents. For this part no special rules are defined, and it has to be

obtained by applying KCL to every one of the corresponding elements. It has to

be taken into account that the Ihistory term will always be in the right-hand side

equation, as it corresponds to the independent current source.

In order to build the NAM, the code accesses every element of the matrix (filled with

zeros at the beginning) and applies the criteria defined above. Then, at every position

Chapter 3. Modified Nodal Analysis 13

it gets access to all the elements in the Data array to perform the requiered operations

for each element.

For an RLC circuit, this function VI outputs the global nodal admittance matrix and a

vector with the names of the unknown variables (voltages and currents).

3.2.3 The right-hand side of the equation

Once the NAM is computed, it is sent to the main loop that computes the values for

the unknown variables for every iteration. In order to do so, the right-hand side of the

equation must be built from all the history terms (these terms can be obtained using

the so-called shift register in LabVIEW). Together with these values, the Right Hand

function needs also the following information: The Data array from the Values VI, an

array referring to the additional currents, an array corresponding to the Gs values for

every switch (in the right order), the number of nodes and currents, a list with the values

for the voltage sources, and finally a boolean list which indicates which switches are on

and off at the current state. This last boolean list is previously computed in a for loop.

It needs as input a list with the closing and opening times for every switch (the switches

are initially open).

The Right Hand VI checks for every element in the column vector whether a capacitor

is connected to that voltage or whether that row corresponds to an inductor, a switch

or a source, and performs the requiered computations to obtain the history term for the

element in question. In the case of switches, Jn+1
s will be chosen accordingly to its state

(on/off). For the sources, their value will be obtained from the input array Sources.

Once the product [A]−1 · [bn] is computed to obtain [xn], the array is sent to the next

iteration by means of the shift register, and the value that is desired to observe is

appended to another array, that later will be used by a Waveform Graph to display the

evolution of that variable through time.

3.3 The nodal admittance matrix for transmission lines

The integration of transmission lines in the circuit varies considerably the structure of

both the main program and how the nodal admittance matrix is obtained. Despite this,

the theory behind RLC ciruits from the above section still holds. However, in these

cases the matrix will be increased with new additional elements. The structure of the

code will also change, as depicts Figure 3.3.

Chapter 3. Modified Nodal Analysis 14

Figure 3.3: New blocks that compute the interpolated values have to be added inside
the main loop.

3.3.1 The NAM

As it has been mentioned in Chapter 2, every decoupled transmission line is split in

two parts, one corresponding to each terminal. The code is built in such a way that it

considers every part of every decoupled transmission line as independent from the rest.

This method allows arranging information more easily. Each transmission line involves

8 variables to be taken into account: four voltages and four currents. However, from

these four voltages, two of them correspond directly to already considered nodes of the

circuit (phase voltages). That means that for every transmission line, six new variables

will have to be included in the matrix.

Horizontally displayed, the exact order of the variables in the matrix will be the following

(voltages above and currents below):

{V1, .., VM , V d
k1, V

d
m1, .., V

d
kN1

, V d
mN1

, V c
k1, V

c
m1, .., V

c
kN2

, V c
mN2

, ...

..., IL, ISW , IDC , IAC , Ip1, .., Ip(N1+N2), I
d
k1, I

d
m1, .., I

d
kN1

, IdmN1
, Ick1, I

c
m1, .., I

c
kN2

, IcmN2
}

In the notation used, M corresponds to the amount of nodes considered, N1 corresponds

to the number of decoupled transmission lines (with the d superscript) and N2 to the

total number of coupled transmission lines (with the c superscript). The additional

currents Ip are the phase currents, defined as entering to the phase voltages. Inside the

matrix, the rows corresponding to them will define the relationship in (2.10). On the

other hand, the Ik and Im currents will define the relationship in (2.11). Recall that, for

Chapter 3. Modified Nodal Analysis 15

already decoupled transmission lines, the transformation matrices in (2.10) and (2.11)

correspond to the identity matrix.

All the new voltages that have been added to the top-left part of the matrix will include

in their diagonal elements the value of 1/ZC , and zero everywhere else.

3.3.2 The right-hand side equation

With the addition of transmission lines, not only the admittance matrix suffered im-

portant modifications, but the definition of the right-hand side equation has also to be

updated. While all the other terms will remain the same, in in the rows that go from V d
k1

to V c
mN2

the corresponding history terms will be added. Nevertheless, the computation

of these terms has several subtleties with respect to the other elements.

3.3.2.1 Interpolation method

If we recall the history terms for the transmission lines seen in Chapter 2, they require

a specific value obtained (t− τ) steps before. Also, the time step used in the simulation

will hardly ever be a divisor of the propagation time of the wave. In order to overcome

this (a priori) setback, an interpolation between the values at the instants (t− P) and

(t− P − 1) will have to be computed. The interpolation factors, a0 and a1, are defined

as follows:

τ

4t
= P +

ε1
4t

ε2 = 4t− ε1

a0 =
ε2
4t

; a1 =
ε1
4t

(3.1)

And so, the value of I ′(t− τ) will be obtained from a0 · I ′(t− P) + a1 · I ′(t− P − 1). In

order to speed up the computation time, these calculations have been converted to matrix

multiplications. For that purpose, a matrix [K] has been created from the coefficients

in (2.6) and (2.7) for every transmission line, and a0 and a1 have been converted to

diagonal matrices, covering all the interpolation values for all the decoupled matrices

together. Then, the resulting values at (t− τ) will be calculated as follows:

~I ′(t− τ) = [a0][K]~I(t− P) + [a1][K]~I(t− P − 1) (3.2)

Chapter 3. Modified Nodal Analysis 16

Where the vector ~I(t− n) corresponds to the values from Idk1 to IcmN2
at time (t− n).

The values of ~I(t−P) for every decoupled transmission line, however, have to be stored

for the future access. This problem can be solved by creating a so-called circular buffer.

It is a 2D array, empty at the beginning, and at every iteration the values of the desired

currents, ~I(t), get stored at the column with index 0, and the column corresponding to

the values of (t− Pmax − 1) is deleted, where Pmax corresponds to the maximum value

of P among all the transmission lines. Then, in order to compute the interpolation, the

desired values ~I(t− P) and ~I(t− P − 1) can be easily obtained.

Finally, the vector of ~I ′(t − τ) is inserted to the right-hand part that was previously

computed for RLC cases (in the columns corresponding to the Vk, Vm variables), and

the computation of the variables is carried through by solving, again, [A]−1[bn].

Chapter 4

Simulation Results

In order to test and validate the program described in Chapter 2, several simulation

examples have been executed, two for RLC circuits and one for coupled transmission

lines. In this chapter, the opbtained results will be compared by means of MATLAB to

the ones computed by EMTP-RV. For all the examples, a simulation time step of 1µs

has been considered. It is important to also set the integration method as Backward

Euler in the EMTP-RV environment, to get a better resemblance between the results.

It is important to mention that, as the code hasn’t been optimally simplified, the execu-

tion time for the simulation is greater than the time spent by EMTP-RV. This difference

of time is also increased in those networks where transmission lines are included.

4.1 Example 1: A three phase inverter

The circuit depicted in Figure 4.1 shows the schematic of this example. Every pair of

switches is synchronized to avoid floating points, so that they open and close alternately.

In between the ground and the nodes between the switches, three inductors in series with

three resistors have been connected.

From the schematic in Figure 4.1 it is easy to determine the number of variables, which

will be the sum of the seven voltages and the ten currents. Once the code is executed,

the Data array that is output is the one in Figure 4.2:

Where GR refers to the ground reference, and the values in the fourth column are

expressed in their natural units (Ω, H and F). Then, the NAM that is obtained is

depicted in Figure 4.3.

17

Chapter 4. Simulation Results 18

Figure 4.1: The schematic of a 3 phase inverter. 10 additional currents have to be
defined, one for each switch, inductor and DC source.

Figure 4.2: The output Data for the 3 phase inverter example obtained from the .net
file.

Chapter 4. Simulation Results 19

Figure 4.3: The nodal admittance matrix is computed from the 2D array of informa-
tion obtained from the Data function.

Until the seventh row and column, the resistors’ and capacitors’ conductances are in-

troduced following the criteria mentioned in Chapter 3. Thus, if we take a look at

Figure 4.1 we can see that indeed only V5, V6 and V7 are connected to a resistor (their

conductances are in the diagonal of the top-left part). For the top-right part, the cur-

rents entering and leaving the nodes are represented with −1 and +1 respectively (e.g.

for SW3, its current is leaving V3 and entering V1, which corresponds to the eleventh

column). Finally, regarding the KCL equations at the bottom part, the ones for the

inductors, switches and sources are, respectively, of the form:

ihist =
4t
L

[v−L − v
+
L] + iL (4.1)

ihist = Gs[v
+
s − v−s]− is = Jn+1

s (4.2)

EAC/DC = v+ − v− (4.3)

If we pick, for instance, L1, we can see that a 1 is assigned to the diagonal, which

represents the current iL and the terms of 4t/L (= 0, 01) are placed, with the respective

positive and negative signs, at the columns corresponding to the voltages V5 and V2.

As an example, the evolution of the voltage V2 will be compared. After running the

simulation with a simulation time tmax of 32ms, the curve that corresponds to both

voltages is obtained. The comparison between the results of our code are depicted in

Figure 4.4.

As it can be noticed, both curves don’t follow exactly the same path, and even a huge

negative spike appears when the switch closes. If we zoom in Figure 4.4, a small differ-

ence can also be appreciated between both curves.

Chapter 4. Simulation Results 20

Figure 4.4: Evolution through time of voltage V2.

Figure 4.5: A zoomed in image for V2.

Chapter 4. Simulation Results 21

These divergence between the two methods can be explained by means of the model

of the switch. While in this study we have discretized a real switch using the Pejovic

model, EMTP-RV uses ideal switches. This different methods have different effects to

the transient behavior when they either close or open.

In order to remove this divergence as much as possible, another circuit has been used

as example with the Pejovic model added in place of the ideal switch (see Chapter 2,

Section 2.2.2).

4.2 Example 2: RLC circuit with Pejovic model for switches

In this case, the circuit that has been chosen contains two voltage sources, a DC source

of 10V and an AC source with an amplitude of 230V , a frequency of 60Hz and a phase

shift of 0 rad. The circuit is shown in Figure 4.6.

Figure 4.6: The schematic of the second RLC circuit used as example.

However, in this case SW1 has been replaced by the Pejovic model (Figure 4.7) in

another EMTP-RV file, in order to compare both results.

Again, in this case the two graphics for V1 will be compared to finally validate the code

for, at least, RLC circuits. After running a simulation of 32ms, the results are displayed

in Figure 4.8.

As it can be seen in the zoomed in image (Figure4.9), the red dots (cooresponding to

the curve obtained from the EMTP-RV software) and the blue dots (corresponding to

the values obtained with our code) match perfectly well. Even though that to be able to

Chapter 4. Simulation Results 22

Figure 4.7: The Pejovic model for a switch.

Figure 4.8: Voltage 1 for the second RLC circuit.

Figure 4.9: Voltage 1 zoomed in for the second RLC circuit.

Chapter 4. Simulation Results 23

completely certify that the code is perfectly valid for all kinds of RLC circuits it should

be tested with every one of them, this verification allows us to convincely affirm that

the code can be used with any other RLC circuit with satisfactory results.

4.3 Example 3: Transmission lines simulation

In the case where transmission lines are included in the network, it is not be possible

to verify the model as it has been done in the previous section, where all the point

values match between the two simulators, but instead they will just be appoximately

close. This is caused by the integration method used in EMTP-RV. Even though the

Backward Euler is selected, the software doesn’t use the method exactly as we have

defined it, and adds extra mid-points in between the values to compute a non-linear

interpolation, and definitively to obtain different values. However, if the integration

method selected is the Trapezoidal one, the results resemble more to the ones obtained

in our program using Backward Euler. The study of this behavior will be treated in

further studies.

The circuit example that has been used to test the code is composed by 10 groups of 2

coupled transmission lines each, 10 DC sources of 100000 volts, 10 resistors and 1 switch

between nodes 4 and 5 with Gs = 0, 1; all of them connected to a total number of 30

nodes. Taking into account Chapter 3, Section 2.3, this will result in a total number

of 161 variables, which corresponds to a NAM of 161 × 161 elements. In this model,

no more switches have been added due to the divergence between the Pejovic model

and the ideal switch, as this divergence would be high enough to distort too much the

comparison.

Figure 4.10 depicts the schematic of the circuit. Each one of the five groups is devided

into two groups of two coupled transmission lines. For this study, the voltage V4 will be

used to compare the results.

4.3.1 EMTP-RV Backward Euler

The results obtained applying Backward Euler as the integration method in both simu-

lators can be compared in Figure 4.11 and in Figure 4.12. Even though in the first one

it might seem that both curves are well aligned, the zoomed in figure shows that they

are relatively far from representing the same values.

Chapter 4. Simulation Results 24

Figure 4.10: MTDC circuit for transmission lines.

Figure 4.11: The transient of the voltage V4 using Backward Euler in both simulators.

Chapter 4. Simulation Results 25

Figure 4.12: A zoomed in section of the transient of the voltage V4 using Backward
Euler in both simulators. it is also possible to see the double amount of values obtained.

4.3.2 EMTP-RV Trapezoidal

When the Trapezoidal method is selected, however, even though the values still don’t

match perfectly well, an enormous improvement with respect to the Backward Euler

method has been obtained. Again, the comparison can be observed in both Figure 4.13

and Figure 4.14. In this case, a full-length simulation of 100ms has been run.

In contrast with the results from the RLC circuit simulation, the ones obtained from

this example cannot validate with exact certainty the simulator program with the same

level of confidence due to the difference between the interpolation methods.

Chapter 4. Simulation Results 26

Figure 4.13: The transient of the voltage V4 using the Trapezoidal method in the
EMTP-RV software with a 100ms simulation.

Figure 4.14: A zoomed in section of the transient of the voltage V4 using the Trape-
zoidal method in the EMTP-RV environment.

Chapter 5

Real-time simulation in FPGA

Once the code has been validated, it can be transferred to the FPGA target, but not

before applying certain changes to the main code to make it executable. As it has

been stated before, an FPGA target is a very powerful hardware that allows extremely

high-speed performances in real-time by allowing parallel executions, but as a tradeoff

it is very inflexible with respect to the programming code, and the amount of resources

available (in the form of look-up tables (LTU’s), memory blocks or DSP blocks (to

perform mathematical operations)) is very limited. Thus, the new simulation code must

be highly optimized in order to both speed it up and save as many resources as possible.

The FPGA module is one of the components of the controller CompactRIO, from Na-

tional Instruments. It is a controller containig several pieces of hardware used for several

industrial applications. For this project, the microcontroller and the FPGA module will

be used. The first one will allow us to set the environment for the FPGA execution; that

is, it will compute the NAM (using the code described in Chapter 3) and all the other

variables that might be needed in the simulation (such as information about the ele-

ments of the circuit, gathered in the 2D array called Data), and convert and send them

to the FPGA. This step can be done with the use of “Host to target - DMA FIFO”, a

way to store data in the microcontroller and send it to the FPGA. It follows the theory

of a queue - first in first out. Then, the FPGA module will use all this information

to compute the requiered values at each iteration, which will correspond to real-time

values.

In order to define the code for the FPGA module, four limitations have been taken into

account: First, this module doesn’t allow working with strings. This directly affects

the Data array, so the information regarding the name of the components must be

converted to numbers. We must recall that the elements’ names are defined as the letter

corresponding to each element type (C, L, SW...) followed by an increasing number (1,

27

Chapter 5. FPGA real-time simulation 28

2, 3...). However, for the needed functions for the simulation only the element type is

requiered. Thus, each element type has been converted to an integer (C - 1, L - 2,...).

The next limitation is the use of arrays. The FPGA module only allows working with 1D

arrays, so all the 2D arrays have to be split. This can be easily overcome with the use of

clusters, which allow gathering information in just one block. Next, the representation

of all numbers must be converted from double (DBL) to fixed-point (FXP). This is a

direct consequence of the limited amount of resources in the FPGA, as it doesn’t allow

dynamic memory allocation, and everything must be pre-allocated beforehand. This

also affects the size of all the arrays, as they have to be predefined and fixed as well.

In FPGA programming, a special type of loops can be used, called single-cycle timed

loops. They allow computing what is inside in just 1 tick, which corresponds to 1/40µs.

For the matrix multiplication, an externally pre-defined multiplier has been used, which

gets as inputs the NAM resized in one row and the right-hand vector, and outputs the

result of the multiplication.1

In the next two sections, the programs used for both RLC circuits and circuits containing

transmission lines will be generally explained. Similarly to what was done in Chapter 4,

the results obtained with the real-time simulation will be compared to the ones obtained

by means of our simulator (Chapter 3).

5.1 Simulation code for RLC circuits

For the simulation of RLC circuits, the CompactRIO NI 9068 made by National Instru-

ments has been used. A fixed-point configuration of 32 bits of word length and 10 bits of

integer part has been defined for the inverse of the NAM, and 5 bits for the integer part

for all the other values (right-hand vector and output vector (variables)). This allows a

precision of 10−9, but limits the values to ±16. Also, to generalize the code the size of

the arrays has been set to 30, so that any circuit with less than 30 elements per element

type can be analyzed. The main difference with the offline simulation code in Chapter 3

is the computation of the right-hand vector. In order to exploit the capacity of parallel

executions, the right-hand vector for each element type is formed independently, and

then they are added all together. This method increases the speed of the code, but

increases the amount of resources used. In the example shown in Figure 5.1, with all

these specifications, a time step of 800ns (32 ticks) could be reached.

1This multiplier is not included in the files that come together with this report, as it can only be
used in LabVIEW 2014.

Chapter 5. FPGA real-time simulation 29

Figure 5.1: The RLC circuit used as an example in the CompactRIO NI 9068.

Due to the high precision chosen for the values and the lack of any other operation

rather than the matrix multiplication and the formation of the right-hand side of the

equation, the results obtained with both an ordinary PC and the FPGA are extremely

close, as depict Figures 5.2 and 5.3 for the voltage V4.

Figure 5.2: The waveform of V4 for the RLC circuit in Figure 5.1.

Chapter 5. FPGA real-time simulation 30

Figure 5.3: A zoomed in version of V4.

5.2 Simulation code for transmission lines

The main idea for the general code which includes all the elements that have been

taken into account along this study is the same as for the previous case. However,

the inclusion of transmission lines drastically increases the amount of resources (mainly

LTU’s), together with the decrease of speed of the code, due to both the increase in the

number of variables and the circular buffers together with the interpolation method to

obtain the values for the right-hand vector (see Chapter 3 for more details).

At this point, the amount of information needed to build the code is too big to be

processed by any existing hardware. However, the main goal for this code is to be

able to simulate the behavior of a multi-terminal DC network (MTDC), introduced

in rough outlines in Chapter 3, Figure 4.10 (it is a special and rather new network

configuration built specifically for transmission lines, which basically improves the power

transmission). Hence, a more specific code has been defined for this type of networks.

It considerably reduces the variety of circuits that can be simulated, but allows us

to simulate all kinds of MTDC-like networks. The final code does not fit inside the

cRIO used for RLC circuits, and a new controller had to be used in this case, named

CompactRIO NI 9033. 2

The main difference between general circuits and MTDC-like networks is the absence

of AC sources, capacitors and inductors. Consequently, the right-hand vector can be

formed taking into account only resistors, switches and DC sources, which reduces the

amount of resources consumed in this function by half. However, this reduction of

resources alone is not enough, and another simplification has to be carried out. As the

right-hand vector includes lots of zeros, some columns of the NAM−1 and rows of the [bn]

2CompactRIO NI 9033 is a new controller that is in its beta version, and hasn’t been officially released
yet.

Chapter 5. FPGA real-time simulation 31

vector can be removed without changing the output of the multipication (just rescaling

the size of the vector). These columns correspond to the ones referring to the node

voltages, as there are no capacitors in this network (and therefore their corresponding

values in the [bn] vector will always be 0), and to the ones referring to the values of Ip,

Ik and Im (recall that these rows were used to set the relationship between phase and

modal variables, which corresponds to a matrix multiplication without any independent

term). This shrinking will reduce the number of columns in the NAM by nv + 2 · TL,

and the same number for the number of rows in the right-hand vector. This reduction

allows shrinking the 161 × 161 matrix to a 161 × 51 one. Also, only one value for Gs

and one value for the DC sources are used for all of them.

Concerning the interpolation method defined in Chapter 2, as the matrix multiplication

consumes a considerable amount of resources, this interpolation had to be carried out

inside a for loop, element by element. Recall that the interpolation was of the form:

I ′(t− τ) = f(xi) · a0 + f(xi−1) · a1 (5.1)

Where f(xi) = ~k · ~xi. As this operation is time-invariant, f(xi−1) = f i−1(x). This

relationship allows us to compute just once the values of ~I ′(t−P), and use these values

to both compute ~I ′(t − τ) and send them to the next iteration as ~I ′(t − P − 1), which

allows us to save half of the DSP blocks used in this function. These circular buffers

are used in the form of “target-scoped” FIFO’s, which corresponds to the type of FIFO

used only inside the FPGA module.

Finally, the last modification with respect to the RLC case is the change in the data

type of the fixed-point configuration. In this case, in order to save as many resources

as possible, for each different array a specific fixed-point configuration has been chosen

for it, so that it matches the range and precision of their values without wasting any

memory. Table 5.1 shows the specific configuration for each element.

Despite the high precision shown in the last column of Table 5.1, as happened in Chapter

4, the results between our PC simulator and the real-time simulation are not as close

as the ones for the previous example. In this case, the discrepancy doesn’t come from

the difference between the interpolation methods, but from the multiple operations that

must be carried out along the simulation (both the general matrix multiplication and

the formation of the right-hand side equation, together with the storage of the voltages

and currents corresponding to the already decoupled transmission lines in the circular

buffers, and the interpolation to form the values I ′(t − τ) for the [bn] vector), together

with the different fixed-point configurations selected for each array of variables.

Chapter 5. FPGA real-time simulation 32

Array Word length Integer part max min precision

NAM−1 32 11 1024 -1024 4,77E-7

Right-hand 32 8 128 -128 5,96E-8

Variables 32 9 256 -256 1,19E-7

I’(t-P) 26 4 8 -8 2,38E-7

Gs values 26 2 4 0 5,96E-8

Sources 10 7 127,875 0 0,125

VCB 23 9 256 -256 6,10E-5

CCB 26 2 2 -2 5,96E-8

Coefficient 1 16 0 1 0 1,53E-5

Coefficient 2 12 -6 0,015621 0 3,81E-6

Coefficient 3 13 -13 0,000122 0 1,49E-8

Coefficient 4 16 -6 0,015625 0 2,38E-7

a0 16 0 1 0 1,53E-5

a1 16 0 1 0 1,53E-5

Table 5.1: Word length and integer part are expressed in bits for each of the arrays
used in the simulation code. VCB and CCB correspond to both the voltage and current
circular buffers respectively. The four coefficients correspond to the ones in equations
2.6 and 2.7, used in the interpolation together with a0 and a1. The negative values
increase the precision, but limit the maximum and minimum reachable values. The

elements with a minimum value of 0 have unsigned values.

With all these specifications, a time step of 5µs (200 ticks) could be reached. As in

Chapter 4, in this report the comparison will be done with the waveforms of voltage V4,

depicted in Figure 5.4, for the general waveform (32ms), and Figure 5.5, for a zoomed

in version. Because of the great number of variables, not all of them have been checked.

However, for those that were compared in this study, a maximum relative error of 1, 53%

was obtained, which is small enough to allow validating the results. In Figure 5.4, the

maximum relative error is of 0, 93%.

Chapter 5. FPGA real-time simulation 33

Figure 5.4: The waveform of V4 for the MTDC circuit in Figure 4.10.

Figure 5.5: A zoomed in version of V4.

Chapter 6

Conclusive remarks and future

work

This study has been very useful to allow appreciating for oneself the state-of-the-art

of real-time simulation of power systems and to deepen in the transient circuit analy-

sis. More precisely, the identification of discretized RLC circuits has been carried out

by means of the Backward Euler integration technique, together with modelling real

switches for fast simulation of networks with integrated switches. In particular, the Pe-

jovic model has been considered in this study in order to compute by means of LabVIEW

the nodal admittance matrix for the Fixed Admittance Matrix Nodal Method (FAMNM)

which will allow faster FPGA-based real-time simulations. Several examples have been

designed in EMTP-RV software and run in both simulators (EMTP-RV and the one

coded using LabVIEW). It must be said that regarding the infinite number of electric

circuits that can be built, the code can never be completely validated by direct compar-

ison. Nevertheless, the comparison for simple RLC circuits allowed us to validate the

code with a great level of confidence.

Right after, RLC circuits with included coupled and decoupled transmission lines have

also been taken into account. Concretely, the Bergeron method for modelling transmis-

sion lines has been used. In the case of transmission lines, even though the code for the

nodal admittance matrix could not be validated with the same confidence as previously

(as the values obtained from both the EMTP-RV software and the code from LabVIEW

don’t match as exactly as in simple RLC circuits), the results showed that very likely

the Backward Euler technique used in both the code from LabVIEW and EMTP-RV

are not processed equally. This conclusion extracted from that comparison will be used

in future works, in order to find the exact integration technique used by EMTP-RV and

analysze its validation.

34

Chapter 6. Conclusions and future work 35

After the validation of the general code, the final step of the project included the design

of an FPGA-based LabVIEW code for real-time simulation based on all the previously

designed programs. Concretely, time steps of 800ns and 5µs could be reached for both

circuits with and without transmission lines respectively. This considerable difference

between time steps is obtained due to the greater amount of operations that are needed to

compute the transient of the variables for transmission lines, which increase the amount

of used resources and therefore decrease the speed of the code. This new FPGA code

will be used in future works for several analysis of certain power systems, which will

allow us to obtain much more accurate and fast results.

Right now we are working on the publication of a scientific journal paper on power

systems for the journal IEEE Transactions on Industrial Electronics together with the

Distributed Electrical Systems Laboratory (DESL), from EPFL, where the results ob-

tained with the FPGA code through this study will be analyzed.

Bibliography

[1] Hermann W. Dommel. Digital computer solution of electromagnetic transients in

single and multiphase networks. IEEE Summer Power Meeting, Chicago, Ill., June

23-28, 1968, June 1968.

[2] Charles A. Thompson. A study of numerical integration techniques for use in the

companion circuit methods of transient circuit analysis. January 1992.

[3] Pedrag Pejovic and Dragan Maksimovic. A method for fast time-domain simulation

of networks with switches. February 1993.

[4] Neville Watson and Jos Arrillaga. Power systems electromagnetic transients simu-

lation. The Institution of Engineering and Technology, London, United Kingdom,

2003.

[5] Mahmoud Matar and Reza Iravani. Fpga implementation of power electronic con-

verter model for real-time simulation of electromagnetic transients. Natural Sciences

and Engineering Research Council of Canada (NSERC), December 2009.

[6] Mario Paolone Reza Razzaghi and F. Rachidi. A general purpose fpga-based real-

time simulator for power systems applications.

[7] Yuan Chen and Venkata Dinavahi. Fpga-based real-time emtp. Natural Science and

Engineering Research Council of Canada (NSERC), May 2008.

[8] Reza Razzaghi and Prof. Mario Paolone. Real-time simulation of electrical circuits

using embedded hardware platforms.

36

	Abstract
	Contents
	List of Figures
	1 Introduction
	2 Numerical Solvers and Discretized Models
	2.1 Integration Methods
	2.2 Discrete models for lumped elements
	2.2.1 RLC models
	2.2.2 Switch model
	2.2.3 Transmission lines - Bergeron model
	2.2.3.1 Single transmission lines
	2.2.3.2 Multiconductor transmission lines

	3 The Modified Nodal Analysis LabVIEW Solver
	3.1 The gathering of data
	3.2 The nodal admittance matrix for RLC circuits
	3.2.1 Values
	3.2.2 The NAM
	3.2.3 The right-hand side of the equation

	3.3 The nodal admittance matrix for transmission lines
	3.3.1 The NAM
	3.3.2 The right-hand side equation
	3.3.2.1 Interpolation method

	4 Simulation Results
	4.1 Example 1: A three phase inverter
	4.2 Example 2: RLC circuit with Pejovic model for switches
	4.3 Example 3: Transmission lines simulation
	4.3.1 EMTP-RV Backward Euler
	4.3.2 EMTP-RV Trapezoidal

	5 Real-time simulation in FPGA
	5.1 Simulation code for RLC circuits
	5.2 Simulation code for transmission lines

	6 Conclusive remarks and future work
	Bibliography

