
Numerical Solution of the Time-Independent
1-D Schrodinger Equation

Gavin Cheung
F

09328173

December 4, 2011



Abstract

The 1-D time independent Schrodinger Equation is solved numerically using
the Numerov algorithm. We first took the potential in an infinite square well.
This has an analytic solution and we compared the numerical results. It was
found that the numerical and analytical solutions agreed with each other. We

then look at the step potential and the linear potential and find numerical
solutions. We also check orthogonality for the different eigenfunctions which is

confirmed.

? Introduction

The time-independent 1-D Schrodinger Equation is

Eψ(x) = − ~
2m

d2

dx2
ψ(x) + V (x)ψ(x)

where ψ(x) is the wavefunction, V (x) is the potential and m is the mass. In general, it is not
easy to find an analytic solution so we must resort to numerical methods.

1) However, for a particle in a box,

V (x) =

{
V0 if |x| < L

∞ if |x| ≥ L

then it is possible to find an analytic solution. Take ansatz ψ = A sin cx + B cos cx. The
boundary conditions are ψ(0) = 0 and ψ(L) = 0. This gives c = nπ

L and B = 0. Finally,

requiring the normalising condition,
∫∞
−∞ ψ

2dx = 1 gives A =
√

2
L . Thus, our analytic solution

is ψ(x) =
√

2
L sin nπ

L x. Finally, substituting this back into the Schrodinger Equation gives the

energy values,

En = (
~2n2π2

2mL2
− V0)

In computation, it is often convenient to nondimensionalise x. The nondimensionalised Schrodinger
Equation is

d2ψ(x̃)

dx̃2
+ γ2(ε− ν(x̃))ψ(x̃) = 0

where ν(x̃) = V (x̃)
V0

, ε = E
V0

and γ2 = 2mL2V0
~2 . This equation would give energy values

εn =
π2n2

γ2
− 1

For some more complicated potentials, we can only work numerically. Our goals will be to
compare the analytic and numerical solution of the constant potential. Then we will numerically
solve the Schrodinger equation for a step and linear potential. We will also check orthogonality
of different eigenfunctions. This is a simple result from linear algebra if our observables are
Hermitian.
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? Experimental Method

The Numerov algorithm will be employed to integrate the equation. We will start with the
boundary conditions ψ(x0 = 0) = ψ(xN−1 = 1) = 0. The next points ψleft(x1) and ψright(xN−2)
are arbritrary. We will then find the points ψleft(x2) and ψright(N − 3) using the Numerov
algorithm. This process is repeated until we get to the matchpoint as we shoot from the left and
right. We will take the total number of points N = 1000. Thus our step size is l = 1/(N − 1).
Also, we take Matchpoint = N/2, and γ2 = 100.

2) A template is used. The program is compiled and plots are made for a number of trial
energies.

3) If the trial energy is not a solution, the slope will be discontinuous at the matchpoint. The
code is modified so that it computes the differences in slopes of ψleft and ψright. The difference
in slopes is verified manually to be a minimum at an eigenstate.

4) The code is modified so that starting with some trial energy E, the energy is continously
incremented by some value ∆E until the difference in slopes changes sign. Then set ∆E =
−∆E/2 and repeat. Terminate this procedure once a suitably small value of ∆E has been
reached.

5) Compare the ground state energy found numerically with the analytical solution.

6) Even eigenvalues(ε2, ε4, . . . ) cannot be found from this method. The reason why is because
even eigenvalues have odd eigenfunctions. Near one of the boundaries, the function is negative
but the program will always start with a positive initial point. Modify the code by setting the
initial point ψright = −0.0001. However, the program is now unable to find odd eigenvalues.

7) In order to be able to find both even and odd eigenstates, we choose a different matchpoint

that is not in the middle. ψright is then rescaled by a factor
ψleft(matchpoint)
ψright(matchpoint)

. This does not affect

the solution since if ψ is a solution to the S-eqn, then cψ is also a solution. Note that problems
may occur if the function is zero at the matchpoint and we multiply/divide by zero.

8) Using the modified code, find the first six energy eigenstates and verify that they agree
with the analytical solution.

9) Normalise the eigenfunctions. Use Simpson’s rule to numerically integrate
∫ L
0 ψ(x)2dx.

Then divide the eigenfunction by the integral.

10) Change the potential to that of a step potential where ν(x) = −1 for 0 < x < 0.5 and
ν(x) = 0 for 0.5 < x < 1.

11) Find the first six energy eigenstates of this potential. Then find the probability for the

particle to be in the right half of the well by calculating
∫ L
0.5 ψ(x)2dx using Simpson’s Rule.

12) Verify that the eigenfunctions are orthogonal by using Simpson’s rule to integrate∫ L
0 ψ1ψ2dx where ψ1 and ψ2 are distinct eigenfunctions.

13) Change the potential to that of a linear potential and find the first six energy eigenstates.
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? Results and Analysis

2)Our first energy state is π2

100 − 1 ≈ −0.901. Figure 1a shows the wavefunction for energy value
−0.901. The slope appears continuous at all points so this is approximately a solution. Taking
E = −2 and E = 1 gives drastic discontinuities in slope so these cannot be solutions.
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(a) E = −0.901
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(c) E = 1

Figure 1: Wavefunctions for several Trial Energies

3) For E = −0.901, the difference in slopes is 0.000000. For E = −2, the difference is
0.014842. For E = −0.8, the difference is −0.000123. It is clear from this that the slope
difference is minimised at the energy eigenstate.

5) The first energy eigenstate of the constant potential is found to be −0.901303955991.

Compared with the analytical solution π2

100 − 1 which is given as ≈ −0.901303955989 using
Wolfram, this is a very good approximation. We can always make our solution more accurate
by decreasing the cutoff point of ∆E.

8) The first six energy eigenstates are found to be

Numerical Energy Eigenstates

1) -0.901303955991

2) -0.605215823960

3) -0.111735603929

4) 0.579136704010

5) 1.467401099644

6) 2.553057582514

which correspond to the analytical values. Figure 2 shows some examples of the eigenfunctions.
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(a) E ≈ −0.901
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(b) E ≈ 2.5

Figure 2: Non-normalised Wavefunctions for Constant Potential

9) Figure 3 shows the normalised eigenfunctions. Note that they have the same shape as
the non-normalised eigenfunctions. The only difference is the multiplicative factor to ensure∫ L
0 ψ(x)2dx = 1.
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Figure 3: Normalised Wavefunctions for Constant Potential
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11) The first six energy eigenstates for the step potential are

Numerical Energy Eigenstates

1) -0.731329364535

2) -0.023988677211

3) 0.436729627010

4) 1.152688182963

5) 1.959921830059

6) 3.095349541988

The probabilities for the particle to be in the right hand side for various energy eigenstates are
given here

Energy(approx) Probability

-0.7 0.052885

0.5 0.739494

5 0.546858

10 0.523734

50 0.500862

100 0.503602

1000 0.502769

10000 0.500444

It can be seen that the probability approaches 0.5 for large values of energy. This can be explained
easily. As the energy increases, the step potential becomes negligible since the difference is only
1. We can then neglect the step and treat it as a constant potential which would have right hand
side probability 0.5. This is apparent in figure 4c.
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(c) E ≈ 100

Figure 4: Normalised Wavefunctions for Step Potential
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12) As expected, we have verified that the eigenfunctions are orthogonal.

13) The first six energy eigenstates of the linear potential are given,

Numerical Energy Eigenstates

1) -0.200361833826

2) 0.401537681602

3) 0.951206587193

4) 1.626016836598

5) 2.499172564993

6) 3.575583994743
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(a) E ≈ −0.2
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Figure 5: Normalised Wavefunctions for Linear Potential

? Conclusion

We have verified that the Numerov algorithm is sufficient in finding the solutions to the constant
potential when comparing with the analytical solution. Thus, we were then able to find the
solutions to the step potential and linear potential. Looking at the step potential, we found that
for high energies, the probability for the particle to be in the right hand side of the well tends to
0.5 which can be reasoned by assuming the step is negligible. Another major result is that the
eigenfunctions are orhtogonalised which is a result from Quantum Mechanics.
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