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The theory required for the solution of the Hodgkin-Huxley equations for the transmission 
of the nerve impulse in a moving coordinate system are presented. Using this theory, 
simulations of the transmission of the nerve impulse over large distances (e.g., 1 m) may be 
carried out rapidly and accurately. The above theory may be applied to other diffusion 
problems by appropriate modification to the problem concerned. 

1. INTRODUCTION 

Considerable interest has been focused in recent years on diffusion problems in 
both the physical and biological sciences of which the Hodgkin-Huxley (HH) 
equations [ 1 ] for the transmission of a nerve impulse down a nerve axon are a prime 
example. In the HH equations the transmembrane potential is described by a non- 
linear diffusion equation coupled to three partial differential equations which, in turn, 
describe the dynamics of the ionic conductances. The HH equations were initially 
solved under the assumption of a constant propagation velocity for the nerve impulse 
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which converts the four partial differential equations into three ordinary ones [ 1 j. 
With the advent of large scale digital computers, a numerical solution of the corn~~et~ 
HH equations became possible by means of numerical integration with respect to 
both distance and time 12, 31. However, these solutions were limited to small lengths 
of axon (less than 10 cm) as the distance over which simulations could be carried out 
was determined by the spatial integration interval h (e*g., for a total length of IO cm 
and a vahte of h of 0.1 cm a total of 400 ordinary differential equations is req~~r~d~~ 
Despite improvements in the speed of modern computers, the problem of the nu 
of differential equations in relation to computer time remains. 

En the present paper we present a method for simulating large lengths of axon by 
means of a moving coordinate system such that the total number of ordinary 
differential equations remains relatively small (e.g., 40 ), the computer time to 
simulate lengths as long as 1 m is reasonable and a high degree of accuracy is 
maintained. This method may be applied to other diffusion problems by ap~ro~r~~t~ 
modi~~atio~ to the problem concerned. 

2. THEORY 

n a static coordinate system, the non-linear diffusion equation describing t 

change of membrane potential as a function of time and position during the course of 
the propagation of a nerve impulse along an axon is given by [If: 

The symbols and definitions of the variables and constants are given in Tables I and 
II, respectively. From Hodgkin and Huxley [I], 6, takes the forms 

G, = c?,N4, G,, = G,,lwH, +=GL. (2) 

M, N and M are voltage and time dependent variables varying between 0 and i, and 
are the solutions of partial differential equations of the type 

$=f(V,P) 
= [Ap - P(Ap + BP)]/@ 

where P is used to represent M, N and H. The terms A, and B, are given by 

A, = O.l(V+ 25)/{exp[(V+ 25)/10] - l}, B, = 4 exp(V/ 181, 

A,=O.l(V+ lO)/{exp[(V+ lO)/lO] - I}, B, = 0. I25 exp(Vf 8O), (4) 

A, = 0.07 exp( V/20), B, = l/{exp[(V + 30)/10] + 1 iv 
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TABLE I 

Symbols and Definitions of the Variables in the HH Equations 

Variable Definition 

t 

T 
X 

xi 

‘ilt) 

I,.,(t) 

Mi, Ni, Hi 

Time (msec) in the fixed coordinate system. 
Time (msec) in the moving coordinate system. 
Distance (cm) along axon from stimulating electrode (fixed coordinate system). 
Distance (cm) from moving origin. (Xi = ih, where h is the spatial integration interval.) 
Membrane potential (mV) at the ith segment measured in the sense of internal minus 

external potential. The resting potential V,,,, has a value of 0. 
Ionic current per unit length of axon (@/cm) at the ith segment of the mth species, 

where m is the sodium (Na), potassium (K) and non-specific leakage (L) com- 
ponents. 

Hodgkin-Huxley conductance variables (dimensionless) at the ith segment (M,,,, , 
N reSt and HreEt are the resting values of M, N and H, respectively. 

TABLE II 

Symbols and Definitions of the Constants in the HH Equations’ 

Constant 

h 

a 
c 
P 

VS,i, 
u 

Definition (value) 

Spatial integration interval (0.1 cm). [Also known as the spatial increment or the 
spatial mesh.] 

Radius of axon (0.05 cm). 
Capacitance per unit length of axon (a x lo-‘@/cm). 
Specificresistance of axoplasm (30 ohm . cm). 
Resistance per unit length of axon (3820 ohm/cm). [R = p/(d).] 
Maximum sodium conductance per unit length of axon (37.7 mmho/cm). 
Maximum potassium conductance per unit length of axon (11.3 mmho/cm). 
Non-specific leakage conductance per unit length of axon (0.094 mmho/cm). 
Equilibrium potential of the mth species (V,, = $115 mV, V, = -12 mV and V, = 

+10.6 mV). 
Membrane potential during stimulation (+30 mV). 
Velocity of moving axes (18.80 m set-I). 

“The values of the constants used in the numerical solution presented in this paper are shown in 
parentheses. 

The partial differential equations (1) and (3) cannot be solved analytically so that 
one is limited to a numerical solution. The numerical solution of Eqs. (1) and (3) 
requires the conversion of the partial differential equations into a set of ordinary 
differential equations by means of an appropriate finite difference approximation 
involving spatial discretization. For reasonable accuracy in the spatial discretization 
it is necessary to take a value for the spatial increment h 5 0.1 cm [2, 31, and for 
reasonable economy of the numerical solution one cannot afford much more than 100 
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segments (400 dependent variables). Thus, in a static coordinate system the length L 
of axon simulated is restricted to about 10 cm, which can comfortably accommodate 
the pulse without serious end effects. To extend the length of axon simulated therefore 
requires the use of a moving coordinate system. 

2.2. Solution of the HH Equations in a Mouing Coordinate System 

To change from a static coordinate system 1. .Y to a moving coordinate system 
7: X, we make the transformation 

T= t, 

X=x-ut-c, 

where u is the velocity of the moving origin X, and c is a constant. Then 

2 2T 2 2x L -=--++-- 
at 2t 2T 2t 2x 

and 

Therefore, combining Eqs. (1) (3), (6) and (7) we obtain the partial differential 
equations describing the behaviour of the membrane potential V and the normalized 
ionic conductance variables P as a function of time and position in a moving 
coordinate system: 

av - 
2T 
r ,  r .  

$-u&(V,P). (9) 

Ahead of the pulse, V and P have their resting values Vrcs( and P,,,, so that 
appropriate boundary conditions at X = L are 

v= v,,,,: p = pres, = A,/(A, + B,>j (10) 

evaluated at V,,,,. These are also the initial values at t = 0. Behind the pulse, 
however, V and P have values close to V,,,, and P,,,,, respectively, but not exactly 
equal to them since there is a relatively slow final relaxation of no significance. What 
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matters in choosing the boundary conditions at X= 0 is to avoid unreal reflections at 
the X = 0 boundary caused by the finite number of grid points in the finite difference 
approximation; since in fact ~V/CYX and @‘/8X are very small behind the pulse, it is 
appropriate to choose boundary conditions which avoid any upstream propagation. 
This is achieved by imposing the boundary conditions 

a v/ax = 0, apIax=o (11) 

at X = 0, which are consistent as can be seen by differentiating Eq. (3) with respect to 
x and using Eq. (7). The use of a moving coordinate system, and therefore the need 
for boundary conditions on P, does not start until the stimulation pulse has ended; 
the first equation of (11) is modified during the pulse (see Eq. (14)). 

To extend the effective length of axon simulated, we switched from the static coor- 
dinate system to the moving coordinate system as soon as the pulse was well in the 
middle of the first 10 cm of axon, experimenting with the velocity u of the moving 
origin until the pulse moved only slowly relative to it, and so stayed nearly centred in 
the now (moving) lo-cm length. It was easy to choose this velocity so that we could 
simulate the transmission of the nerve impulse along approximately 1 m of axon, 
without having the pulse shape affected by the boundaries; this was helped by 
imposing the boundary conditions (10) and (11) to Eqs. (8) and (9). 

Equations (8) and (9) are discretized as 

and 

(13) 

respectively. Equations (12) and (13) apply for 0 < i < FL Taking the boundary 
conditions (11) into account, and noting that u = 0 during the stimulus, we have at 
x=0 

where S, = 1 during the stimulus and 0 otherwise (thus applying a constant stimulus 
voltage VW, = Vstim for a fixed time, after which we take VW, = V,,), and similarly 

2 = f(Vcl, PO) + $- P, - PC& 
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At i = n, we use Eqs. (12) and (13) with the boundary conditions (10) applied at 
i = (n + l), obtaining 

(Vwst - v,,> 

(V,-, - V,), 

(17) 

In practice, we introduced an additional switch variable S,, replacing u by S, u 
everywhere in Eqs. (12) to (17), so that we could switch to the moving coordinate 
system by changing S, from 0 to 1 (and restarting the numerical integration to allow 
for the discontinuity). 

Since Eqs. (14) and (15) effectively apply the boundary conditions (11) a: X = 
- fh. while Eqs. (16) and (17) apply the boundary conditions (10) at i = (n t 1). the 
length simulated while using moving coordinates, is given accurately by L = (n + $h. 
However, this is an unimportant quantity; the constancy of pulse shape and the 
propagation velocity are more interesting. 

3. COMPUTATION 

Numerical integration was performed by means of the program FACSIMILE 
which employs a modified version of Gear’s backward differentiation method !4J 
together with sparse matrix handling subroutines, automatic sparsity pattern deter- 
mination, automatic initial step size selection and a problem oriented high level 
language [5-71. All computations were performed on an IBM-370/168 computer 
(AERE, Harwell) and the storage requirement was 540 kbytes. 

The HH equations ((1) to (5)) are stiff because of the interactions between the 
membrane potential V and the three dimensionless conductance variables M. A’ and 
II. The FACSIMILE program offers much more (namely, a problem oriented high 
level language) than available solvers using band matrix techniques, which require 
Fortran coding for derivative evaluation and, in highly non-linear cases such as this 
one, Jacobian matrix evaluation. The FACSIMILE program was therefore chosen to 
minimize problem solving time rather than computer time; nevertheless, the 
FACSIMILE numerical integrator is competitive in terms of computer time with 
solvers using band matrix techniques [7, 81. 

The length of the spatial mesh h was chosen by first solving the problem on a 
coarser mesh and then estimating how line a mesh was needed for accurate represen- 
tation of the pulse shape and spatial derivatives. The value of h used in the 
simulations presented in this paper was 0.1 cm. 
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X km1 0 2 4 6 0 10 

x km) 0 2 4 6 a 10 

-30' ' ' ' ' ' ' ' ' ' 1 
X km1 0 2 4 b 8 10 

x km1 at: 

5ms: 2.444 12.444 
25ms: 40.044 so.044 
45ms: 17.644 07-644 

FIG. 1. Simulation of the transmission of a nerve impulse down an axon in static (A) and moving 
(B) coordinate systems. The first element of the axon is stimulated at t = 0 set by making the membrane 
potential 30 mV more positive for 0.5 msec; from 0.5 to 3.7 msec the coordinate system remains static 
(A). From 3.7 to 50 msec the coordinate system is made to move at a velocity of 18.80 m . see-’ (B). 
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Error control on T integration was based on a tolerance of 1W3 on a relative trun- 
cation error estimate per step, which has been thoroughly validated on many test 
problems [7,X]. 

The complete solution of the HH equations presented in this paper involves 
starting the integration procedure three times owing to discontinuities: at 1= 
when the the axon is stimulated, at t = 0.5 msec when the stimulus is switched of% 
and at 3.7 msec when the coordinate system is made to move. The respective starting 
integration step sizes chosen by FACSIMILE were 7.7690 x 10-16, 1.0709 X 10e5 
and 3.8484 X 10P7 sec. 

4. RESULTS 

The results of the simulation of the transmission of a nerve impulse along approx- 
imately 1 m of axon are shown in Fig. 1. At t = 0 set the first element of the axon is 
stimulated by making the membrane potential 30 mV more positive for a period of 
0.5 msec. From 0.5 to 3.7 msec the coordinate system remains static. From 3.7 to 
50 msec the coordinate system is made to move at a velocity u of 18.80 m . see-’ so 
that from Eq. (5) the distance x (in metres) along the axon from the point of 
stimulation is given by 

x=X+ 18.80(t- 3.7 x 10-3). 

The value of u was chosen so as to make the pulse move slowly relative to the 
moving coordinate so that the transmission of the pulse along approximately 1 
axon could be simulated without having the pulse shape affected by the boundaries 
(see Section 2.2). 

By graphical measurements on Fig. 1 (measuring the position along the axon of the 
peak of the pulse at different times), we find that the steady state velocity is 
19.30 m a see-’ and is reached very rapidly (by t = 2 msec). (It should be noted that 
the value we obtain for the steady state velocity is different from that obtained by 
Cooley and Dodge [2] and Moore et al. [3] because the values chosen for the 
resistivity and axon radius are slightly different, see Table II.) From 4 msec onwards 
the waveform of the pulse remains unaltered. 

The total computer time required for the simulation in Fig. 1 was approximately 
3 min on an IBM-370/168 computer. By choosing the velocity of the moving axes u 
to be 19.30m + see-‘, equal to the velocity of the nerve impulse, an even greater 
length of axon could be simulated. 

5. DISCUSSION 

The numerical solution of the HH equations presented here makes no assumption 
as to a constant propagation velocity and uniform waveform which were assumptions 

581/40/Z-5 
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in the original solution of Hodgkin and Huxley [ 11. Although the numerical solution 
of the complete HH equations does not offer rigorous proof of the above assumption, 
we have shown that the steady state velocity of the nerve impulse remains unaltered 
over long distances (approx. 1 m), and that the solution of the ordinary differential 
equations derived on the assumption of a constant propagation velocity agrees with 
the solution of the partial differential equations once the steady state velocity and 
waveform have been established. Thus, we have shown that the solution of the 
complete set of HH equations is stable over long distances (Le., no oscillations are 
observed, and no progressive damping and decay of the impulse is seen). 
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