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ABSTRACT 

 
Numerical Solutions of Differential Equations on  

FPGA-Enhanced Computers. (May 2007) 

Chuan He, B.S., Shandong University; 

M.S., Beijing University of Aeronautics and Astronautics 

Co-Chairs of Advisory Committee: Dr. Mi Lu 
                Dr. Wei Zhao 

 

Conventionally, to speed up scientific or engineering (S&E) computation programs 

on general-purpose computers, one may elect to use faster CPUs, more memory, systems 

with more efficient (though complicated) architecture, better software compilers, or even 

coding with assembly languages. With the emergence of Field Programmable Gate 

Array (FPGA) based Reconfigurable Computing (RC) technology, numerical scientists 

and engineers now have another option using FPGA devices as core components to 

address their computational problems. The hardware-programmable, low-cost, but 

powerful “FPGA-enhanced computer” has now become an attractive approach for many 

S&E applications.  

A new computer architecture model for FPGA-enhanced computer systems and its 

detailed hardware implementation are proposed for accelerating the solutions of 

computationally demanding and data intensive numerical PDE problems. New FPGA-

optimized algorithms/methods for rapid executions of representative numerical methods 

such as Finite Difference Methods (FDM) and Finite Element Methods (FEM) are 

designed, analyzed, and implemented on it.  Linear wave equations based on seismic 

data processing applications are adopted as the targeting PDE problems to demonstrate 

the effectiveness of this new computer model. Their sustained computational 

performances are compared with pure software programs operating on commodity CPU-

based general-purpose computers. Quantitative analysis is performed from a hierarchical 

set of aspects as customized/extraordinary computer arithmetic or function units, 
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compact but flexible system architecture and memory hierarchy, and hardware-

optimized numerical algorithms or methods that may be inappropriate for conventional 

general-purpose computers. The preferable property of in-system hardware 

reconfigurability of the new system is emphasized aiming at effectively accelerating the 

execution of complex multi-stage numerical applications. Methodologies for 

accelerating the targeting PDE problems as well as other numerical PDE problems, such 

as heat equations and Laplace equations utilizing programmable hardware resources are 

concluded, which imply the broad usage of the proposed FPGA-enhanced computers.  

 

 



 

 

v

DEDICATION 

 

 

 

 

 

 

 
To my wonderful and loving wife  

 



 

  

vi

TABLE OF CONTENTS 

 
Page 

ABSTRACT ..................................................................................................................... iii 

DEDICATION ...................................................................................................................v 

TABLE OF CONTENTS ..................................................................................................vi 

LIST OF TABLES ......................................................................................................... viii 

LIST OF FIGURES...........................................................................................................ix 

1 INTRODUCTION......................................................................................................1 

2 BACKGROUND AND RELATED WORK..............................................................4 

2.1 Application Background: Seismic Data Processing...........................................4 
2.2 Numerical Solutions of PDEs on High-Performance Computing (HPC)    

Facilities .............................................................................................................6 
2.3 Application-Specific Computer Systems ...........................................................7 
2.4 FPGA and Existing FPGA-Based Computers....................................................9 

2.4.1 FPGA and FPGA-Based Reconfigurable Computing ....................................9 
2.4.2 Hardware Architecture of Existing FPGA-Based Computers......................10 
2.4.3 Floating-Point Arithmetic on FPGAs...........................................................13 
2.4.4 Numerical Algorithms/Methods on FPGAs.................................................14 

3 HARDWARE ARCHITECTURE OF FPGA-ENHANCED COMPUTERS       
FOR NUMERICAL PDE PROBLEMS...................................................................16 

3.1 SPACE System for Seismic Data Processing Applications .............................17 
3.2 Universal Architecture of FPGA-Enhanced Computers ..................................20 
3.3 Architecture of FPGA-Enhanced Computer Cluster........................................23 

4 PSTM ALGORITHM ON FPGA-ENHANCED COMPUTERS ............................28 

4.1 PSTM Algorithm and Its Implementation on PC Clusters...............................28 
4.2 The Design of Double-Square-Root (DSR) Arithmetic Unit...........................32 

4.2.1 Hybrid DSR Arithmetic Unit .......................................................................32 
4.2.2 Fixed-point DSR Arithmetic Unit ................................................................36 
4.2.3 Optimized 6th-Order DSR Travel-Time Solver...........................................38 

4.3 PSTM Algorithm on FPGA-Enhanced Computers ..........................................40 
4.4 Performance Comparisons ...............................................................................43 

5 FDM ON FPGA-ENHANCED COMPUTER PLATFORM...................................48 

5.1 The Standard Second Order and High Order FDMs ........................................50 
5.1.1 2nd-Order FD Schemes in Second Derivative Form ...................................50 
5.1.2 High Order Spatial FD Approximations ......................................................54 



 

  

vii

               Page 

5.1.3 High Order Time Integration Scheme..........................................................59 
5.2 High Order FD Schemes on FPGA-Enhanced Computers ..............................61 

5.2.1 Previous Work and Their Common Pitfalls .................................................61 
5.2.2 Implementation of Fully-Pipelined Laplace Computing Engine .................63 
5.2.3 Sliding Window Data Buffering System......................................................64 
5.2.4 Data Buffering for High Order Time Integration Schemes..........................73 
5.2.5 Data Buffering for 3D Wave Modeling Problems .......................................74 
5.2.6 Extension to Elastic Wave Modeling Problems...........................................76 
5.2.7 Damping Boundary Conditions....................................................................78 

5.3 Numerical Simulation Results..........................................................................80 
5.3.1 Wave Propagation Test in Constant Media..................................................81 
5.3.2 Acoustic Modeling of  Marmousi Mode ......................................................84 

5.4 Optimized FD Schemes with Finite Accurate Coefficients .............................88 
5.5 Accumulation of Floating-Point Operands ......................................................94 
5.6 Bring Them Together: Efficient Implementation of the Optimized FD 

Computing Engine............................................................................................98 

6 FEM ON FPGA-ENHANCED COMPUTER PLATFORM .................................103 

6.1 Floating-Point Summation and Vector Dot-Product on FPGAs ....................106 
6.1.1 Floating-Point Summation Problem and Related works ............................106 
6.1.2 Numerical Error Bounds of the Sequential Accumulation Method ...........109 
6.1.3 Group-Alignment Based Floating-Point Summation Algorithm ...............111 
6.1.4 Formal Error Analysis and Numerical Experiments ..................................113 
6.1.5 Implementation of Group-Alignment Based Summation on FPGAs.........116 
6.1.6 Accurate Vector Dot-Product on FPGAs ...................................................122 

6.2 Matrix-Vector Multiply on FPGAs ................................................................124 
6.3 Dense Matrix-Matrix Multiply on FPGAs .....................................................131 

7 CONCLUSIONS....................................................................................................138 

7.1 Summary of Research Work ..........................................................................138 
7.2 Methodologies for Accelerating Numerical PDE Problems on FPGA-

Enhanced Computers......................................................................................141 

REFERENCES...............................................................................................................145 

VITA ..............................................................................................................................152 



 

  

viii

LIST OF TABLES 
 

TABLE             Page 

 1    FPGA-Based Reconfigurable Supercomputers .................................................11 

 2    Error Property of the Hybrid CORDIC Unit with Different Guarding Bits.......35 

 3    Rounding Error of the Conversion Stage with Different Fraction Word-     
Width .................................................................................................................38 

 4    Errors of the Fixed-Point CORDIC Unit with Different Word-Width and 
Guarding Bits ....................................................................................................38 

 5    Performance Comparison of PSTM on FPGA and PC ......................................46 

 6    Performance Comparison for Different HD Schemes .......................................59 

 7    Performance Comparison for High-Order Time-Integration Schemes ..............61 

 8    Comparison of FP Operations and Operands for Different FD Schemes ..........66 

 9    Comparison of Caching Performance for Different FD Schemes......................72 

 10   Size of Wave Modeling Test Problems.............................................................81 

 11   Performance Comparison for FD Schemes on FPGA and PC ..........................83 

 12   Coefficients of 3 FD Schemes with 9-Point Stencils ........................................92 

 13   Errors for the New Summation Algorithm......................................................115 

 14   Comparison of Single-Precision Accumulators ..............................................120 

 



 

  

ix

LIST OF FIGURES 
 

FIGURE             Page 

 1    Demonstration of Seismic Reflection Survey .................................................    4 

 2    Coupling FPGAs with Commodity CPUs......................................................    12 

 3    The SPACE Acceleration Card .......................................................................   18 

 4    Architecture of FPGA-Enhanced Computer ...................................................   21 

 5    FPGA-Enhanced PC Cluster ...........................................................................   22 

 6    2D Torus Interconnection Network on Existent PC Cluster ..........................   25 

 7    The Relationship Between the Source, Receiver, and Scatter Points .............   29 

 8    Hardware Structure of the Hybrid DSR Travel-Time Solver .........................   33 

 9    Output Format of the Conversion Stage..........................................................   37 

 10   Hardware Structure of the Fixed-Point DSR Travel-Time Solver .................   37 

 11   Hardware Structure of the PSTM Computing Engine ...................................   43 

 12   A Vertical In-Line Unmigrated Section .........................................................   44 

 13   The Vertical In-Line Migrated Section ..........................................................   44 

 14   (2, 2) FD Stencil for the 2D Acoustic Equation ............................................   52 

 15   Second-Order FD Stencil for the 3D Laplace Operator ....................................53 

 16   (2, 4) FD Stencil for the 2D Acoustic Equation................................................56 

 17   4th-Order FD Stencil for the 3D Laplace Operator ..........................................56 

 18   Dispersion Relations of the 1D Acoustic Wave Equation and Its FD 
Approximations.................................................................................................57 

 19   Dispersion Errors of Different FD Schemes ....................................................59 

 20   Stencils for (2-4) and (4-4) FD Schemes ..........................................................60 

 21   2D 4th-Order Laplacian Computing Engine .....................................................64 

 22   Stripped 2D Operands Entering the Computing Engine via Three Ports..........67 

 23   Stripped 2D Operands Entering the Computing Engine via Two Ports............68 

 24   Block diagram of the buffering system for 2D (2, 2) FD Scheme ....................69 

 25   Sliding Window for 2D (2, 4) FD Scheme........................................................70 

 26   Function Blocks of the 2D (2, 4) FD Scheme ...................................................71 



 

  

x

FIGURE             Page 

 27   Block Diagram and Dataflow for 2D (4, 4) FD Scheme ..................................74 

 28   Function Blocks of the Hybrid 3D (2, 4-4-2) FD Schemes ..............................75 

 29   Marmousi Model Snapshots (t=0.6s, 1.2s, 1.8s, and 2.4s. Shot at x=5km) ......85 

 30   Numerical Dispersion Errors for the Maximum 8th-Order FD Schemes            
with 23, 16, or 8 Mantissa Bits..........................................................................89 

 31   Structure of Constant Multiplier .......................................................................92 

 32   Comparisons of Dispersion Relations for Different FD Approximations ........93 

 33   Dispersion Errors for Different FD Approximations ........................................94 

 34   Binary Tree Based Reduction Circuit for Accumulation ..................................95 

 35   Structure of Group-Alignment Based Floating-Point Accumulator..................97 

 36   Structure of 1D 8th-Order Laplace Operator ....................................................99 

 37   Structure of 1D 8th-Order Finite-Accurate Optimized FD Scheme................100 

 38   Conventional Hardwired Floating-Point Accumulators (a) Accumulator       
with Standard Floating-Point Adder and Output Register; (b) Binary               
Tree Based Reduction Circuit .........................................................................107 

 39   Structure of Group-Alignment Based Floating-Point Summation Unit..........118 

 40   Implementation for Matrix-Vector Multiply in Row Order ...........................127 

 41   Matrix-Vector Multiply in Column Order ......................................................128 

 42   Implementation for Matrix-Vector Multiply in Column Order.......................130 

 43   Blocked Matrix-Matrix Multiply ....................................................................134 

 44   Blocked Matrix-Matrix Multiply Scheme.......................................................136 



 

  

1

1. INTRODUCTION 
 

Numerical Evaluation of scientific or engineering problems governed by Partial 

Differential Equations (PDEs) numerically is in general computationally-demanding and 

data intensive. In typical numerical methods such as Finite Difference Methods (FDM), 

Finite Element Methods (FEM), or Finite Volume Methods (FVM), etc.,  PDEs are 

discretized in space to bring them into finite-dimensional subspace and solved by 

standard linear algebra subroutines. Spatial discretizations for realistic Scientific and 

Engineering (S&E) problems could easily result in millions, even billions, of discrete 

grid points, which correspond to large linear system equations with the same number of 

unknowns. If the problem was time-dependent, in order to simulate the transient 

behavior of the problem, we may need to solve the linear system equations for hundreds 

to thousands of discrete time steps. Furthermore, if the problem was nonlinear, we have 

to resort to iterative methods to guarantee the convergence of the numerical solutions, 

which means solving multiple linear system equations in each time evolution step. 

Typical applications of numerical PDE problems include but are not limited to 

Computational Fluid Dynamics (CFD), computational physics, computational chemistry, 

weather forecast/climate modeling, seismic data processing/reservoir simulation, etc.  

The last two decades have seen rapid improvements in performance and 

complexity of digital computers. Without any doubt, the most convenient computing 

resources for solving numerical PDE problems are commodity computers. With the 

continuing renovation of Very Large-Scale Integration (VLSI) semiconductor 

manufacturing technology, modern commodity CPUs now consist of hundreds of 

millions of transistors and work at internal clock rates up to several GHz. Their low 

price and flexible program-controlled execution mode attain commodity CPU-based 

general-purpose computers feasible for almost all kinds of applications. However, 

because a large portion of silicon area inside CPUs is committed to sophisticated control 
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 logics, the transistor utilization and energy efficiency of such devices are generally poor.  

Moreover, although the nominal speed of commodity CPUs are skyrocketing, in reality, 

only a small fraction of their peak performance could be delivered for our 

computationally-intensive and data-demanding problems. Solving such problems may 

easily take people hours, days, weeks, even months. Some large-scale problems continue 

to be unsolvable in an acceptable period of time even on today’s fastest supercomputer 

platforms.  

An alternative is to build special-purpose computer systems for specific problems 

at hand using Application-Specific Integrated Circuits (ASIC) as the core components. 

Compared with commodity CPU-based general-purpose computers, a majority of in-chip 

transistors could be devoted to useful computations/operations so that such application-

specific systems could achieve much higher computational performance (100X ~ 1000X) 

with better transistor utilization as well as energy efficiency. However, this approach 

presents problems such as lack of flexibility, long developing period, and its high Non-

Recurrent Engineering (NRE) costs. If the high cost could not be amortized with mass 

product, this approach would be expensive. 

The emergence of Field Programmable Gate Array (FPGA) devices gives people 

another option to construct a new class of FPGA-based computers. FPGA is one type of 

“off-the-shelf” digital logic devices, the same as commodity CPUs. Inside an FPGA chip, 

there are numerous regularly-distributed island-like programmable hardware resources 

such as logic slices, SRAM blocks, hardwired multiplier blocks, or even processor 

blocks. Design engineers can configure/program these hardware resources at runtime to 

perform a variety of basic digital logics such as AND, OR, NOT, FLIP-FLOP etc. 

Multiple similar or different programmable slices can cooperate to implement complex 

arithmetic or functionalities with the help of surrounding programmable interconnection 

paths. This so-called In-System-Programmability (ISP) consumes a considerable silicon 

area and causes FPGA-based hardware implementation working at a much slower speed 

than ASIC chips. However, FPGA devices have the potential to accommodate tens, even 

hundreds, of similar or different arithmetic/function units so that the aggregate 
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computational performance may still be much higher than what is provided by a 

commodity CPU. Furthermore, users can utilize the same FPGA-based system to 

accelerate different problems with the help of the delightful ISP property. From this 

point of view, FPGA-based computer works as “middleware” between the pure 

hardware-based approaches (ASICs) and the pure software-based approach (commodity 

CPUs).  It has the potential to provide users with high computational power and while 

maintaining acceptable flexibility.  

This thesis will explore the feasibility of utilizing FPGA resources to accelerate 

computationally-demanding and data intensive numerical solutions of PDE problems. 

The research work can be divided into three main parts: the first part proposes a new 

hardware architecture model as “FPGA-enhanced Reconfigurable Computers”, which 

takes distinguished features of numerical PDE problems into account so that significant 

performance improvement could be expected. It begins with an introduction of the 

motivation for FPGA-enhanced computers, related work, and other background 

information. Then it discusses the system architecture of this new computer model and 

its detailed implementation as a single workstation as well as a parallel cluster system. 

 The second and the third parts of this thesis discuss conceivable methods to 

accelerate FDM and FEM on the proposed FPGA-enhanced computer platform. Here, I 

select linear wave equations based on seismic data processing applications as the 

targeting PDE problems. A hierarchical set of aspects as customized/extraordinary 

computer arithmetic or function units, compact but efficient system structure and 

memory hierarchy, and FPGA-optimized software algorithms/numerical methods are 

proposed and analyzed together with detailed implementations. A great variety of 

experiments comparing sustained computational performance of these numerical 

methods running on FPGA-enhanced computers with commodity CPU-based general-

purpose computers are carried on to show the superiority of this new computer system. 

All results can also be applied to accelerate the solutions of other numerical PDE 

problems such as heat equations, Laplace equations, thereby implying the broad use of 

the proposed FPGA-enhanced computers.  
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2. BACKGROUND AND RELATED WORK 
 

2.1 Application Background: Seismic Data Processing  

 

Seismic reflection survey is the most widely used geophysical exploration 

technique in the petroleum industry and plays a key role in locating underground oil and 

gas reservoirs for more than sixty years. The basic equipment for the field survey is a 

source producing impulsive seismic waves, an array of geophones receiving 

underground echoes, and a multi-channel wave signal displaying and recording system. 

This method is quite simple in concept: The Earth is simply modeled as stratified 

medium with material properties such as velocity, density, anisotropy, etc. Impulsive 

seismic waves are excited on the ground and propagate downward into the Earth. When 

they encounter interfaces of rock layers, the waves will be reflected back and recorded 

by an array of geophones deployed on the ground. The elapsed time and amplitudes of 

reflections could be used to determine underground rock layers’ depths and attitudes. 

The main purpose of seismic data processing is to reduce noises embedded in the 

reflected seismic signals and convert them into interpretable images of subsurface 

structures [1].  

 

 

 
Figure 1.  Demonstration of Seismic Reflection Survey 
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Two main procedures dominate seismic data processing flow: seismic modeling 

and seismic migration. The mathematical model of energy propagating inside the Earth 

is acoustic wave equations (2.1) or elastic wave equations (2.2), which can be classified 

into hyperbolic PDEs.  
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Seismic modeling is a forwarding problem that simulates the scattering field 

arising when an impulsive source excites an underground region with known physical 

properties. Seismic migration is an inverse problem that estimates these physical 

properties using measured data as initial or boundary conditions. In conventional seismic 

data processing flow, modeling and migration are two intimately related procedures. 

They perform iteratively with one’s output acting as input to the other: Process start 

from an initial estimate of underground parameters. Migration methods are then used to 

collapse diffractions produced by underground scattering points or faults and move 

dipping reflectors to their physical subsurface locations. After abstracting parameters by 

analyzing the migrated underground image, modeling procedures are employed to 

produce a so-called ground “seismogram”. By comparing the ground seismogram with 

the measured dataset, it is possible to indicate where the previous estimations of 

underground parameters are inaccurate and revise the estimations correspondingly. The 

process will repeat until the difference between two consecutive iterations is sufficiently 

small. Mathematically, seismic migration is not a well-posed problem, i.e., boundary 

conditions provided by the measured dataset are not enough to produce a unique solution. 

So in general, three to five of such iterations are necessary to obtain an acceptable 

migrated underground image [2].  

Seismic modeling/migration is now the central and culminating step of seismic 

data processing, and may easily devour 70 to 90 percent of CPU time of the entire 
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process flow. They are all time-consuming procedures: Even for the simplest acoustic 

cases, the workload for solving large-scale 3D wave propagation problems could easily 

exceed the capability of most contemporary computer systems. Although the 

computational power of commodity computers keeps doubling every 18 months 

following Moore’s Law, by utilizing more and more innovative migration methods, the 

total elapsed time for processing a 3D middle-scale region is always kept in one week to 

one month for almost three decades. Old migration methods such as phase-shift or 

Kirchhoff migration are computationally efficient and affordable for most customers. 

However, their imaging resolution is not good enough to depict clearly complex 

underground structures with lateral velocity variation or steep dips. New methods such 

as frequency-space migration or Reverse Time Migration (RTM) that directly solve 

acoustic/elastic wave equations would provide infinitely improved accuracy. However, 

their intensive computational workloads for 3D full-volume imaging are hard to 

undertake, even for institutes that able to afford the high costs of operating and 

maintaining supercomputers or large PC-cluster systems. In reality, finishing a 

designated seismic processing task in a reasonable time period is still much more 

important than obtaining a better result using improved modeling/migration methods [3]. 

 

2.2 Numerical Solutions of PDEs on High-Performance Computing (HPC) Facilities 

 

In the past decade, numerical computing efforts have grown rapidly with 

performance improvements of general-purpose computers and parallel computing 

environments. Although the nominal frequency of commodity CPUs is skyrocketing, the 

real utilization of the peak performance for our targeting problems are in general very 

poor. The main reason for this inefficiency is that a large portion of transistors in today’s 

commodity CPUs are utilized for control logics or to provide flexible data flow, which 

attains the prevalent Von Neumann computer architecture model not well-suited for 

most numerical computing applications. Consequently, many scientific/engineering 

problems are extremely time-consuming or even unsolvable on contemporary general-
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purpose computers, especially when large 2D or 3D geometrical regions are designated 

as computational domain. It seems that there will always be an urgent demand for more 

powerful and faster computer systems.  

Sustained Floating-Point (FP) performance, which is often represented in terms of 

Megaflops or Gigaflops, is a key factor in measuring the computational performance of a 

computer system. Numerical computing applications are generally data intensive as well 

as computationally demanding. Correspondingly, numerical algorithms/methods always 

exhibit low FP-operation to memory-access ratio, require considerable memory space for 

intermediate results, and tend to perform irregular indirect addressing. These intrinsic 

properties inevitably result in poor caching behavior on general-purpose computers due 

to their complex system architecture and memory hierarchy. A huge gap always exists 

between the theoretical peak FP performance of a commodity CPU and the realistic 

running speed of a program. Pure software methods, from high-level parallelism on PC-

Cluster system [4] to low-level memory and disk optimization [5] or even instruction-

reordering [6] are exhausted to accelerate the execution of numerical applications. 

However, even with careful hand optimization, only a few numerical subroutines such as 

dense matrix multiply or Fast Fourier Transformation (FFT) can achieve 80~90 percent 

of a CPU’s peak performance; For most others, 20~30 percent is very common; with 

some CPU utilization even reaching as low as 10 percent or even less than 5 percent in 

realistic applications [7]. Consequently, many large numerical simulation tasks cannot 

be executed routinely except in institutes that can afford high costs of operating and 

maintaining supercomputers or large PC-cluster systems. 

 

2.3 Application-Specific Computer Systems  

 

Application-specific computers are computer systems customized for particular uses, 

rather than as general-purpose computers. Application-specific computing is an active 

R&D area, both in academia and in industry. Traditionally, it aims at building for each 

algorithm/application a specific hardware device – the Application-Specific Integrated 
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Circuit (ASIC) chip, to achieve better implementation in terms of hardware resources, 

performance, cost, and energy requirements. While general-purpose computing deals 

with sequential algorithms or concurrent sequential processes, application-specific 

computers deal with parallel algorithms running in a physical space-time domain. From 

the technological point of view, it is not a difficult task to design an application-specific 

ASIC chip and use it as the core component to construct a fully-customized special-

purpose computer system with much higher computational performance than general-

purpose computers. However, this approach encountered several practical barriers such 

as high NRE costs, especially for today’s VLSI manufacturing technology; long 

development period, which tends to devour most of the performance advantages; and the 

most important reason: lack of flexibility. 

One widely-cited successful example of special-purpose computers is the 17-year-

old GRAPE (short for GRAvity PipE) project managed by a group of computer scientists 

and astrophysicists at the University of Tokyo [8] [9]. The success of this project rests 

on the ability to solve a special problem that was hard to solve on general-purpose 

computers. This project had resulted in the GRAPE family of special-purpose computers. 

GRAPE was built as a Newtonian force accelerator in the form of an attached 

acceleration card working in a way similar to graphic accelerators. When simulating a 

typical large-scale gravitational N-body problem, almost the entire original program is 

unchanged and still run on the host computer, while only the gravitational force 

calculations in the most innermost loop are replaced by a function call to the special-

purpose hardware. Compared with commodity CPUs that use only a small fraction of 

their transistors in arithmetic computations, GRAPE essentially utilized almost all 

available transistors inside the ASIC chip instantiating arithmetic units. In other words, 

the key trick of GRAPE to outperform general-purpose computers is to optimize the 

utilization of transistors for a specific application. The single board version of GRAPE-6, 

which was developed after 2000, achieved the peak performance at 500G flops when 

coupled to a conventional PC workstation as front end. Such a simple combination could 

bring about astonishing computational power, equivalent to 1000 contemporary personal 
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computers, to the desk of an individual astrophysicist. Although the prospect of this 

product line is fascinating, GRAPE had proven to be too far from success in business: 

only tens of different versions of GRAPE systems were sold (or donated) to major 

astrophysical institutes around the world.  

 

2.4 FPGA and Existing FPGA-Based Computers 

2.4.1  FPGA and FPGA-Based Reconfigurable Computing 

 

 Field Programmable Gate Array (FPGA) is one tpye of “Commercial-Off-The-

Shelf” (COTS) digital logic devices that contains numerous island-like programmable 

hardware resources surrounded by programmable interconnection paths. Design 

engineers can configure/program such devices at runtime to perform a variety of tasks 

from basic digital logics to complex function and arithmetic units. FPGAs were noticed 

in the beginning for their advantages of allowing implementation of customized logic 

functions and to be reconfigured on-the-fly, thus removing most of the NRE costs from 

new digital system designs. For these reasons, they have been widely utilized as glue 

logic, or to build prototyping systems.  

As we introduced above, for small designs and/or low production volumes, ASIC 

becomes a less attractive solution because of its high NRE costs. We predict that this 

trend would be even more distinct in the future because this cost would be even higher 

with the evolution of semiconductor manufacturing technology. The emergence of 

FPGA devices shed new light on these applications. Xilinx, one of the major 

manufacturers of FPGA devices, even defines its products as hardware-programmable 

high density ASIC with the time to market and cost advantages over standard ASIC 

products.  

As the cost per gate of FPGAs declines, embedded and high-performance systems 

designers are being presented with new opportunities for accelerating their applications 

using FPGA-based hardware platforms. These COTS semiconductor devices are far 

more flexible than commodity CPUs in that users are not bounded by a given instruction 
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set anymore. By designing all instructions/dataflow explicitly from the bottom up and 

programming the chips, users now have a dataflow machine without necessity to decode 

instruction flow on-the-fly. Such FPGA-based systems combine the general-purpose 

computing models with the hardware oriented application-specific computing model into 

a new computing model as reconfigurable computing. It adds to ASICs the flexibility 

inherent in the programming of Von Neumann computers, while at the same time, 

maintaining the hardware efficiency inherent in ASICs. Software and hardware are no 

longer viewed as two completely separated concepts. Traditional software-related topics 

such as languages, compilers, libraries, etc. are also key components of programmable 

hardware designs. Furthermore, the re-programmability of these devices allows users to 

execute different hardware algorithms/procedures on a single device in turn, just as large 

software packages run on conventional computers. These new computing platforms 

effectively bridge the performance gap between traditional software programmable 

microprocessor-based systems and application-specific platforms based on ASICs.  

 

2.4.2 Hardware Architecture of Existing FPGA-Based Computers  

 

With the initial emergence of FPGA-based computing platforms in the 1990s, for 

the first time in computer engineering society, scientists and engineers had an option to 

customize their own low-cost but powerful “FPGA-based computers” for specific 

problems at hand. Such application-specific systems had been widely used to speedup 

almost all kinds of fixed-point based Digital Signal Processing (DSP) applications. Such 

problems are in general computation-bounded, so their executions could be significantly 

accelerated by taking advantage of FPGAs’ high computational potential. As listed in 

Table 1, some institutes/companies designed and built stand-alone high-performance 

“FPGA-based application-specific supercomputers” as substitutes to conventional 

general-purpose computers. Although all of these systems achieved impressive 

performance improvements over contemporary supercomputers for their targeting 
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applications, most of them were built for demonstration purpose only, so are in general 

too expensive to be affordable for most potential users in academy or industry.  

 

 

Table 1. FPGA-Based Reconfigurable Supercomputers 

Systems Manufacturer Year Number of 
FPGAs Applications Hardware 

Costs 

BEE-2 [10] UC Berkeley 2005 
5 per Blade 

200 per Rack 

Radio 

astronomy 
$ 500K 

Starbridge 

[11] 
NASA 2005 11 per system 

Aeronautics 

& astronautics 
$ 150K 

DN8000K1

0 [12] 
DINI Group 2005 16 per board 

Digital circuit 

emulation 
- 

 

 

Although FPGAs have the potential to provide much higher computing power than 

commodity CPUs, they tend to be inefficient for certain types of operations such as 

branch, condition, and variable-length loops so are unsuitable for accelerating control-

dominating applications. A natural choice is to couple them with commodity CPUs so 

that the execution of software could be accelerated by mapping the most 

computationally-intensive instructions into FPGAs and leaving all other subroutines still 

running on CPUs. From now on, I will use “FPGA-enhanced general-purpose 

computers” or simply “FPGA-enhanced computers” to refer to this class of computer 

systems. By far, there are three popular ways to introduce FPGA resources into a 

computer system: as adds-on card attached to standard peripheral interface such as PCI 

or VME [13] [14], as a coprocessor unit coupled with CPU directly [15], or as a 

heterogeneous processing node connected to computers’ system/memory bus [16]. 

Generally speaking, the tighter FPGA is coupled with CPU in a computer system, the 

more accelerations it could achieve due to lower administration overhead and wider 

communication bandwidth.  
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Figure 2. Coupling FPGAs with Commodity CPUs 

 

 

The traditional and also the cheapest way of introducing FPGA resources into 

commodity computers is to attach FPGA-based PCI or VME card to peripheral bus of a 

computer. Almost all key components on such cards are COTS semiconductor devices, 

and so are cheap and can be easily replaced or upgraded. Comparatively, introducing 

FPGA resources via system memory buses or dedicated connections changes the 

architecture of the host machine so would be relatively expensive. The resulting 

computer system can be classified as Un-Symmetric Multi-Processor (USMP) machine, 

different from the prevailing Symmetric Multi-Processor (SMP) architecture because 

FPGAs are introduced into the system as inhomogeneous computing resources. One 

obvious benefit of such systems is that CPUs and FPGA devices are now sharing the 

same memory space so that data exchanging between them is convenient and fast. On 

the down side, this approach doesn’t introduce additional memory space/bandwidth 

except for a limited number of SRAM modules working as FPGA’s cache/buffer space. 

Because most numerical PDE problems we considered here are memory bandwidth 

bounded; furthermore, memory bus arbitration complicates quantitative performance 

analysis, the achievable acceleration of the targeting applications on such systems is hard 

to predict but would not be optimistic.  

There are only a few publications [17] [18] addressing the topic of memory 

hierarchy and data caching/buffering structures on such systems. This is partly because 

most existing FPGA-based systems are customized for data-streaming based real-time 

DSP applications, which are in general computation-bounded and require only a limited 

number of memory spaces for inputs, outputs, and intermediate results. In such systems, 
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FPGA and memory resources are always abundant and onboard hardware architecture 

/interconnection pattern are all well-tailored for particular applications. Also, people 

tend to use local SRAM or even in-chip SRAM slices as working space so that simple 

and straightforward data buffering arrangements would be enough for satisfactory 

computational performance.  

 

2.4.3 Floating-Point Arithmetic on FPGAs  

 

Floating-point computations dominate numerical solutions of PDEs. Standard 

IEEE-754 compliant floating-point arithmetic units are costly on FPGAs because they 

consume significantly more programmable hardware resources than their fixed-point 

counterparts. Recently, as FPGA continues to grow in density, people start noticing its 

high potential in floating-point computations. A large-scale FPGA chip now consists of 

hundreds of thousands of island-like reconfigurable logic slices. Considering that a 

typical floating-point arithmetic unit consumes hundreds to thousands of logic slices, a 

single FPGA device has the potential to accommodate tens, or even hundreds, of similar 

or different floating-point arithmetic units so that the aggregate computing power could 

be much higher than what is provided by a commodity CPU. All in-chip programmable 

hardware resources can be easily customized into different arithmetic units at runtime. 

This In-System-Programmability leads FPGA to a very attractive option for applications 

requiring extraordinary arithmetic units that are unavailable in commodity CPUs. Fine-

grain (or low-level) parallelism is an important property of FPGA-based computer 

systems: Different arithmetic units can manipulate their own data sets concurrently, or 

they can work together in a pipelined manner to increase data throughput significantly. 

The interconnections among those units could also be customized to match the 

requirements of specific algorithms so that high sustained data throughput could always 

be achieved.  

In 1994, Fagin et al [19] first testified the feasibility of implementing single-

precision floating-point arithmetic units on FPGAs, though the computational 
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performance was uncompetitive to contemporary commodity CPUs. Since then, as 

FPGAs continue to grow in density and speed, their attainable floating-point 

performance increases significantly faster than commodity CPUs. Architectural changes, 

such as the introduction of on-chip hardwired multipliers further accelerate this trend. In 

[20], the authors predicted that FPGA devices would yield three to eight times more 

peak performance than commodity CPUs by 2009.  

With the help of commercial or open-source parameterized floating-point libraries 

[21] [22], floating-point computations on FPGA-based platform is now straightforward 

and convenient. However, this simple implementation will cost considerable hardware 

resources and lead to excessive computation latency, which may be inappropriate in 

reality. Efforts were made to investigate the use of customized floating-point formats [23] 

or fixed-point format [24] directly to address such problems. However, all these 

approaches inevitably result in excessive numerical errors and lead to doubtable 

solutions for rigorous numerical scientists. 

 

2.4.4 Numerical Algorithms/Methods on FPGAs  

 

Migrating software algorithms/numerical methods onto FPGA-enhanced 

computers are relatively straightforward: while leaving almost all software subroutines 

still running on the commodity CPU of the host machine, only the most time-consuming 

kernel portion of the program are replaced by a subroutine calling for the help of FPGAs. 

Limited by on-chip hardware resources so far, low-level structural or behavioral 

hardware description languages (VHDL, Verilog, or System C) are still users’ common 

choices to achieve high hardware resources utilization. High-level languages such as C 

or FORTRAN are based on instruction-driven model so generally cannot result in 

efficient implementation [25]. Graphic languages such as Xilinx System Generator [26] 

and Starbridge Viva [11] are other interesting options but seem only suitable for simple 

DSP applications.  Research on automated software fit-in has been conducted [27] for a 

long time with limited achievements, and is, thereby, considered far from practical. 
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Since 2000s, increasing research efforts have been conducted for solving 

numerical PDE problems on FPGA-based platforms. Highlights of research on this track 

include computational fluid dynamics [28], computational electromagnetics [29], and 

molecular dynamics [30], to name a few. Although most demonstrated impressive 

acceleration over contemporary commodity computers, these results were normally 

obtained by migrating software subroutine directly into application-specified FPGA-

based platforms, and hence may be inefficient, expensive, and incompatible with 

industrial standards. We believe that most commonly-used software 

algorithms/numerical methods are well-tuned for commodity computers, and so, in 

general are nonideal for FPGA-based platforms. In order to achieve much higher 

computational performance, one should design and/or customize new 

algorithms/methods for their specific applications. Furthermore, these new algorithms 

must be flexible and robust so that a wide range of commercial FPGA-based platforms 

could accommodate it effectively and efficiently. Unfortunately, research in this 

direction is rare. 
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3. HARDWARE ARCHITECTURE OF FPGA-ENHANCED 

COMPUTERS FOR NUMERICAL PDE PROBLEMS 
 

As we discussed in Section 2.4, coupling FPGA resources with commodity CPUs 

is currently the most feasible way to construct a hardware-reconfigurable computer 

system with acceptable flexibility at a reasonable cost. Most existing FPGA-enhanced 

computers that have been proposed in recent years are mainly specified for real-time 

DSP applications with streamed input/output. Their memory hierarchy is simple because 

in general, DSP algorithms have relatively localized computational patterns, and so do 

not require complicated data structures or large memory space for intermediate values. 

However, numerical methods/algorithms for PDE problems in general exhibit low 

floating-point operation to memory-access ratio, require considerable memory space for 

intermediate results, and tend to perform irregular indirect addressing for complex data 

structures. These intrinsic properties inevitably result in poorly sustained computational 

performance on existing FPGA-enhanced computer systems as well as modern general-

purpose computers.  

In this section, a new hardware architecture model of the FPGA-enhanced 

computer is proposed taking into consideration special computational patterns of our 

targeting problems. When referring to computer architecture, we use the definition from 

Hennessy & Peterson’s famous computer architecture book [31], which refers not only 

to the Instruction Set Architecture (ISA) of a machine, but also to its detailed 

implementation. ISA conventionally serves as the boundary between software and 

hardware. However, on FPGA-enhanced computers, this boundary is blurred. FPGA’s 

In-System-Programmability (ISP) provides users with multiple choices in customizing 

ISA for their specific problems. For example, users can select either to express 

sequences of instructions implicitly with internal data paths, or they can customize 

function/arithmetic units to extend the ordinary instruction set. Furthermore, users are 

free to specify data buffering/caching sub-system utilizing in-chip programmable RAM 

blocks or distributed registers according to specific requirements of an algorithm. 
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Correspondingly, it is now users’ responsibility to take care of almost all circuit design 

details such as latency, timing, data consistency, cache replacement policy, etc. 

 

3.1 SPACE System for Seismic Data Processing Applications  
  

Because of the lack of appropriate commercial FPGA-based platforms, in 2003, we 

had to propose an imaginary FPGA-based acceleration card [32] called SPACE (Seismic 

data Processing Accelerator with reConfigurable Engine) for our computationally-

demanding and data intensive seismic data processing applications. Acting as a 

hardware-programmable coprocessor board attached to an Intel-based workstation via 

local PCI bus, SPACE consists of three main components: FPGA chip, external memory 

modules, and PCI interface circuit (Figure 3). All of these components are COTS 

devices, so can be easily replaced or upgraded in the future. The main difference 

between this design and those we introduced in Section 2.4 is that we do not depend on 

the system memory space of the host machine as working space. Alternatively, we select 

to integrate multiple large-capacity memory modules with dedicated memory controllers 

onboard. This design stresses the simplicity of hardware architecture as well as its 

capability to manipulate a large amount of input/output data set or intermediate values. 

The resulting FPGA-enhanced computer platform is also proven to be appropriate for 

other large-scale numerical PDE problems.  

The kernel component of SPACE is an up-to-date Xilinx Vertex II Pro series 

FPGA chip, which contains a large array of programmable logic slices, along with 

special function units such as block RAMs, hardwired multipliers, and gigabit serial 

transceivers. The reason for integrating only one of the largest contemporary FPGA 

devices on board is based on the consideration that in-chip programmable routing 

resources are abundant and much more reliable than wires running on PCB boards. For 

complex algorithms or large problems, multiple SPACE cards could be attached to a 

single PC workstation to expand programmable hardware resources as well as memory 

spaces.  
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Figure 3.  The SPACE Acceleration Card 

 

 

As we mentioned above, data manipulating capability of a computer system is a 

pivotal factor for rapidly solving numerical PDE problems. This unfeasible requirement 

forces us to integrate as many dedicated memory channels as possible into our design to 

broaden data paths between FPGA device and its external memory. In order to expand 

memory capacity and bandwidth on SPACE, we integrate two kinds of memory modules 

with dedicated memory controllers: Two large dual-port static RAM modules acting as 

high-speed data buffer, and four DDR-RAM modules for saving large data volume up to 

several Gigabytes.  These memory modules are connected directly to the FPGA chip, 

with a portion of programmable logic resources employed to construct their dedicated 

memory controllers. For example, a DDR-RAM controller consumes hundreds of logic 

slices, which is only a trivial fraction of programmable hardware resources inside a large 

FPGA device. With abundant memory resources, all data and parameters could be 

placed in-core so that the communication pressure on the local PCI bus is effectively 

alleviated. Moreover, the main memory of the host workstation can be reduced 

correspondingly.  

The aggregated external memory bandwidth of the proposed SPACE platform is 

over 20 GByte per second, which is over 3 times wider than a typical PC workstation. 
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The interconnections among these external memory channels and on-chip 

arithmetic/function units could be customized on-the-fly with the help of internal 

programmable routing paths. Consequently, appropriate memory hierarchy could always 

be adopted for specific problems at hand. Furthermore, users can explicitly manage the 

access to those independent memory channels so that much higher memory bandwidth 

utilization could be achieved. However, restricted by the total number of programmable 

I/O pins of an FPGA device, a limited number of dedicated memory channels could be 

integrated in practice. Therefore, we predict that external memory-bandwidth would still 

be the performance bottleneck especially for our targeting numerical PDE problems. 

A standard 33MHz PCI bridge chip is used to provide the I/O interface between 

the coprocessor board and the host workstation, through which about 100Mbyte/s of 

continuous data transfer rate can be achieved. The narrow I/O bandwidth might become 

a severe performance bottleneck preventing us from taking full advantage of FPGA’s 

computational potential. Fortunately, we can easily replace it with a 66MHz PCI, 

64bit/133MHz PCI-X, or the newest 16X PCI-Express, which can provide people with 

up to 8GB/s data transfer rate in two directions. However, as the IO bandwidth 

bottleneck is greatly alleviated, the communication latency between CPU and FPGA 

caused by PCI controller may pose another problem. 

Three years after the SPACE platform was proposed, we noticed that commercial 

products with similar structures are now being introduced into the market. Minor 

differences may exist, such as integrating several small but cheap FPGAs, supporting 

only SRAM or SDRAM modules to save costs, or utilizing part of FPGA resources to 

implement PCI interface instead of a dedicated PCI controller, those three main 

components: FPGA devices, large-capacity memory, and PCI interface are indispensable. 

The emergence of these products also indicates that industry is beginning to not only 

show its interest in FPGA-based computing technique, but it is also trying to solve 

realistic problems using the technique. 
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3.2 Universal Architecture of FPGA-Enhanced Computers  
 

Based on experiences drawn from the SPACE project, we believe that by applying 

FPGA-based reconfigurable computing technology, we can accelerate the executions of 

a wide range of numerical PDE problems. Our belief is based on the fact that some 

kernel subroutines of these programs consume a large portion of the programs’ 

execution time. These subroutines are usually short in length and, hence, are suitable to 

be accelerated by FPGA. However, the concept of FPGA-based hardware reconfigurable 

computing is currently still not widely accepted. Also, because standard hardware 

architecture for such computers has not been developed yet, it is apparent that academia 

and industry still hesitate in adopting FPGA resources into new mainframes.  Grounded 

on this situation, we abstract in this section a universal architecture of FPGA-enhanced 

computer model for rapid solution of numerical PDE problems. Besides the capability to 

accommodate a wide range of S&E problems, we also stress the simplicity of its 

hardware implementation.  We ask the resulting FPGA-enhanced computer system to 

have a comparable price to a conventional PC workstation. Other appropriate properties, 

such as compatibility and scalability, are also taken into consideration.  

What we proposed is still an FPGA-based acceleration card attached to commodity 

computers as shown in Figure 4. As the SPACE system, it integrates multiple large 

memory modules onboard with dedicated memory controllers as working space. 

Abundant on-board memory space and wide memory bandwidth partly compensate for 

the relatively narrow IO bandwidth because we can always set subroutines running in-

core. IO only happens at the beginning and the end of the process, and therefore will not 

dominate a program’s total running time. The FPGA board and its host computer work 

as two loosely coupled systems with their dedicated memory space. Original software 

subroutine could be easily migrated to this new FPGA-enhanced computer platform by 

invoking the FPGA board as subroutine. Only the most time-consuming kernel 

subroutines are accelerated by FPGA so that the software migration workload is modest 

and the correctness of accelerated results can be easily verified. 
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Figure 4. Architecture of FPGA-Enhanced Computer 

 

 

Instead of proposing a new computer model with fixed architecture, here we tend 

to specify only guidelines so that computer designers could have more choices in tuning 

the hardware structure of their FPGA-enhanced computers systems. For example, we do 

not specify how many SRAM or SDRAM modules/channels on such systems. Indeed, 

because we adopted an extremely simplified architecture with only FPGA, memory, and 

CPU interface circuit as core components, we always tend to utilize as many external IO 

pins of the FPGA device for dedicated memory controllers as possible. With these 

physical external memory channels deployed on board, users can customize the memory 

hierarchy based on the demands of specific applications utilizing FPGA’s internal 

programmable routing paths as well as SRAM slices and distributed registers. The clock 

frequencies applied to FPGA devices and external memory modules are within the same 

range at hundreds of Millions Hz. Therefore, we could treat all internal and external 

memory elements as a flat memory space to simplify system architecture and save FPGA 

resources; or we could introduce complicated caching or buffering schemes to further 

enhance data reusability and improve utilization of external memory bandwidth.  

Besides the choices for memory hierarchy, system designers also have the freedom 

to select appropriate IO interface between FPGA and CPU. IO bandwidth decides where 

to place the dividing line between hardware and software, and therefore plays a key role 

in determining weather a specific application could be accelerated effectively. The 
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relatively narrow IO bandwidth provided by peripheral bus such as PCI or VME might 

become a severe performance bottleneck preventing us taking full advantage of on-board 

FPGA’s computational potential. Fortunately, some commodity CPU vendors now start 

opening their system bus for exterior access. For example, AMD’s Opteron processor 

could support three high-speed HyperTransport links, which provide up to 19.2 GB/s 

aggregated data communication bandwidth. With the help of these point-to-point paths, 

FPGA resources now could be placed much closer to commodity CPU with much lower 

administration overhead. They can even select to share the same system main memory 

space, although it would not result in significant performance improvements for our data 

intensive numerical PDE problems. 

 

 

 
Figure 5.  FPGA-Enhanced PC Cluster 

 

 

Old PC Cluster systems could be easily upgraded to FPGA-enhanced PC Cluster 

by inserting the acceleration card to each processing node as shown in Figure 5. The 

existence of FPGA resources doesn’t affect the original functionality of host machines 

so that this upgrade is transparent to old software. The original interconnection network 

is untouched so that parallel efficiency of the new FPGA-enhanced PC Clusters is at 
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least as good as its predecessor, although the limited network bandwidth might pose a 

severe performance bottleneck. An additional newly-deployed interconnection network 

could be introduced, utilizing FPGA’s on-chip Multi-Gigabit Transceivers (MGTs). We 

will explain this approach and analyze its performance in detail in the next section. 

 

3.3 Architecture of FPGA-Enhanced Computer Cluster  
 

As we mentioned above, multiple FPGA-enhanced computers could be easily 

interconnected via high-speed commodity network to construct an FPGA-enhanced PC 

cluster system. However, most prevailing Local Area Network (LAN) standards such as 

Gigabit Ethernet, InfinityBand, Myrinet, etc., do not provide well-scaled performance, 

especially when the number of interconnected processing nodes exceeds thousands. The 

main reasons for this so-called “thousand-processor barrier” are shared physical data 

links (Switching technique may alleviate this problem to a certain level.) as well as 

overhead of network protocols.  

To improve the scalability of the proposed FPGA-enhanced PC cluster system, we 

introduce another interconnection network into the system utilizing FPGAs’ on-chip 

Multi-Gigabit Transceivers (MGTs). A single FPGA chip contains 8~20 dedicated 

MGTs, each of which could provide a point-to-point data link with raw communication 

bandwidth up to 10 Gigabits per second. For better compatibility, users could select to 

construct network interfaces with embedded standard protocol utilizing FPGA resources. 

Furthermore, because there is no specific network protocol binding with these physical 

resources, we are free to customize our own simplified data communication links for 

improved bandwidth utilization and shorter communication latencies. Multiple dedicated 

network interfaces also give us the freedom to select topology of this new 

interconnection network. Besides simply utilizing standard high-speed commodity 

network to augment total effective bandwidth, we can introduce localized 

interconnection data links among adjacent reconfigurable computing nodes. The 

topology could be set as ring (2 communications channels per node), 2D mesh/torus (4 

channels per node), 3D cube (6 channels per node), or their hybrid. The corresponding 
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network performances are all well-developed, so that specific algorithms could select 

appropriate network topology to improve their parallel efficiency.  

We use seismic wave modeling and migration problems as an example to 

analyze/predict the performance of high-order FDM on the proposed FPGA-enhanced 

PC cluster. (Details of the underlying numerical methods can be found in Section 5.1.) 

For such problems, a 2D torus interconnection network is a good choice to effectively 

balance the performance and system complexity. Suppose we plan to upgrade a 

convenient PC Cluster system mounted on multiple industrial standard cabinets. A 

sketch of the resulting reconfigurable computer cluster with 2D torus network is shown 

in Figure 6. (Only new interconnection paths are shown here; the original network 

remains unchanged, so is ignored.) Each FPGA acceleration card is required to equip at 

least four external physical data link ports built with FPGA’s on-chip MGTs. Standard 

high-speed network optical-fiber or copper cable could be used for these point-to-point 

communication paths depending on their lengths. The deployment and driving of these 

short links between neighboring processing nodes would be easy and convenient.  

Here, we consider only the simplest 3D acoustic wave modeling problems in large-

scale 3D space and assume follows: 
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Figure 6.  2D Torus Interconnection Network on Existent PC Cluster 

 

 

1. Z-axis is shorter than x- and y-axis. In other words, the number of spatial grids along 

z-direction is much less than the numbers along other two directions. Here we set 

this number as 2000, which corresponds to 10 kilometer depth if the sampling 

interval is 5 meters. 

2. The entire spatial domain is divided into m-by-n sub-domains along x- and y- 

directions. Each reconfigurable processing node contains enough FPGA and RAM 

resources for accommodating all spatial grid values as well as necessary parameters 

of one sub-domain. 

3. The 2D torus interconnection network provides independent point-to-point 

communication paths, which do not interfere with each other and can work 

concurrently. 

The first example is to show the capacity of the proposed platform for handling 

large problems. Suppose each FPGA-enhanced processing node contains a large sub-

domain with 81052000500500 ×=××  spatial grids. We need at least four memory 

spaces of the same size to save wave field values as well as media parameters such as 

velocity and density required by 2nd-order time evolution scheme. Therefore, the 
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memory space on each acceleration card should be at 

least GBytewordsG 824105 8 ==×× , which is feasible with today’s high-density 

SDRAM modules.  

Suppose we use 10th-order spatial FD scheme to simulate the propagation of waves. 

The number of floating-point operations we required to update the wave field value at 

one grid point for one time-marching step is about 50. So the total number of floating-

point computations on each processing node is 108 105.250105 ×=×× . When running on 

a general-purpose computer with 1G FLOPS sustained floating-point performance, this 

task could be finished in 25 seconds. (Here, we ignore the performance degradation 

caused by the network.) However, if we ran the same job on the proposed FPGA-

enhanced PC cluster system, a conservative 5G FLOPS sustained performance is 

achievable so that the job could be finished in only 5 seconds. Please notice that the 

performance improvement is achieved from FPGA’s superior computational power 

solely because IO communication doesn’t pose a performance bottleneck here.  

Consider the performance of the newly deployed 2D torus interconnection network. 

At every time-marching step, each FPGA-enhanced processing node needs to exchange 

boundary node values with its four neighbors. Simple calculations show that there are in 

total 8108.42000490490 ×≈××  internal spatial nodes and about 7102× boundary 

points. Values of these boundary points are exchanged with neighbors via four on-board 

MGTs simultaneously, so the lower-bound of the communication bandwidth for each 

MGT port is 20 million bytes per time-marching step. It also equals to only 

3258102 7 =÷×× M bits per second, which is only a tiny fraction of what is provided 

by an MGT port.  

Now, we consider a much smaller problem with only 71022000100100 ×=××  

spatial grids in each sub-domain. The total number of on-board memory space required 

in this case is about 320 Mbytes. The total number of floating-point computations is 1G 

for each time step, which could be finished in 0.2 second on the proposed FPGA-

enhanced PC cluster system.  
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The ratio of the number of internal points and boundary points is changed 

dramatically. We now have 71062.1 × internal points and 6108.3 × boundary points. It 

also means that the ratio of communication to computations is now much larger than the 

previous case. Thereby, the conventional commodity interconnection network would not 

work efficiently in this case. For the customized 2D torus interconnection network, the 

lower-bound of the communication bandwidth for each MGT port is now 3.8 million 

bytes per time-marching step, which equals to 1522.08108.3 6 =÷×× M bits per second, 

still only a fraction of what is provided by a MGT port.  

From these two examples, we can conclude that the computational performance of 

our finite deference based wave modeling problem is now decided solely by the 

computational power of the FPGA-enhanced processing node with the help of the new 

2D torus interconnection network. If the problem size is not too small, we can even 

execute computations and communications sequentially without significant performance 

degradation. 
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4.    PSTM ALGORITHM ON FPGA-ENHANCED COMPUTERS 
 

4.1 PSTM Algorithm and Its Implementation on PC Clusters  

 

Diffraction summation based Pre-Stack Kirchhoff Time Migration (PSTM) 

algorithm is one of the most popular migration methods in seismic data processing 

because of its simplicity, robustness, and good target-orientation [33]. This algorithm is 

derived from Huygens’ Principle and mathematically provides a high-order approximate 

integral solution to acoustic wave equations (2.1) [34]. Practical PSTM tasks for large-

scale 3D seismic surveys are computationally intensive and cannot be used routinely 

except in institutes/companies able to afford the high cost of operating and maintaining 

supercomputers or large PC-cluster systems. In this section, I will use this algorithm as 

the first example to show the remarkable computational power of the proposed FPGA-

enhanced computer system. Specifically, when operating on commodity computers, this 

algorithm consumes over 90 percent of CPU time to execute its short but time-

consuming kernel subroutines for billions of iterations. By accelerating the evaluations 

of these kernel subroutines with a customized arithmetic unit, our new FPGA-based 

solution operated over 10 times faster, allowing people to produce a satisfied 

underground image a lot faster. 

Before we continue, I will briefly explain several specialized terms which will be 

referred in this document. In seismic reflection survey, an array of thousands of 

geophones is regularly distributed across the ground surface to detect the intensity and 

elapsed time of reflected seismic waves.  The time-series recorded by each geophone 

during an exploding experiment (one shot) is called a “seismic trace”, which is 

characterized by the ground positions of the source and the receiver. The set of traces 

recorded by all receivers during one shot forms a “common shot gather”. The data set 

collected from a large number of experiments of multiple shots at all receiver positions 

forms a 5D data volume ),,( tgsD , where ),( ss yxs =  and ),( gg yxg =  are the surface 

coordinates of the shot and receiver, t  is the elapsed time of the recorded dataset.  
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Define “two-way travel time” as the duration of an acoustic impulse starting from 

the shot position, reflecting at the scatter point, and then traveling back to the ground 

receiver, the total down-up two-way travel time is determined by: 

2
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2

2

2
2

ττ

ττ
V
R

V
STTT RsSR +++=+=       (4.1) 

Where ST  is the travel time from the shot point to the scatter point; RT  is the travel 

time from the scatter point to the receiver point; S and R are the distances between the 

surface mirror of the underground scatter point and the shot point or receiver point, 

respectively; τ  is the pseudo-depth of this scatter point in the output section; and τV  is a 

priori estimation of the Root Mean Square (RMS) velocity at point τ . Figure 7 

schematically shows the relationship between the source, receiver and scatter points in a 

2-D profile. 
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Figure 7. The Relationship Between the Source, Receiver and Scatter Points 

 

 

The PSTM algorithm assumes that the energy of a sampled point 0t  in an input 

trace is the superposition of reflections from all the underground scatter points that have 

the same travel time 0tTSR =  for the fixed source and receiver positions. Therefore, for 

one sample point on an input trace with known source and receiver coordinates, its 

energy should be spread out to all possible scatter points according to its travel time SRT . 

The locus of all possible scatter points with travel time SRT  in a constant velocity 
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medium is also depicted in Figure 7, which constitute an ellipse in 2D profile following 

the geometric definition. In order to retrieve all underground scatter points, the energy of 

an input trace must be distributed to all possible scatter points correctly, after which the 

energy from different input traces is added together at each pseudo-depth point in the 

output section. For amplitude preserving PSTM, additional oblique factor calculations 

[35] [36] and corresponding multiplications of this factor are also indispensable.  

The PSTM algorithm is computationally intensive:  we need to evaluate the two-

way travel time in Equation (4.1) iteratively for enormous times. The computational 

complexity of this algorithm is )( gsyx NNNNNO ⋅⋅⋅⋅ τ  for 3D cases [37]. Traditionally, 

only high performance super-computers can finish this time-consuming 3D PSTM 

algorithm within an acceptable time period. Recently, PC cluster has emerged as a cheap 

and efficient alternative to supercomputers. A PC cluster system consists of one or 

several servers and many workstations interconnected via high-speed network. Taking 

advantage of commodity hardware and Linux OS, a PC cluster system sometimes could 

achieve performance that is comparable to supercomputers at an affordable price for 

network non-intensive applications. 

PSTM algorithm could be parallelized ideally when running on PC cluster systems 

with limited network bandwidth. The server of the cluster broadcasts input traces to all 

workstations and each workstation migrates these input traces into its local output 

section ),,( τyx . Once all input traces are migrated, the server collects all partial results 

from workstations and forms a final migrated image. Ignoring the initial parameter 

distribution step and the final data collection step, the only data flow is to broadcast 

input traces from the server to workstations, and there is no communications among 

those workstations. By parallelizing the migration task in output surface 

coordinates ),( yx  and sequentially iterating over the pseudo-depth axis τ [38], the 

communication between the server and workstations is minimized. Algorithm 1 is the 

kernel portion of PSTM procedure executed on every workstation.  

The performance provided by a PC cluster system is nearly linear to the number of 

interconnected workstations for this parallelized PSTM algorithm. However, when 



 

  

31

additional workstations are inserted into the system, the shared communication channel 

becomes a performance bottleneck. Furthermore, the reliability problem inevitably 

becomes a serious one for systems with thousands of interconnected workstations. 

Employing more powerful workstations can effectively alleviate these problems at the 

cost of increased system price. 

 

 

Algorithm 1.  Program Flow of PSTM Kernel Subroutine Running on PC 

Workstations 

...... 

Receieve one input trace from server 

Prepare parameters for this trace 

For every local output trace in this workstation  

 For every pseudo-depth point on this output trace 

  Calculate travel time  TSR for this output point - 

   -associated with the position of  this input trace 

  IF (TSR > Tmax) 

   THEN finish this output trace    

  Fetch data from input trace indexed by TSR 

  Anti-aliasing filtering 

  Calculate oblique factor 

  Scaling the selected input data by oblique factor 

  Accumulate scaled input data to this output point 

 End 

End 

...... 
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4.2 The Design of Double-Square-Root (DSR) Arithmetic Unit  

 

As we mentioned in Section 4.1, the evaluation of two-way travel time defined by 

Equation (4.1) is the most time-consuming part of the PSTM algorithm. It contains five 

multiplications, three additions, and two square-root operations, ten floating-point 

computations in total. Division by velocity in this equation can be replaced by 

multiplication using slowness table, which is the reciprocal of velocity. To complicate 

the situation, there is no hardwired floating-point square-root arithmetic units integrated 

inside most commodity CPUs. People have to rely on software routines to approximate 

their values, which leads to the evaluations of square root tens, even hundreds, times 

slower than standard computer arithmetic such as multiplication and addition. Because 

the evaluation of a square root poses a severe performance bottleneck and will dominate 

the total running time of PSTM algorithm, people sometimes refer to Equation (4.1) as 

the “Double Square Root (DSR) equation”. 

The simplest and most straightforward (although not the most preferred) way to 

evaluate the DSR equation on FPGAs is to construct a large computing engine with ten 

standard floating-point arithmetic units. To ensure high computational throughput, each 

arithmetic units in the computing engine should be fully-pipelined internally. However, 

besides consuming too many hardware resources, the latency of a fully-pipelined square-

root unit is almost ten times more than a pipelined multiplier or adder. Correspondingly, 

the accumulated pipelining latency of the large computing engine would become a 

serious issue and significantly degrade its achievable computational performance. 

 

4.2.1 Hybrid DSR Arithmetic Unit  

 

It is not always the best solution for an FPGA-based system to implement an 

algorithm by simply mapping software subroutines into its programmable hardware 

resources. Taking into consideration special properties of an algorithm along with 

characteristics of FPGA would always produce a hardware-efficient solution. For the 
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PSTM algorithm, CORDIC [39] unit is a good choice to evaluate sT  and RT  in Equation 

4.1 by regarding 22 YX +  as a vector norm in 2D Cartesian coordinates. CORDIC is a 

vector-rotation-based hardware algorithm for evaluating trigonometric and other 

transcendental functions using only hardwired shifters and adders [40]. The highly 

regular structure attains it appropriately for FPGA-based implementation. Now the 

computing engine needs only two multiplications, two CORDIC units, and one addition 

to evaluate the DSR equation, which achieves more than 50% of resources reduction.  
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Figure 8. Hardware Structure of the Hybrid DSR Travel-Time Solver 

 

 

To be compatible with ordinary seismic data processing software, the input and 

output values of the arithmetic units in our design should all be in floating-point format. 
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Floating-point CORDIC in pure hardware is expensive because of the indispensable 

normalization and alignment stages before and after every CORDIC iteration. According 

to characteristics of our application, we designed a modified floating-point/fixed point 

hybrid CORDIC unit. This arithmetic unit can provide similar, or even better, error 

bound than standard floating-point arithmetic, but consumes nearly the same hardware 

resources as pure fixed-point CORDIC. Figure 8 shows the corresponding hardware 

structure.  

This hybrid CORDIC unit has the following unique properties, which 

distinguishes this design from others [41]: 

• It utilizes fully pipelined hardwired add-and-shift stages, so can achieve much higher 

computational throughput than the recursive implementation proposed in [41]. 

• The first stage accepts two floating-point inputs and converts them into an internally 

aligned floating-point format. The exponent of these two aligned operands is kept 

unchanged while two mantissas are fed into a pipelined fixed-point CORDIC unit as 

inputs. The word width of the mantissas is extended to ensure high numerical 

accuracy.  

• The alignment of two floating-point inputs guarantees the same dynamic range as 

standard floating-point arithmetic. The extended word width of mantissas ensures the 

same, or even better, numerical error bound. 

• The physical character of the application implies that all inputs to the CORDIC unit 

are positive numbers. By parallel comparison of two exponents and two mantissas, 

we can decide which operator is larger in one pipeline stage. So an exchanging stage 

is placed in front of those alignment stages to eliminate one costly barrel-shifter.  

• Ordinary CORDIC algorithm needs two additional leading bits to prevent overflow 

because the largest amplitude gain is 2.33. The first exchanging stage in our design 

eliminates the first °45  rotation, so changes the processing gain to 1.647. 

Correspondingly, only one aditional leading bit is needed here.  

• No Leading-Zero-Detector (LZD) is needed in this new implementation. LZD is 

used in ordinary CORDIC units for normalizing intermediate results of floating-point 
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arithmetic. Its implementation is not as easy as it looks. Ordinarily, complex 

hardware structures such as array or tree would be involved [42]. 

• The final normalization step of the floating-point multiplication 
V

X 1
⋅  is eliminated 

because the carry bit of the exponent subtraction in the exchanging stage can absorb 

the possible exponent increment.  

• Only the vector norm output of the CORDIC unit is needed, so we can save about 33 

percent of FPGA resources by omitting the Z channel output completely. 

• The final floating-point addition of sT  and RT  is simpler than an ordinary floating-

point adder because all of these two operators are positive so that subtraction doesn’t 

need to be taken into account. 

In order to analyze the error property of our design, a C program was used to 

simulate the exact iterative operations of the proposed CORDIC unit. In every single 

experiment, we randomly create one million pairs of single-precision floating-point 

numbers as inputs. Outputs of the proposed hybrid CORDIC unit are compared with 

results produced by standard double-precision floating-point arithmetic. Maximum 

errors and average errors are recorded/calculated and their values are amplified by 202 .  

 

 

Table 2. Error Property of the Hybrid CORDIC Unit with Different Guarding Bits 

Word-width/Guarding Bits Average Error (ppm) Max. Error (ppm) 

25/0 0.0376 0.305 

25/1 0.0181 0.170 

25/2 0.0092 0.075 

25/3 0.0046 0.034 

25/4 0.0023 0.018 

25/5 0.0012 0.009 

floating-point 0.0260 0.12 
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Table 2 shows the simulation results of the proposed hybrid CORDIC unit for 

fixed word-width b=25 (One bit is added for preventing overflow.) with different 

guarding bits. Computational errors with single-precision floating-point arithmetic for 

the same operations are also listed as references. We can observe from this table that a 

25-bit hybrid CORDIC unit with two additional guarding bits provides people with 

similar precision as single-precision floating-point arithmetic. If the same average 

relative error criteria is acceptable, a 25-bit CORDIC with one additional guarding bits is 

enough. 

 

4.2.2 Fixed-point DSR Arithmetic Unit  

 

A more ambitious design tries to take into consideration the physical meaning of 

two-way travel time. The value of travel time is used in the final accumulation stage as a 

time index to fetch the proper sampling point in input traces.  Its value should be 

bounded by the moment of the last sample in an input trace maxT , which is less than 16 

seconds in most realistic cases. The sample interval of input trace is usually coarser than 

1ms. If we treat those time indices as fixed-point numbers, much simpler fixed-point 

arithmetic could be employed to evaluate Equation (4.1). Figure 9 shows the fixed-point 

format used in this approach and Figure 10 is the structure of the fixed-point DSR travel 

time solver.  

According to the preceding analysis, the worst-case absolute errors of time indices 

should be smaller than 0.5ms, which means the error bound for every fixed-point 

CORDIC channel is 0.25ms. There are two error sources: the rounding error produced 

by the first conversion stage that converts two floating-point numbers into aligned fixed-

point values, and the computation error introduced by the fixed-point CORDIC unit. 

Table 3 lists average and maximum rounding errors caused by the conversion stage with 

different fraction word width. Implementation results of the fixed-point CORDIC unit 

with different word-width and guarding-bits are listed in Table 4.  
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5 Integer Bits Fraction Bits

Radix-Point  
Figure 9. Output Format of the Conversion Stage 
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Figure 10. Hardware Structure of the Fixed-Point DSR Travel-Time Solver 

 

 

We can conclude from these two tables that computational errors would dominate 

our final results. Obviously, 19-bit fixed-point CORDIC with zero guarding bit (5 

integer bits and 13 fraction bits) is the best choice. Another bonus of this pure fixed-

point travel-time solver approach is that the 0T  can be easily generated by an integer 

counter. 

Although this fixed-point travel-time solver is practical for the engineering 

standard and could save considerable FPGA hardware resources, a weak point of this 

implementation is that the result produced by fixed-point CORDIC would be too coarse 

to be utilized as inputs to interpolation methods. Therefore, we will use only the hybrid 

CORDIC approach in the following performance comparison. 
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Table 3. Rounding Error of the Conversion Stage with Different Fraction Word-

Width 

Fraction Word-width Ave. Rounding Error Max. Rounding Error 

10 0.000236 0.000691 

11 0.000118 0.000345 

12 0.000059 0.000174 

13 0.000030 0.000087 

 

 

Table 4. Errors of the Fixed-Point CORDIC Unit with Different Word-Width and 

Guarding Bits 

Word-width/Guarding Bits Average Error Max. Error 

17/0 0.000123 0.000669 

17/1 0.000077 0.000386 

17/2 0.000066 0.000312 

18/0 0.000061 0.000337 

18/1 0.000042 0.000240 

18/2 0.000038 0.000198 

19/0 0.000033 0.000193 

19/1 0.000029 0.000172 

19/2 0.000027 0.000141 

 

 

4.2.3 Optimized 6th-Order DSR Travel-Time Solver  

 

The travel time in Equation (4.1) is a 2nd-order approximation to the following 

Taner’s travel time equation [43] for horizontally stratified medium model:  

L++++= 6
4

4
3

2
21

2 XcXcXccTX .      (4.2) 
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Where X  is the offset and kc  are priori-estimated coefficient tables associated 

with the output section. (For example, 2
1 τ=c  and 22

1

τV
c = ) 

The accuracy will be improved significantly when factoring higher order series 

into the travel time calculation. People may prefer the 4th-order or 6th-order schemes 

because the evaluation of the coefficients for higher than 6th order terms are impractical. 

In our design, we adopt the optimized 6th-order scheme proposed by Sun et al. [44] as 

follows: 

)()(
66

R
R

S
SSR T

RccT
T
SccTT +++=       (4.3) 

Where 

4
3

2
21 ScSccTS ++=         (4.4) 

4
3

2
21 RcRccTR ++=        (4.5) 

The definitions and values for the first three coefficients are the same as Equation 

(4.2), but the 4c  term is modified by taking other higher order terms into account, 

thereby resulting in the coefficientcc .  

The hardware implementation of the optimized 6th-order DSR travel time solver is 

a direct expansion of our previous design. The evaluation of Equation (4.3) is 

straightforward. Equation (4.4) and (4.5) can be rewritten as: 

22
3

22
21 )()( XcXccTX ++= .      (4.6) 

Obviously, two cascaded CORDIC units can finish this calculation.  

Three coefficients table are needed in this scheme compared with only one RMS 

velocity table in the previous case. So each evaluation of SRT  has to access three 

coefficients from memory. Now, memory capacity and its bandwidth could become a 

problem for this scheme.  
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4.3 PSTM Algorithm on FPGA-Enhanced Computers  

 

Although the programmable hardware resources inside an FPGA chip have 

increased greatly in recent years, they are still not rich enough to fit in a complicated 

program. The hardware-software hybrid approach is the most feasible way to accelerate 

a program on FPGA-enhanced computer platform. In order to be an effective alternative, 

FPGA-based solutions should be at least one-order faster than software executed on 

traditional CPU-based computers. Although some kernel subroutines could be 

accelerated significantly by FPGA, governed by Amdahl’s Law (Refer to Equation (4.7) 

~ (4.9) in Section 4.4), the overall acceleration of a program may not be satisfactory 

because of the existence of un-accelerated subroutines. 

The feasibility of applying FPGA technology to accelerate the PSTM algorithm is 

based on the fact that over 90 percent of the CPU time of the program is consumed by 

billions of iterations of inner loops. This short but time-consuming kernel subroutine is 

suitable for acceleration by the FPGA device. As we mentioned in Section 3, good 

acceleration results depend greatly upon where to place the dividing line between 

hardware and software. In our design, this line is placed to balance the computational 

workload between FPGA and CPU: we always tend to exploit most of FPGA’s 

computational potential accelerating the execution of a program, at the meantime, still 

keep enough workload running on the host machine to saturate its computing power. 

Algorithm 2 shows the program flow of the PSTM kernel subroutine executed on 

FPGA-enhanced PC workstations. The bold portion of the program is now migrated into 

FPGA.  We can easily tell that the dividing line of hardware and software was placed so 

that two of the most inner loops are executed in FPGA. All related computations are 

executed in-core, in other words, there are no intermediate results transferring via the 

interface between the acceleration card and the host CPU, except in the initial 

transmission of input traces. There are only trivial differences between Algorithm 1 and 

Algorithm 2, which means that the software migration workload is trivial. The new 

PSTM program running on the FPGA-enhanced PC workstation is almost the same as 
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the software version except that it invokes the FPGA-based acceleration card as a 

subroutine. Input traces are transmitted into the card as input parameters. When all 

calculations regarding one input trace and all local output traces are finished, a signal is 

sent back from FPGA to the host machine to activate the transmission of the next input 

trace. After all input traces are processed, the final output result is read from the 

acceleration card for display or further processing steps. When running on an FPGA-

enhanced PC cluster system, because the execution of the program’s inner loops are 

accelerated significantly by FPGAs, more input traces could be processed in unit time. 

Obviously, the actual data transferal rate via the interconnection network would be much 

higher than before. Because most traffic is to broadcast input traces from the server to 

workstations, the additional communication overhead in general introduce only 

moderate performance degradation. 

 

 

Algorithm 2.  The Program Flow of the Accelerated PSTM Kernel Subroutine 

........ 

For every input trace in a field data volume 

Prepare parameters for this trace 

 Download this trace and its parameters to SPACE 

 For every output trace allocated to this board 

  For every pseudo-depth point on this output trace 

Calculate travel time Tsr for this output point-associated with the position 

- of this input trace 

   IF (Tsr > Tmax) 

   THEN finish this output trace   

   Fetch data from input trace indexed by Tsr  

   Anti-aliasing filtering 

   Calculate oblique factor 

   Scaling fetched data by oblique factor 
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   Accumulate scaled input data to this output point  

  End 

 End 

End 

........ 

 

 

Figure 11 is the structure of one customized computing engine for evaluating the 

bolded section of the PSTM algorithm shown in Algorithm 2. In order to achieve a high 

computing speed at one accumulation per clock cycle, every arithmetic unit inside the 

computing engine is carefully designed to maximize its data throughput. They also are 

carefully deployed inside the FPGA chip because their physical layout will affect the 

data flow paths, which in turn affect the sustained execution speed. If there were still 

free FPGA resources available on board, several identical computing engines could be 

instantiated to manipulate their own data sets concurrently. Furthermore, multiple FPGA 

boards could be attached to a single host workstation to increase its computing power 

dramatically.  
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Figure 11. Hardware Structure of the PSTM Computing Engine 

 

 

4.4 Performance Comparisons  

 

In this section, I compare the computational performance of the FPGA-specific 

PSTM algorithm with its pure software counterpart running on a referential Intel P4 

2.4GHz workstation. The performance comparison contains precision comparison and 

speed comparison. A real 3D input data volume that contains 186512 input traces is used 

as input. Each trace has 1500 samples with a 4ms sampling interval. The 3D output 

image cube contains 90 by 500 surface positions, by about 1500 pseudo-depth points per 

output trace.  
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Figure 12. A Vertical In-Line Unmigrated Section 

 

 

 
Figure 13. The Vertical In-Line Migrated Section 

 

 

Figure 12 shows the image of a vertical in-line section selected from the stacked 

input data. Figure 13 is the migrated image for the same output section created by a 

simulation program, which imitates the same operations and precision as the FPGA-

based hardware design. This migrated image is nearly the same as the result produced by 
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the pure software version of the PSTM algorithm running on the referential workstation. 

Notice that migration provides people with a clearer and more reliable underground 

image and facilitates detailed and easily recognizable subsurface structures. For example, 

the inclination of the reflection event A is increased in Figure 13; the vague event B in 

Figure 12 is clarified and turned into a syncline at the same position in Figure 13. 

Define an elementary computation as all the calculations required for each input-

output point pair to calculate the two-way travel time, oblique factor, anti-aliasing 

filtering and output accumulation. The total number of all elementary computations for 

this data volume is about 644 billions taking the migration aperture and the 

maxT limitation into consideration. The total execution time of the original program 

operating on the referential Intel workstation is 206570 seconds, in which more than 

98% (202468 Seconds) are consumed by elementary computations and less than 2% 

(4102 Seconds) by others. In the following quantitative performance analysis, we use 

CORET  as the elapsed time for all the elementary computations, OTHERT  as the time for 

other assistant works including initialization, data preparation, communication, etc. We 

have: 

OTHERCORESOFT TTT +=         (4.7) 

The proposed FPGA-specific PSTM computing engine accelerates only the 

elementary computations and leaves all other operations to the host machine. So the new 

total execution time will be: 

OTHERCOREHARD TTT += '        (4.8) 

According to Amdahl’s Law, the overall speeding-up is: 

pCoreSpeedu
ionCoreFraactonCoreFractiHARD

SOFT

T
T

Speedup
+−

==
)1(

1     (4.9) 

Table 5 lists the performance comparison results for the designated task between 

the referential Intel workstation and the proposed FPGA-based approach with different 

configurations.  
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Table 5. Performance Comparison of PSTM on FPGA and PC 

Configurations
Clock 

Frequency   
(Hz)

FPGA 
Resources 

Occupation

Kernel Code 
Speed 

(million/s)

Kernel Code 
Speedup

Overall 
Speedup

Intel P4 
Workstation 2.4G NA 3.2 1 1

 One Computing 
Engine 50M 18.6 50 15.6 10.8

Two Computing 
Engine 50M 32.8 100 31.2 16.4

Four Computing 
Engine 50M 61.4 200 62.4 22

 
 

 

The following observations can be drawn from Table 5:  

• The execution speed of a single FPGA-specific PSTM computing engine is 15.6 

times faster than the speed of the referential Intel workstation. This impressive result 

is credited to the fully pipelined structure of the computing engine. 

• The acceleration of the kernel subroutine of PSTM algorithm would increase linearly 

with the number of in-chip computing engines, but the overall acceleration is 

bounded by OTHERT , which is constant for a designated processing task. A bigger task 

will increase the proportion of elementary computations and the overall acceleration 

will rise accordingly.  

• The density (hardware resources) of an FPGA device will restrict the number of in-

chip PSTM computing engines. On the other hand, computational performance of 

this algorithm could be further improved by integrating larger FPGA devices on 

board in the future.  

• Memory bandwidth is another bottleneck, especially when more PSTM computing 

engines are integrated into one FPGA chip. Employing faster memory modules (for 

example, DDR400) or more dedicated memory controllers partially alleviates this 

problem.  
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• This comparison doesn’t take into consideration the speed degradation caused by 

pipeline stalls. In the hardware-based implementation of the PSTM algorithm, 

switching to next input/output traces would lead to control hazard, which is similar 

to branching stall of a pipelined commodity CPU. This control hazard is hard to 

predict because of the changing migration aperture, and so cannot be avoided. 

Theoretically, simply flashing a pipeline will cause at most 10% of performance 

degradation taking into consideration the gap between the number of pseudo-depth 

points per output trace and the number of pipeline stages in the computing engine.   
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5.    FDM ON FPGA-ENHANCED COMPUTER PLATFORM * 
 

In this section, we will introduce our work on accelerating Finite Difference 

Methods (FDM) on the proposed FPGA-enhanced computer platform. FDM is one of the 

oldest, but the most popular, numerical methods for solving various scientific & 

engineering problems governed by ODEs or PDEs. Although extremely computationally 

intensive, this class of methods is always a user’s first choice because of its simplicity 

and robustness. Furthermore, such methods have the capability for dealing with complex 

geological models, which in general could not be handled effectively by Fourier 

transformation or other approximation methods. In the past decade, FD-based numerical 

modeling efforts for transient wave propagation problems in computational acoustics, 

computational electromagnetics, or geophysics fields have grown rapidly with 

performance improvements in commodity computers and parallel computing 

environments. Various software techniques, from high-level parallelism on PC-Cluster 

system to low-level memory and disk optimization, or even instruction-reordering, have 

been developed to accelerate the execution of these simulation tasks. However, these 

procedures are still time-consuming, especially when the geometrical size of the 

computational domain is much larger than the wavelength of sources. Therefore, they 

cannot be used routinely, except in institutions able to afford the high cost of operating 

and maintaining high-performance computing facilities.  

This section is organized as follows: In Section 5.1, the standard second-order and 

high-order FD schemes for acoustic wave equations are derived based on Taylor 

expansion, and their deficiencies in numerical accuracy and computational costs are 

analyzed in detail. In Section 5.2, after a brief review regarding the state-of-art of 

solving linear wave modeling problems on FPGA-based systems, I present in detail our 

solutions to accelerate FDM on the proposed FPGA-enhanced computer platform. I first 

 

* Reprinted with permission from “Optimized high-order finite difference wave 
equations modeling on reconfigurable computing platform” by C. He et al., 2007. 
Microprocessors and Microsystems, 31 103-115. Copyright 2007 by Elsevier. 
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introduce our design of the fully-pipelined FD computing engine and the sliding 

window-based buffering subsystem using the (2, 4) FD scheme as an example. Next, I 

extend this design to higher order schemes in time and in space to demonstrate its good 

scalability. For 3D cases, I propose the partial caching scheme utilizing external SRAM 

blocks as page buffer. The floating-point operation to memory-access ratio of FD 

schemes is analyzed and compared to emphasize its impact on achievable sustained 

computational performance of this implementation. Absorbing Boundary Condition 

(ABC) is one of the most troublesome parts of these modeling tasks, but is pivotal to the 

accuracy of final results. In this work, I adopt artificial damping layers to absorb and 

attenuate outgoing waves. This simple Damping Boundary Condition (DBC) scheme 

introduces only moderate additional workload and consumes limited hardware resources, 

so would be perfect for our high-order FD-base implementation. 

Section 3 provides the performance comparisons between the new FD computing 

engine implemented on Xilinx ML401 FPGA evaluation platform and its pure software 

counterpart running on a P4 workstation. Conventionally, scientists in this field select to 

compare only the execution time of numerical experiences to show the superiority of 

their FPGA-based solutions over general-purpose computers. However, these 

comparisons did not take into account other cost factors such as system complexity, 

commonality, etc., so is more or less unfair for PC-based solutions. Here, the fairness of 

the performance comparison is emphasized. The aim is to facilitate results of this 

research work convincing for people who are familiar with coding on conventional 

software environment.  

 Standard floating-point arithmetic units are the main components of the resulting 

high-order FD computing engine and consume most in-chip programmable hardware 

resources. Sometimes, the computing engine for complex PDE problems may require 

tens, even hundreds, of such arithmetic units, which might be unfeasible for systems 

with limited FPGA resources.  From Section 4, I introduce our efforts to address this 

problem with improved numerical methods/algorithms. I first present our design of 

FPGA-specific FD schemes using optimization methods. A heuristic algorithm is 
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proposed to adjust FD coefficients so that considerable hardware resources could be 

saved without deteriorating numerical error properties. In Section 5, I propose a group-

alignment based summation algorithm to accumulate those floating-point products 

produced by coefficient multipliers in floating-point/fixed-point hybrid arithmetic. This 

hardware-based algorithm can result in similar, or much better, worst-case absolute and 

relative numerical errors as standard floating-point arithmetic with only a fraction of 

hardware resources consumed. Also the total number of pipeline stages required for the 

new FD computing engine could be reduced significantly. 

 

5.1 The Standard Second Order and High Order FDMs 

5.1.1 2nd-Order FD Schemes for Wave Equations in Second Derivative Form 

 

Linear wave equations are in general represented in first derivative form. It is well 

known that they can also be written in second derivative form without losing generality 

[45]. Representing linear wave equations in second derivative form has no benefit for 

conventional Finite-Difference Time-Domain (FDTD) algorithms executed on general-

purpose computers. However, as we will see later in this section, it plays a key role in 

our FPGA-based solution to improve the efficiency of memory access.  

Let’s consider the simplest 2D scalar acoustic case in the form of second-order 

linear PDE, which relates the temporal and spatial derivatives of the vertical pressure 

field as follows, 
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Where P  is the time-variant scalar pressure field (pressure in vertical direction) 

excited by an energy impulse ),,( tzxf ; ),( zxρ and ),( zxv  are the density and acoustic 

velocity of underground media, which are all known as input parameters for wave 

modeling (forwarding) problem.  
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Define the gradient of a scalar field S  as: z
z
Sx

x
SS vr

∂
∂

+
∂
∂

≡∇  and the divergence of a 

vector field V
v

 as,
z
V

x
VV zx

∂
∂

+
∂
∂

≡•∇
v

, Equation (5.1) describes the propagation of acoustic 

waves inside 2D or 3D heterogeneous media with known physical properties. The 

numerical modeling problem we considered here is to simulate the time evolution of the 

scalar pressure field P  at each discrete grid point in 2D or 3D space accurately. It is 

straightforward to extend the numerical methods and corresponding hardware 

implementation proposed here to other FD-based numerical simulations. For example, 

the classical 3D Maxwell’s equations in computational electromagnetic problems can 

also be rewritten as three second-order wave equations in x , y , or z  direction 

respectively with similar but more complex forms as Equation (5.1).  

We assume underground media a constant density to further simplify Equation (5.1) 

as follows, 
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Here, 2
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+
∂
∂
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∂
∂

≡∆  stands for the Laplace operator. Notice that the 

vector field ),,( tzxPV ∇=
v

 in Equation (5.1) disappears here and the input and output of 

this Laplace operator are all scalars. This new equation is still practical for 2D and 3D 

acoustic modeling problems and widely used in seismic data processing field. 

FDM starts from discretizing this continuous equation into discrete finite-

dimensional subspace in time and/or space. Given the values of variables on the set of 

discrete points, the derivatives in the original equation are then expressed as a linear 

combination of those values at neighboring points. Equation (5.2) is usually discretized 

on unstaggered grids, where the second-order spatial differential operators are 

approximated by the standard 2nd-order central FD stencil as follows, 
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and 
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Here we use ( )2∆  represent the 2nd-order accurate FD approximation of the Laplace 

operator. The subscripts in these equations mark the spatial positions of discrete pressure 

field values or parameters; superscripts mark the time points when pressures are 

evaluated. dx and dz  define the spatial interval between two adjacent grids in x or z  

direction, respectively. dt stands for the time-evolution step.  

Equation (5.3) shows us the second-order time-evolution scheme and equation (5.4) 

is the second-order FD scheme evaluating the spatial Laplace operator. Figure 14 depicts 

the corresponding FD stencil in 2D space. We also draw the 3D spatial stencil of ( )2∆  in 

figure 15. All grid points that are involved in calculation are marked out in these figures. 

We can observe in Figure 14 that six grid values together with one parameter value ( kiv , ) 

are needed to evaluate 2D pressure field P  at grid point ),( ki  to a future time step. Five 

of those grid values come from the present pressure field at this spatial point and its four 

orthogonal neighbors; the last one is the pressure value at the same grid point but from 

previous time step.  

 

 

 

Figure 14. (2, 2) FD Stencil for the 2D Acoustic Equation 
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Starting from two known wave fields working as initial conditions, FD wave 

modeling tasks progress the evaluation of wave propagation grid point-by-grid point and 

time step-by-time step. Realistic seismic wave modeling problems may have thousands 

of discrete grid points along each spatial axis. So the total number of grid points in 

computational space could be in the millions for 2D cases or in the billions for 3D cases. 

The number of discrete time evolution steps is at least the same as the number of discrete 

spatial points along the longest axis according to Courant-Friedrichs-Lewy (CFL) 

stability condition [46]. Correspondingly, FD solutions of such time-dependent problems 

are in general computationally demanding as well as data intensive. 

 

 

 

Figure 15. Second-Order FD Stencil for the 3D Laplace Operator 

 

 

However, the extraordinary computational workload of FDM is not the entire story: 

finite difference approximations also introduce numerical truncation errors. Such errors 

arise from both the temporal and spatial discretizations and can be classified into 

numerical dispersion errors, dissipation errors, and anisotropy errors. Here, I omit 

tedious mathematical theories of numerical analysis but give the readers an intuitive 

explanation that numerical errors would cause the high frequency wave components 

propagating at slower speeds, damped amplitudes, or wrong directions in numerical 
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simulations than in the reality. These errors will accumulate gradually, finally destroy 

the original shape of wave sources after propagating over a long distance or time period. 

Here, we use the FD scheme shown in Equation (5.3) and (5.4) as an example, which is 

of second order accuracy with respect to time and space (a so-called (2, 2) FD scheme). 

To show the effects of spatial discretization only, we assume that the temporal derivative 

term can be approximated precisely by reducing time-evolution step )(dt . If we select 

the spatial sampling interval to be 20 points per shortest wavelength, the simulation 

results obtained by this (2, 2) FD scheme are considered satisfactory only in moderate 

geological area, generally a computational domain on the order of 10 wavelengths [47].  

For waves propagating over longer distances, the spatial interval required by this (2, 2) 

scheme should be further refined, leading to an enormous number of spatial grid points 

and time-evolution steps, impractical memory requirements, and unfeasible 

computational costs. This is the main motivation of the development of higher-order FD 

schemes. We have to point out that the famous Yee’s FDTD method, which has been 

widely adopted for electromagnetic modeling problems, is also a (2, 2) FD scheme but 

for the first derivative Maxwell equations discretized on staggered spatial grids. So, it 

also suffers the same numerical errors we discussed above, although they are in general a 

little less serious. 

 

5.1.2 High Order Spatial FD Approximations  

 

We first consider spatial higher-order FD schemes and remain the second-order 

time-evolution stencil in equation (5.3) unchanged. Numerical derivative of a function 

defined on discrete points can be derived from Taylor expansion. The goal of the so-

called maximum order FD schemes [48] is to attain accurate approximation by canceling 

as many the lower order terms in Taylor expansion formula as possible. The first un-

cancelled Taylor series term determines the formal truncation error and the accuracy 

order of the corresponding finite difference scheme. For example, the one-dimensional 

Taylor expansion along x-axis at dxix ⋅±= )1(  for P is, 
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When we add these two equations together to eliminate odd derivative terms at the 

right hand side, we have: 
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Equation (5.6) shows us that the difference (truncation error) between the second 

derivative of P  and its FD approximation 
( )2

11 )()(2)(
dx

xPxPxP iii +− +−  is proportional 

to ( )2dx . That is where the name of (2, 2) FD scheme shown in Equation (5.3) and (5.4) 

originates. Applying the same idea to more discrete points along the x-axis, we can 

cancel out higher order truncation terms, so the resulting approximation to the second 

derivative operator would be more accurate in the sense of truncation errors. 

Systematically, we can approximate 
2

2

x
P

∂
∂  to ( )thm2  accurate order by linear 

combination of the values of P  at ( )12 +m  discrete grid points as follows, 
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which are all selected to maximize the order of the first un-cancelled truncation term. 

Expanding the higher-order FD schemes to y- and z-axis is straightforward, so a 

class of ( )thm2 -order FD approximation of the Laplace operator in 2D or 3D space can 

be obtained. Similar to the standard (2, 2) FD scheme, we draw in Figure 16 the FD 

stencils for (2, 4) FD scheme in 2D space. The 3D spatial stencil for ( )4∆  is also shown 

in Figure 17. We observe that more spatial grid values around the grid point ),,( kji are 

required to evaluate the Laplacian value at the central position.  
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Figure 16. (2, 4) FD Stencil for the 2D Acoustic Equation 

 

 

 
Figure 17. 4th-Order FD Stencil for the 3D Laplace Operator 

 

 

Although the evaluations of Equation (5.7) are much more complex than Equation 

(5.4), higher-order FD schemes have higher-order un-cancelled truncation term, which 
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leads to much smaller approximation errors. This property can be clearly depicted by 

dispersion relations plotted in Figure 18, which is obtained by taking Fourier transform 

of the governing equation and its approximation in time and space. An intuitive criterion 

is that the dispersion relation of FD schemes should be close enough to the ideal wave 

equation. In other words, the dispersion error caused by numerical approximations 

should be kept as small as possible. From this figure, we can tell that higher-order 

schemes have less dispersion error for gradually larger wave-numbers, thereby leading 

to improved results. Put it another way, by using high-order FD schemes, we can enlarge 

the spatial sampling interval so that the number of grid points can be reduced without 

deteriorating accuracy criterion [49]. Figure 19 shows the dispersion error between the 

ideal wave equation and its approximations. We can easily draw the same conclusion 

from this figure as from Figure 18. 

 

 

 
Figure 18. Dispersion Relations of the 1D Acoustic Wave Equation and Its FD 

Approximations 
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Figure 19. Dispersion Errors of Different FD Schemes 

 

 

We designed a simple experiment to show the effectiveness of higher-order FD 

schemes. Here, we simulate the propagation of an exponentially-attenuated single-

frequency sine wavelet in 1D homogenous media (constant velocity) along the x-axis. 

The time-evolution step is set small enough to attain negligible temporal truncation 

errors. We try to determine the spatial sampling interval where the power of numerical 

errors is reduced to be around 0.1 percent of the total energy of the original wavelet after 

it propagates a distance of 400 wavelengths. The simulation results are concluded in 

Table 6 for different FD schemes. We can observe that the (2, 16) FD scheme needs only 

1600 spatial grids in our test (a propagation distance of 400 wavelengths times four 

points per wavelength), which is about five times less than (2, 4) scheme or over ten 

times less than the standard (2, 2) FD scheme. The reduction in the number of grid 

points will become much more significant if we apply higher order schemes to 2D or 3D 

cases. Please note that the propagation distance for the standard (2, 2) FD scheme is set 

to be 40 wavelengths because the FD scheme is incapable of simulating the wavelet 
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propagating for hundreds of wavelengths accurately with a reasonable spatial sampling 

interval.  

 

 

Table 6. Performance Comparison for Different HD Schemes 

FD 
schemes 

Propagation 
Distance 

(Wavelength) 

Grid Density 
(Grid/Wavelength) 

Total Number 
of Grid Points 

Relative Error 
Power 

(2, 2) 40 40 1600 0.0024 

(2, 4) 400 19 7600 0.0037 

(2, 8) 400 7 2800 3.8e-4 

(2, 16) 400 4 1600 0.0010 

 

 

However, high-order FD schemes are ineffective for abrupt discontinuous media, 

so people tend to be conservative in enlarging spatial sampling interval. The result is that 
the decrement of spatial points achieved by high-order FD schemes in general is not 

enough to compensate for the additional computations they introduced. That explains 

why high-order schemes are always more computationally expensive than the standard 

second order schemes and why they are seldom utilized in reality. 

 

5.1.3 High Order Time Integration Scheme  

 

People also hope to enlarge the time-evolution step by adopting high-order time 

integration schemes so that the numerical simulations could be more accurate. 

Unfortunately, it has been proven that any Taylor-expansion based higher-order 

approximation to the second derivative in time in equation (5.2) leads to unconditional 

unstable schemes [50]. An alternative is the modified wave equation introduced by 

Dablain in [49] as follows, 
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By applying the original wave equation (5.2) twice to its second-order FD 

approximation, the second-order temporal truncation error hidden in equation (5.3) is 

compensated by a higher-order spatial Laplacian term, which results in a class of (4, 2m) 

FD schemes. The coefficient ( )2dt  of the compensation term allows the accurate order of 

its FD approximation two less than the original Laplace operator. For example, Taylor 

expansion-based 4th-order accurate approximation to the right-hand-side of equation 

(5.10) leads to a 13-point FD stencil in space. This spatial stencil is shown in Figure 20 

together with the 9-point stencil for (2, 4) FD scheme. As for computational cost, the 

modified wave equations almost double the number of floating-point operations for 

every time step because of the existence of the position-variant parameter ),( zxv . 

 

 

 
Figure 20.  Stencils for (2-4) and (4-4) FD Schemes 

 

 

 Here, I also applied this new approach to the previous experiment to show its 

effectiveness. From Table 7, we observe that the time-marching step is enlarged greatly 

when we migrate to the 4th-order time-integration scheme. This impressive result is 
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partly attributed to the simple experiment we selected. As we mentioned above, the time 

evolution step is constrained by the Courant-Friedrichs-Lewy (CFL) stability condition, 

so is related to spatial sampling interval. For realistic wave modeling problems in abrupt 

discontinuous media, the progress in time step is not always good enough to remedy the 

additional computational costs it introduced, which is the same case that we encountered 

in spatial higher-order schemes.  

 

 

Table 7. Performance Comparison for High-Order Time-Integration Schemes 

FD schemes Grid Density 
(Grid/Wavelength) 

Number of 
Grid Points 

Time-Marching 
Step 

Relative Error 
Power 

(2, 4) 19 7600 0.001 3.7e-3 

(4, 4) 19 7600 0.008 3.0e-4 

(4, 8) 7 2800 0.008 2.3e-3 

(6, 8) 7 2800 0.02 5.4e-3 

 

 

5.2 High Order FD Schemes on FPGA-Enhanced Computers 

5.2.1 Previous Work and Their Common Pitfalls  

 

Recently, as FPGA continues to grow in density, people start trying to accelerate 

FD-based numerical PDE problems on an FPGA-based hardware platform. Compared 

with pure software running on commodity computers or pure hardware-based ASIC 

devices, FPGA technology can provide people with a compromise between the best 

flexibility of software and the highest computational performance of fully-customized 

hardware. The idea of accelerating acoustic wave simulations using the fully-

customized  hardware system for geophysical applications can be traced back to the 

1990s [51]. The first attempt to implement an FPGA-based stand-alone seismic data 

processing platform was described in [52]. For computational electromagnetics problems, 
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several authors proposed their FPGA-based solutions to accelerate the standard Yee’s 

Finite-Difference Time-Domain (FDTD) algorithm from the early 1990s [53] [54]. 

Recent work in this field can be found in [55-58].  

Although most recent efforts on this track reported impressive acceleration over 

contemporary general-purpose computers, we can observe that some common pitfalls 

exist in their FPGA-based system designs and performance comparisons. The first 

problem is that people still tend to build their application-specific FPGA-based hardware 

platforms, where the FPGA devices are simply used as an alternative to ASIC to reduce 

the high NRE costs. In these systems, hardware architecture and interconnection pattern 

are well-tailored for particular applications so that the computational potential of FPGA 

devices could be completely bring into play. However, system costs of such a fully-

customized approach would still be much higher than commodity computers and the 

system flexibility would be poor. 

“Toy” problems were commonly used as examples to demonstrate performance 

improvements of FPGA-based systems over commodity computers. Onboard FPGA 

resources and memory space are always abundant so that the scalability of FPGA-based 

hardware systems is usually left out of consideration.  External memory bandwidth never 

imposes a performance bottleneck, which is not the case for most data intensive 

applications in reality. Small but fast onboard SRAM modules or internal RAM blocks 

were selected as working space for small problems, which made the FPGA-based 

solutions expensive or unrealistic for most real-life problems.  Correspondingly, the 

resulting performance comparisons are more or less unfair for commodity computers. 

Software algorithms are commonly migrated to an FPGA-based system directly 

without or with only limited modifications such as instruction rescheduling or arithmetic 

unit customization. We know that most existing software algorithms and numerical 

methods are well-tuned for commodity CPUs, so may not be ideal for FPGA-based 

systems. As we will see later in this section, we emphasize modifying or designing new 

numerical methods/algorithms specified for this new computing resources so that 

satisfactory accelerations could be expected. 
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The last problem exists in performance comparison between FPGA-based systems 

and commodity-CPU based general-purpose computers. Sometimes, the comparisons are 

made between one PC workstation and a complex FPGA-based system with multiple 

FPGA chips; sometimes naïve software implementation is used as reference without 

careful performance tuning. Such comparison results are unconvincing for people who 

are accustomed to working on commodity computers with conventional software coding 

environment.  

 

5.2.2 Implementation of Fully-Pipelined Laplace Computing Engine  

 

As we introduced in Section 2, the fundamental hindrance of simulating wave 

propagation problems numerically is the massive data volume along with the complex 

numerical algorithms. Specifically, memory bandwidth available between the computing 

engine (FPGA) and onboard memory modules has been proven a bottleneck preventing 

people taking full advantage of FPGA’s computational potentials [32, 57, 58]. In this 

section, I try to alleviate this bottleneck by adopting high-order FD methods together 

with a fully-customized in-chip memory subsystem. Sustained high computational 

throughput would be achieved by effectively mapping all related computations into the 

proposed FPGA-enhanced computer system without changing memory bandwidth 

requirements. Also, those common pitfalls we just mentioned are taken into 

consideration to facilitate these new computing resources appropriate for realistic 

applications.  

We select realistic seismic acoustic and elastic modeling problems as our target 

applications. These simulation tasks are conventionally solved by the standard second-

order FD schemes in a parallel computing environment. To overcome numerical 

deficiencies of these low-order schemes, we resort to high-order FD schemes that are 

seldom being adopted in reality because of their enormous computational cost. Here, 

because of the adoption of large-scale FPGA devices, in which people could easily 

integrate tens to hundreds of standard floating-point arithmetic units, computational 



 

  

64

power does not seem to be a serious problem. This fact encourages us to adopt higher 

order FD schemes for better numerical performance.  

The implementation of high-order FD schemes with standard floating-point 

arithmetic units on FPGA is simple and straightforward. For example, Figure 21 depicts 

the block diagram and dataflow of a 2D 4th-order Laplacian computing engine with 15 

pipelined floating-point arithmetic units based on Equation (5.7). We can easily observe 

the adder tree structure with embedded constant multipliers. All arithmetic units are 

pipelined internally to achieve high data throughput. It is convenient to extend this 

design to higher-order schemes with more arithmetic units and tree levels. For example, 

a 16th-order 2D Laplace operator can be easily constructed with 33 adders and 20 

multipliers. 

 

 

 

Figure 21. 2D 4th-Order Laplacian Computing Engine 

 

 

5.2.3 Sliding Window Data Buffering System  

 

However, in order to operate the large computing engine in its full speed to 

produce one output at each clock cycle, we need to feed it with a new set of operands at 

the same speed. This unfeasible data manipulation requirement forces people to integrate 

as many dedicated memory channels as possible onto their FPGA-based system. DDR-

SDRAM can provide high bandwidth at relatively low price, so it becomes a prevailing 
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choice as large capacity onboard memory. The number of dedicated memory channels 

available on FPGA-based systems could be significantly more than, but still comparable 

to, commodity computers. For example, an up-to-date PC workstation has two DDR 

memory channels compared with four on the FPGA-based coprocessor platform 

presented in [58], which is the top record to our best knowledge. To complicate the 

situation, the bandwidth utilization is usually poor in practice due to the random-access 

nature of most applications. Previous designs in [56-58] tried to migrate the software 

version of Yee’s FDTD algorithm directly into their customized FPGA-based platform. 

Their efforts concentrated on integrating more hardware arithmetic units into FPGA so 

that the aggressive computational speed of their designs would exceed commodity 

computers. This approach is very effective, with much higher acceleration than with 

contemporary PCs.  However, the memory bandwidth bottleneck will finally be reached 

and after that, no more improvement will be obtained.  

Consider first the standard second-order FD scheme. We rewrite Equation (5.3) 

and (5.4) here and ignore the source term, 
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We need one velocity and six pressure values in total to evaluate these two 

equations for one grid point at position ),( ki . As for the computational costs, we have 

five additions and two multiplications to approximate the 2D Laplace operator; another 

one multiplication and two additions are needed to calculate the final result. (Three 

multiply-by-two operations are ignored because they can be easily merged into adjacent 

arithmetic units.) The ratio of floating-point computations to memory accesses is 710 , 

so its execution speed on commodity computers would be decided by main memory 

bandwidth but not the CPU’s nominal speed.  

Although higher-order schemes reduce the total number of grid points by 

complicating the computations at each grid point, they do require more operands in their 

computational stencils. Sequentially, the ratio of computations and memory accesses 
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remains virtually unchanged. Table 8 lists the number of floating-point operations and 

the number of operands required by different FD schemes to update the wave field at one 

spatial grid point for one time-evolution step. We note that the FP operations to operands 

ratio is always less than 2. This observation means that this class of methods is memory 

bandwidth bounded, which explains why only 20-30% of a commodity CPU’s peak 

performance could be achieved when running on general-purpose computers. It is also 

the reason why high-order schemes result in only limited benefits and are, therefore, 

seldom put into practice in reality.  

 

 

Table 8. Comparison of FP Operations and Operands for Different FD Schemes 

FD Schemes (2, 2) (2, 4) (2, 8) (2, 16) 

Total FP Operations 11 21 33 57 

Total Operands 7 11 19 35 

 

 

Here, we try to find appropriate on-chip memory structure by exploring data 

dependencies of the numerical algorithms so that the limited onboard memory 

bandwidth could be utilized more wisely. Define “row” as a line of spatial grids along 

the X-axis and “column” as a line of grids along Z-axis in 2D space. Because little 

optimization can be applied to equation (5.11) to reduce its computations or memory 

accesses, we consider equation (5.12) only. Our approach evaluates the 2D wave field 

grid by grid along the column. It can be visualized as moving a striped 2D operands 

mesh into the fixed computing engine via its input ports.  Figure 22 depicts this idea, 

where only data dependencies along Z-axis are explored. If the evaluation of 1
,
+n

kiP  starts 

when the operand at grid point ),( ki  reaches the center of the computing engine, we can 

notice that almost all pressure values we needed to calculate 1
,
+n

kiP  have been 

encountered/used except the value of n
kiP 1, + . This observation implies that if we could 

store some used grid values inside the FPGA chip temporarily, we may avoid accessing 
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the same data repeatedly from external memory, thereby saving a significant amount of 

memory bandwidth. This idea is reflected in the implementation in Figure 23, where 

values at grid points of a whole column )1(:, −k  are saved in the computing engine. 

Notice two input ports are needed here, one less than the previous case.  

 

 

 
Figure 22. Stripped 2D Operands Entering the Computing Engine via Three Ports 
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Figure 23. Stripped 2D Operands Entering the Computing Engine via Two Ports 

 

 

This basic idea is almost the same as on-die data caches appearing in most modern 

commodity CPUs. However, the caching mechanism used in general-purpose computers 

is too complex and expensive to be implemented on FPGA-based hardware platform. 

Furthermore, it does not work well for our targeting numerical PDE problems because of 

their unfeasible data manipulation requirements. We need to design an efficient on-chip 

data-caching mechanism specified for the problem at hand. Figure 24 illustrates the 

block diagram of the data buffering system we designed for FD methods on FPGA-

enhanced computer system.  

In this design, we utilize two cascaded FIFOs as data buffers, each of which has 

the capacity to contain a whole row of discrete grid values. In general, the number of 

sampling points in each row is in the low thousands, so can be efficiently implemented 

with one or several SRAM blocks inside the FPGA device. Pressure values are fed into 
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the FPGA chip from one input port at the bottle of the first FIFO and discarded at the top 

of the last one. We delay the calculation of 1
,
+n

kiP  a whole row until the grid value n
kiP 1, +  

enters our data buffer so that all operands we need to evaluate equation (5.12) are 

available inside FPGA chip. Taking into consideration the grid value 1
,
−n

kiP  at the previous 

time step, the parameter kiv ,  that is needed for calculating equation (5.11), and also the 

inevitable save back operation, we need only four memory accesses to update wave field 

values at one grid point for one time-marching step. In theory, this is the best result that 

can be achieved by a data caching system. We also introduce simple input caching 

circuits after SDRAM modules to hide their irregular data-accessing pattern. 

Consequently, input data can be fed into the buffering structure at a constant speed and 

the computing engine can be fully pipelined to achieve high computational throughput. 

We will revisit this input cache design in Section 5.3. 

 

 

 
Figure 24. Block Diagram of the Buffering System for 2D (2, 2) FD Scheme 
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The principle of this data buffering system can also be abstracted into a sliding 

window as we demonstrated in Figure 25. Here, I use (2, 4) FD scheme in 2D space to 

show the good scalability of this design. We rewrite the equations here with the source 

term ignored, 

( ) ( ) n
kiki

n
ki

n
ki

n
ki PvdtPPP ,
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Figure 25. Sliding Window for 2D (2, 4) FD Scheme 
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Suppose we have in total I rows and J columns of spatial grids in 2D computational 

domain. The memory buffering system can be imagined as moving a siding window 

(grids enclosed by the bold line in Figure 25) that buffers ( )1*4 +J  continuous grids 

inside the 2D mesh. In addition, there are nine active points inside this window, whose 

values can be sent to the computing engine simultaneously via internal data paths. By 

connecting the input port of the sliding window with external memory, only one external 

read is needed to move the sliding window one grid right. 

 

 

 
Figure 26. Function Blocks of the 2D (2, 4) FD Scheme 

 

 

Figure 26 illustrates the block diagram and dataflow of the sliding window 

buffering system for the (2, 4) FD scheme. We use four cascaded FIFOs as our data 

buffer, each of which has the capacity to save a whole row of grid values. We delay the 
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evaluation of 1
,
+n

kiP  until the grid value n
kiP ,2+  enters our buffering structure from onboard 

memory so that all the operands we need are available to the computing engine. Taking 

memory accesses for grid value 1
,
−n

kiP , parameter kiv , , and the save back operation into 

account, we still need on more than four memory accesses to evaluate one time-

evolution step at one grid point.  

The extension of figure 26 to (2, 2m) FD schemes is simple and straightforward. 

Now (2m) cascaded FIFOs are needed to build the sliding window. Correspondingly, we 

have to delay the calculation of 1
,
+n

kiP  for m rows to ensure all necessary operands 

appearing at correct positions in the buffering circuit. Inevitably, some arithmetic units 

should be inserted into the Laplacian computing engine and additional pipeline stages 

might be needed to guarantee the sustained computational throughput. In Table 9, we 

extend table 8 with two additional rows showing the number of external memory 

accesses and floating-point operation to memory access ratio for different FD schemes.  

 

 

Table 9. Comparison of Caching Performance for Different FD Schemes 

FD Schemes (2, 2) (2, 4) (2, 8) (2, 16) 

Total FP Operations 10 20 32 56 

Total Operands 7 11 19 35 

External memory accesses 4 4 4 4 

FP operations to 

memory accesses ratio 
2.5 5 8 14 

 

 

The most exciting observation is that although the memory bandwidth required by 

FD methods running on commodity computers increase linearly with the accuracy order, 

this requirement remains unchanged for our design on FPGA-enhanced computers, i.e., 

the number of memory accesses to evaluate one time-evolution step at one grid point is 



 

  

73

always kept at four for different FD schemes if the data-buffering system could be 

implemented in-core. Correspondingly, the floating-point operations to memory accesses 

ratio continues to increase with the order of FD schemes, which implies improved data 

reusability. The only costs we pay for higher-order accuracy are on-chip memory blocks 

and conventional addition or multiplication arithmetic units, which are all abundant 

inside an up-to-date high density FPGA device. This result encourages us to adopt 

extraordinarily higher-order FD schemes in our design to further enlarge the spatial 

sampling interval until we reach the extreme at two samples per shortest wavelength, 

which is bounded by the Nyquist-Shannon sampling theorem.  

 

5.2.4 Data Buffering for High Order Time Integration Schemes  

 

Consider the modified wave equation we derived in Section 5.1.3: it is 

straightforward to allow us to extend our previous design of (2, 4) FD scheme to (4, 4) 

FD scheme based on its 13-point stencil shown in Figure 20. Unfortunately, this simple 

extension is only practicable for homogeneous media. ( v is a constant inside the 

computational domain.) For inhomogeneous cases, because the coefficient varies in 

space, this approach would lead to additional computations and much more complex 

hardware architecture.  

Rewriting equation (5.10) in the following form leads to a two-step scheme 

without degrading accurate order, 

( )
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nn

nnn
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)4(2
2

11

12
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Based on this expression, two Laplacian computing engines could be employed 

together with dedicated data buffering circuits to evaluate its right-hand-side: the first 

one is used to evaluate the Laplacian of n
kiP , to 2nd-order accuracy. Next, the compensated 

pressure field is fed into the second 4th-order accurate Laplacian unit to finish the 

calculation of 1
,
+n

kiP . Figure 27 illustrates the corresponding block diagram and dataflow 

design. Notice that another velocity buffering circuit is required here. 
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Figure 27. Block Diagram and Dataflow for 2D (4, 4) FD Scheme  

 

 

5.2.5 Data Buffering for 3D Wave Modeling Problems  

 

Extending the sliding window buffering system to 3D space is also straightforward, 

but the hardware implementation will become less efficient than 2D cases. Now, we 

need several large-capacity FIFOs to buffer 2D pages instead of 1D grid lines. Practical 

3D wave simulations in general contain hundreds to thousands of grid points along each 

spatial axis. Correspondingly, the capacity of page buffers could easily reach several 

millions of words, which is almost approaching the maximum capacity of internal block 

memory inside an up-to-date FPGA chip. We now have to sacrifice some onboard 

memory bandwidth to meet the buffering requirements. Correspondingly, the caching 

behavior would not be optimal in these cases.  

Fortunately, as we proposed in Section 3, there are multiple high-speed low-

latency SRAM modules integrated on the FPGA-enhanced computer platform, which 

can be easily customized as page buffers with simple control logics. Thanks to the 

excellent scalability of high-order FD schemes, we can even adopt different accuracy 

order and different sampling interval for different spatial axis to accommodate the 
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specific hardware architecture of the platform. For example, if there are two onboard 

SRAM modules, each of which has enough capacity to contain one 2D page, we can 

select the standard 2nd-order FD scheme in Z-direction with fine sampling interval. This 

arrangement requires only two X-Y page buffers at runtime and doesn’t affect the choice 

of FD schemes in the other two directions. Their orders can still be customized freely 

according to available hardware resources inside the onboard FPGA device. Figure 28 

depicts the block diagram of the hybrid (2, 4-4-2) FD scheme. 

 

 

 
Figure 28. Function Blocks of the Hybrid 3D (2, 4-4-2) FD Schemes 
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5.2.6 Extension to Elastic Wave Modeling Problems  

 

We now extend this design to elastic wave modeling problems. The 3D linear 

elastic wave equation can be represented as 9 first-order PDEs in Cartesian coordinates 

as follows [59],  

ikkijjiiiit v σσσρ ∂+∂+∂=∂        (5.16a) 

( ) iijjjjiiiit vvvv ∂+∂+∂+∂=∂ µλσ 2       (5.16b) 

( )ijjiijt vv ∂+∂=∂ µσ         (5.16c) 

Where λ and µ  are Lame parameters, ρ is density, kjiv ,, are particle velocities, 

ijσ are stress tensor components, and we have jiij σσ = for isotropic media. Staggered 

descretization for Equations (5.16) is always considered beneficial because all first-order 

finite difference stencils are naturally centered around relevant unknowns spatially and 

temporally, which leads to less numerical dispersion and efficient 2nd-order in-place 

time-evolution scheme. There are in total, 12 floating-point values at each discrete grid 

point: 3 media parameters, 3 particle velocities, and 6 independent stress tensor 

components. At the beginning of each time-evolution step (which is divided into two 

half steps), all 12of these floating-point values are read out from external memory. After 

FD computations, 9 updated wave field variables should be re-written. As for the 

computational cost, (2, 2) staggered FD scheme requires more than 90 floating-point 

operations at each grid point, and the number for the staggered (2, 4) FD scheme is about 

140. This large number partly explains why only low-order FD schemes could be 

adopted for elastic wave simulations in reality. However, we should note that the 

underlying FD-based numerical algorithms for elastic modeling problems do not 

significantly differ from acoustic cases. So, all of the basic ideas for FD computing 

engine and sliding window buffering structure we proposed before are still practicable. 

It is possible to design a large computing engine with hundreds of FP arithmetic 

units, although this approach may reach the capacity extreme, which one of the largest 

FPGA could support. An alternative is to divide this large computing engine into two 
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smaller ones for Equation (5.16a) and equation (5.16b, c), respectively. Thanks to 

FPGA’s run-time reconfigurability, the host machine can reconfigure FPGA resources in 

seconds so that those two smaller computing engine can work alternately, each answers 

for half of one time-marching step. 

Now, the basic idea of FD methods on FPGA-enhanced computers is clear: An 

efficient on-chip sliding window data-buffering circuit is placed between the FD 

computing engine and onboard memory modules using internal RAM blocks as the core 

component. By exploring data dependency properties of high-order FD schemes as well 

as the specific wave modeling problems, this data buffering system is capable of 

providing a new set of input operands to the FD computing engine at every clock cycle. 

Although operand stencils of high-order schemes are much wider than the standard 

second-order method, the number of external memory accesses to evaluate one time-

evolution step at one grid point is kept unchanged. In other words, the onboard FPGA 

device effectively absorbs all additional computations introduced by high-order accuracy 

without speed penalty. 

Because the clock rate applied to the FD computing engine and external memory 

modules is within the same range at hundreds of millions Hz, the bandwidth of onboard 

memory would be saturated rapidly and considerable FPGA resources would be wasted. 

Considering the (2, 2) FD scheme we proposed in Section 5.2.3, the computing engine 

for this simplest case consists of ten floating-point arithmetic units (seven additions and 

three multiplications), which cost only a small portion of hardware resources even for 

the fastest fully-pipelined implementation. By choosing high-order FD schemes, we can 

always complicate the computations as necessary to increase the floating-point 

computations to memory accesses ratio and alter the performance bottleneck back to the 

computing engine. In other words, by adopting appropriate high-order FD schemes, we 

can always find a point at which the utilization of the FPGA resources and onboard 

memory bandwidth are well balanced. Moreover, high-order FD schemes allow larger 

sampling intervals so that the total number of spatial grid points is considerably reduced. 
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Consequently, memory bandwidth requirements for the same problem decrease in an 

indirect way.  

 

5.2.7 Damping Boundary Conditions  

 

Seismic modeling problems are naturally posed in unbounded spatial domain, 

which of course are infeasible for digital computer based numerical simulations. A 

conventional approach is to surround the truncated computational domain with artificial 

layers, in which non-physical Absorbing Boundary Conditions (ABC) are applied. ABCs 

are designed to absorb or damp outgoing waves and ensure the consistency of the 

simulation results with respect to the solution of the original problem. Although it is not 

the kernel portion of numerical methods, ABCs always plays a pivotal role in numerical 

modeling tasks: a bad ABC would contaminate the entire simulation result gradually, 

and finally ruin any accuracy we have already gained. Ideal ABCs provide excellent 

attenuation property, but require only a few artificial layers to minimize additional 

computational costs. Unfortunately, these two aspects are contradictory to each other. 

Specifically for our wave field simulation tasks, an effective ABC scheme could easily 

introduce over 20 percent of additional workload.  Previous FPGA-based 

implementations chose to ignore this troublesome problem deliberately [58] or simply 

migrate the software version without modification [57]. The later solution inevitably led 

to a complicated implementation and consumed considerable hardware resources.  

One-way wave equations-based ABCs such as Clayton [60], Mur’s [61], and 

Hidgon’s [62] can only effectively absorb waves with small incident angle, and so are 

unsuitable for high accuracy simulations. By adopting variable splitting technology, 

Perfectly Matched Layer (PML) [63] can provide nearly perfect attenuation with only a 

few artificial layers, and so becomes more and more popular in computational 

electromagnetics and acoustic/elastic wave modeling fields since the 1990s.  Despite of 

its excellent effects, PML introduce non-physical variables in its absorbing boundary 

layers, thereby leading to many more computations than the first approach. One common 
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problem for these two classes of ABCs is that the FD stencils they introduced inside 

absorbing boundary layers have different forms for different layers, or even different 

positions. Although not a problem for general-purpose computers, these ABCs would 

lead to complicated hardware implementation on FPGAs. Another problem is their high-

order variations are either too complex to construct efficiently or inconsistent with 

internal high-order FD schemes. 

Damping Boundary Conditions (DBC) was first introduced by Orlianski as sponge 

layer [64] in 1977. Although its performance was improved significantly later in the 

1980s by Cerjan [65] and Burns [66], they still do not attract attention because the 

required thickness of damping layers may easily exceed hundreds when used with 

conventional low order FD schemes, and so are extremely inefficient in computational 

cost. The situation is significantly changed once we combine DBC with high-order FD 

schemes. Here, we select to modify the original wave equation by introducing a simple 

exponentially damping term.  Consequently, a unified equation that governs both the 

truncated computational domain and absorbing boundary layers is obtained. This 

artificial damping term could be imagined as another media-related parameter to imitate 

natural wave attenuations caused by media’s viscosity. Its value is set to be zero inside 

the original physical domain, but in damping layers, the attenuation intensity is enhanced 

exponentially from inner to outer. 

Compared with those complex boundary equations introduced by other ABCs, this 

single equation approach is extremely attractive for our FPGA-based solution because of 

its simplicity and consistency: only one additional FP multiplier and a short damping 

coefficients table are required in its hardware implementation. Moreover, high-order 

internal FD schemes now are in the same form as absorbing boundary layers except the 

damping coefficients, which can be simply assumed as another media-related parameter. 

In other words, the modified wave equation has a physical correspondence. As we 

introduced before, high-order FD schemes are capable of enlarging spatial sampling 

interval without deteriorating numerical accuracy. Consequently, the damping layers 

with the same physical thickness as before now contain much less grid points. Our 



 

  

80

numerical tests show that 20~40 damping layers are enough to provide satisfactory 

damping results for high-order schemes, results in only less than 5~10 percent of 

additional computations for realistic simulation tasks. 

 

5.3 Numerical Simulation Results  

 

In this section, we use two examples to show the correctness and effectiveness of 

the PFGA-based high-order FD methods for seismic acoustic wave modeling problems. 

Table 10 shows their computational workload and storage requirement. These two 

problems are selected carefully to ensure that they can be fit into our hardware 

development platform.  The target FPGA-based prototyping platform we used in this 

work is an entry-level Xilinx ML401 Virtex-4 evaluation board [67]. Although this 

board provides only limited onboard hardware resources (one XC4LX25 FPGA chip 

embedding 24,192 Logic Cells, 48 DSP Slices and 72 18-kb SRAM Blocks; 64MB 

onboard DDR-SDRAM modules with 32-bit interface to the FPGA chip; and 9Mb 

onboard ZBT-SRAM with 32-bit interface.), it does contain all necessary components 

we need to validate our design. The development environments are Xilinx ISE 6.3i and 

ModelSim 6.0 se. The simulation results are compared with their software counterparts 

running on an Intel P4 3.0 GHz workstation with 1GB memory. The referential C 

program is compiled on Linux OS using Intel C++ v8.1 with optimization for speed (-O3 

–tpp7 and –xK). About 20 percent of CPU’s peak performance is achieved.  

The implementation of the FD computing engine is based on the block diagrams 

presented in Figure 26. As we show in Table 10, there are over one million discrete grids 

for each problem. Onboard DDR-SDRAM spaces are assigned as working space. These 

storage units are organized as four arrays to save the previous pressure field, the present 

pressure field, the unknown future pressure field, and the velocity table, respectively. In 

order to utilize the bandwidth of external DDR-SDRAM more efficiently, an aditional 

cache circuit is constructed for each data array using two on-chip RAM Blocks at the 

interface between SDRAM modules and internal data-buffering subsystem.  This input 
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cache contains two parallel-working 512-word data buffers, each of which can accept a 

whole physical column of data values from SDRAM. They operate in swapping manner 

to hide the irregular data accessing and periodic refreshing behavior of SDRAM 

components. This implementation isolates the data-buffering system and the computing 

engine from the memory interface circuits. Correspondingly, a constant high-speed 

computational throughput could be achieved.  

 

 

Table 10. Size of Wave Modeling Test Problems 

 2D Constant Media 2D Marmousi Model 

Number of Spatial Grids 11001100 ×  7702340 ×  

Total Time Steps 6000 8250 

Storage Requirements 4 Million Words 4 Million Words 

Number of Grid 
Computations 

91026.7 ×  101049.1 ×  

 

 

5.3.1 Wave Popagation Test in Constant Media   

 

The first example is designed to show the computational performance of our 

FPGA-based FD computing engine compared with the referential PC workstation. It is a 

simple 2D seismic modeling task in constant velocity media with 10001000× spatial 

grids and 6000 time-integration steps, which, in total, leads to 9106× grid computations. 

DBC is applied to 50 outer layers on all four boundaries to achieve a nearly-perfect 

absorbing result, which increases the total number of grid computations to 91026.7 × . In 

other words, the introduction of DBC leads to a 20 percent additional workload.  We 
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purposely remain the total number of spatial grids fixed for different FD schemes to 

evaluate the acceleration attributed purely to our hardware implementation. 

Utilizing the onboard 100MHz oscillator, we simply set the clock rate applied to 

onboard DDR-SDRAM modules at 100MHz and to the computing engine at 50MHz. 

(The maximum clock frequency for the DDR-SDRAM modules on the ML401 platform 

is 133MHz. So, the theoretical maximum computational throughput is 66 million grids 

per second.) Compared with the fifty million grid-per-second peak computational 

throughput, the speed of our implementation is degraded for less than 2 percent because 

of pipeline stalls. These stalls occur mainly when we swap input/output caches and when 

we flush the cascaded data FIFOs at the beginning of each time-marching step. 

We modified the single-precision floating-point adder and multiplier proposed in 

[68] as our arithmetic units.  The floating-point multiplier unit is constructed as a 

constant multiplier to save on-chip DSP slices. The floating-point adder is also 

redesigned by ignoring some impossible exceptions. Our simulation results of the 

software and hardware implementations for different FD schemes are shown in Table 10. 

The choice of FD schemes is restricted by available in-chip programmable hardware 

resources on the entry-level evaluation board. We must admit that the performances of 

referential software program might be further improved by low-level tuning and 

optimizations. However, this approach is so experience-intensive that only specialists 

could benefit from it [69]. 

The results shown in Table 11 are satisfactory considering the entry-level 

evaluation board we used in this test. The most exciting observation in this table is that 

the aggregate FP performance of the FPGA-based implementation keeps increasing with 

the order of FD schemes so that a nearly constant grid pressure updating rate is 

maintained. Comparatively, the sustained FP performances for high-order FD schemes 

on commodity computers are reduced significantly due mainly to the poor Level-2 

caching behavior. We emphasize again that the limited main memory bandwidth of the 

evaluation board considerably restricts the clock rate we applied to the FD computing 

engine. For example, a typical fully-pipelined floating-point arithmetic unit such as a 
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multiplier or adder can work at over 200 to 300 MHz on FPGAs. Suppose we had 

integrated one 200MHz 72-bit DDR-SDRAM memory module on the FPGA-enhanced 

computer platform, (This is what we generally have in today’s commodity computers.) 

Because the aggressive onboard memory bandwidth is 800 million words per second, 

this imaginary platform could allow our computing engine to operate at a sustained 

speed of 200 million grid computations per second, which is four times faster than the 

result we obtained on the ML401 platform. Furthermore, if there were more dedicated 

memory channels available on board, we can select to construct multiple FD computing 

engines and let them work concurrently to process their own dataset. Because of the 

nearly perfect parallelism of FD methods, the computational performance would be 

scaled almost linearly. 

 

 

Table 11. Performance Comparison for FD Schemes on FPGA and PC 

Hardware Implementation 

FD 
schemes 

Software 
Computational 

Throughput 
(Million Grid 

/ second) 

Computational 
Throughput 

(Grid/second) 
Speedup 

Resource 
Utilization 

(RAM Blocks/ 
DSP Slices/ 

Logic Slices) 
(2, 2) 33.27 49.71 1.49 14/10/4885 

(2, 4) 27.53 49.63 1.80 18/22/7212 

(2, 8) 19.90 49.50 2.49 26/30/9732 

(4, 4) 15.10 48.38 3.20 26/30/9818 
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5.3.2 Acoustic Modeling of  Marmousi Mode   

 

In this example, we apply our FPGA-based FD methods to accelerate a realistic 2D 

seismic modeling problem. The Marmousi model is a prevailing 2D model with a 

complex underground structure. It was synthesized in the 1990s and had been widely 

used as a benchmark in the seismic data processing industry for calibrating migration 

(imaging) algorithms. The 2D grid mesh covers a geographical domain of 9200m by 

3000m with 4m sampling interval, which leads to 7502300× spatial grids, 8250 time-

integration steps for 3 second wave traveling time, and so 1010432.1 × grid computations 

in total.  

20 damping layers are attached on the left, right and bottom of the computational 

domain to absorbing outgoing energies, while at the mean time, free surface boundary 

condition is applied on the top. The DBC introduces only less than 3 percent of 

additional computational workload. We excite the 2D field with a Ricker wavelet at 

x=5000m, z=8m. The maximum frequency in source wavelet is set at 80Hz. Figure 29 

shows the Marmousi velocity model together with four snapshots obtained by the finite-

accuracy optimized (2, 8) FD computing engine (see Section 5.4 for details) on the ML-

401 evaluation  board. We can notice that there are no visible numerical reflections 

arising from the vicinity of boundaries, which reveals the effectiveness of our DBC 

scheme. 
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5.4 Optimized FD Schemes with Finite Accurate Coefficients  

 

Using IEEE-754 compliant floating-point cores as core components to construct 

the high-order FD computing engine on FPGAs, although straightforward and 

convenient, will consume considerable hardware resources and leads to excessive 

pipeline stages. As we mentioned above, constructing a 16th-order 2D Laplace 

computing engine needs 53 floating-point arithmetic units (33 adders and 20 multipliers). 

The number will rise to about 140 if we decide to build a staggered 4th-order FD 

computing engine for elastic modeling problems [59]. For these complex cases, the 

computing engine becomes too big to be accommodated in even the largest FPGA 

device. In [57], the authors tried to solve electromagnetic FDTD methods using pure 

fixed-point arithmetic on FPGAs. Although significant hardware resources were saved, 

the well-bounded worst-case numerical error provided by standard floating-point 

arithmetic was destroyed. Correspondingly, this approach might work well in some tests, 

but it is not guaranteed to produce correct result for every problem without formal error 

analysis.  

In this work, we decide to remain the floating-point format of wave field values 

unchanged, while adjusting those FD coefficients to simplify the implementation of 

floating-point arithmetic and save programmable hardware resources in FPGA. Because 

values of those floating-point FD coefficients span in a wide range, representing them in 

a fixed-point format will lead to excessive binary bits. Another option is to remain the 

floating-point representation, but customize their format by rounding the mantissa 

portion to fewer binary bits than the standard. Unfortunately, this approach has only 

limited impact and will lead to unacceptable numerical dispersion errors in most cases. 

In Figure 30, we compare dispersion errors of the maximum 8th-order FD scheme with 

accurate FD coefficients, the scheme that truncate the mantissa portion of its FD 

coefficients to 16 binary bits, and the scheme that use only 8 mantissa bits. We can 

observe that simply truncating mantissas may save us only minimal programmable 

hardware resources but not too many. For example, we may use customized floating-
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point format with 16 mantissa bits without significantly deteriorating numerical features. 

If we were overly aggressive by choosing only 8 binary bits, the numerical dispersion 

error becomes unacceptable. 

 

 

 
Figure 30. Numerical Dispersion Errors for the Maximum 8th-Order FD Schemes 

with 23, 16, or 8 Mantissa Bits 

 

 

We attack this problem by means of improved numerical algorithms/methods. We 

try to design a new class of FPGA-specific FD schemes, which can be implemented 

much more efficiently with similar numerical performance and computational accuracy 

as the standard maximum order FD schemes. As we introduced above, maximum order 

FD schemes determine their coefficients by cancelling as many the lower order Taylor 

expansion terms as possible. Although optimal from a mathematical standard, by 

examining the dispersion relation plotted in Figure 18 and 19, we can tell that this class 

of FD schemes provides excessive accuracy within low wave-number band at the cost of 

rapidly-worsening numerical performance in high wave-number band. To compensate 

for this disadvantage, we designed a new class of FD schemes by improving their 
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numerical dispersion relation rather than pursuing formal accuracy representation. This 

class of methods also utilizes central ( )12 +m -point stencil to approximate each spatial 

second derivative term. By dropping the requirement of maximizing the order of un-

cancelled truncation term, we now need only the least necessary accuracy order to keep 

our FD schemes numerically convergent to the original PDE. The values of all 

remaining FD coefficients in Equation (5.7) are optimized to minimize the square of 

phase-speed errors of the discretized wave equation inside its working wave-number 

band, which also corresponds to a frequency domain Least Square (LS) error criterion. 

Keeping the LS criterion in mind, we now further optimize these FD coefficients 

so that they can be represented by only a few binary bits without seriously deteriorating 

its frequency-domain dispersion relation. This optimization is meaningless for 

commodity computers with standard floating-point arithmetic units. However, its 

advantage on FPGA-enhanced computers is obvious: For FPGA devices without 

hardware multipliers, fewer partial sums would lead to less occupation of programmable 

hardware resources; FPGA devices with on-chip multipliers can also benefit from this 

approach because of the reduction of latency. Mathematically, this is a constrained 

optimization problem, which can be solved by standard methods such as the Simplex 

method [70]. In practice, Simplex may stagger at concave points or even diverge when 

the problem is ill-conditioned. To address this problem, in this work, we designed a class 

of finite-accurate FD coefficients optimization algorithm, which is a simple heuristic 

approach to reach sub-optimal results.  

 

 

Algorithm 3. Finite-accurate FD coefficients optimization 

Calculate all (m+1) LS-based optimal coefficients mr
m
r L0=α  

For  r = m  down to  2 

   Restore the leading one of the mantissa portion of m
rα  

   Round it to the most six significant bits 
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   Solve the LS problem with mrk
m
k L=α as constraint conditions 

End 

Set m
0α equals to ∑

=

⋅
m

r

m
r

1
2 α   for consistency 

Round m
0α  and m

1α  to 18-bit fixed-point format 

 

 

In this algorithm, the largest two coefficients in the middle of FD stencils are 

represented by 18-bit fixed-point format because their values are pivotal to the 

performance of numerical dispersion relation. (The number 18 is selected because of the 

word-width of on-chip multipliers inside Xilinx’s FPGA devices.) For all others, we 

represent them in floating-point format with only six mantissa bits so that corresponding 

multiplications can always be finished by an on-chip multiplier within one clock cycle. 

Further hardware optimization is possible if we select to make use of some new features 

of up-to-date FPGA devices. We always normalize the leading bit of these coefficients 

to be 1 by shifting so that all six bits are effective in our representation. Expressing 

exponents of these coefficients explicitly are unnecessary because the corresponding 

exponent adjustment can be easily implemented by adding a constant to the original 

exponent of the multiplicand. Figure 31 shows us the structure of this fully-customized 

floating-point constant multiplier. We note that the word-width of the product could be 

42 or 31 according to the word-width of the coefficient. 
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Figure 31. Structure of Constant Multiplier 

 

 

We notice from the algorithm that those FD coefficients are decided one by one 

from the smallest to the largest. This sequence is critical to the final numerical accuracy 

of this class of FD methods. An intuitive explanation is that once rounding errors are 

introduced into large coefficients, it is difficult to compensate by only adjusting those 

smaller ones.  

 

Table 12. Coefficients of 3 FD Schemes with 9-Point Stencils 

FD schemes 
Coefficients 

Maximum 8th-order Optimal  Finite-accuracy (Hex.) 
4
0α  2.8472223 2.9555101 2.9552002(403d2200) 

4
1α  3.2000000 3.3781638 -3.3778076(c0582e00) 

4
2α  0.4000000 0.4969828 0.4970703(3efe8000) 

4
3α  0.0507937 0.0828245 -0.0830078(bdaa0000) 

4
4α  0.0035714 0.0084953 0.0085449(3c0c0000) 

 

A simple example is used to show the effectiveness of this heuristic optimization 

algorithm. We select FD schemes with 9-point stencil, so there are in total five unknown 
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coefficients. We also restrict the normalized working wave-number band to be less than 

0.5, which corresponds to four spatial sampling points per shortest wavelength. Table 12 

lists values of these coefficients for the 8th-order FD scheme, the full-accurate optimal 

scheme, and our finite-accurate scheme. Figure 32 plots dispersion relations for these 

three FD schemes together with the ideal wave equation. Figure 33 is an amplified 

version of Figure 32, showing us numerical errors caused by FD approximations. We 

also show in these figures the dispersion relation of the maximum 16th-order FD scheme 

as reference. From these figures, we can observe that optimized FD schemes provide 

much wider effective working wave-number band than maximum-order schemes at the 

cost of negligible approximation error. Furthermore, our finite-accurate schemes can 

provide similar performance as full-accurate optimal schemes with much simpler 

coefficient representations. 

 

 

 
Figure 32. Comparisons of Dispersion Relations for Different FD Approximations 
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Figure 33. Dispersion Errors for Different FD Approximations 

 

5.5 Accumulation of Floating-Point Operands  

 

In previous sections, we introduced our design of a fully-customized data buffering 

system to improve data reusability. This sliding window-based structure is constructed to 

feed the FD computing engine a new set of operands at every clock cycle so that the 

wave-field grids can be updated at the same speed. Correspondingly, all of those 

constant coefficient multipliers work parallel to create a new set of products, after which 

the intermediate results are accumulated set by set at the same speed to achieve sustained 

high computational throughput.  

A fully-pipelined floating-point adder tree structure, as shown in Figure 34, is most 

people’s first choice to meet the requirements. However, it is not always the best choice 

for us to implement a numerical algorithm/method by simply mapping the software 

subroutine or computations into FPGA. Specifically, for summation of floating-point 

operands, this naive binary-tree based reduction circuit has the following pitfalls: 
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• Floating-point addition is one of the most complicated computer arithmetic, which in 

general, costs an FPGA device several hundreds of Logic Slices. Only the largest and 

most expensive FPGA chips can provide enough programmable resources to 

accommodate tens of floating-point adders demanded by FD schemes with wide 

stencils.  

• In order to achieve high data throughput, a floating-point adder in general consists of 

seven to ten sub-stages. A large adder tree structure can easily introduce hundreds of 

pipeline stages, which may complicate the internal data buffering design, and also 

affect the pipelining efficiency because of the start-up latency. 

 

 

 
Figure 34. Binary Tree Based Reduction Circuit for Accumulation 

 

 

In this section, we propose a group-alignment based summation algorithm to 

accumulate those floating-point products produced by coefficient multipliers in floating-

point/fixed-point hybrid arithmetic. This hardware-based algorithm can result in similar, 

or even better, worst-case absolute and relative errors as ordinary summation methods 

using standard floating-point arithmetic. Also, the total number of pipeline stages 

required for the new FD computing engine would be reduced significantly. As we will 

introduce in the next section, the combination of the optimized FD coefficient 

multipliers and the group-alignment based summation unit would save us considerable 
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hardware resources while implementing on FPGA-enhanced computers. Consequently, 

higher-order FD schemes could be adopted for better numerical performance. Here, we 

bring out the basic idea of this approach and postpone detailed numerical analysis and 

proof to the next section. 

Our goal is to design an FPGA-specific numerical algorithm to compute the 

floating-point summation ∑
=

=
n

i
isS

1
 with similar or better relative and absolute errors 

than the standard IEEE-754 compliant floating-point arithmetic. Furthermore, the 

algorithm’s hardware implementation should be compatible with the proposed FPGA-

enhanced computer platform. It is asked to accept a new set of floating-point inputs and 

produce a new output in the same format at each clock cycle if pipelining technique is 

properly applied. Here, we propose the group-alignment based floating-point summation 

algorithm as follows: 

 

 

Algorithm 4. Group-alignment based floating-point summation 

Input: A set of n floating-point numbers s1, s2, …, sn from preceding multipliers 

Output: The summation result nsssS +++= L21  

1. Split each summand si into two portions as Mantissa and Exponent and restore every 

Mantissa portion Mi to normalized form Fi. 

2. Find the largest Exponent Emax within Ei  

3. Calculate (Emax -Ei ) for i=1 to n 

4. Shift Fi to right by (Emax -Ei) bits, round the shifted fractions to nearest if necessary.  

5. Sum up all shifted Fi  

6. Normalize the summation result into IEEE- compliant format. 

 

 

The basic idea of this group-alignment based summation algorithm is relatively 

straightforward: Instead of the original floating-point adder tree structure, where the 
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comparison of exponents and the addition of shifted mantissa are scattered in different 

adders, we now collect them to form an exponent comparison tree in Step 2 and a fixed-

point adder tree in Step 5. The hardware correspondences for other steps such as 1, 3, 

and 4 are also clustered together so that only one pipeline stage is needed for each 

function step. The advantage of this arrangement is obvious: We now do not have to 

round or normalize every intermediate addition result at the final stage of each floating-

point adder. Instead, only one step at the end of this large summation unit is sufficient. 

Correspondingly, we can save almost half of reconfigurable hardware resources in 

FPGA-based implementation, and the total number of pipeline stages is reduced 

significantly. Figure 35 shows us the structure of this group-alignment based floating-

point accumulator.  

 

 

 
Figure 35. Structure of Group-Alignment Based Floating-Point Accumulator 
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5.6 Bring Them Together: Efficient Implementation of the Optimized FD 

Computing Engine  

 

We’ve proposed a new class of optimized finite-accurate FD schemes, whose FD 

coefficients are optimized to be represented by only a few binary bits without 

deteriorating numerical accuracy criterions. Furthermore, we replace the subsequent 

costly floating-point adder tree by a floating-point/fixed-point hybrid accumulator 

utilizing group-alignment technology. The resulting fully-pipelined FD computing 

engine with finite accurate coefficients can provide similar, or even better, worst case 

relative and absolute rounding errors than ordinary design using standard floating-point 

arithmetic, but consumes only a fraction of programmable hardware resources.  

As an example, the 9-point finite-accurate FD computing engine is implemented on 

an entry-level Virtex-4 ML-401 evaluation board. FPGA resource occupations, as well 

as computational performance, are analyzed and compared with our previous designs 

using standard single-precision floating-point arithmetic units. We rewrite the 9-point 

1D Laplace operator as follows: 

( )
( )( )8

2

4

1

44
0int9

2
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dxO
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⎞
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⎛
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=
∂
∂ ∑

=
−+− αα

   (5.17) 

Those constant values of coefficients 4,,0
4

L=rrα  for different FD schemes can be found in 

Table 9.  

Ignoring the division by ( )2dx , which can be easily absorbed into those constant 

coefficients, there are, in total, 5 multiplications and 8 additions. The fully-pipelined 

implementation shown in Figure 36 is based on standard single-precision floating-point 

arithmetic. It costs 20 embedded 18X18 multipliers and over 3,300 Logic Slices. The 

total number of pipeline stages is about 50.  
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Figure 36. Structure of 1D 8th-Order Laplace Operator 

 

 

An in-depth observation reveals that for this straightforward implementation, 

considerable hardware resources are wasted mostly on unnecessary normalization or 

alignment stages before and after every floating-point arithmetic unit. Moreover, 

inappropriate rounding on intermediate results may significantly jeopardize the 

numerical accuracy of ill-conditioned summations. In our new implementation, the 

optimized finite-accurate FD computing engine is customized globally to eliminate 

redundant operations. A floating-point/fixed-point hybrid approach is adopted, where the 

input and output values of this computing engine are all in floating-point representations 

to be compatible with conventional data processing software, but almost all internal 

stages use fixed-point arithmetic to save hardware resources as well as pipelining 

latencies. Figure 37 shows the corresponding hardware structure. 
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Utilizing embedded hardware multipliers may result in efficient and high-speed 

implementation for computation-dominated applications. However, because their layout 

inside an FPGA chip is pre-assigned to satisfy algorithms with some special patterns, 

one might always feel that the position constraints seriously limit their utilization for the 

application at hand. One important benefit of the optimized finite-accurate FD 

coefficients is that only the largest two coefficients in the middle of FD stencils are in 

18-bit fixed-point format, which is ideal with embedded 18X18 multipliers. All other 

coefficients are represented by only six binary bits. The corresponding multipliers can be 

constructed efficiently by distributed logic slices. For example, a fixed-point 24-by-6 

bits fully-pipelined parallel multiplier costs less than 90 logic slices. Moreover, there are 

no particular position constraints for it so that this multiplier could be placed anywhere 

inside an FPGA device. 

Another benefit is not so obvious: In Figure 36, considerable global 

interconnection resources inside the FPGA chip are consumed to send operands to first-

level adders. This structural property inevitably leads to cumbersome layout and low 

clock frequency, especially for FD schemes with wide stencils. By adopting the finite-

accuracy optimized FD schemes, hardware resources required by coefficient 

multiplications decrease significantly, and so we are now allowed to exchange the 

arithmetic order of first-level additions and subsequent multiplications as we show in 

Figure 37. Although the number of coefficient multipliers is almost doubled, they 

occupy similar, or even less, hardware resources than before. Because most data paths 

are localized, the computing engine can now work at a much higher clock rate. 

Consequently, better computational performance would be achieved. 

Utilizing nine unfolded barrel shifters, outputs of nine constant multipliers are 

aligned to the one with the largest exponent. Round-to-nearest scheme is applied to 

every shifter. In our implementation, the word-width of these barrel shifters is set to 42 

bits conservatively, which is also equal to the largest word-width of those products 

produced by preceding multipliers.  
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This new floating-point/fixed-point hybrid approach provides much better worst 

case error bound than standard floating-point arithmetic with less than half of 

programmable hardware resources consumed. Our implementation costs only 6 

embedded 18X18 multipliers and about 1500 Logic Slices, which corresponds to less 

than 20% of available FPGA resources on the evaluation board. Furthermore, the regular 

layout and localized interconnections of this design lead to much higher computational 

throughput, especially for FD schemes with wide stencils. The clock rate applied to the 

computing engine is about 200MHz for 13 pipeline stages or 230MHz for 15. Higher 

clock rate can also be achieved if more pipeline stages are introduced. Simplicity and 

scalability are other desirable properties of this design. Choosing more fraction bits into 

the new summation unit consumes negligible additional hardware resources, but can 

significantly improve numerical error bounds.  
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6. FEM ON FPGA-ENHANCED COMPUTER PLATFORM 
 

In this section, we will introduce our work on accelerating Finite Element Methods 

(FEM) on the proposed FPGA-enhanced computer platform. The origins of FEM can be 

traced back to the 1940s, when they were developed to solve complex structural 

modeling problems in civil engineering. Mathematically, the solution is based either on 

eliminating the differential equation completely (steady state problems), or rendering the 

PDE into an equivalent ordinary differential equation (ODE), which is then solved using 

standard numerical methods. Today, FEM has been generalized into an important branch 

of applied mathematics for numerical modeling of physical systems in a wide variety of 

scientific & engineering fields such as electromagnetics, fluid dynamics, climate 

modeling, reservoir simulation, etc.  

As we’ve already learned in Section 5, the primary challenge in solving PDEs is to 

approximate the equation to be studied with an expression that is numerically consistent 

and stable. By doing so, the numerical solution would finally converge with the original 

PDE if appropriate discretization is applied. In other words, errors hidden in input data 

sets and emerging from intermediate calculations would not accumulate severely, and 

would eventually lead to contaminated results. Just as in FDM, FEM begins with mesh 

discretization of a continuous physical domain into a set of discrete sub-domains so that 

the original infinite-dimensional equation is projected into finite dimensional subspace. 

From this point of view, FDM could be treated as a special case of FEM. However, 

FDM requires the entire computational domain to be discretized with rectangular shapes 

or simple alternatives. Moreover, the discretization must be sufficiently fine to resolve 

both the high-frequency wavelet components and the smallest geometrical feature. 

Consequently, large computational domains could be developed, which would result in 

extraordinary computational workload. Comparatively, FEM is a good choice for 

solving PDEs over a large computational domain with complex boundaries and minute 

geometrical features, or when the desired precision varies over the entire domain. For 
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instance, when simulating weather patterns on Earth, it is more important to make 

accurate predictions over land than over the wide-open sea. 

The first step of FEM is meshing, which is the process of breaking up a continuous 

physical domain into smaller sub-domains (elements). For example, surface domains 

may be subdivided into triangular or quadrilateral shapes, while volumes may be 

subdivided into tetrahedral or hexahedral shapes. Although mesh generation is a key 

portion of FEM and will decide the final approximation accuracy, it is only one of the 

pre-processing steps of FEM and consumes a small portion of the total execution time. 

Moreover, mesh generation methods in general integrate complex control-dominated 

subroutines such as automatic grid generation or adaptive mesh refinement, and 

therefore could not be accelerated effectively with today’s PFGA devices.  

The final and most time-consuming step of FEM is the solution of large linear 

system equations generated by discretizing PDE. Basic Linear Algebra Subprograms 

(BLAS) are standard toolkits for scientists and engineers to perform such linear algebra 

operations. Because of their popularity, these subroutines are always well-tuned by 

software vendors, and therefore execute very fast on commodity computers. We know 

that the computational complexity of the solution of a linear system equations using 

standard linear algebra methods such as Gaussian Elimination (GE), QR or LU 

factorization is ( )3nO , where n  is the number of system unknowns. Consequently, such 

conventional methods are considered feasible only for small problems, with up to 

thousands of system unknowns. For most realistic numerical PDE problems, where large 

linear system equations with millions, even billions, of unknowns are involved, such 

computation-dominated methods are generally impractical. Fortunately, the matrices 

derived from such problems are sparse (most entries of the matrix are zero). So, another 

class of linear system equations solvers, called iterative methods, could be applied for 

their rapid (but inaccurate) solutions.  

Because of all the reasons mentioned above, in this work, we decide not to 

reference mesh generation subroutines of FEM, but investigate FPGA-specific methods 

for rapid solutions of basic BLAS subroutines on the proposed FPGA-enhanced 
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computer platform. We will introduce our work on accelerating all three levels of BLAS 

functionality as Level-1 regarding vector operations, Level-2 regarding matrix-vector 

operations, and Level-3 regarding matrix-matrix operations. Results of this work can be 

applied directly to accelerate the solution of dense/sparse linear system equations. 

Floating-point arithmetic is always preferable to fixed-point arithmetic in 

numerical computations because of its ability to scale the exponent for a wide range of 

real numbers. With commercial or open-source parameterized floating-point libraries [21] 

[22], floating-point computations on FPGAs become straightforward and convenient. 

However, this standard approach requires much more programmable hardware resources 

than their fixed-point counterparts. Moreover, it leads to excessive computation latency. 

For example, constructing a fully pipelined single-precision floating-point adder on 

Xilinx Virtex-II Pro device consumes over 500 logic slices with 16 pipeline stages [71]. 

Analogously, a double-precision unit with similar performance costs nearly 1000 logic 

slices with over 19 pipeline stages.  

For specific S&E problems at hand, it is always possible, and indeed desirable, to 

adopt customized floating-point formats by making tradeoffs among accuracy, area, 

throughput, and latency [72] [73]. Efforts were also made to investigate the possibility of 

replacing floating-point operands and operations by fixed-point arithmetic thoroughly 

[74] [57]. However, most of these works only demonstrated these feasibilities by 

numerical evidences without rigorous mathematical proofs, and therefore were 

unconvincing for religious numerical scientists.  

Instead of directly enhancing the capability of standard floating-point arithmetic, in 

this work, we select to boost the computational performance of basic BLAS subroutines 

on FPGAs by improving their numerical accuracy and hardware efficiency. Here, we 

interpret improved numerical accuracy as similar, or even better, relative/absolute 

rounding error compared with software subroutines using standard floating-point 

arithmetic. Hardware efficiency means that the resulting implementation consumes 

comparable or less hardware resources on FPGAs than existing conventional designs, 
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but can always achieve better sustained execution speed with only moderate start-up 

latency.  

 

6.1 Floating-Point Summation and Vector Dot-Product on FPGAs 

6.1.1 Floating-Point Summation Problem and Related Works 

 

Floating-point summation is such an important operation in numerical 

computations that some computer scientists even suggested to import it into general-

purpose CPUs as “the fifth floating-point arithmetic” [75]. Unlike other fundamental 

floating-point arithmetic, summation is not well-conditioned because of so-called 

“catastrophic cancellations” [76], i.e. small relative errors hidden in inputs might lead to 

significant relative error in output.  To complicate the situation, the sequence of 

consecutive additions will also affect the final sum, resulting in un-unique solutions for 

the same input data set on different computer platforms with different programming 

languages or software compilers [77]. On the bright side, this un-uniqueness relieves us 

from strictly obeying the IEEE standard in our FPGA-based implementation. The only 

constraint imposed in our design is to select the exact solution as accuracy criterion. 

Given a set of n  floating-point numbers nsss ,,, 21 L  with small relative errors Mε , 

our goal is to design an FPGA-specific numerical algorithm as well as its hardware 

implementation to compute the summation of ∑
=

=
n

i
isS

1
 accurately and efficiently. 

Specifically, we assume that the summation unit has only one input port to feed in 

summands as well as one output port to send out final results. This assumption is 

consistent with the memory-bandwidth-bounded property of floating-point summations 

because there is only one addition corresponding to each summands.  

The following criteria are used to compare the performance of our FPGA-based 

design with others: 
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a. Efficiency. The summation unit consumes comparable FPGA programmable 

hardware resources and can work at a similar or even higher speed as a conventional 

fully-pipelined floating-point accumulator.  

b. Throughput. The fully-pipelined summation unit should work at its highest sustained 

speed, accepting a new summand at every clock cycle without excessive pipelining 

stalls. 

c. Latency. The summation result should be available with only moderate latency after 

the last summand entering this arithmetic unit. 

d. Accuracy. Summation results of this new arithmetic unit should have similar, or 

better, relative and absolute errors than results produced by the standard sequential 

accumulation algorithm utilizing IEEE-754 compliant floating-point arithmetic. 

 

 

 

Figure 38.  Conventional Hardwired Floating-Point Accumulators (a) Accumulator 

with Standard Floating-Point Adder and Output Register; (b) Binary Tree Based 

Reduction Circuit 
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At first glance, a simple accumulator using one floating-point adder with its 

registered output connecting to one of the adder’s input ports can do the job perfectly 

(Figure 38(a)). However, unlike a single-cycle fixed-point accumulator whose output 

can be fed back to the input port immediately as intermediate results for consecutive 

summations, the data dependency associated with the pipelined floating-point adder will 

severely slow down the data throughput of the corresponding accumulator. This 

deficiency doesn’t meet the requirement we just mentioned in criterion (b). Another 

extreme is to accumulate n  floating-point numbers using a binary tree based reduction 

circuit with ( )1−n  adders and n2log  tree levels (Figure 38(b)). If the pipelining technique 

was properly applied, this approach can accept a new set of inputs and produce a new 

output at each clock cycle. Therefore, this approach is too extravagant for our single 

input/output unit and won’t result in efficient implementation as we required in criterion 

(a).  

One possible way to address the data dependency problem caused by pipelined 

addition is to introduce a “schedule” circuit and carefully-designed input/intermediate-

sum buffers [78]. This approach treats all intermediate-sums the same way as input 

summands, and so the original summation task with ( )1−n  summations and 

n summands are now converted to ( )1−n  additions of ( )22 −n  addends. With the help 

of efficient data buffering design, ideally this task could be finished by an adder within 

( )1−n  clock cycles. However, limited by the only external input port of the summation 

unit, the adder has to rely on its own output to feed back operands, which may not 

always arrive on time because of the adder’s deeply-pipelined internal stages. In order to 

finish the summation task as soon as possible, the main task of the scheduler is to 

monitor the internal dataflow of the pipelined adder and try its best to feed the adder’s 

two input ports with operands. Because considerable idle cycles would always be 

inserted at the beginning and the end of the process, latency may become a potential 

problem for this approach, especially when n  is not a large number. Moreover, the 

scheduler requires considerable register resources to buffer inputs and intermediate-sums, 

which may be unfeasible on FPGAs without internal SRAM blocks.  
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In [79], the authors proposed a technique called “delayed addition” to remove carry 

propagation from the critical paths of pipelined integer or floating-point accumulations. 

The resulting FPGA-based implementation meets our requirements for high-throughput 

and low-latency. However, because considerable hardware resources are consumed to 

construct Wallace-tree based 3-2 compressors as well as overflow detection/handling 

circuit, this summation unit is four times more expensive than what we expected in 

criterion (a). Furthermore, unlike the design in [78], where the accuracy of the final 

result is guaranteed by the standard floating-point adder, the authors only demonstrated 

the feasibility of their approach by simple numerical tests without rigorous proof, and so 

its correctness and accuracy is still questionable. 

 

6.1.2 Numerical Error Bounds of the Sequential Accumulation Method  

 

Over the last few decades, people devised and analyzed many numerical 

algorithms for accurately computing floating-point summation. However, most of these 

software approaches are based on sorting the input data set in increasing or decreasing 

order by absolute value. Their computational complexity is dominated by 

sorting ( )( )nnO log⋅ , so is much more expensive than the naïve sequential accumulation 

method.  

Here, we first analyze error properties of sequential accumulation. Then, we use 

the result as reference to steer our new FPGA-specific summation algorithm. Assuming 

the rounding scheme of a computer with standard floating-point arithmetic is round-to-

nearest-even, we have the following error bounds for fundamental floating-point 

arithmetic [80]: 

 

Lemma 1: Let Mε be the unit rounding-off on a computer with standard floating-point 

arithmetic ( 242−=Mε  for single-precision arithmetic, or 532−=Mε  for double-precision 

arithmetic). Then the absolute error and relative error for fundamental floating-point 

operations (op  can be either ÷×−+ or,,, ) can be represented as: 
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Myopxyopxyopxfl ε⋅≤− )()(        (6.1) 

Myopxyopxyopxfl ε≤− )()(        (6.2) 

 

Keeping this result in mind, we can easily prove by mathematical induction the 

following lemma: 

 

Lemma 2: Let Mε be the unit rounding-off on a computer with standard floating-point 

arithmetic. Then the absolute error and relative error bounds for floating-point 

summation: nsssS +++= L21 introduced by the naïve sequential accumulation 

algorithm can be represented as: 
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21  is the relative condition number of floating-point 

summation. 

Proof:  

Let ( )ii sssflS +++= L21 . From Lemma 1, we have:  
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Continuing in this way, we can prove by induction that: 
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Where 1,,2,1 −=≤ niforMi Lεε  
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Because 1<<Mε , we have the following two relations: 

Mn n εδεεε )1)(1(1)1()1)(1( 121 +−+≤+++ −L      (6.8) 

niforinnii ,,3,2)1)(1(1)1()1)(1( 11 LL =++−+≤+++ −+ εδεεε   (6.9) 

where δ is also a tiny quantity and can be absorbed into Mε without affecting the 

final conclusion. We choose to ignore it from now on. 

The worst-case absolute rounding error can be represented as: 

( ) { } MnMn

MnMMnn

nnsssnsss

snsnsSSe

εε

εεε

)1(,,,max)1(

)1()1(1())1(1(

2121

21

−⋅⋅≤−⋅+++≤

++−++−+≤−=

LL

L
 (6.10) 

Correspondingly, the relative error can be represented as:  
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We also note from Equation (6.7) that the naïve sequential accumulation method 

doesn’t result in a unique solution for different summation sequences. The “less than or 

equal to” signs in expression (6.3) and (6.4) imply that the error bounds here are tight. 

Putting it another way, we may always encounter the worst case if we mistakenly choose 

summation sequence or input data set.  

 

6.1.3 Group-Alignment Based Floating-Point Summation Algorithm  

 

The un-uniqueness of floating-point summations relieves us from strictly 

complying with the IEEE standard. Here, we select the exact solution as the only 

accuracy criterion and propose the group-alignment based floating-point summation 

algorithm as shown in Algorithm 5. 

We notice that this new algorithm is almost the same as Algorithm 4 we proposed 

in Section 5.5 for accumulating intermediate results produced by FD coefficient 

multipliers. Indeed, we can consider Algorithm 5 as a generalized version of Algorithm 

4: The same group-alignment technique is also applied as before. The main difference is 

that the input dataset is now sequentially fed into the only input port of the hardwired 
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summation unit. Correspondingly, internal data buffering is necessary here. However, 

the size of the input dataset could range from as few as three to as many as millions. 

Sometimes it is even impossible to buffer all elements of the dataset on a chip. To 

relieve this capacity constraint, we have to partition the input dataset into small group of 

summands and apply the group-alignment based summation method group by group. 

Therefore, the complex synchronization circuit is indispensable for automatic 

partitioning with only moderate idle cycles.  We will revisit the detailed implementation 

of the summation circuit on FPGAs in Section 6.1.5. 

 

 

Algorithm 5. Group-alignment based floating-point summation 

Input: A set of n floating-point numbers s1, s2, …, sn which are partitioned into groups 

with m summands 

Output: The summation result nsssS +++= L21  

For k=1 to n/m 

1. Split each summand si in this group into two portions as Fraction and Exponent. 

Restore the hiding bit in Fi to form the mantissa Mi. 

2. Find the largest Exponent Emax within Ei  

3. Calculate (Emax -Ei ) for i=1 to m 

4. Shift Mi to right by (Emax -Ei) bits, round the shifted fractions to nearest-even if 

necessary.  

5. Sum up all shifted Mi using fixed-point arithmetic 

6. Feed rounded Msum together with Emax to the subsequent simplified floating-point 

accumulator 

End 

Normalize the final summation result to IEEE- compliant floating-point format. 
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6.1.4 Formal Error Analyses and Numerical Experiments  

 

We predict intuitively that this group-alignment technique facilitates floating-point 

summations more accurately than standard arithmetic because almost all rounding errors 

arising in partial-sums within a group are eliminated except the last one in Step 6. To 

prove the correctness of this declaration, let’s consider the group-alignment based 

summation with m summands.  Because this algorithm utilizes the same monotone 

rounding scheme (round-to-nearest, towards-zero or away-from-zero) as standard 

floating-point arithmetic, averaging will have the same effect on rounding error 

propagations. Here, we analyze the worst case errors only.  

 

Theorem 1: The group-alignment based floating-point summation algorithm can always 

result in a unique solution for the same summand group, regardless of the accumulation 

sequence. 

Proof: In Step 4 of the algorithm, all summands within a group are aligned to the one 

with the largest exponent. Also, because a fixed-point accumulator is used in Step 5, 

which introduces no rounding errors in computations, a unique solution can always be 

achieved regardless of the sequence by which those summands are accumulated.   

 

Let M'ε  be the unit rounding-off on a computer with the new summation unit. Its 

value now equals to half of the minimal quantity represented by the mantissa 

accumulator, which is set to be the same as standard floating-point arithmetic 

temporarily, i.e., 23 fraction bits for single-precision inputs or 52 bits for double-

precision. Numerical error analyses show us the following result: 

 

Theorem 2: The group-alignment based summation algorithm achieves similar, or even 

better, worst case relative and absolute errors than the sequential accumulation algorithm 

with standard floating-point arithmetic, depending on the choice of M'ε . 
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Proof: After aligning all mantissas of summands to the one with the largest exponent, 

the absolute rounding error for each right-shifted floating-point summand except the 

largest one (which introduces no rounding error assuming the number itself is exact.) can 

be represented as: 

{ } Mmi ssse ',,,max' 21 ε⋅≤ L        (6.12) 

The worst case absolute error of the summation after fixed-point aligned-mantissa 

accumulation is: 

( ) { } MmS sssme ',,,max1' 21 ε⋅⋅−≤ L       (6.13) 

The corresponding maximum relative error is:  
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     (6.14) 

Comparing Expression (6.13) and (6.14) with (6.3) and (6.4), we conclude that 

Theorem 2 holds.  

 

Observing Expression (6.14), we note another efficient method to further improve 

error bounds: It is convenient to decrease M'ε  on FPGA-based solutions by using more 

fraction bits to represent/manipulate those aligned summands and corresponding fixed-

point summations. On the contrary, this approach is painful on commodity computers 

because users have to simulate high-accurate floating-point operations (double-extended 

or double-double) by software subroutines [81]. 
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Table 13. Errors for the New Summation Algorithm 

Fraction bits 
Maximum/Average 

absolute error 
(Condition number) 

Maximum relative error 
 (Condition number) 

23 5.14e-7/9.03e-8(73.5) 0.143 (4.13e+6) 

24 2.68e-7/4.94e-8(1.58) 0.0857 (4.13e+6) 

25 1.08e-7/1.72e-8(1.98) 0.0857 (4.13e+6) 

26 5.22e-8/2.77e-9(4.51) 0.0182(5.97e+6) 

27 1.86e-8/1.78e-9(2.49) 6.85e-4(1.71e+5) 

28 7.45e-9/5.06e-10(2.88) 1.08e-4(1.43e+5) 

29 3.73e-9/1.36e-10(2.06) 7.65e-5(2.35e+5) 

32 2.33e-10/2.24e-12(16.72) 2.13e-6(3.25e+4) 

Single-precision 5.29e-7/4.02e-8(1.45) 0.0857(4.13e+6) 

 

 

A MATLAB program is used in this work to demonstrate error properties of our 

new summation algorithm. We first create one million groups of single-precision 

floating-point operands as input data sets, each of which contains ten uniformly-

distributed random summands ranging from -0.5 to 0.5. The group-alignment based 

summation is executed for each input data set and the worst case absolute and relative 

errors are recorded and compared with results produced by the sequential accumulation 

algorithm with standard single-precision arithmetic. Using double-precision arithmetic 

results as a reference, Table 10 lists the recorded maximum/average absolute errors and 

maximum relative errors for the new summation algorithm utilizing different fraction 

bits. Relative condition numbers of summations are also calculated to show their impacts 

on final results. Important observations are listed as follows: 

• The same conclusion as Theorem 2 regarding the worst case/average absolute errors 

can also be drawn from the first column in Table 10. Furthermore, these errors 

decrease proportionally to the number of fraction bits we adopted. This observation 

correlated well with the error expression (6.13).  
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• Numerical stability theory [82] tells us that: 

errorrelativeInputnumberConditionerrorrelativeOutput ×≤   (6.15) 

We note that catastrophic cancellations happened in those listed worst cases in 

column two because of large condition numbers. Initial relative errors hidden in the 

input data set are magnified dramatically so that error digits in solutions are now 

much closer to the most significant digit. Here, we cannot observe a clear relation 

between errors and the number of fraction bits as in column 1. The reason is that 

these bad-conditioned cases are still far from the worst ones so that most details are 

hidden by the “less than or equal to” sign in Expression (6.14). Indeed, we can easily 

create a floating-point data set with all digits of their summations contaminated.  

• Comparatively, condition numbers listed in column one are all moderate. An 

intuitive explanation to this coincidence is that when condition number of summation 

is small, most significant operands have the same sign so that the absolute error 

bound in expression (6.13) is tight. However when condition number of summation 

is large, results are much smaller than the largest operands. Correspondingly, those 

significant operands tend to have opposite signs and cancel others.  

• Although the new summation algorithm has improved worst-case error bounds, it 

doesn’t mean that this approach can always produce better results for every input 

data set. For example, the average absolute error for our algorithm with 23 fraction 

bits is about twice as bad as the conventional sequential accumulation approach 

using single-precision arithmetic. Indeed, it is a little unfair to compare these two 

cases because the conventional implementation of single-precision floating-point 

addition in general has three more guarding bits. 

 

6.1.5 Implementation of Group-Alignment Based Summation on FPGAs  

 

Using the simplest single-precision floating-point accumulator as an example, we 

introduce in detail our implementation of the group-alignment based summation 

algorithm on FPGAs. Extending this design to double-precision or extended-precision is 
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easy and straightforward with nearly the same computational performance if appropriate 

pipelining stages were inserted. An entry-level Virtex II Pro evaluation board [81] is 

used as the target platform. The software development environments are Xilinx ISE 7.1i 

and ModelSim 6.0 se. Figure 39 shows the hardware structure of the summation unit.  

The following features distinguish this design from others [78] [79]: 

• To be compatible with conventional numerical computing software, the inputs and 

outputs of our summation unit are all in floating-point representations. But almost all 

internal stages use fixed-point arithmetic to save hardware resources as well as 

pipelining stages.   

• Floating-point operands are fed into the single input port sequentially at a constant 

rate.  Two local feed-back paths connect outputs of the single-cycle fixed-point 

exponent comparator and the mantissa accumulator with their inputs respectively, 

and so will not result in pipeline stalls.  

• With the help of two external signals marking the beginning/end of input groups or 

datasets, our design can always achieve the optimal sustained speed without the 

knowledge of summation length. Furthermore, multiple sets of inputs can be 

accumulated consecutively with only one pipeline stall between them. 

• The synchronization circuit automatically divides a long input dataset into small 

groups to take advantage of the group-alignment technique. Grouping is transparent 

to exterior and will not cause any internal pipeline stalls. 

• The maximum size of a summand group is set to 16 in our implementation so that 

the corresponding group FIFO can be implemented efficiently by logic slices. The 

size of a group can also be easily reduced or enlarged to achieve better performance 

for particular problems.  
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• Once the group FIFO contains a full summand group or the summation-ending signal 

is received, the synchronization circuit commands the exponent comparator to clear 

its content after sending the current value to the maximum exponent buffer. Starting 

from the next clock cycle, mantissas in FIFO are shifted out sequentially. Their 

exponents are also subtracted from the current maximum exponent one by one to 

produce differences for the pipelined mantissa shifter. While at the mean time, the 

next group of operands is moved in to fill vacant positions.  

• The word-width of the barrel shifter is set to 34 bits (32 fraction bits) conservatively, 

so the fixed-point accumulator needs four more bits to prevent possible overflow. 

However, according to error analysis in Table 1, a 30-bit accumulator with 24 

fraction bits is enough to achieve similar accuracy as the standard single-precision 

floating-point arithmetic. 

• The single-cycle 38-bit group mantissa accumulator becomes the performance 

bottleneck of our design, preventing us from further improving the clock rate applied 

to the summation unit. Instead of using the costly Wallace-tree adder to remove the 

carry-chain from the accumulator’s critical path [79], we simply disassemble the 

large fixed-point unit into two smaller ones.  With their respective integer bits to 

prevent overflow, the resulting two 21-bit fixed-point accumulator now can work at a 

much higher speed.  

• The normalization circuit accepts outputs from the fixed-point accumulator(s) and 

the exponent buffer, and converts them into normalized floating-point format. It also 

consists of Leading-Zero-Detector (LZD) and pipelined left shifter as standard 

floating-point adder. However, because the data throughput of this stage is at least 

half of all front-end circuits, a more economic implementation can always be 

achieved. 

• For long summations with multiple summand groups, another group summation 

stage using conventional floating-point adder is required to accumulate all group 

partial-sums. Because its data throughput is just 1/16 of the front-end, pipelining 

inside the adder will not cause any data-dependency problem. Furthermore, the 
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foregoing normalization circuit and the floating-point adder can be combined to save 

a costly barrel shifter as well as other unnecessary logics. 

• For applications where latency was an unimportant issue, On-chip block RAMs 

could also be used as FIFO to buffer a whole dataset instead of a small group of 

input data. Correspondingly, the synchronization circuit could be simplified 

considerably and the final floating-point accumulator is unnecessary. 

 

 

 
 

 

Table 14 lists the performance of the new single-precision floating-point 

summation unit together with two other approaches proposed in [78] and [79]. They are 

Table 14. Comparison of Single-Precision Accumulators 

 Group-alignment ① Scheduling [78] Delayed-addition [79] 

Target device Virtex II Pro Virtex II Pro Virtex-E 

Area (Slices) 443 (716) 633 (n=24) 
~900 (n=216) ② 1095 CLBs 

Speed (MHz) 250 180 (n=24) 
~160 (n=216) 150 

Pipeline 
stages 14 (23) 20 5 ③ 

Latency 
(cycles) 

n<16: 2n+12 (21) 
n>16: 44 (53)  

( )nn 2log203 +⋅≤
 

5 + 46ns 

Numerical 
accuracy Proved Guaranteed ④ Not guaranteed④ 

① Two numbers are listed at some places in this column for without and (with) the 
final group summation stage. 
② One SRAM block is required for data buffering. 
③ The final addition and normalization stage uses combinational logic, so is not 
pipelined.  
④ The accuracy of [78] is guaranteed by the standard floating-point adder. In [79], the 
authors provided only simple numerical tests without rigorous proof. 
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compared with each other based on sustained FLOPS performance, internal buffer 

requirements, latencies, etc. We observe that this new floating-point/fixed-point hybrid 

summation unit can provide much higher computational performance, less FPGA 

resource occupations, as well as more practical latency than previous designs. 

Furthermore, choosing more fraction bits for the fixed-point accumulator consumes 

negligible additional RC resources, but can significantly improve numerical error bounds 

of the summation. 

Although the aforementioned summation algorithm can always provide similar or 

better absolute and relative error bounds than standard floating-point arithmetic, it still 

cannot avoid the occurence of catastrophic cancellation in some worst cases. Indeed, we 

can easily cook up floating-point data sets, where the initial relative errors hidden in 

inputs are magnified dramatically so that all digits of the final result are contaminated. 

The only way to completely eliminate inevitable cancellations is to use the “exact 

summation” approach [82]. Assuming that all floating-point inputs are represented 

exactly, rounding error happens when the word width of an accumulator is not enough to 

contain all effective binary bits of intermediate results. This method adopts an extreme 

solution to address this problem: It converts all floating-point inputs to ultra-wide fixed-

point format so that fixed-point arithmetic can be used to reach an error-free solution. 

After that, a normalization stage is utilized to round the solution to appropriate floating-

point format. A careful analysis shows us that nearly 300 binary bits is necessary to 

represent a single-precision floating-point number in fixed-point format, or over 2000 

bits for double-precision cases. Even if such an ultra-wide register is acceptable, the 

underlying huge shifting/alignment stage and the unavoidable carry-chain of the fixed-

point accumulator will pose a severe performance bottleneck to this approach. Indeed, to 

the best of our knowledge, there is no actual attempt to use this method in practice. 

 It is possible to construct an error-free floating-point summation unit on the 

proposed FPGA-enhanced computer platform. However, this unit would be much more 

consumptive and significantly slower than standard floating-point arithmetic. For some 

special cases where extremely accurate or even exact solutions are mandatory, 
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constructing such a rounding-error-free floating-point summation unit would be still 

worthwhile.  

 

6.1.6 Accurate Vector Dot-Product on FPGAs  

 

Given two column vectors of floating-point numbers T
naaaA ],,,[ 21 L=  

and T
nbbbB ],,,[ 21 L= , we want to accurately calculate their inner product: 

∑
=

⋅==
n

i
ii

T baBAC
1

        (6.16) 

where the superscript “T” stands for the transpose of a vector or matrix. By 

accuracy, we mean better numerical error bound than the results produced by direct 

calculations using standard floating-point arithmetic. 

We can easily observe that the only difference between summation and dot product 

is those element-wise multiplications, and so the group-alignment based summation 

technique we proposed above can also be applied here for accurate solutions of vector 

dot-product. However, these multiplications introduce a new problem. To expose this 

potential problem, let’s consider the simplest case: the dot-product of two two-element 

vectors TaaA ],[ 21=  and TbbB ],[ 21= . Starting form Lemma 1, we have: 
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   (6.17) 

After ignoring high-order rounding error terms in Equation (6.17), we can observe 

that numerical errors produced by multiplications ( 21 ,εε ) have similar magnitude as 

addition error ( 3ε  ), and so should also be take into consideration for accurate solutions. 

Specifically, we cannot simply round the product of each pair of vector elements to 

standard floating-point format as we used to do on commodity CPU based general-
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purpose computers. Some CPUs do provide so-called “Fused Multiply-Addition (FMA)” 

unit/instruction, where a floating-point accumulator is placed adjacent to the multiplier 

so that the rounding error introduced by multiplications could be called off. However, 

most software compilers do not yet support this function because it tends to complicate 

instruction scheduling, and may eventually slowdown the execution. 

The group-alignment based floating-point summation unit as shown in Figure 38 

could be easily extended to vector norm or dot-product unit by attaching a simplified 

floating-point multiplier to its input port. This multiplier accepts two standard floating-

point operands at each clock cycle; normalizes them; and multiplies their mantissas. 

Then, the product and the sum of exponents are fed to inputs of following summation 

unit with all post-processing stages eliminated. For obtaining an accurate dot-product 

result, all effective bits of input mantissa products should be kept so that the numerical 

errors produced by multiplications ( 21 ,εε ) could be removed. In the mean time, the 

word-width of the barrel shifter and the fixed-point accumulator in the summation unit 

should also be extended correspondingly for better numerical error bound. 

As we introduced before, the implementation of the Time Domain or Frequency 

Domain Finite Difference (FDTD or FDFD) computing engine could also profit from 

this technique by replacing the conventional costly floating-point adder tree with a 

group-alignment based summation unit. Moreover, the same technique can be applied to 

other linear algebra routines such as matrix-vector multiply, matrix-matrix multiply, etc. 

to efficiently decrease FPGA resource occupations and reduce pipeline stages without 

negative impact on computational performance or numerical accuracy. We will present 

our related works in following sections. 
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6.2 Matrix-Vector Multiply on FPGAs  

 

The operations of floating-point matrix-vector multiply (GEMV) is defined as: 

∑
=

⋅=
n

j
jiji xAy

0
         (6.18) 

Where A is a dense nn× matrix; x and y are two 1×n vectors.  

After decomposing matrix A into n  row vectors, the matrix-vector multiply can be 

treated as n dedicated vector dot-products. Correspondingly, the FPGA-based matrix-

vector multiply engine can be constructed easily as a straightforward extension of the 

dot-product unit we proposed in Section 6.1. We already know that the main factor 

restricting the computational performance of pipelined summation or dot-product units is 

the contradiction between the long pipelines required for high throughput and data 

dependency among neighboring calculations. Specifically for the problem we considered, 

when the dimension of the matrix is larger than the depth of the pipelining stages of the 

FMA unit, adequate inherent low-level parallelism could be easily exploited so that 

simple scheduling can eliminate the potential data dependency problem. Suppose all 

elements of A, x, and y are saved in external memory (which is the case for most 

realistic numerical PDE problems). Because x is used as the only common column 

vector, there would be at least ( )nn 22 +  memory accesses and ( )22n  floating-point 

operations in total. The ratio between external memory accesses and floating-point 

operations is nearly two, which reveals the memory-bandwidth-bounded property of this 

subroutine.  

The only work we can find that discusses this topic is in [7], where an FPGA-based 

matrix-vector multiply unit was proposed and its sustained performance was analyzed 

and compared with the same subroutine operating on contemporary general-purpose 

computers. External memory bandwidth of a typical FPGA-based system is, in general, 

millions of words per second, which is at the same level as the data throughput of fully-

pipelined floating-point arithmetic units such as multiplier or adder in FPGA. A few 
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parallel-running arithmetic units could easily saturate all available external memory 

bandwidth, leaving considerable FPGA resources unused. 

Here, we try to utilize these unused FPGA resources for some useful work so that 

the computations of matrix-vector multiply could be benefited. First, a floating-point 

FMA can be constructed based on the group-alignment based summation unit we 

proposed in Section 6.1. This new FMA unit also works in pipelined manner accepting 

two operands ( )jij xandA at each clock cycle. All intermediate results 
10 −=

⋅
njjij xA

L
 for 

each iy  are buffered as one group of data using on-chip SRAM blocks. Correspondingly, 

the synchronization circuit of the summation unit is simplified significantly and the final 

floating-point accumulator is eliminated. The relatively long start-up latency cause by 

row buffering is leveraged because of the relatively large matrix size, so that the 

computational performance only drops slightly. Although this new approach doesn’t 

alleviate the memory bandwidth bottleneck, it can evaluate iy  to higher accuracy at 

nearly the same speed by simply extending word width of the barrel shifter and the 

fixed-point accumulator. Comparatively, standard high-accurate floating-point 

arithmetic units are costly on FPGAs with considerably degraded performance. High-

accurate result is always preferable when matrix A is bad-conditioned.  Scientists [83] 

proposed pure software methods to achieve higher accurate results (double-extended, 

double-double, or quadruple precision) using only standard floating-point arithmetic 

(single or double precision) at the cost of 4~10 times of slowdown. Correspondingly, we 

can say that our new approach significantly improves the computational performance of 

high-accurate matrix-vector multiply in an indirect way.  

Because the memory bandwidth limitation is always present, preventing us from 

further improving the sustained FLOPS performance of this subroutine, one of our 

choices is to construct an appropriate data buffering system to attain the most from the 

limited resources. Specifically, the data dependency existing in summations of 

consecutive products is the only issue that could be addressed by the buffering system. 

Assume the matrix is large and can only be stored in external memory. For small 

problems where in-chip RAM blocks could accommodate all elements of at least one 
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input/output vector, we have two choices to construct the data buffering system: The 

first one is to calculate matrix-vector multiply in row order just as Equation (6.18) 

implies. Here, Matrix entries are read into FPGA row by row and multiplied by the input 

vector x, whose elements are all buffered inside FPGA’s RAM blocks. Multiple RAM 

blocks can support multiple operands accesses from x simultaneously so that a number 

of multipliers can work in parallel if the accumulative external memory bandwidth is 

wide enough for reading in the same number of operands from the matrix. The 

corresponding FPGA-specific hardware algorithm is listed in Algorithm 6. Figure 40 

shows the diagram and dataflow of the FPGA-based hardware implementation. 

 

 

Algorithm 6. Matrix-vector Multiply in row order 

Input: nn×  dense matrix A saved in external memory 

          1×n  input vector x saved in s SRAM blocks in FPGA chip. The number s block 

contains vector entries ( )1,,2,, −+++ snisisii L . 

Output: xAy ⋅=  

For i = 1 to n 

For j = 1 to n/s 

Read in matrix entries ( ) sjsjiA ∗+∗− :11, from external memory 

For k =1 to s do parallel 

       ( ) ( ) ksjksjik xAp +∗−+∗− ⋅= 11,  

End For 

∑
=

=
s

k
kj pq

1

 

End For 

∑
=

=
sn

j
ji qy

/

1

 

End For 
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Figure 40.  Implementation for Matrix-Vector Multiply in Row Order  

 

 

We notice that the group-alignment based summation technique is applied twice 

here to address the data dependency problem: one in parallel followed by another in 

sequence. Although a little costly, this approach does simplify the design for the 

buffering circuit as well as internal data flow: the input vector buffer always works in 

read-only mode and there are no feed back data paths in this design. 
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The other data buffering scheme is based on the fact that matrix-vector multiply 

can also be represented as summation of n scaled column vectors of A as the following 

equation shows:  

∑
=

⋅=⋅=
n

j
jj xAxAy

0
        (6.19) 

 

A y 

X = + =

x y1 y2  

Figure 41.  Matrix-Vector Multiply in Column Order  

 

Figure 41 depicts the computational scheme of this approach. Here, all elements of 

the resulting vector y have their place inside FPGA’s RAM blocks. The matrix is 

stripped into blocks of size sn× , and the number of row entries in each block s is 

selected carefully so that all of them can be accessed simultaneously from external 

memory. Correspondingly, there are s parallel-running multipliers integrated inside the 

FPGA device. Although distributed registers are the best place to hold those vector 

entries, internal RAM block-based input buffer may still be necessary to hide access lags 

of external SDRAM modules.  All product values generated at the same clock cycle 

together with the relevant partial sum value read from vector y are summed up to update 

the same y entry.  The troublesome data dependency problem is eliminated easily by this 

simple scheduling because consecutive summations are now for different y entries. 

Compared with the previous approach, only one parallel group-alignment based 

summation unit is needed, but one data feed-back loop is introduced for updating the 
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output vector.  On the whole, FPGA-based implementations for these two approaches 

will have similar computational performance with similar programmable hardware 

resources consumed. Algorithm 7 is the corresponding FPGA-specific hardware 

algorithm. The block diagram and data flow of its FPGA-based hardware 

implementation is depicted in Figure 40. 

 

 

Algorithm 7. Matrix-vector Multiply in column order 

Input: nn×  dense matrix A saved in external memory 

          1×n  input vector x saved also in external memory  

          An in-chip dual-port SRAM as working space for the output vector y.  

Output: xAy ⋅=  

Set all entries in vector y to be zero 

For j = 1 to n/s 

Read in vector entries ( ) sjsjx ∗+∗− ,11  from external memory 

For i = 1 to n 

1. Read in matrix entries ( ) sjsjiA ∗+∗− :11, from external memory 

2. For k =1 to s do parallel 

3.        ( ) ( ) ksjksjik xAp +∗−+∗− ⋅= 11,  

4. End For 

5. ∑
=

+=
s

k
kii pyy

1

 

End For 

End For 
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Figure 42.  Implementation for Matrix-Vector Multiply in Column Order  

 

 

The second approach can be easily extended to handle large matrix-vector multiply 

cases, where the input/output vector contains too many entries to be accommodated 

inside internal RAM blocks. The output vector y is now saved in external SDRAM 

modules together with the matrix. (Sometimes, we are lucky to have external SRAM 

modules integrated on board, which can be used to save the vector.) Every partial 

matrix-vector multiply related to one matrix strip requires access to this output vector 

twice in order to have all of its entries updated. As we introduced above, the 

computational performance of matrix-vector multiply is memory-bandwidth bounded, 

and so this memory access overhead would result in considerable performance 

degradation if the width of each matrix strip was narrow. For example, if we had only 4 

row entries for each matrix strip, an additional 50 percent memory accesses would be 
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introduced, and so the sustained performance of the hardwired computing engine would 

be degraded by one third. Adopting a wide matrix strip would amortize this overhead 

and significantly improve the situation. However, the more matrix strip row entries, the 

larger parallel summation unit would be. On the other hand, this approach provides users 

with an effective way to maximize the utilization of FPGA resources for useful work. 

 

6.3 Dense Matrix-Matrix Multiply on FPGAs  

 

Given two nn×  dense matrix A and B, the operations of matrix-matrix multiply 

BAC ⋅= are defined as: 

∑
=

⋅=
n

k
kjikij BAC

0
        (6.18) 

In contrast to vector dot-product or matrix-vector multiply, matrix-matrix multiply 

is a computation-bounded subroutine. For the ideal case where FPGA’s internal RAM 

blocks could accommodate all matrix elements of A, B, and C, there would be ( )22n  

memory accesses and ( )32n  floating-point operations in total. So the ratio between 

external memory accesses and floating-point operations is proportional to n, which 

reveals excellent data reusability, especially when n is large. In theory, such 

computation-bounded subroutines could always put onboard FPGA devices into full play, 

and so achieve much higher sustained computational performance than commodity 

CPUs. 

In reality, only a small portion of matrix entries could be saved in-chip. For these 

cases, block matrix-matrix multiply scheme is the most popular choice, although it may 

introduce considerable additional external memory accesses to deal with intermediate 

results. For example, if three were only enough in-chip memory spaces for buffering 

three ss ×  blocks of matrix entries, we need to read in 22 s×  matrix entries from A and 

B for every 232 ss +×  floating-point computations. (Here, we ignore purposely the 

memory access for saving resulting matrix elements of C because this workload would 

be amortized if the matrix size is large.) So, the total number of external memory 
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accesses of this subroutine is
s
ns

s
n 3

2
3 22 =⋅⎟
⎠
⎞

⎜
⎝
⎛ , which depends on s and is much larger 

than the ideal case.  

A successful design of matrix-matrix multiply on FPGA-based platform implies 

building an appropriate internal data buffering subsystem utilizing FPGA’s abundant in-

chip SRAM blocks and distributed registers. Fully exploiting data/computation locality 

of the numerical subroutine is pivotal to its success. Specifically, large block size s is 

always preferred to eliminate additional external memory accesses. There has been 

previous research work, discussing FPGA-based implementation of matrix-matrix 

multiply. In [7], the authors investigated the trends in sustainable floating-point 

performance of some basic BLAS subroutines for CPU and FPGA. It mainly 

concentrated on theoretical peak performance analysis, but not on detailed 

implementation. In [84], the authors designed a two-dimensional processor mesh based 

on conventional systolic matrix-matrix multiply hardware algorithm. Each processor 

node has its own multiply-accumulate unit (MAC) and local memory space and is 

responsible for the computations of a consecutive block of matrix C. Elements of matrix 

A and B are fed into the computing engine from boundary nodes, and traverse internal 

processors via in-chip interconnection paths. The disadvantage of this design is that all 

boundary processing nodes import/export operands from/to the outside world so that the 

number of input/output ports it requires would be large. In [85] [86], the authors 

proposed a one-dimensional processor array to address this problem. Only the first 

processing node read matrix A and B from external memory. These values then traverse 

all inner nodes in the linear array to participate in all related computations. Once the 

procedure is finished, each processing node simply transfers its local results of matrix C 

to its neighbors. These results are finally written back to external memory via the first 

processing node. One common problem of these designs is that they all require complex 

control logics for coordinating communications and interactions among multiple 

processing nodes. For example, about 50 percent of FPGA’s programmable hardware 

resources are consumed for this purpose in the implementation in [86]. 
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In our work, we proposed a new solution for matrix-matrix multiply, which could 

achieve much simpler hardware implementation on an FPGA-enhanced computer 

platform. This new matrix-matrix multiply unit doesn’t employ multiple processing 

nodes but does use a large computing engine with an array of standard floating-point 

multipliers followed by one parallel group-alignment based summation unit. A 

centralized data buffering subsystem is designed to read operands of matrix A and B 

from external memory, caching them in local memory, and distributing them to 

arithmetic units in correct sequence. Two crucial problems have to be addressed by the 

data buffering circuit: First, good scalability is required so that the block size s could be 

modified easily to ensure the computation-bounded nature of the underlying blocked 

matrix-matrix multiply schemes; Second, because of the parallel running of multiple 

arithmetic units, there are concurrent accesses to multiple operands in one data block. 

One large RAM module provides only one or two read/write ports, and so is inapplicable 

here. Multiple distributed small RAM blocks would be an appropriate choice. Only 

simple control logics are needed here to coordinate their operations. The FPGA-specific 

hardware implementation of matrix-matrix multiply is shown in Figure 43.  

In this figure, s is simply set to 16. Each matrix block would have 

2561616 =× double precision entries. The fully-pipelined computing engine contains 16 

modified floating-point multipliers and a large parallel summation unit, and so can finish 

16 multiplications and 16 additions at each clock cycle. If we set the computing engine 

to operate at 200MHz, its sustained computational performance would be 

GM 4.620032 =×  FLOPS. By varying the value of s, we can easily change the 

computational performance as well as the size of the computing engine.  

Multiple matrix C blocks are accommodated inside the in-chip output buffer, 

which can be efficiently constructed with FPGA’s in-chip SRAM blocks. This output 

buffer circuit has two double word (64-bit) data ports with dedicated read/write logics 

and address pins. One of them is connected to an input port of the parallel summation 

unit for feeding in previous partial sums of C entries. The other one is for writing back 

those updated partial-sums produced by the summation unit. As we will see later, 
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concurrent read and write addresses to the same memory space will always have a fixed 

distance, and so will not introduce any conflicts.  

 

 

 

Figure 43.  Blocked Matrix-Matrix Multiply  

 

 

A two-level caching circuit is employed to efficiently buffer operands read from 

matrix A and B in-chip.  16 dedicated small RAM pieces constitute the first level cache 

for matrix A. There are 256 matrix entries (one 1616× block) saved temporarily inside 

this caching circuit. So each RAM piece contains only 16 column entries and can be 

implemented efficiently with distributed register blocks in FPGA. This caching circuit 
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has two working modes: In the refresh mode, all of those small memory pieces are 

interconnected to form a cascaded FIFO with 16 levels; entries of a matrix block are read 

out from the second level cache in column order and pushed into the FIFO structure 

from its input port at the bottom. We need a total of 256 push cycles to update all entries. 

In computation mode, all these RAM pieces work independently and their access is 

controlled by a unique 4-bit addressing logic. At each clock cycle, 16 commonly-

addressed entries buffered in these RAMs, who all come from the same row of the 

matrix block, are accessed simultaneously while providing operands of matrix A to 16 

multipliers. The access of the matrix block will repeat for 16 rounds, with 16 clock 

cycles for each round.  So in total, the computation mode also last for 256 cycles. 

16 dedicated one-double-word registers are used to construct another 16-level 

cascaded FIFO for the first-level caching of 16 matrix B entries (one column of a matrix 

B block). They also have two working modes: the refresh mode and the computation 

mode. However, the switching speed of this caching circuit is 16 times faster than matrix 

A buffer. To hide the refresh cycles of both data buffers, two identical caching circuits 

are employed. They work in a swapping manner to overlap the refreshing and 

computation cycles. Once updated, the operands in matrix B buffers remain unchanged 

during the next 16 clock cycles providing another group of operands to multipliers. All 

16 products together with the old partial-sum read out from the output buffer, are then 

fed into the group-alignment based parallel summation unit simultaneously as a group of 

summands. The summation result is written back to the output buffer via another data 

port. No data/computation dependency exists in this implementation because 

consecutive summations are for different C entries. 

We already know that the computing engine needs 256 clock cycles to finish the 

computations of two 1616×  matrix blocks multiply. On the other hand, the 256-entry 

first-level matrix A cache updates its contents every 256 cycles, and in the same time 

period, the contents of the 16-entry matrix B cache have been changed for 16 times.  In 

order to keep the computing engine operating at 200MHz, we need a memory channel 

that can afford a data transferring rate at a total of 400M double words per second 
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(3.2GByte/s), which corresponds to the memory bandwidth provided by a 400MHz 

DDR-SDRAM module. Fortunately, it is not necessary for these memory channels to be 

external. In this design, we introduced another level of large-capacity cache structure to 

buffer multiple matrix blocks in-core. A simple block scheduling circuit is employed to 

coordinate the multiplication of large matrices with multiple 1616×  matrix blocks. We 

can simply follow the ordinary block matrix-matrix multiply algorithm as shown in 

Figure 44. The special data buffering scheme we adopted here can ensure that the whole 

block 2a  and the first column of block 3b would be ready in-core immediately after the 

multiplication of 11 ba ⋅  so that the computations of 3211 bacc ⋅+⇐  could start without 

any pipelining stalls. Once the final results of a block in matrix C are obtained, we have 

to save them back to external memory. If the size of the matrices is large enough, this 

overhead would be considerably amortized.  

 

 

 

Figure 44.  Blocked Matrix-Matrix Multiply Scheme 

 

 

From a perspective outside of the buffering system, the block size of matrix-matrix 

multiply is now enlarged because of the existence of the level-2 cache; correspondingly, 

the requirement for external memory bandwidth would decrease proportionally. This 

second-level cache circuit has four data paths connected to the first level matrix A cache, 

matrix B cache, matrix C output buffer, and the external memory channel, respectively. 

The block scheduling circuit ensures the transfer rates of the first two data paths being 

fixed at 200M double words per second to guarantee the full speed operation of the 

computing engine. The data rate of the external memory channel will be determined by 
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the number of matrix blocks buffered in this second-level cache circuit. We can choose 

to build the caching circuits with in-chip RAM blocks or onboard external SRAM 

modules depending on the available hardware resources at hand. For example, it is 

straightforward to build an in-chip second-level cache with 8192 matrix A or B entries. 

The block size now becomes 64 and we need 800MByte/s external memory bandwidth 

to keep the computing engine operating at its full speed. Or, if we have a 400MHz DDR-

SDRAM channel (3200MByte/s memory bandwidth) and enough FPGA resources on 

board, we are allowed to construct a much larger computing engine (64 floating-point 

multipliers together with a 64-parallel summation unit) up to 4 times more powerful than 

the aforementioned design. The sustained computational performance would be 25.6G 

FLOPS, which is much higher than any existing commodity CPU. 
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7.  CONCLUSIONS 
 
7.1 Summary of Research Work 

 
In this research work, by proposing new hardware-reconfigurable computer 

architecture and designing FPGA-specific software algorithms, we considerably 

accelerated the executions of several representative numerical methods on FPGA-

enhanced computers. We successfully demonstrated the impressive computational 

potential of the newly-proposed FPGA-enhanced computer system, thereby proving the 

feasibility of utilizing FPGA resources to accelerate computationally-demanding and 

data intensive numerical computing applications. The following topics had been 

investigated systematically in this work: 

• Research on “Hardware Architecture Model of FPGA-Enhanced Computers for 

Numerical PDE problems”   

Targeted at computationally-demanding and data intensive numerical PDE problems, 

a new computer architecture model named FPGA-enhanced Computers was 

proposed together with detailed implementations as a single workstation as well as a 

parallel cluster system. Working in a hardware-programmable/application-specific 

manner, the resulting FPGA-enhanced computer system could be implemented 

economically with low-cost COTS components, and can therefore achieve much 

better price-performance ratio with much lower power consumption. Also, it is 

consistent with the prevailing PC-Cluster system and is scalable to a large parallel 

system containing abundant reconfigurable hardware and memory resources. 

Consequently, a wide range of numerical algorithms/methods could be 

accommodated on such a system.  

• Research on “Accelerating PSTM Algorithm on the Proposed FPGA-Enhanced 

Computer Platform”  

Pre-Stack Kirchhoff Time Migration (PSTM) is one of the most popular migration 

methods in the seismic data processing field. It represents a class of numerical 
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algorithms/methods that require extraordinary computer arithmetic units that are 

relatively slow, or even unavailable, on commodity CPUs. Here, an application-

specific Double-Square-Root (DSR) arithmetic unit was built on the proposed 

FPGA-enhanced computer platform to accelerate the evaluation of the algorithm’s 

most time-consuming kernel subroutine without losing numerical accuracy. Because 

over 90 percent of CPU time is consumed by billions of iterations of the short kernel 

subroutine when operating on commodity CPUs, this new FPGA-based approach 

could operate more than 10 times faster than contemporary general-purpose 

computers, allowing people to produce a satisfying underground image much faster. 

• Research on “High-accuracy Floating-point Summation Algorithms on FPGA-

enhanced computers”  

Floating-point summation is one of the most important operations in numerical 

computations. An FPGA-based hardware algorithm for accurate floating-point 

summation is proposed using the group-alignment technique. The corresponding 

fully pipelined summation unit is proven to provide similar, or even better, numerical 

errors than the standard floating-point arithmetic based sequential addition method. 

Moreover, this new design consumes much less FPGA resources, as well as 

pipelining stages, than other existent designs, and it achieves sustained working 

speed at one summation per clock cycle with only moderate start-up latency. This 

new technique can also be utilized to accelerate executions of other linear algebra 

subroutines as well as finite difference methods on FPGAs. The possibility of 

constructing an error-free floating-point summation unit on the RC platform is also 

investigated. 

• Research on “Optimized Finite Difference Schemes with Finite Accurate 

Coefficients” 

Based on maximum-order FD schemes whose coefficients are determined by 

cancelling as many lower-order Taylor expansion terms as possible, we proposed a 

new class of optimized finite accuracy FD schemes as well as heuristic algorithms to 

determine their FD coefficients. This new class of FD schemes has identical 
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computational workload and similar numerical accuracy as conventional high-order 

FD schemes, and would therefore be insignificant for commodity CPUs. However, 

its implementation on an FPGA-enhanced computer platform would be superior 

with much higher computational throughput and less FPGA resources consumption.  

• Research on “Finite Difference Wave Equations Modeling on FPGA-enhanced 

Computers”  

Adopting appropriate temporal and spatial FD schemes and applying results of 

aforementioned research works, the execution speed of realistic 2D or 3D seismic 

wave modeling problems is improved significantly on the proposed FPGA-enhanced 

computer platform. Efficient memory hierarchy and appropriate numerical 

algorithms are adopted to alleviate the memory bandwidth bottleneck of this specific 

numerical PDE problem.  

• Research on “BLAS subroutines on FPGA-enhanced Computers” 

The most time-consuming step of FEM is the solution of the large linear system 

equations generated from discretized PDEs. Basic Linear Algebra Subprograms 

(BLAS) are the standard toolkit necessary for users to solve linear equations. Our 

work aims to accelerate the executions of basic BLAS subroutines such as 

summation, dot-product, matrix-vector multiply, and matrix-matrix multiply on the 

FPGA-enhanced computer platform. Our efforts mainly concentrate on designing 

novel data buffering subsystem as well as suitable memory hierarchy to improve data 

reusability and save external memory access. By doing so, a wide range of scientific 

and engineering problems governed by partial differential equations could be 

accelerated on the proposed FPGA-enhanced Computer. 
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7.2  Methodologies for Accelerating Numerical PDE Problems on FPGA-Enhance 

Computers 
 

In this section, we conclude conceivable methodologies of solving numerical PDE 

problems on an FPGA-enhanced computer. The essential purpose is to achieve higher 

sustained computational performance on FPGAs over commodity CPUs.  

First of all, FPGA’s computing power comes from the capability inherent in ASICs 

as efficient utilization of hardware resources.  Unlike commodity CPUs, where a large 

portion of transistors are expended for providing program-controlled data flow, FPGA is 

capable of dedicating most of its in-chip programmable hardware resources for useful 

computations. By exploiting low level parallelism concealed in specific numerical 

methods/algorithms, a single FPGA device could accommodate a large computing 

engine consisting of tens, even hundreds, of similar or different arithmetic/function units. 

These hardwired units could be set to work in parallel for high accumulated performance 

or in a pipelined manner to achieve high data throughput. Furthermore, users could 

select to customize their own extraordinary arithmetic or function units for improved 

computational performance or hardware efficiency.  

FPGA’s In-System-Programmability (ISP) is pivotal to utilize its hardware 

resources for accelerating the solutions of numerical PDE problems. Such computing 

tasks are computationally demanding and data intensive. Their numerical solutions 

generally require a series of processing stages or multiple iterations with gradually 

improved simulation accuracy. Sometimes, initial trial-runs execute very rapidly, 

utilizing aggressive numerical methods. However, they are, in general, prone to 

convergence failure, and may even break down. Users have to seek the help of other 

robust but costly numerical methods. For example, we already know that seismic 

migration problems are governed by acoustic/elastic wave equations whose numerical 

solutions are in general time-consuming. Geophysicists may first try to attack a specific 

migration task using the relatively fast PSTM algorithm. After several iterations of 

inverse/forward procedures, if the migrated underground image is still unsatisfactory, 
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they are forced to resort to the robust but much more expensive Reverse Time Migration 

(RTM) algorithm, which is based directly on finite difference solutions of the original 

wave equations. However, if the parameters of underground media change abruptly, FD 

methods have to adopt excessive fine discretization steps for numerical stability, which, 

in turn, leads to unfeasible execution time. In these cases, FEM might be a relatively 

more efficient option because of its ability to follow complex boundaries and resolve 

minute geometrical features.  Based on the results of our research work, all of these 

numerical methods can be accelerated effectively on the proposed FPGA-enhanced 

computer platform. Just as a large software package operating on general-purpose 

computers, users are now free to select different numerical algorithms/methods on the 

same hardware-programmable computer platform. The contents switching between 

different numerical methods on FPGAs costs only several seconds, thereby are 

negligible compared with the long execution time of realistic processing tasks.  

Numerical methods/algorithms for PDE problems, in general, exhibit low FP-

operation to memory-access ratio, require considerable memory space for intermediate 

results, and tend to perform irregular indirect addressing for complex data structures. 

These intrinsic properties inevitably result in poor caching behavior on modern 

commodity CPU-based general-purpose computers. Consequently, a significant gap 

always exists between their theoretical peak FP performance and the actual sustained 

Megaflops value. FPGA-enhanced computers are capable of reconfiguring memory 

hierarchy according to the requirements of specific problems. Because the clock 

frequencies applied to FPGAs and external memory modules are within the same range 

as hundreds of Millions Hz, we can treat all memory elements equally as a flattened 

memory space to simplify system architecture; or we can introduce complicated 

buffering structures or caching rules to further enhance data reusability and improve 

utilization of memory bandwidth.  

There are mainly two error sources in numerical computations: the truncation error 

and the rounding error. Truncation error is the difference between the true result (for the 

actual input) and the result that was produced by algorithms/methods using exact 
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computer arithmetic. In most cases, truncation errors emerge due to numerical 

approximations such as truncating an infinite series, replacing derivative by finite 

difference, or terminating iteration before convergence. Numerical rounding error is the 

difference between the results produced by algorithms/methods using exact arithmetic 

and using finite-precision arithmetic. It is mainly due to inaccuracy in the representation 

of real numbers as well as the floating-point arithmetic operations on them. Numerical 

errors could be eliminated or at least significantly reduced by high-accuracy numerical 

algorithms/methods on general-purpose computers. However, the cost we pay for high-

accuracy is more computational workload. For example, a numerical library called 

XBLAS consists of almost the same numerical subroutines as the BLAS library but uses 

increased floating-point working precision such as double-double, extended double, or 

quadruple precision. Subroutines in this library emulate high-accurate floating-point 

arithmetic using standard ones. Sometimes, they also have to compute correction terms 

in order to take into account the rounding errors accumulated during the computations, 

in other words, truncation terms that are normally ignored. Correspondingly, the 

execution speed of these XBLAS subroutines is, in general, tens of times slower than 

their siblings in BLAS. With the help of hardware-programmable FPGA resources, we 

can customize high-performance computing engines specified for high-order numerical 

methods so that truncation errors could be significantly reduced. Furthermore, we can 

construct our genuine high-accuracy floating-point arithmetic units to reduce numerical 

rounding errors with negligible speed penalties.  

In summary, we believe and hope to convince others that the high computational 

potential of FPGA-enhanced computers would not only exercise a great influence on 

hardware architecture design of future computers, but also would have impact on   

numerical algorithms/methods when users try to take full advantage of FPGA’s 

computational  potential. We further boldly predict that such hardware-programmable 

resources would follow a similar path as floating-point arithmetic units: first working as 

an acceleration card loosely attached to a computer’s peripheral bus, then coupled with 
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commodity CPU as coprocessor, and finally integrated into the same silicon chip with 

CPU cores, thereby becoming their indispensable component. 
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