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Numerical Solutions of Two Point Boundary 
Value Problems Using Collocation Techniques 

Shelly, Inderpreet Kaur 
 

Abstract— A comparative study of weighted residual methods has been made on different types of advection diffusion equations. Both the 
linear and non-linear models have been discretized by orthogonal collocation method (OCM) and orthogonal collocation on finite elements 
(OCFE). Model equations have been solved by MATLAB ‘ode15s’ system solver. Numerical values have been compared with analytic ones 
and interpreted by relative error and L2 norm with respect to space variable, in terms of 2D and 3D plots to check the efficiency of 
numerical techniques. Non linear model equations have been simulated using the experimental data. 

Index Terms— Advection diffusion equation, Collocation points, Finite elements, Orthogonal collocation, Peclet number. 

——————————      —————————— 

1 INTRODUCTION                                                                     
HE problem of diffusion dispersion in porous solid and 
semisolid particles has gained momentum in the field of 
mathematical modeling for the past few years. Variety of 

numerical and analytic techniques such as Laplace transforms, 
Variable seperable, Finite difference, tau method, Galerkin 
method, least square method, spline collocation, orthogonal 
collocation method, orthogonal collocation on finite elements, 
spectral methods etc. have been proposed so far to solve mod-
el equations. For linear models, analytic techniques such as 
Laplace transforms [1], [2], [3], [4] are used to solve model 
equations. However, in case of non linear models, variety of 
numerical techniques, e.g., Galerkin techniques [5], [6], [7], [8], 
[9]  least square method [10], [11], spline collocation [12], [13], 
[14], [15], [16], orthogonal collocation [17], [18], [19], [20], [21], 
[22], orthogonal collocation on finite elements [23], [24], [25], 
[26], [27], [28], [29] etc. are used to discretize the model equa-
tions. Among all these techniques, collocation techniques are 
the simplest form of weighted residual methods to solve the 
two point boundary value problems. 

Basically in collocation techniques an unknown function y  
is assumed to satisfy the differential equation £V(y) = 0 with 
boundary conditions £B(y) = 0, where B is the boundary ad-
joining the volume V and £ be an operator. An unknown trial 
function yN is used to discretize the unknown function y . This 
unknown trial function yN is represented by a series of or-
thogonal polynomials and the residual is defined by £V(yN) 
and £B(yN) over its region. This residual is set equal to zero at 
collocation points which are basically the zeros of the orthog-
onal polynomials forming the basis. This method is known as 
orthogonal collocation.  

However, for stiff boundary value problems having steep 
gradients near the boundaries, orthogonal collocation method 
fails to give results for values of parameters near to singulari-
ty. To overcome this problem, Carey & Finlayson [23] has 
proposed to combine orthogonal collocation technique with 
finite element method. 
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In orthogonal collocation on finite elements (OCFE) the global 
variable x influences the solutions even at small values. Thus 
the differential algebraic equations for an element of length ∆x 
are coupled with those of all the other elements. The orthogo-
nal collocation is applied within th element on local variable 
u obtained by transforming global variable x using the formu-
la u = ( x x−  )/ x∆ , where x ε [ 1,x x−  ]. In this process it is 
mandatory that the trial function and its first derivative 
should be continuous at nodal points. 

2 COLLOCATION PROCEDURE 
In orthogonal collocation method the trial function y  is ap-
proximated in terms of Lagrangian interpolation polynomial 
as: 
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where xj’s are the zeros of the orthogonal polynomial Pn(x), 
x1=0 and xn+1=1. The discretization matrices for first and se-
cond order derivative of approximating function at jth  colloca-
tion point are obtained by differentiating the interpolating pol-
ynomial ψ(x) at jth collocation point. The details of collocation 
procedure are given in Arora et. al. [25]. 
 
2.1 Collocation Point 
The base of collocation technique is the choice of collocation 
points. To study the effect of solution profiles at the bounda-
ries of porous media, zeros of Legendre polynomial which is a 
special case of Jacobi polynomial are followed and has been 
calculated from the following recurrence frmula:  
 

)()2()()32()()1( 321 xPjxxPjxPj jjj −−− −−−=− , 

j=2,3,…,n+1  (4) 
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where P0(x) = 1 and P-1(x) = 0. In case of Legendre polynomial, 
0 and 1 are taken to be the boundary points. xj’s are trans-
formed onto the interval [0,1] using the formula given by, 

3
1
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j

n j

x
u + − = +  , where uj is the local variable and xj is the 

global variable. 

3 CONVERGENCE AND ERROR ANALYSIS 
The crest of every numerical technique lies within its conver-
gence and stability analysis. Higher the convergence, more 
stable will be the method. In this paper, the convergence of 
OCFE has been checked on the basis of element size. Follow-
ing formula has been followed to check the convergence of 
orthogonal collocation on finite elements. 

2L Kh y=       (5) 
where K is any constant depending upon the number of collo-
cation pointsand h is the element size. Convergence of OCFE 
depends upon the number of elements as well as on the num-
ber of collocation points unlike the orthogonal collocation 
method. For OCFE to be convergent,

2
1L ≤ i.e. 

 2
2
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The relative error is calculated by using the formulae, 

ex nm

ex

y y
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 , where yex is the exact or analytic value of the 

problem and ynm is the numerical value calculated by using 
numerical techniques. The graphs are plotted for different 
number of elements. It is observed that with the increase in the 
number of elements the relative error decreases considerably 
which shows that the discretization error is proportional to h2. 

4  RESULTS AND DISCUSSIONS 
To check the convergence and applicability of the OCM and 

OCFE, both the methods have been applied to different types 
of advection-diffusion equation as discussed below: 
Problem 1 
Consider a transient linear advection-diffusion equation in-
volving Peclet number (Pe). It is the ratio of advection to dis-
persion and is inversely proportional to axial dispersion coef-
ficient. The details of this problem are available in Arora et. al. 
[25]. 
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Boundary conditions: 

1 0CC
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∂
− =

∂
, at x = 0, for all t ≥ 0  (8) 

0C
x

∂
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∂
,    at x = 1, for all t ≥ 0  (9) 

Initial condition: C = 1,  at t = 0, for all x               (10) 

This problem has been solved by using OCM. The detail of 
the methodis given in Villadsen& Stewart [17]. In OCM, the 
number of collocation points hasvaried from 5 to 19. In Fig. 1, 
the effect of Pe is shown for 5 collocation points. It is observed 
from this figure that minor oscillations occur at initial stage for 
Pe=5, whereas sharp oscillations occur at Pe = 10 and 15. For 
Pe=15, values may go down to negative as time increases from 
2, however, this variation is of small order. In Fig. 2 to 5, the 
behaviour of solution profiles and relative error for different 
values of Pe is shown in form of 3D graphs.It is observed from 
these figures that relative error goes upto 2% for Pe= 3.2 and 
Pe = 4, whereas for Pe=16, it goes upto 4% for 5 collocation 
points. This effect can be reduced by increasing the number of 
collocation points. In Table1, the comparison between number 
of collocation points is shown for Pe=16.One can observe from 
this Table that for 5 to 9 collocation points, the relative error is 
very high and is more than 1% for large time period, which 
reduces considerably with the increase in collocation points 
from 9 to 11. However, this effect is only for the values of Pe≤ 
20. As the value of Pe increases, the results obtained even for 
large number of collocation points do not converge to steady 
state condition smoothly. 
The problem has also been solved using OCFE. The discre-
tized form of equations (7) to (10) for ℓth element is given as: 
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This resulting set of differential algebraic equations when 
clubbed up, reduces into a tri-diagonal matrix structure as 
shown below, with one side column of differential coefficients 
of C and other side coefficient matrix of C. Matrix ‘M’ is the co-
efficient matrix and matrix D is the matrix of differential coeffi-
cients of C. The crosses  shows the collocation equations within 
each element. The single column on the right hand side signifies 
the time derivatives of the C and the boxes represented by emp-
ty circles shows the boundary conditions and continuity condi-
tions. 
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The resulting set of system of differential algebraic equations is 
solved using MATLAB with ode15s system solver. In Fig. 6, the 
behaviour of solution profiles is shown for Pe varying from 40 to 
100. It is observed from this figure that solutions profiles con-
verge to steady state condition smoothly and no oscillation occur 
even at initial stage.The behaviour of relative error with respect to 
time and exit solute concentration is shown in 3D graphs from 
Fig. 7 to 10, for Pe varying from 40 to 100. It is observed that in no 
case the relative error increases from 10-3 and is therefore, less 
than 1%.  
In Table 2, a comparison between OCM and OCFE is shown for 
Pe =80. It is quite clear from Table 2 that in case of OCM the rela-
tive error is greater than 1% as τ increases from 1.5 even for 19 
collocation points, whereas in case of OCFE, the relative error is 
less than 1% for just 25 elements. 
 

 

Fig. 1: Behaviour of solution profiles for different val-
ues of Pe with 5 collocation points. 

 
Fig. 2: Behaviour of relative Error for Pe=0.8 

 
Fig.3: Behaviour of relative Error for Pe=3.2 

 

 
Fig.4: Behaviour of relative Error for Pe=4 
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Fig.5: Behaviour of relative Error for Pe=16 
 

Problem 2 
Consider a non-linear advection-diffusion equation involving 
two parameters Peclet number (Pe)and Biot number (Bi). Biot 
number represents mass transfer resistance inside and on the 
surface of body. Details of the problem are available in Arora 
& Potůček [27]. 
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The initial and boundary conditions are similar to Problem 1 with 
Q and N are also equal to unity at t = 0. This problem has been 
solved by using OCM and OCFE. The model equations have 
been simulated using the data given in Arora & Potůček [30]. In 
case of orthogonal collocation, 5 to 11 collocation points have 
been taken to discretize the system of model equations. In Fig. 11 
the behaviour of solution profiles is shown for different values of 
Pe and Bi in case of OCM. As Pe and Bi increases, wide oscilla-
tions are observed at initial stage giving error of more than 4% 
and for Pe =20.81 and Bi=10, the solution profiles even diverge to 
negative values as time increases.In Fig. 12, the solution profiles 
have been plotted using OCFE for 10 elements. This figure not 
only signify the effect of Pe and Bi but also shows the effect of ε, 
i.e., bed porosity. As ε lies within 0.67 to 0.69, solution profiles 
almost overlap each other. However, the values of Pe and Bi are 
different in all the cases. As ε increases to 0.812, solution profiles 
converge to steady state condition more rapidly as compare to 

the case of ε = 0.5561. 
 
From Fig. 13 to 17, the convergence of solution profiles is shown 
using C2 for different values of Pe and Bi. In all the cases it 
is observed that the C2  is less than 1 and smoothly converge 
to 0 without any oscillation at any stage. It authenticates the fact 
that at any time period the values of solution profiles are con-
verging to steady state condition without any oscillation. 
 
 

 

Fig. 6:Behavior of solution profiles for different values of Pe 

Fig. 7: Behaviour of relative Error for Pe=40 with 15 elements 
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Fig. 8: Behaviour of relative Error for Pe=60 with 15 elements 

 

 

Fig. 9: Behaviour of relative Error for Pe=80 with 50 elements 

 

 

Fig.10: Behaviour of relative Error for Pe=100 with 50 elements 

 

Fig. 11:Behavior of solution profiles for different values of Pe 
and Bi for OCM 
 

 
Fig. 12:Behavior of solution profiles for different values of Pe and 
Bi for OCFE 

 
Fig. 13:Behavior of solution profiles for Pe=12.25 andBi=7.4 
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Fig.14:Behavior of solution profiles for Pe=20.81 and Bi=10 

 

 

 

Fig.15:Behavior of solution profiles for Pe=16.92 and Bi=7.5 

 

 

 

 

 

 

 

 

Fig.16:Behavior of solution profiles for Pe=12.96 and Bi=6.3 

 

 

 

Fig. 17:Behavior of solution profilesfor Pe=14.13 and Bi=8.5 
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TABLE 1 
COMPARISON OF COLLOCATION POINTS FOR PECLET NUMBER=16 

t (-) 
Analytic 
solution 

5collocation 
points 

9collocation 
points 

11collocation 
points 

% error for 
5collocation 
points 

% error for 
9collocation 
points 

% error for 
11collocation 
points 

0 1.000 1.0426 1.0038 1.0017 4.2600 3.8000×10-1 1.7000×10-1 
0.2 9.999×10-1 9.9523×10-1 1.0001 1.0002 4.6705×10-1 2.0002×10-2 3.0003×10-2 
0.5 9.716×10-1 9.7213×10-1 9.7281×10-1 9.7302×10-1 5.4549×10-2 1.2454×10-1 1.4615×10-1 
1.0 4.338×10-1 4.4455×10-1 4.3393×10-1 4.3406×10-1 2.4781 2.9968×10-2 5.9935×10-2 
1.2 2.396×10-1 2.5886×10-1 2.3968×10-1 2.3975×10-1 8.0384 3.3389×10-2 6.2604×10-2 
1.4 1.214×10-1 1.3265×10-1 1.2143×10-1 1.2147×10-1 9.2669 2.4712×10-2 5.7661×10-2 
1.6 5.807×10-2 5.8590×10-2 5.8075×10-2 5.8096×10-2 8.9547×10-1 8.6103×10-3 4.4774×10-2 
2.0 1.195×10-2 5.2137×10-3 1.1945×10-2 1.1953×10-2 5.6371×101 4.1841×10-2 2.5105×10-2 
2.2 5.242×10-3 1.5708×10-4 5.2382×10-3 5.2453×10-3 9.7003×101 7.2491×10-2 6.2953×10-2 
2.8 4.128×10-4 5.2275×10-4 4.1000×10-4 4.1316×10-4 2.6635×101 6.7829×10-1 8.7209×10-2 
3.0 1.744×10-4 7.0061×10-4 1.7261×10-4 1.7461×10-4 3.0173×102 1.0264×100 1.2041×10-1 

 

 
TABLE 2 

COMPARISON BETWEEN OCM AND OCFE FOR PECLET NUMBER= 80 
 

t (-) 
Analytic 
solution OCM OCFE 

% Error for 
OCM 

% Error for 
OCFE 

0 1.0000 1.0008 1.0000 8.0000×10-2 0.0000 
0.2 1.0000 9.9978×10-1 1.0000 2.2000×10-2 0.0000 
0.4 1.0000 9.9963×10-1 1.0000 3.7000×10-2 0.0000 
0.8 9.1140×10-1 9.1106×10-1 9.1140×10-1 3.7305×10-2 0.0000 
1.0 4.6890×10-1 4.6872×10-1 4.6886×10-1 3.8388×10-2 8.5306×10-3 
1.4 1.2680×10-2 1.2667×10-2 1.2680×10-2 1.0252×10-1 0.0000 
1.5 3.6410×10-3 3.6314×10-3 3.6411×10-3 2.6366×10-1 2.7465×10-3 
1.6 9.5070×10-4 9.4390×10-4 9.5069×10-4 7.1526×10-1 1.0519×10-3 
1.7 2.2910×10-4 2.2515×10-4 2.2919×10-4 1.7241×100 3.9284×10-2 
1.8 5.1630×10-5 4.9606×10-5 5.1654×10-5 3.9202×100 4.6485×10-2 
1.9 1.0990×10-5 9.9680×10-6 1.0997×10-5 9.2994×100 6.3694×10-2 
2.0 2.2260×10-6 1.5372×10-6 2.2321×10-6 3.0943×101 2.7403×10-1 
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5 CONCLUSION 
Different types of advection diffusion equations have been 
solved using OCM and OCFE. Numerical results have been 
compared with analytic ones for different values of Pe 
ranging from small to large. It has been observed that 
OCFE gives less error as compared to OCM even for large 
values of Pe. Both the concentration-time graphs as well as 
the numerical values presented in Tables authenticate this 
fact. In case of non linear problems also the C2 
smoothly approaches to zeros even for large values of pa-
rameters. 
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