NUTRITION IN GI DISORDERS

DR. JEFFREY BRASKY, DO NORTH SUBURBAN GASTROENTEROLOGY ASSOCIATES MAY 7, 2016

DISCLOSURE

I have no relevant financial or nonfinancial relationships to disclose

OBJECTIVES

- Discuss nutrition and types of assessment tools
- Discuss nutrition in multiple gastrointestinal disorders and review evidence-guided therapies

INTRODUCTION

- In lean healthy people, death associated with weight loss >35%, protein storage loss >30%, and fat storage loss >70%
- Literature detailing nutrition as medical therapy has been controversial
- Overall, there is a lack of large, randomized, prospective studies comparing one nutritional therapy with another
- Thus, meta-analyses often are used to group small studies and allow reasonable conclusions

- Medical History and Physical Exam
 - Inquiry into patient's usual body weight (UBW) vs ideal body weight (IBW) or present body weight (PBW)
 - Predictors of morbidity and mortality in studies
 - Percentage deviation from UBW over last 3-6 months most sensitive marker of nutritional risk

- Anthropomorphic Measurements
 - Estimation of body composition or body stores of using relatively simple and inexpensive equipment such as handheld calipers and scales
 - Triceps skinfold (TSF): a marker of body fat stores, and mid-arm muscle circumference (MAMC)
 - Body Mass Index (BMI)
 - (Weight in kg)/(height in meters)²

Biochemical Measurements

- Plasma proteins: albumin, prealbumin, and transferrin
 - Albumin poor indicator of protein malnutrition
 - Half-life 21 days
 - Infections, medications, liver disease, and acute physiologic changes affect levels
 - Prealbumin better marker of nutritional status
 - Half-life 2 days

- Immunologic tests
 - Serum total lymphocyte count not study validated
- Muscle Function
 - Hand grip strength measures forearm lean muscle mass
 - Not reliable for acutely ill or patients with hand or arm motor abnormalities

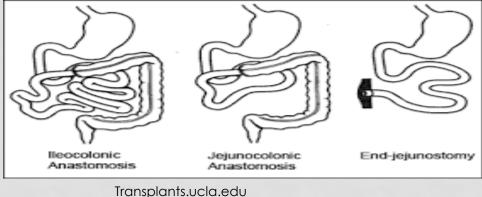
- Global Assessments
 - No single tool that is an accurate predictor of nutritional status to date
 - Subjective Global Assessment (SGA)
 - Incorporates weight changes, dietary intake, functional capacity and preliminary medical diagnosis
 - Validated in oncology population

Caloric Assessment

- Mathematical equations
 - Harris-Benedict equation
 - Men: Energy needs (kcal/24hr)= 66+(13.7xW)(5xL)-(6.8xA)
 - Women: Energy needs (kcal/24hr)= 655+(9.6xW)+(1.7xL)-(4.7xA)
- Indirect Calorimetry by heat produced by oxidation
- Protein Assessment
 - Measured by calculation with assessing 24-hour urine urea nitrogen (UUN)

- Macronutrients
 - Carbohydrates
 - Fats
 - Proteins
- Macrominerals
 - Calcium
 - Phosphorus
 - Magnesium

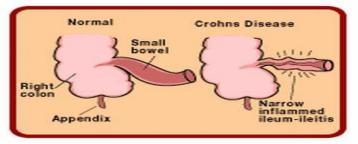
- Micronutrients
 - Chromium
 - Copper
 - lodine
 - Iron
 - Manganese
 - Selenium
 - Zinc


- Vitamins
 - Water-Soluble
 - Vitamin C
 - Thiamine (Vitamin B1)
 - Riboflavin
 - Niacin
 - Pantothenic Acid
 - Biotin
 - Folic Acid
 - Vitamin B12
 - Vitamin B6 (Pyridoxine)

- Vitamins
 - Fat-Soluble
 - Vitamin A
 - Vitamin D
 - Vitamin E
 - Vitamin K

- Intestinal Failure (Short Bowel Syndrome)
 - Results in loss or disease of the intestine, or both, that precludes adequate digestion and absorption
 - Crohn's disease, intestinal trauma, and intestinal infarction
 are most common causes
 - Nutritional management of short bowel syndrome depends on the amount and location of small bowel removed
 - Intestinal rehab more successful if colon and ileocecal valve preserved

- Intestinal Failure (Short Bowel Syndrome)
 - Proton pump inhibitors used to reduce gastric hypersecretion
 - Anticholinergics used to slow intestinal transit
 - Parenteral nutrition (PN) used to meet nutritional needs
 - Oral feeding gradually started while volume of PN reduced
 - Cholestyramine can be used for bile salt-induced diarrhea with partial ileal resection and preserved colon
 - Vitamin B12 given monthly
 - Trial of small-peptide, low-fat, enteral formula for significant small bowel resections (80-100 cm remaining)
 - PN-dependency for <80 cm small bowel remaining and no colon
 - Somatostatin to reduce intestinal secretions and slow transit time remains controversial
 - Use of growth hormone, glutamin, and a rice-based diet to cause small bowel mucosal hypertrophy and better absorption is controversial
 - Glycoprotein (GL-2) postulated as a small intestine mucosal stimulator for improved absorption


Pancreatitis

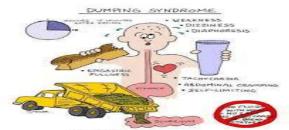
- Nutritional support imperative for severe pancreatitis and relapsing chronic pancreatitis
- Early enteral nutrition (EN) reduces complications and mortality than NPO regimen
- PN associated with central line catheter sepsis and hyperglycemia
- Intrajejunal feedings safe and well tolerated
 - Standard, fat-containing, polymeric enteral formula can be used
- Gastric feedings have been used successfully in severe acute pancreatitis but still topic of investigation

STATES

- Crohn's Disease
 - Pts often hypermetabolic

- Anorexia possibly present due to nausea and abdominal pain
- Deficiencies of magnesium, selenium, potassium, and zinc common due to diarrhea and possible fistula tracts
- Dietary therapy important but no specific diet can be recommended
 - Fat restriction may be important with ileal disease and hx of ileal resection
 - EN may be important for those who cannot eat
 - EN not superior to PN for inducing remission, though less costly and fewer complications
 - PN restricted for pts failing conservative medical therapy (EN and medications), or in pts EN cannot be delivered

- Liver Disease
 - Nutritional deficiencies common due decreased dietary intake, altered metabolism, decreased nutrient storage, and increased nutrient requirements
 - Decreased dietary intake more common in cirrhosis
 - Decreased bile salt production results in intolerance to high-fat food
 and fat-soluble vitamin malabsorption
 - Hypoalbuminemia results in edema of small bowel mucosa leading to poor nutrient absorption
 - Depletion of muscle mass due to lack of glucose stores and dependency on protein stores for energy
 - Rise in aromatic amino acids, thought possibly making hepatic encephalopathy worse
 - Limiting protein intake not recommended
 - PN should be used with caution due to immune dysfunction places pts at risk for catheter related sepsis
 - Nutritional support beneficial for patients prior to liver transplantation


Diverticular Disease

- No clinical data to avoid nuts or foods with seeds
- Data suggests high-fiber diet will reduce occurrence of symptomatic disease
 - Fiber intake should be at least 25 g/day, as insoluble fiber such as wheat bran, bran muffins, and fiber-based cereals
- Probiotics with some success with treatment and prevention of diverticulitis

Dumping Syndrome

- Common after partial gastrectomy and vagotomy
- Hypertonic gastric contents empty rapidly into the small intestine, and consequently 25% of the plasma volume is transferred to small intestine
- Symptoms of nausea, cramping, diaphoresis, and palpitations
- Nutritional therapy
 - Lower osmolarity solution to the small intestine by frequent ingestion of small meals containing fat, protein, and complex carbohydrates, limited in simple sugars
 - Fluid intake restricted and separate from solid food intake to avoid rapid gastric transit

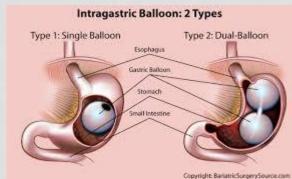
Celiac Disease

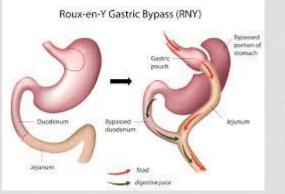
- Small intestinal injury resulting in malabsorption caused by gluten-containing foods, such as wheat, barley, rye, or oats
- Classic signs of malabsorption, especially in younger pts:
 - Diarrhea, cramping, marked weight loss, and often folate, iron, and fat-soluble vitamin deficiencies
- Treatment is gluten-free diet
 - Wheat starch free of gliadin is basis of gluten-free breads
 - Corn, rice, and buckwheat allowed
 - Most patients improve with dietary management, IF, compliant

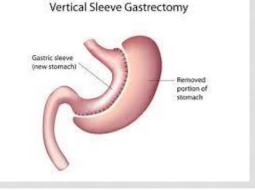
Cancer

- 2
- Protein calorie malnutrition common
- Cancer cachexia induced by tumor through multiple metabolic abnormalities
- Appetite stimulation effective in mild malnutrition
- Routine use of aggressive nutritional support in pts receiving chemotherapy and radiation is controversial
- PN beneficial for pts w/ gastrointestinal obstruction from primary or metastatic tumors
- EN effective for pts w/ head and neck cancer to prevent weight loss, reduce hospitalizations, and reduce interruptions in chemotherapy and radiotherapy
- In summary, nutritional support in the cancer pt should be restricted to those with a reasonable life expectancy

Obesity


- GI doc traditionally involved in post-bariatric surgical complications, including stomal stenosis, gastrointestinal bleeding, and fistulization
- Obesity-related GI disease staple of practice, such as GERD

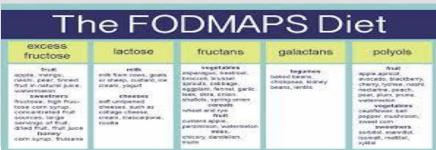

		Body Mass Index (kg/m2)			
TREATMENT	25-26.9	27-29.9	30-34.9	35-39.9	>40
Diet, physical activity, behavior therapy	With comorbidity	With comorbidity	Yes	Yes	Yes
Pharmotherapy	No	With comorbidity	Yes	Yes	Yes
Surgery	No	No	No	With comorbidity	Yes


Obesity

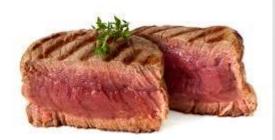
- Surgical management in the United States:
 - Roux-en-Y gastric bypass
 - Vertical banded gastroplasty
 - Gastric banding
 - Most weight lost in first year
 - Mortality 0.5-2%



- Endoscopic management in United States:
 - Gastric balloon (Orbera, ReShape, Obalon)



GASTRIC BAND


- Irritable Bowel Syndrome
 - High fiber diet is of global benefit with NNT of 11
 - Fiber supplements better tolerated than dietary fiber
 - Wheat bran no better than placebo
 - Fiber not helpful for pain, but beneficial for constipation and firming up loose stools
 - Gradual increase of supplemental fiber to 10-15 g
 - Food intolerance
 - Lactose intolerance possible but usually symptoms persist despite elimination
 - Fructose consumption
 - Reducing fatty foods, gas-producing foods, caffeine, or alcohol may be helpful but no randomized controlled studies
 - Elimination diets can be useful in some cases
 - Systematic review shows 12-67% of patients with IBS will respond but most data uncontrolled
 - FODMAP diet

- Colorectal Cancer Risk
 - High fiber diet: may decrease
 - High intake of fruits and vegetables: unclear
 - Obesity: increases
 - Cigarette smoking: increases
 - Fish: decreases
 - Garlic: moderately decreases
 - Meat: red and processed meats increase risk
 - High folate intake: increases with caveats
 - Alcohol: increases with >30 g/day
 - Exercise: decreases
 - Mediterranean diet: probably decreases

REFERENCES

Feldman, Mark, Friedman, L. S., Brandt, L. J. (Eds.). "Nutrition in Gastrointestinal Diseases." Sleisenger and Fordtran's Gastrointestinal and Liver Disease: Pathophysiology, Diagnosis, Management. Philadelphia, 2010. 77-97. Print.

BMJ 2011; 343 doi: http://dx.doi.org/10.1136/bmj.d6617 (Published 10 November 2011)

Cochrane Database, 2011

Halmos et al, Gastro 2014

World Gastroenterology Organisation (WGO) Practice Guidelines. Diverticular disease. 2007.

Ünlü C, Daniels L, Vrouenraets BC, Boermeester MA. A systematic review of high-fiber dietary therapy in diverticular disease. Int J Colorectal Dis. 2012;27:419–427.

Brodribb AJ. Treatment of symptomatic diverticular disease with a high fiber diet. Lancet. 1977;1:664-666.

Hodgson WJ. The placebo effect. Is it important in diverticular disease? Am J Gastroenterol.1977;67:157–162.

Peery AF, Barrett PR, Park D, et al. A high-fiber diet does not protect against asymptomatic diverticulosis. Gastroenterology. 2012;142:266–267.

Elisei, Walter, and Antonio Tursi. Recent advances in the treatment of colonic diverticular disease and prevention of acute diverticulitis. Ann Gastroenterol. 2016 Jan-Mar; 29(1): 24–32.