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ABSTRACT 

We propose a transformation that allows to build an explicit finite difference scheme for option pricing in stochastic 

volatility models. The scheme is second order in space and first order in time. We present conditions of positivity and 

monotonicity of the scheme. To test conditional stability results in the sense of von Neumann performing a Fourier 

analysis of the problem and follows the convergence of our scheme. We present some numerical experimental results 

for European call option pricing.  
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1.  INTRODUCTION 
The central model of option pricing theory is the Black-Scholes model (1973), which shows that, without making 

assumptions about the preferences of investors, one can obtain an expression of the value of options that not directly 

dependent on the expected performance of the underlying stock or the option. This is achieved through dynamic 

hedging argument in a free market perfect arbitrage. 

The assumptions of the Black-Scholes model form an ideal scenario, in which the continuous trading is possible, in 

perfect markets, in which the interest rate is constant risk free and the price of the underlying asset behaves like a 

geometric Brownian motion. However, some empirical studies have shown that these considerations are unrealistic 

and do not explain a significant impact on financial markets such as volatility changes. 

In this direction, there are sophisticated models that incorporate more accurate volatility as a random variable that is 

set up as a second factor of risk in financial markets because not only the returns of assets are at risk. 

This class of models known as stochastic volatility models. The most representative work in this regard is the model of 

Heston (1993). This model is based on a system of two coupled stochastic differential equations that represent the 

dynamic behavior of the underlying asset and the other dynamics of volatility and which are correlated Brownian 

motions. Following the description in Düring and Fournié (2012), in such systems can be represented as 

 

 1= dZSVdtSdS tttt   (1) 

 

 2)()(= dZVbdtVadV ttt   (2) 

 

 dttdZtdZ =)()( 21  (3) 

 

where   is the trend term of the asset and )( tVa  and )( tVb  are respectively the coefficients of the diffusion and 

trend of the stochastic volatility and   is the correlation factor. 

Similar arguments set in Black-Scholes (1973), allow to find the partial differential equation 

 

 0=)()(
2

1
)(

2

1 22 rFrSFFVaFVbSFVVbVFSF svvvSVSSt    (4) 

 

Where r is the free risk interest rate. 

Equation (4) has been solved for 0>,VS , Tt 0  subject to the boundary conditions depending on the specific 

type of option. 

In general, the model Heston when the coefficients are not constant, equation (4) must be solved numerically. 

Moreover, for the case where the option is the American type, must be solve a free boundary problem with a restriction 

for the early exercise constraint for the option price. Also for this problem has to resort to numerical approximations. 
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In the mathematical literature, there are many articles about numerical methods for option pricing, especially 

addressing the case of a single risk factor, also second-order finite difference methods and more recently, high order 

finite difference schemes. Other approaches include finite element, finite volume and spectral methods. (See, for 

example, Düring and Fournié (2012) and references therein). 

Other finite difference approaches used are standard methods of low order (second order in space) for option pricing in 

stochastic volatility models. In D.Y. Tangman, A. Gopaul, and M. Bhuruth (2008) is considered a higher order 

compact scheme (HOC) for parabolic partial differential equations to discretize the quasi-linear Black-Scholes PDE in 

the numerical evaluation of European and American options. Also show that the system (HOC) with a grid stretching 

along the asset price dimension, gives approximate numerical solutions for European type options under stochastic 

volatility. In Rana and Ahmad (2011) proposes a finite difference scheme for option pricing with stochastic volatility 

incorporating a GARCH model in context of Indian financial market that is solved by the Crank-Nicolson method. 

Four division of type schemes Alternate Direction implicit (ADI): Douglas scheme, the Craig-Sneyd scheme, the 

modified Craig-Sneyd scheme, and the scheme Hundsdörfer-Verwer, each of which contains a free parameter, was 

proposed by K. J. In 't Hout and S. Foulon (2010) which develops a semi- discretization of Heston PDE, using finite 

difference schemes with nonuniform mesh, resulting in large systems stiff ordinary differential equations. 

This paper presents an explicit finite difference scheme for option pricing models of European type with stochastic 

volatility. Though our presentation is focused on the Heston model can be easily adapted to other models with 

stochastic volatility. It proposes a transformation of the differential equation Heston which reduces the number of 

terms to obtain an approximation scheme for a second-order in the space and first-order in time. It also establish, 

positivity and monotonicity conditions for the numerical scheme. To test the results on conditional stability in the 

sense of von Neumann performing a Fourier analysis of the problem and the derivation of the convergence is 

conducted by the Lax-Richtmyer theorem. 

The paper is organized as follows. In the first section, we will make a description of the model of Heston (1993) and 

the closed-form solution for the case of constant coefficients. The transformation of the partial differential equation in 

a simpler equation by introducing new independent variables is described in section 3. Section 4 presents the 

deduction of the numerical scheme, establishing the conditions of positivity and monotonicity, we analyze the stability 

and follows a result of . Numerical results of European call options and the error plots are presented in Section 5. 

 

2.  HESTON MODEL 
For the development of this presentation we will focus at the Heston model. It is a stochastic volatility model: such a 

model assumes that the volatility of the asset is not constant, nor even deterministic, but follows a random process. 

We begin by asuming that the spot asset at time t  folows the diffusion: 

 

 )(= 1 tdZSVdtSdS tttt   (5) 

 

where )(1 tZ  is a Wiener process. If the volatility folows an Ornstein Uhlenbeck process: 

 

 )(= 2 tdZdtVVd tt    (6) 

 

then Ito's lemma shows that the variance tV  folows the process: 

 

 )(2]2[= 2

2 tdZVdtVdV ttt    (7) 

 

this can be written as 

 )()(= 2 tdZVdtVkdV ttt    (8) 

 

All of this for Tt 0  with 0>, 00 VS  and  ,,k  and   the drift, the mean reversion speed, the volatility 

of volatility and the long run mean of tV  respectively and also 2=k , 





2
=

2

 y  2= . 

2Z (t) has correlation   with english 1Z (t) 
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 dttdZtdZ =)()( 21  (9) 

 

The Heston model says that the value of any asset ),,( tVSF tt  must satisfy the partial differential equation : 
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where ),,( tVS  represents the market price of volatility risk and Heston assumes that the market price of volatility 

risk is proportional to volatility, i.e. 

a  constant:  

 tVatVS =),,(  

 tVaVtVS  =),,(  (11) 

 ),,(= tVS  

 

After, with (10) and (11) 
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An European call option with strike price K and maturing at time T satisfies the equation (12) and the problem is 

completed, subject to the following boundary conditions  

 ( , , ) = (0, )F S V T Max S K  (13) 

 0=),(0, tVF  (14) 

 1=),,( tVF   (15) 

 0=),0,(),0,(),0,(),0,( tSFtSrFtS
V

F
ktS

S

F
rS 









  (16) 

 StSF =),,(   (17) 

 

After defining this, important to review the effects of stochastic volatility in the option price and make the valuation of 

price in a risk neutral world where the variance follows a square root process moving from a real world measure to an 

EMM (Equivalent Martingale Measure) is achieved by Girsavov's Theorem (see englishMao, X.(1997)). 

In particular, we have 

 

 dttdZtZd t)(=)(ˆ
11  (18) 

 dttVStdZtZd ),,()(=)(ˆ
22   (19) 
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t
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r
 =  (21) 

 Where   is the real world measure and  
01 )(ˆ

t
tZ  and english 

02 )(ˆ
t

tZ  are  -Brownian Motions. 

Under measure   (5) and (8) become 
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 )(ˆ= 1 tZdSVdtrSdS tttt   (22) 

 )(ˆ)(= 2 tZVdtVkdV ttt  
 (23) 

 )()(= 21 tdZtdZdt  (24) 

where the modified parameters arespanish  

 








k

k
kk =;= **

 

 

3.  TRANSFORMATION OF THE PROBLEM 
For the sake of convenience the equation (12) will be transformed into an equivalent nonlinear model using the 

following transformation 

 vvtT
v

SeXFeH MtTrtTr =);(
2

=;=;= )()(    (25) 

 

So  

 ),,(= vXHH  (26) 

 

then  

 HeF tTr )(= 
 (27) 

 

After the equation (12) become 
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 (28) 

 

where  

 ( , , ) ]0, [ [ , ] [0, ]
2

M
m M

v
X v v v T      (29) 

 

with the initial condition 

 

 0);(=,0),( XXfvXH  (30) 

 

4.  NUMERICAL SCHEME CONSTRUCTION 
As a domain of equation (12) is unbounded and to the numerical approximation is important to have a bounded domain 

such that it is possible to compute the solution. The bounded numerical domain can be chosen according with diferent 

criteria; see R.Kangro et. al (2000) for instance. 

Let us denote ][0,b  the domain for asset variable X, where b is chosen such that the interval includes the exercise 

price and initial price and denote ],[ dc  the domain for variance variable  , where c and d are chosen such that the 

interval includesthe minimum and maximum possible variance. 

Then we define the numerical domain as:  

 ( , , ) [0, ] [ , ] [0, ]
2

d
X v b c d T     (31) 

with the nodes  

 xi NiihX 0;= 1  

 vj Njjhcv  0;= 2  

  Nnnkn 0;=  
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The numerical aproximation of exact solution ),,( n

ji vxH   is denoted by 
n

ijU . 

 

Then the approximations for the partial derivatives are given by 
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Note that due to the use of centered aproximations of the derivates at 0=0X , bX
x

N =  y cv =0 , dv
v

N =  

external fictitious nodes appear 1
1

= hX 


, 11 1)(= hNX x
x

N  , 21 = hcv   y 21 1)(= hNcv v
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The aproximations 
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n

v
N

x
NU 1,  are obteined by using linear extrapolation throughout the aproximations obtained in closest interior 

nodes of numerical domain. 

Thus  

 
nnn UUU 0,10,010, 2=   

 
n

x
N

n

x
N

n

x
N UUU ,101, 2=   

 
nnn UUU 1,00,01,0 2=   

 
n

v
N

n

v
N

n

v
N UUU 1,0,1, 2=   (33) 

 
n

v
N

n

v
N

n

v
N UUU 10,0,10, 2=    

 
n

v
N

x
N

n

v
N

x
N

n

v
N

x
N UUU 1,,1, 2=    

 
n

x
N

n

x
N

n

x
N UUU 1,0,01,0 2=    

 
n

v
N

x
N

n

v
N

x
N

n

v
N

x
N UUU 1,,1, 2=    

 

and from (32) one gets  

 NnUUUU n

j
x

N

n

j

n

v
Ni

n

i  00,==== ,0,,,0  

By replacing the partial derivatives of equation (28) by the aproximations given in (32) one gets the numerical scheme 
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Using the extrapolation and the numerical scheme (34) at the boundaries, we obtain: 
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So the (30) (29) and (28), we obtain: 
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for 0=i  , xNi =  and 11...= vNj , or for 0=j , vNj =  and 11...= xNi . 

 

For the sake of convenience the numerical aproximation will be write in matrix form 
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5.  SCHEME ANALYSIS 
Supose that  
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In consecuence the coeficients jijii edcba ,,,,  are nonnegatives for xNi 0  and vNj 0 . 

 

5.1  Positivity 
A suitable property of the numerical scheme for the pricing equation is positivity. 

 

Definition 1. 

Define 1=n n n
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Then, for our scheme it is true that 

 
1 10; 0n n n n

j j i i
i i j j

If            (49) 

 and the restrictions (46) are met, one gets that for a nonegative payoff 
0

ijU  the numerical solution english
n

ijU  is 

nonegative for 

Nn 0 , xNi 0  vNj 0 . 

 

5.2  Monotonicity 
For the sake of clarity in the presentation we introduce the following definition of monotonicity-preserving numerical 

scheme (see Xiao et. al (1996)). 

 

Definition 2. 

Consider the scheme 0=)( n
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Proposition 1. 
Under hypotheses (46) and (49) the numerical scheme (34) is i-monotonicity-preserving and 

j-monotonicity-preserving, with Nn 0 , xNi 0  y vNj 0 . 

 

Proof. Let us write 
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after some algebraic procedures 
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Asumming (47) and (48) and from (34), one can easily show that 
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Then, the numerical scheme (34) is i-monotonicity-preserving and j-monotonicity-preserving, with 

Nn 0 , xNi 0  y vNj 0 . 

 

Corollary 1. 
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Under hypothesess (46) and (49) and the notation of last proposition, assuming that the payoff function f(x) is 

nondecreasing and nonnegative with f(0)=0, then the scheme (34) is nondecreasing and nonnegative in ji,  for each 

time stage n . 

 

5.3  Consistency  
Consistency of a numerical scheme with respect to a partial differential equation means that the exact solution of the 

finite diference scheme aproximates the exact solution of the PDE (see Smith (1985)). 

 

Theorem 1. 
For any fixed parameters, the scheme (34) is consistent with the partial differential equation. 

 

Proof. Trivial by construction (See section 4). 

 

5.4  Stability 
To analyse teh linear Von Neumann stability of the scheme (34)rewrite 
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 jjii ecda 2=  (56) 

 

Is clear that the coefficients of the numerical scheme (34) are 1=2 jjii ecda  . 

 

 1=2= jjii ecda   (57) 

 

Therefore, the scheme (34) is conditionally stable. 

 

5.5  Convergence 
Finally using the Lax-Richtmyer equivalence theorem with the theorem 1 and condition (57)we can conclude 

convergence of the scheme (34). 

6.  RESULTS 
In this section we check the properties of the proposed numerical scheme (34). 

 

6.1  Example. 
Consider the european call option (so that f(s)=max(s-K,0)). 

Figures show the computed price with numerical method, and the results obtained with 5=1h  (Figure 1) and 

1=1h  (Figure 2). 
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Figure  1: Explicit scheme solution 
1

( = 5)h . Parameters: r=0.05,T=
2

1
, 0.1= , 

*
= 2k , 

*
= 0.011 , c=0.01, 

1= , d=1, K=80,b=240, 
0

= 100S . 

  

 

 

 Figure  2: Explicit scheme solution 1)=( 1h . Parameters: r=0.05,T=
2

1
, = 0.1 , 

*
= 2k , 

*
= 0.011

, c=0.01, = 1 , d=1, K=80,b=240, 
0

= 100S  

 

In addition, Figure 3 shows the mesh convergence analysis with the solution corresponding to i = 16 and j = 207 for 

each of the proposed mesh, is evident that the mesh will converge to the solution and the difference decreases. 
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Figure  3: Mesh convergence. (Solution for different step sizes)  

  

Is possible then ensure that when the mesh is refined and taken 1= hS  smaller the relative error respect to the exact 

solution decreases, we can specify that the method is convergent experimentally, see Figure 4 

 

 
  

Figure  4: Relative Error. (Relative error compared to the exact solution for different step sizes) 
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7.  CONCLUSIONS 
In this paper we have constructed a explicit finite difference numerical scheme that is consistent for the equation (28), 

which was obtained by a transformation of variables in equation (12). The sufficient conditions for the step sizes of the 

discretization in volatility and time are obtained depending on the step size of the asset price in order to ensure the 

positivity of the coefficients and therefore of the solution in addition to stability of the scheme for general payment 

convex functions. Our numerical scheme avoids inappropriate oscillations of the numerical solution because it is 

monotonous - conservative. 

The computational implementation of this numerical scheme is rather simple with a low computational cost and 

provides desired solutions that are non-decreasing in the underlying asset and in the volatility direction from a 

non-decreasing function of initial payments. 

Some numerical computational results are performed to graphically illustrate the convergence of the scheme and the 

approximation error.  
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