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Abstract

This report details calculations for the McDonnell-Douglas 30P/30N and tlle NHLP-2D

three-element highlift configurations. Calculations were performed with the Reynolds aver-

aged Navier-Stokes code ISAAC to study the effects of various numerical issues on high lift

predictions. These issues include the effect of numerical accuracy on the advection terms

of the turbulence equations, Navier-Stokes versus the thin-layer Navier-Stokes approxima-

tion, an alternative formulation of the production term, and the performance of several
turbulence models. The effect of the transition location on the NHLP-2D flow solution was

investigated. Two empirical transition models were used to estimate the transition location.
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1 Introduction

1 Introduction

Tlle prediction of high lift configurations consisting of multiple airfoil dements remains a

challenge to computational fluid dynamics (CFD). Multi-element airfoils contain a wide

variety of flow physics which must be accurately modeled. Each airfoil element has a

stagnation point and boundary layers developing in pressure gradients. The boundary

layers develop along a curved surface and may transition from laminar to turbulent flow.

Additionally, the wake of each element eventually merges with the boundary layer from

subsequent elements. However, optimmn high lift multiple element designs are generally

achieved when the slat wake is kept distinct from the main element boundary la3_r for the

greatest distance on the main element.

The flow around the slat is quite complex. The slat windward surface is highly curved

with large flow acceleration. The flow at the slat trailing edge can be laminar, transitional,

or turbulent. The slat leeward surface is highly concave. The leeward flow must accelerate

through tim slat-main element gap around a very sharp bend. The flow often separates due

to the slat geometry, reattaching near the slat trailing edge. The free shear layer developed

at the recirculation boundary is most likely turbulent. The wake developing at the trailing

edge of the slat is then created from the laminar, transitional, or turbulent upper surface

flow and the turbulent lower surface flow. Additionally, the flow around the lower surface

may be unsteady.

Therefore, the predictive capability for high lift multiple element airfoil configurations

is dependent on the ability to accurately model i) boundary layer transition on a curved

surface in a strong pressure gradient ii) turbulent boundary layer development on a curved

surface in a strong pressure gradient iii) transitional and turbulent wake development iv)
separating and reattaching flow and v) wind tunnel effects.

Rumsey et al.[1] demonstrated the need to include the transition location and wind tun-

nel walls to accurately predict multiple element airfoil flows. They studied the McDonnell

Douglas MD-3OP/30N three-element highlift configuration that was tested in the NASA

Langley LTPT wind tunnel [2],[3],[4] and the NHLP-2D airfoil proposed as an AGARD test

case [5] and used as a test case for the CFD Society of Canada [6]. Rumsey et al.[1] provided

experimentally measured transition location on all three elements of the MD-3OP/30N air-

foil. The NHLP-2D airfoil had the transition specified on the main element through the

addition of a transition strip on the upper and lower surfaces; transition occurred naturally

on the slat and flap.

The current study examines the same two configurations as Rumsey et al.[1]. The

purpose of this work is to investigate several numerical issues of the solution procedure on

these configurations, specifically, grid convergence, first versus second order differencing of

the advection operator in the turbulence model, the form of the turbulence production term,

and full Navier-Stokes versus thin-layer differencing. The effect of transition specification

for the NHLP-2D airfoil is also investigated.



2 Technical Approach

2 Technical Approach

Calculations are presented with a farfield vortex boundary condition[7]. Results from Rum-

sey et al.[1] show that including the wind tunnel walls in the calculation improves the

comparison with wind tunnel data. The purpose of these calculations is to investigate vari-

ous numerical and modeling effects; the use of the farfield vortex boundary condition results

in faster convergence and fewer computer hours required.

2.1 Flow Solver

The ISAAC code [8] solves the two or three dimensional Navier-Stokes equations using

the MUSCL upwinding procedure with Roe's flux difference splitting for the mean flow

equations coupled to turbulence model equations. Viscous terms are discretized using

second-order central differences in either the thin-layer or full Navier-Stokes form. The

temporal integration is accomplished with an implicit, diagonalized, approximate factor-

ization scheme. Multigrid acceleration is applied to the mean flow equations and mesh

sequencing (full multigrid) is used to provide an initial solution.

Tile velocity and heat flux were set to zero on the airfoil surface. Viscous terms were

calculated in both grid coordinate directions.

2.2 Turbulence Models

The following three turbulence models were used in this study; Wilcox's K-w eddy viscosity

model [9], the Speziale-Abid-Anderson K-c eddy viscosity model[13], and an algebraic stress

model [14]. The turbulence model equations are given below in Cartesian tensor notation.

Favre averaging is applied to the flow variables, where p is the density, uk are tile Cartesian

velocity components, p is the pressure, K is the turbulent kinetic energ% c is the dissipation
rate, co is the specific dissipation rate, p is the molecular viscosity, and Pt is the turbulent

eddy viscosity.

2.2.1 K-co Eddy-Viscosity Turbulence Model

The K-co turbulence model was developed by Wilcox[9] and applied to a variety of flows.

The model is unique in that it requires no wall damping terms to be integrated to the wall.

The K-co model requires the integration of the K and w transport equations:

(ptc) + 5-_7.k(,,_,k/_')=

0
(_1 + _-;_k(_._co)=

with the eddy viscosity calculated as

1
c_-gP - c_ _+ _ t, + _ _ (2)

Pt = Cp pK (3)
co

(_lz i

PP = --PTiJ OXj (4)

the production is given as
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2.2 Turbulence Models

andthe modelcoefficientsaregivenill Table1.

11.01009-I _/9 13/4012.0/20_

Table 1: Constants for the K-_z model.

Tile Reynolds stresses are modeled with the linear Boussinesq assumption

-P_J = "' [ \o:_:j+ ox_] _-572__ij - 5pK_i_

2.2.2 SAA _h'-c Eddy-Viscosity Turbulence Model

Tile Speziale-Abid-Anderson (SAA) K-e model[13] may be written as

(5)

o-_(p_)+ (p_k_) = c_l _p - c_2f27 + _ _ + j_ _ (7)

where the eddy viscosity is calculated as

C

and the Boussinesq approximation, Eq. 5, is applied for the Reynolds stresses. The damping
functions are given as

f, = (1 + 3.45/x/_et) tanh (y+/70) (9)

f2 = 1-_exp(-Re_/36 [1 - exp (-y+/4.9)] 2 (10)

where Ret = pK_/pc is the turbulence Reynolds number and y + = pyu_-/p, ur = v'r_/p.

The SAA model coefficients are given in Table 2.

0.09 1.44 1.83 1.0 1.36

Table 2: Constants for the SAA K-c model.

2.2.3 Algebraic Stress Turbulence Model

The algebraic stress model (ASM)[14] replaces the linear Boussinesq stress-strain relation-

ship with the following non-linear form:

-r)r,j = 2_t Su - -5SkkU + c_4--(SikWkj+ S_kI_'k,)E

-35-- S_kSkj -- -_SklSkl_ij -- (11)e 3



2.2 Turbulence Models

where
3(1+ q2) + 0.2(r/6 4- _6)

3 + q2 + 6q2_2 + 6_2 + q6 + _6

the strain rate tensor and the rotation tensor are given as

(12)

s_j = _ \Oxj + Oxi] (13)

and the constants are given as:

B%j = -_ Oxj Oxi ] (14)

a2 = (2 - C3)2g2/4 e_3 = (2 - C4)292/4
1 (15)

c_5 = (2- C3)g g = iG/2)+c_-I

The coefficients fi'om the SSG [10] pressure-strain correlation are C1 = 6.8, C2 = 0.36,

C3 = 1.25, 6'4 = 0.40, and C5 = 1.88.

The K transport equation (Eq. 6) and the c transport equation (Eq. 7) are solved with

the damping function

f2 = {1 - exp [-(y+/5.5)] }2 (16)

and the coefficients given in Table 3.

G G1 G2 _K ¢_
0.081 1.44 1.83 1.0 [ 1.51

Table 3: Constants for ASM model.

2.2.4 CFL3D Algebraic Stress Turbulence Model

The CFL3D ASM model[15] is the same form as the ASM model, but has the following

damping function

f2 = {1 - exp [--(Rek/12)]} (17)

where

Rek --pv'_y

and the coefficients are given in Table 4.

Table 4: Constants for CFL3D ASM model.

(18)
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2.3 Transition Specification

2.3 Transition Specification

Transition is specified by setting the turbulence production (Eq. 4) to zero in a prescribed

region. This results in laminar flow in the prescribed region and is equivalent to forcing

transition. Transition requires the external specification of the transition location.



3 Results

3 Results

3.1 MD 30P/30N

The flow conditions for tile test case are given in Table 5. Transition locations are specified

from the work of Rumsey et al.[1].

0.2
Re 9.0 × 106

_ 19 °

T_ 460°R

Table 5: Flow parameters for 30P/30N three-element airfoil.

Figure 1 shows the locations of the experimental velocity profiles. The first measurement

location is on the main element; no detailed measurements are available on the slat to

compare with model predictions.

The grid [1] consists of four C-grids: the first block is a 745 x 57 C-grid around the

slat, the second block is a 597 × 89 C-grid around the main element, the third block is a

265 x 65 C-grid around the flap, and the fourth block is a 685 × 33 C-grid around all of the

other grids. Additionally, a coarser mesh that is formed by deleting every other grid point

in both coordinate directions is used to study grid convergence. The first grid point off the

airfoil surface for the fine grid was located such that y+ < 0.65. There were at least 25 grid

points in the boundary layers.

3.1.1 The Effect of Numerical Accuracy on Turbulence Models

This section documents the effect of first order versus second order accurate discretization

of the advection terms in the turbulence model equations on both the coarse and fine grids.

Turbulence model equations for complex flows can exhibit stiffness, non-positive be-

havior, and be difficult to converge. To alleviate some of the stiffness, ensure positivity,

and improve the robustness of the solution procedure, it is often assumed that a first or-

der upwind discretization of the advection terms on the turbulence transport equations is
sufficient.

Figure 2 shows the pressure calculated with the first order and the second order advection

for the K and _v turbulence equations[9] on the fine mesh and the mesh coarsened once by

removing every other grid point in both coordinate directions with the experimental data

from Paschal et al. [3]. The first and second order results are identical to plotting accuracy

on both the fine and coarse mesh; the order of the advection operator makes no discernible

difference in the calculated wall pressure. However, the fine grid increases the suction level

on the suction side of the slat. Both grids give reasonable predictions of the surface pressure

on all three elements.

Figures 3-5 show the velocity profiles calculated with the first and second order advection

for the K and _v turbulence equations. The fine grid calculations show an increased wake

deficit from the coarse grid calculations. The velocity profile at x/c = 0.45 shown in Figure 3

demonstrates less merging of the slat wake with the main element boundary layer for the

!:] ! !



3.1 MD 30P/a0N

second order advection operator for tile turbulence equations. The second order advection

shows a clear boundary layer on the main element and a separate slat wake. The first order

advection smears the edge of the slat wake down into the outer edge of the main element

boundary layer.

Tile second order advection also predicts a higher edge velocity for the main element

and flap boundary layers for x/c >_0.85 as shown in Figures 4 and 5. The flap trailing edge

boundary layer (x/c = 1.1125) edge velocity is underpredicted by the first order advection

on both grids and only approaches the experimental value for the fine grid with the second
order advection.

Neither the first nor the second order advection calculations demonstrate grid conver-

gence on this sequence of meshes. The first and second order solutions should coincide on a

sufficiently title mesh with the second order solution achieving grid convergence more rapidly

than the first order solution. The results show that the improved grid resolution increases

the wake defect. Additionally, the first order advection on the turbulence equations smears
out the wake deficit.

3.1.2 The Effect of Viscous Terms on Model Predictions

Figure 6 shows velocity profiles on the main element and the flap calculated with the

thin-layer approximation and with full Navier-Stokes terms. The calculation with tile full

Navier-Stokes terms shows a slight difference at the slat wake edge. There is almost no

change in the calculation in the boundary layer of the main element or in the wake of the

main element with the full Navier-Stokes terms. The level of changes introduced with the

full Navier-Stokes terms as compared to the thin-layer approximation is small. This is a

result of the good level of grid orthogonality in the shear layers.

3.1.3 The Effect of Production Term on Model Predictions

Menter[12] noted that calculations without a specified transition location resulted in very

high eddy viscosities outside the houndary layer in the region of the stagnation point. The

production in this region is given as the difference in the normal stresses times a velocity

gradient and is modeled in an eddy viscosity model as a positive term. To overcome the

unphysical production of turlmlence, he suggested that turbulence production, Eq. 4, can

be approximated for two-dimensional airfoil flows in the following manner:

p7:_ = pt _2 (19)

where

= (2o)

is the magnitude of the vorticity.

The production term, Eq. 4, is an exact term in the derived turbulent kinetic energy

transport equation. Any errors in the form of this term come from the stress-strain rela-

tionship that is applied. Algebraic stress models improve on the stress-strain relationship

used in eddy viscosity models. In the current work, the unphysical high eddy viscosity in

the stagnation region is controlled by specifying a transition location.



3.1 MD 30P/30N

Figures 7-9 show tile velocity profiles calculated with the K-a; turbulence model[9] with

tile alternate production term. The solution at the first station, x/c = 0.1075, shows

minimal difference between the two solutions for the two forms of the production term. The

main element boundary tayer and the slat wake are almost identical. Further downstream

differences begin to appear. By the x/c = 0.45 location, tile vorticity based production

calculates a fuller and thicker boundary layer than the exact production term. The vorticity

based production also calculates a smaller wake defect for the slat wake than the exact

production term calculates. Tile results on the flap show smaller wake defects for both

tile slat wake and the main element wake with the vorticity based production and more

merging of the wakes. The exact production predictions are closer to the experimental
data for the main element wake, but the vorticity based production predictions are closer

to tile experiment for tile slat wake. Tile vorticity based production predicts an increased

maximum edge velocity at the flap middle and trailing edge than the exact production term

predicts. The increased edge velocity is closer to the experimental data.

3.1.4 The Effect of Damping Functions on the Algebraic Stress Model

Figure 10 plots the damping functions for the ASM model, Eq. 16, and the CFL3D ASM

model, Eq. 17, for a log layer. Both damping functions are O(y 2) to remove the singularity

in the destruction of dissipation term. The CFL3D ASM damping function turn off at

y+ _ 15 while the ASM damping function damps much further into the log layer to y+ _ 35.

Additionally, damping based on y+ is ill-posed for separated flows; the damping extends

even further into the computational domain as the wall shear stress is zero at the separation

and reattachment points resulting in small values of y+ at large distances from the wall.

Figures 11-13 show the velocity profiles calculated with the ASM model and the CFL3D

ASM model. The profiles at the first location, x/c = 0.1075, show minimal differences

between the ASM and the CFL3D ASM models. However, by the x/c = 0.45 station the

two models are showing noticeable differences; the CFL3D ASM model predicts a thicker

main elenlent boundary layer and a wider wake. Additionally, the CFL3D ASM model

predicts the wake further from the surface than the ASM model. These trends continue on

all profiles to the trailing edge of the flap. The CFL3D ASM model predicts more merging

of the wakes with the boundary layers and a lower peak velocity in the merging region.

On the flap, the CFL3D ASM model shows improved comparison with experiment as the

wake deficit is predicted smaller than the ASM model and the peak velocity at the merged

boundary layer/wake is lower.

3.1.5 The Effect of Turbulence Models on the Flow Field

Figures 14-16 show the velocity profiles calculated with the Speziale-Abid-Anderson (SAA)

K-c model[13], the algebraic stress model (ASM)[14], and the K-_z turbulence model[9]. All

three of the models overpredict the slat wake defect for all of the measuring stations. At the

first station, x/c = 0.1075, the ASbJ model predicts the lowest edge velocity of the three
models for the main element boundary layer and the/x'-oJ model predicts the edge velocity

closest to the experiment. Accounting for the different edge velocities for the models, all

three models appear to predict a very similar wake defect and wake width for the slat.

Further downstream, x/c > 0.45, the K-w model predicts more spreading of the slat wake.

8



3.2 NHLP-2D

TheK-a; model also predicts the slat wake closer to the airfoil surface than the SAA model,

and the ASM model predicts the slat wake furthest from the surface. At x/c = 0.45 and

0.85 the K-w model predicts a fuller and thicker main element boundary layer than the

SAA model and the ASM model underpredicts the boundary layer.

The K-a; model underpredicts the main element wake at the x/c >_ 0.89817 locations,

but predicts about the correct level of minimum velocity at the x/c = 1.1125 location. At

all three locations the K-co model predicts the main element wake too close to the surface.

The K-ca model underpredicts the edge velocity of the flap boundary layer and does not

predict the main element wake development well.

The ASM model overpredicts the main eleinent wake defect and wake width. The ASM

model does the best job of predicting the flap boundary' layer edge velocity, at the trailing

edge, but it had underpredicted the flap boundary layer at the flap leading edge. The ASM

model does the best job of predicting the location of the wakes, but consistently overpredicts

the wake defect and spreading.

The SAA model best predicts the main element wake defect and wake width of the three

models. The location of the wakes is predicted too close to the surface by the SAA model.

The flap boundary layer is predicted best by the SAA model.

Rumsey et al. [1] showed that the calculations including the wind tunnel walls improved

the locations of the wakes and the agreement with experimental data. The current calcula-

tions were performed using an unbounded boundary condition. A transition model should

be included to model the effect of the physical transition process.

3.2 NHLP-2D

The flow conditions for the NHLP-2D test. case are given in Table 6. The experimental

transition was specified at 12.5% chord on the upper and lower surfaces of the main element.

The slat and flap were not tripped and the transition locations were not experimentally
measured.

5I_ 0.195

Re 3.52 × 10_'-

o_ 4.01 °

Table 6: Flow parameters for NHLP-2D three-element airfoil.

Figure 17 shows the locations of the experimental profiles of total pressure coefficient.

The first measurement location is on the main element; no detailed measurements are

available on the slat to compare with model predictions.

The grid [6] consists of four C-grids: the first block is a 245 x 49 C-grid around the flap,

the second block is a 549 x 89 C-grid around the main element, the third block is a 577 x 57

C-grid around the slat, and the fourth block is a 641 x 33 C-grid around all of the other

grids. The grid employs one-to-one point connectivity at the zonal interfaces. The outer

boundary is approximately 10 chords from the body. The first grid point off the airfoil

surface for the fine grid was located such that y+ < 0.62, except for a small region on the

slat where y+ _-, 1.1. There were at least 20 grid points in the boundary layer.



3.2 NHLP-2D

3.2.1 Free Transition Calculations

The first set of calculations were performed with the main element tripped at 12.5% chord

as specified in the experiment; the slat and flap transition occurred where the turbulence

model calculated. It is important to note that none of the turbulence models is calibrated

to predict transition. Figure 18 shows the surface pressure calculated with the K-w model,

the SAA model, and the ASM model. All of the models show good agreement with the

experimental values of wall pressure.

Figure 19 shows profiles of the total pressure coefficient at four different stations on the

main element and the flap. The plot at x/c = 0.35 shows the slat wake and the boundary

layer on the main element. All three of the models predict too large of a defect for the

slat wake. The experimental data is very sparse in the region of the slat wake, but appears

to show a very narrow and weak wake. All of the models predict a stronger wake that

is displaced further from the main element surface than the experimental data indicates.

Additionally, all of the models predict a larger edge velocity for the main element boundary

layer than the experiment indicates. The experiment shows more merging of the slat wake

and main element boundary layer than the calculations show. There are differences in the

various models, but they all fundamentally show a more distinct wake and boundary layer

than the experiment.

The experimental profiles at all of the other downstream locations confirm the merging

of the slat wake with the main element boundary layer; the slat wake is completely missing

from the experimental total pressure profiles at the x/c = 0.91 and higher locations. All

three of the models predict a distinct slat wake in the outer edge of the main element

boundary layer all the way to the flap trailing edge (x/c = 1.214). The algebraic Reynolds
stress model shows the smallest wake at all of the stations and the K-w model shows the

largest wake at all of tile locations. The wake location is predicted very similarly for all

three models, but the wake defect and wake width vary.

Rumsey et al.[1] demonstrated that specification of transition on the slat had a major

impact on the calculation of multi-element airfoils. Therefore, the transition location pre-

dicted by each of the models was calculated. The transition location was determined from

the flow solution as the location where the turbulent eddy-viscosity exceeded the molecu-

lar viscosity across (the majority of) tile boundary layer. Figure 20 shows the calculated

location of the transition point on the slat for all three models. The K-ca model predicts

transition closest to the stagnation point on both the upper and lower surfaces of the slat.

The ASM model predicts transition at the most aft location. The delay in the transition

reduces the initial boundary layer thickness at the slat trailing edge and reduces the ini-

tial wake width and wake defect. This accounts for part of the variation in the slat wake

predictions in the profiles shown previously.

Figure 21 shows the calculated location of the transition point on the flap for all three

models. For the flap, the ASM model predicts transition closest to the stagnation point, and

substantially upstream of the other models, on the upper surface. The K-w model predicts

an earlier transition on the flap lower surface and the ASM and SAA models predict the

same transition location on the lower surface. The effect of the early transition on the ASM

model is clearly evident on the flap boundary layer at the x/c = 1.214 location with a much

reduced total pressure (velocity) near the surface.

10
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3.2 NHLP-2D

It is important to reiterate that none of these models is derived and calibrated to predict

transition. All of the models will have a transition behavior as turbulence levels grow, but

this behavior is not calibrated to match physical transition.

3.2.2 Specified Transition Calculations

To investigate the issue of slat transition, the calculations were repeated with the transition

location on the slat set to tim trailing edge of tile slat on the upper surface and to the

corner of the cove region on the lower surface. The flow on the windward portion of the slat

was calculated as laminar flow and the flow in the cove region was calculated as turbulent

flow. The main element transition was maintained at 12.5% chord on the upper and lower

surface and tile flap was left as free transition.

Figure 22 shows the total pressure coefficient profiles at the four measurement locations
calculated with the K-_v model with free transition and wittl transition on the slat fixed

as detailed above. The results at x/c = 0.35 show a slight reduction in the wake defect, a

decrease in the wake width, and a slight shift of the wake towards the main elenlent surface.

All of these trends are closer to the experimental results. The wake defect and width show

greater changes in the downstream profiles and the wake continues to move closer to the

surface. Changes ill the slat wake also change the wake flow of the main element over the

flap as is evident in the x/c = 1.066 and x/c = 1.214 profiles.

Figure 23 shows the wall pressure for all three models with tile transition location

specified on the slat. The wall pressure shows minimal improvement over the results with

free transition that were shown in Figure 18.

Figure 24 shows the profiles of the total pressure coefficient for all three models with the

transition location specified on the slat. All three of the models show a reduced wake defect

and narrower wake at all four stations for the transition fixed on the slat as compared to
the free transition case.

Figure 25 shows the calculation with the K-cz model using both first and second order

accurate differencing on the advection terms ill the turbulence transport equations (ad-

vection terms in the mean equations and viscous terms in all equations are second order

accurate for all calculations). The e based models (SAA and ASM) required the use of first
order advection on the turbulence models to achieve a solution. The second order solution

is also shown for the grid coarsened one level by deleting every other grid line in both
coordinate directions.

The first order turbulence advection calculation shows a much smaller wake deficit and

more merging with the boundary layer than the second order calculation. This trend is

visible at all four streamwise locations. The first order solution also shows a smaller peak

total pressure at the edge of the boundary layer at the flap trailing edge. The second order

solution on the coarse grid shows very poor comparison to experiment and shows merging

of the slat wake with the boundary layer much earlier than the fine grid results. The

coarse grid results also provide a poor prediction of the main element boundary layer. The

solutions are not grid converged and further grid refinement is necessary to verify the wake

defect and wake width discrepancies.

11



3.2 NHLP-2D

3.2.3 Slat Transition Prediction

Sex_ral empirical procedures have been developed to predict transition locations. MidM[16]

(as reported in White[17]) developed a correlation that transition of incompressible flow

about airfoils occurs when the Reynolds number based on tile momentum thickness

satisfies

Reo_ -- pcUeOi (21)
tte

Reo, ,,_ 2.9Re °'4 (22)

where Res is the Reynolds number based on s, the distance along the surface from the

stagnation point,
peUes

- (23)
ge

and the subscript, _, denotes the boundary layer edge conditions. This correlation is for

incompressible flows, therefore the transformation of Mann and Whitten (see e.g. White[17])

is used to relate the compressible momentum thickness to the incompressible momentum

thickness [18]

(T°'_ 3 (24)
o =

where To is the total temperature, the compressible momentum thickness is calculated as

O= -- 1- dy (25)
poue G

and 5 is the boundary layer thickness. Transition is calculated to occur at the first s location

where Eq. 22 is satisfied.

Figure 26 shows the value of the momentum thickness Reynolds number for the upper

surface of the slat calculated assuming laminar flow. The calculated value of Re0, never

exceeds Michel's correlation for transition. Therefore, transition is not predicted on the slat

surface by Michel's correlation.

Wazzan et al.[19] developed the H-Rez correlation for transition based on the e9 method.

They demonstrated that a wide range of transition data, including the effects of pressure

gradient, suction, and (low rates of) heat transfer, collapsed to a single curve when Rex was

plotted as a function of the incompressible shape factor, Hi, where the compressible shape
factor is defined as

H = 5'/0 (26)

the displacement thickness is given as

5" =fo5 (1 PU)dy (27)
p_U_

and the incompressible shape factor is taken from the Mann and Whitten transformation

[17]

( Taw _ (1--t.- _@_]_I: ) -}'- _--_,': (28)H=Hik To ]

12
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3.2 NHLP-2D

where Taw is the adiabatic wall temperature and ._Ie is the Mach number at the boundary

layer edge. Wazzan et al. provided a fit to the experimental curve as

log(Rex) -- -40.4557 + 64.8066H_ - 26.753SHy + 3.3819H 3 2.1 < Hi < 2.8 (29)

For general geometries, x is replaced with s, where s is the distance along the body measured

from tile stagnation point.

Figure 27 plots the curve from Eq. 29 along with the values from the flow calculation.

The value of Res calculated from the flow solution never exceeds the value of Rex required

for transition by tile H-Rex correlation. Therefore, tile H-Rex correlation never predicts

transition to occur on the slat upper surface.

Both Michel's correlation and the H-Rex correlation predict that the slat upper surface

remains laminar all the way to the trailing edge. Figure 22 demonstrated that the K-w

model results were improved when the flow on the upper surface of the slat was assumed

laminar. However_ Figure 24 shows that discrepancies in the predictions remain quite large

for all three of the models which predict a more distinct slat wake, too large of a wake

deficit, and the slat wake located too far from the main element surface. The transition

model that is applied in these calculations assumes instantaneous transition. The current

calculations set the transition at the slat trailing edge which is consistent with the empirical

transition correlations. However, the calculations transition to fully turbulent flow at the

trailing edge while the experiment transitions over some distance.

The flow in the cove region of the slat is assumed turbulent; the experiment probably

develops turbulence in this region quickly but there may be unsteady shedding of vortices

from the slat corner and coherent structures interacting with the lower half of slat wake.

The development of the slat near wake with a transition upper half and a turbulent lower

half with large scale coherent structures in the pressure gradient with curvature is the key

to improving the flow predictions. Unfortunately, the experiment provides insufficient data

to analyze the slat near wake. The experiment would ideally provide a detailed mapping of

this flow including unsteady measurements to identify whether or not coherent structures

are important.

3.2.4 Main Element Transition Trips

The boundary layer on the upper surface of the main element is tripped using an inset

metal strip that is 0.125 inches wide and 0.009 inches high located at 12.5% chord. The

laminar boundary layer thickness at the specified transition location is calculated to be,

5. = 0.03537 inches. The trip height is h _ .2545_ and the width is l _ 3.535u. There

will be a separated region in front of and a separated region behind the rectangular trip.

This large of an obstruction in the boundary layer will result in an artificial thickening of

the boundary layer that will persist far downstream. The x/c = 0.35 measuring station is

only 1915u downstream from the trip. The boundary layer at this location will not be the

same as a fully developed boundary layer that began developing at the trip location - which

is what is modeled in the calculations. The momentum defect from the trip could explain

part of the total pressure defect near the wall at the x/c = 0.35 location. The artificial

thickening of the boundary layer would result in quicker merging of the slat wake with the

main element boundary layer which is also seen in the data.
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3.2 NHLP-2D

The boundary layer on the lower surface of the main element is tripped using plastic

tape that is 0.125 inches wide and 0.012 inches high located at 12.5% chord. The laminar

boundary layer thickness at the specified transition location is calculated to be, 5l = 0.03169

inches. The trip height is h _ .3795t and the width is 1 _ 3.945l. This trip is even more

intrusive to the boundary layer than on the upper surface.
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4 Concluding Remarks

4 Concluding Remarks

The current calculations did not demonstrate grid indei)endence for either highlift configu-

ration with either the first or second order turbulence advection. Increased grid resolution

and the second order turbulence advection increased the wake defect, decreased the wake

width, and reduced the wake/boundary layer merging.

The results for the NHLP-2D with transition specified improved the calculated wake

deficit and wake location. Two empirical transition prediction methods were used to justify

the NHLP-2D slat transition h)cations. However, while the transition location was investi-

gated and improved, the transition location and extent is not available from the experiment

and is not modeled correctly, i.e. an instantaneous transition is specified on the slat rather

than a transition region. Rumsey et al.[1] used experimental transition criteria for the MD

30P/30N three-element airfoil and improved the comparison with the data more than the

current study achieved for the NHLP-2D airfoil. The developing wake from the slat up-

per and lower surfaces is not sufficiently well documented to answer fundamental modeling

questions. Substantial questions as to transition and coherent large-scale structures remain

in the slat cove region and near wake.

The experimental trips used on the NHLP-2D airfoil intruded a significant distance into

the boundary layer and disturbed the boundary layer development. The tripped boundary

layer development is not modeled with instantaneous transition. The calculations should

be repeated including the trips in the geometry. The effects of the trip separation regions

and the developing boundary layer could then be calculated.

The calculations with the thin-layer Navier-Stokes terms and the full Navier-Stokes

terms showed minimal differences. This is mainly due to the high level of grid orthogonality

in the shear layers.

The calculations with the production based on vorticity showed a smaller wake defect,

poorer agreement with the boundary layer, and more merging of the wake and boundary

layer than the exact production term.

Results for three different models were compared on the MD 30P/30N three-element

highlift configuration. All of the models calculated too large of a wake defect. Grid resolved

calculations including wall effects and an improved transition model are required to more

accurately compare the models. The ASM models from ISAAC and CFL3D produced very

similar results. The functional form of the damping function used in CFL3D is preferred

in flows with separation and reattachment to prevent issues when the wall shear stress

approaches zero.

Additional experimental data on the slat and in the slat near wake is necessary for

both configurations to identify turbulence model deficiencies. The experimental data is also

needed to answer whether the flow in the wake is unsteady due to shedding from the slat

cove corner.
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Figure 1: Location of velocity profiles for MD-30P/30N multi-element airfoil.
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order advection on the K and w equations.
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