
DU-10094-001 _v1.0.0 | August 2021

NVIDIA Magnum IO GPUDirect Storage

Overview Guide

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | ii

Table of Contents

Chapter 1. Introduction.. 1
1.1. Related Documents...1

1.2. Benefits for a Developer...2

1.3. Intended Uses... 3

Chapter 2. Functional Overview... 4
2.1. Explicit and Direct...4

2.2. Performance Optimizations..6

2.2.1. Implementation Performance Enhancements..6

2.2.2. Concurrency Across Threads.. 8

2.2.3. Asynchrony..8

2.2.4. Batching.. 8

2.3. Compatibility and Generality.. 9

2.4. Monitoring..10

2.5. Scope of the Solutions in GDS... 10

2.6. Dynamic Routing... 11

2.6.1. cuFile Configuration for Dynamic Routing..12

2.6.2. cuFile Configuration for DFS Mount... 13

2.6.3. cuFile Configuration Validation for Dynamic Routing...15

Chapter 3. Software Architecture.. 16
3.1. Software Components...16

3.2. Primary Components.. 16

3.2.1. Workflows for GDS Functionality...17

3.2.2. Workflow 1.. 18

3.2.3. Workflow 2.. 19

3.3. Aligning with Other Linux Initiatives.. 19

Chapter 4. Deployment...21
4.1. Software Components for Deployment..21

4.2. Using GPUDirect Storage in Containers..22

4.3. Internal and External Dependencies... 23

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 1

Chapter 1. Introduction

GDS enables a direct data path for direct memory access (DMA) transfers between GPU
memory and storage, which avoids a bounce buffer through the CPU. This direct path
increases system bandwidth and decreases the latency and utilization load on the CPU.

This guide provides a high-level overview of GDS, guidance to help you enable filesystems
for GDS, and some insights about the features of a filesystem and how it relates to GDS. The
guide also outlines the functionalities, considerations, and software architecture about GDS.
This high-level introduction sets the stage for deeper technical information in the cuFile API
Reference Guide for GDS users who need to modify the kernel.

1.1. Related Documents
This section provides information about the other GDS documentation that is available to help
you understand and use GDS.

The following documents and online resources provide support and provide additional context
for the optimal use of and understanding of this specification:

Refer to the following guides for more information about GDS:

‣ GPUDirect Storage Design Guide

‣ cuFile API Reference Guide

‣ GPUDirect Storage Release Notes

‣ GPUDirect Storage Benchmarking and Configuration Guide

‣ GPUDirect Storage Best Practices Guide

‣ GPUDirect Storage Installation and Troubleshooting Guide

‣ GPUDirect Storage O_DIRECT Requirements Guide

To learn more about GDS, refer to the following blogs:

‣ GPUDirect Storage: A Direct Path Between Storage and GPU Memory.

‣ The Magnum IO blog.

https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://docs.nvidia.com/gpudirect-storage/design-guide/index.html
https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://docs.nvidia.com/gpudirect-storage/release-notes/index.html
https://docs.nvidia.com/gpudirect-storage/configuration-guide/index.html
https://docs.nvidia.com/gpudirect-storage/best-practices-guide/index.html
https://docs.nvidia.com/gpudirect-storage/troubleshooting-guide/index.html
https://docs.nvidia.com/gpudirect-storage/o-direct-guide/index.html
https://devblogs.nvidia.com/gpudirect-storage/
https://developer.nvidia.com/blog/tag/magnum-io/

Introduction

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 2

1.2. Benefits for a Developer
GDS provides the following benefits for application developers:

‣ Enables a direct path between GPU memory and storage.

‣ Increases the bandwidth, reduces the latency, and reduces the load on CPUs and GPUs for
data transferral.

‣ Reduces the performance impact and dependence on CPUs to process storage data
transfer.

‣ Performance force multiplier on top of the compute advantage for computational pipelines
that are fully migrated to the GPU so that the GPU, rather than the CPU, has the first and
last touch of data that moves between storage and the GPU.

‣ Supports interoperability with other OS-based file access, which enables data to be
transferred to and from the device by using traditional file IO, which is then accessed by a
program that uses the cuFile APIs.

The cuFile APIs and their implementations provide the following benefits:

‣ A family of APIs that provide CUDA® applications with the best-performing access to local
or distributed file and block storage.

Block storage validation might be added in the future.

‣ These APIs are consistent with the long-term direction of the Linux community, for
example, with respect to peer to peer RDMA.

‣ When transferring to and from the GPU, increased performance relative to existing
standard Linux file IO.

‣ Greater ease of use by removing the need for the careful expert management of memory
allocation and data movement.

‣ A simpler API sequence that is relative to existing implicit file-GPU data movement
methods, which require a more complex management of memory and data movement on
and between the CPU and GPU.

‣ Broader support for unaligned transfers than POSIX pread and pwrite APIs with O_DIRECT.

In the application code, the POSIX APIs require a buffered IO or unaligned handling.

‣ Generality across a variety of storage types that span various local and distributed
filesystems, block interfaces, and namespace systems, including standard Linux and third-
party solutions.

The Stream subset of the cuFile APIs provide the following benefits:

‣ Asynchronous offloaded operations are ordered with respect to a CUDA stream.

‣ O after compute: The GPU kernel produces data before it is transferred to IO.

‣ Compute after IO: After the data transfer is complete, the GPU kernel can proceed.

‣ Available concurrency across streams.

Introduction

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 3

‣ Using different CUDA streams allows the possibility of concurrent execution and the
concurrent use of multiple DMA engines.

1.3. Intended Uses
cuFile features can be used in the following ways:

‣ cuFile implementations boost throughput when IO between storage and GPU memory is a
performance bottleneck.

This condition arises in cases where the compute pipeline has been migrated to the GPU
from the CPU, so that the first and last agents to touch data, before or after transfers with
storage, execute on the GPU.

‣ cuFile APIs are currently explicit, and reading or writing between storage and buffers that
completely fit into the available GPU physical memory.

‣ Rather than fine-grained random access, the cuFile APIs are a suitable match for coarse-
grained streaming transfers.

‣ For fine-grained accesses, the underlying software overheads for making a kernel
transition and going through the operating system can be amortized.

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 4

Chapter 2. Functional Overview

This section provides a functional overview of GDS. It covers basic usage, generality,
performance considerations, and a scope of the solution. This documentation applies to the
cuFile APIs, which are issued from the CPU.

2.1. Explicit and Direct
GDS is a performance-centric solution, so the performance of an end-to-end transfer is a
function of latency overheads and the maximal achievable bandwidth.

THe followig are some terms used in GDS:
Explicit programmatic request

An explicit programmatic request that immediately invokes the transfer between the
storage and the GPU memory is proactive.

Implicit request
An implicit request to storage, which is induced by a memory reference that causes a page
miss from the GPU back to the CPU, and potentially the CPU to storage, is reactive.

Note: Reactive activity tends to induce more overhead. As a result of being explicit and
proactive, GDS maximizes performance with its explicit cuFile APIs.

Latency is lower when extra copies are avoided, and the highest bandwidth paths are taken.
Without GDS, an extra copy through a bounce buffer in the CPU is necessary, which introduces
latency and lowers effective bandwidth.

Note: The latency improvements from GDS are most apparent with small transfers.

With GDS, although there are exceptions, a zero-copy approach is possible. Additionally, when
a copy through the CPU is no longer necessary, the data path does not include the CPU. On
some systems, a direct path between local or remote storage that goes through a PCIe switch
offers at least twice the peak bandwidth as compared to taking a data path through the CPU.
Using cuFile APIs to access GDS technology enables explicit and direct transfers, which offers
lower latency and higher bandwidth.

For direct data transfers between GPU memory and storage, the file must be opened in
O_DIRECT mode. If the file is not opened in this mode, contents might be buffered in the CPU
system memory, which is incompatible with direct transfers.

Functional Overview

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 5

Explicit Copy versus Using mmap

The following code samples compare the code sequences of an explicit copy versus using
mmap and incurring an implicit page fault where necessary.

This code sample uses explicit copy:
int fd = open(file_name,...)
void *sysmem_buf, *gpumem_buf;
sysmem_buf = malloc(buf_size);
cudaMalloc(gpumem_buf, buf_size);
pread(fd, sysmem_buf, buf_size);
cudaMemcpy(sysmem_buf,
 gpumem_buf, buf_size, H2D);
doit<<<gpumem_buf, …>>>
// no faults;

This code sample uses mmap:
int fd = open(file_name, O_DIRECT,...)
void *mgd_mem_buf;
cudaMallocManaged(mgd_mem_buf, buf_size);
mmap(mgd_mem_buf, buf_size, …, fd, …)
doit<<<mgd_mem_buf, …>>>
// fault on references to mgdmem_buf

In the first sample, pread is used to move data from storage into a CPU bounce buffer,
sysmem_buf, and cudaMemcpy is used to move that data to the GPU. In the second sample,
mmap makes the managed memory backed by the file. The references to managed memory
from the GPU that are not present in GPU memory will induce a fault back to the CPU and
then to storage, which causes an implicit transfer.

GDS enables DMA between agents (NICs or NVMe drives) near storage and GPU memory.
Traditional POSIX read and write APIs only work with addresses of buffers that reside in CPU
system memory. cuFile APIs, in contrast, operate on addresses of buffers that reside in GPU
memory. So they look very similar, but have a few differences, as shown in Figure 2.

Comparing the POSIX APIs and the cuFile APIs

The following code samples compare the POSIX APIs and cuFile APIs. POSIX pread and pwrite
require buffers in CPU system memory and an extra copy, but cuFile read and write only
requires file handle registration.

This code sample uses the POSIX APIs:
int fd = open(...)
void *sysmem_buf, *gpumem_buf;
sysmem_buf = malloc(buf_size);
cudaMalloc(gpumem_buf, buf_size);
pread(fd, sysmem_buf, buf_size);
cudaMemcpy(sysmem_buf,
 gpumem_buf, buf_size, H2D);
doit<<<gpumem_buf, …>>>

This code sample uses the cuFile APIs:
int fd = open(file_name, O_DIRECT,...)
CUFileHandle_t *fh;
CUFileDescr_t desc;
desc.type=CU_FILE_HANDLE_TYPE_OPAQUE_FD;

Functional Overview

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 6

desc.handle.fd = fd;
cuFileHandleRegister(&fh, &desc);
void *gpumem_buf;
cudaMalloc(gpumem_buf, buf_size);
cuFileRead(&fh, gpumem_buf, buf_size, …);
doit<<<gpumem_buf, …>>>

Here are the essential cuFile functionalities:

‣ Explicit data transfers between storage and GPU memory, which closely mimic POSIX
pread and pwrite.

‣ Non-buffered IO (using O_DIRECT), which avoids the use of the filesystem page cache and
creates an opportunity to completely bypass the CPU system memory.

‣ Performing IO in a CUDA stream, so that it is both async and ordered relative to the other
commands in that same stream.

The direct data path that GDS provides relies on the availability of filesystem drivers that are
enabled with GDS. These drivers run on the CPU and implement the control path that sets up
the direct data path.

2.2. Performance Optimizations
After there is a viable path to explicitly and directly move data between storage and GPU
memory, there are additional opportunities to improve performance.

2.2.1. Implementation Performance Enhancements
GDS provides a user interface that abstracts the implementation details. With the
performance optimizations in that implementation, there are trade offs that are enhanced over
time and are tuned to each platform and topology.

The following graphic shows you a list of some of these performance optimizations:

Functional Overview

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 7

Figure 1. Performance Optimizations

‣ Path selection

There might be multiple paths available between endpoints. In an NVIDIA DGX-2™ system,
for example, GPU A and GPU B that are connected to CPU sockets CPU A and CPU B
respectively may be connected via two paths.

‣ GPU A --> CPU A PCIe root port --> CPU A to CPU B via the CPU interconnect --> CPU
B along another PCIe path to GPU B.

‣ GPU A --> GPU B using NVLink.

Similarly, a NIC that is attached to CPU A and to GPU A via PCIe by using an intervening
switch has a choice of data paths to GPU B:

‣ The NIC --> CPU A PCIe root port, CPU A --> CPU B via CPU interconnect, and CPU B
along another PCIe path --> GPU B.

‣ The NIC --> a staging buffer in GPU A and NVLink --> GPU B.

‣ Staging in intermediate buffers

Bulk data transfers are performed with DMA copy engines. Not all paths through a system
are possible with a single-stage transfer, and sometimes a transfer is broken into multiple
stages with a staging buffer along the way.

In the NIC-GPU A-GPU B example in the graphic, a staging buffer in GPU A is required,
and the DMA engine in GPU A or GPU B is used to transfer data between GPU A’s memory
and GPU B’s memory.

Data might be transferred through the CPUs along PCIe only or directly between GPUs
over NVLink. Although DMA engines can reach across PCIe endpoints, paths that involve
the NVLink may involve staging through a buffer (GPU A).

‣ Dynamic routing

Functional Overview

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 8

Paths and staging. The two paths in the previous graphic are available between endpoints
on the left half and the right half, the red PCIe path or the green NVLink path.

2.2.2. Concurrency Across Threads
Here is some information about how GDS manages concurrency across threads.

Note: All APIs are thread safe.

Using GDS is a performance optimization. After the applications are functionally enabled to
move data directly between storage and a GPU buffer by passing a pointer to the GPU buffer
down through application layers, performance is the next concern. IO performance at the
system level comes from concurrent transfers on multiple links and across multiple devices.
Concurrent transfers for each 4 x 4 NVMe PCIe device is necessary to get full bandwidth from
one x16 PCIe link. Since there are PCIe links to each GPU and to each NIC, many concurrent
transfers are necessary to saturate the system. GDS does not boost concurrency, so this level
of performance tuning is managed by the application.

2.2.3. Asynchrony
Another form of concurrency, between the CPU and one or more GPUs, can be achieved in an
application thread through asynchrony.

In this process, work is submitted for deferred execution by the CPU, and the CPU can
continue to submit more work to a GPU or complete the work on the CPU. This process adds
support in CUDA for async IO, which can enable a graph of interdependent work that includes
IO to be submitted for deferred execution.

There is a plan for this to be enabled in a future version of GDS with an asynchronous
subset of the cuFile APIs, and this feature will add a CUDA stream as an argument. These
APIs will also add a pointer to an integer to hold the number of transferred bytes, which is
asynchronously updated. Refer to the cuFile API Reference Guide for more information.

2.2.4. Batching
Here is some information about how batching is used in GDS.

There is some fixed overhead involved with each submission from an application into the
cuFile implementation. For usage models where many IO transactions get submitted
simultaneously, batching reduces the overhead by amortizing that fixed overhead across the
transactions in the batch, which improves performance.

Applications might also submit a batch of IO transactions and start working on a subset of
completed transactions without having to wait for the whole set. An automatically updated set
of flags that indicate which transactions in a batch have completed allows the application to
proceed before the entire set of transactions in the batch have completed.

The cuFile batch APIs require the application developer to allocate and populate a data
structure with a set of descriptors for IO transactions in the batch, and an initialized bit vector
to indicate the completion status. Batch APIs are also asynchronous and use a CUDA stream
argument. Refer to the cuFile API Reference Guide for more information.

https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html

Functional Overview

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 9

2.3. Compatibility and Generality
Although the purpose of GDS is to avoid using a bounce buffer in CPU system memory, the
ability to fall back to this approach allows the cuFile APIs to be used ubiquitously even under
suboptimal circumstances. A compatibility mode is available for unsupported configurations
that maps IO operations to a fallback path.

This path stages through CPU system memory for systems where one or more of the following
conditions is true:

‣ Explicit configuration control by using the user version of the cufile.json file.

Refer to the cuFile API Reference Guide for more information.

‣ The lack of availability of the nvidia-fs.ko kernel driver, for example, because it was not
installed on the host machine, where a container with an application that uses cuFile, is
running.

‣ The lack of availability of relevant GDS-enabled filesystems on the selected file mounts, for
example, because one of several used system mounts does not support GDS.

‣ File-system-specific conditions, such as when O_DIRECT cannot be applied.

Vendors, middleware developers, and users who are doing a low-level analysis of file
systems should review the GPUDirect Storage O_DIRECT Requirements Guide for more
information.

Refer to cuFileHandleRegister in the cuFile API Reference Guide for more information.
Performance on GPU-based applications that transfer between the storage and GPU memory
in compatibility mode is at least the same or better than current CPU-based APIs when GDS is
not used. Testing for the CPU path is limited to POSIX-based APIs and qualified platforms and
filesystems that do not include GDS.

Even when transfers are possible with GDS, a direct transfer is not always possible. Here is a
sampling of cases that are handled seamlessly by the cuFile APIs:

‣ The buffer is not aligned, such as the following:

‣ The offsets of the file are not 4KB-page aligned.

‣ The GPU memory buffer address is not 4KB-page aligned.

‣ The IO request size is not a multiple of 4KB.

‣ The requested IO size is too small, and the filesystem cannot support RDMA.

‣ The size of the transfer exceeds the size of the GPU BAR1 aperture.

‣ The optimal transfer path between the GPU memory buffer and storage involves an
intermediate staging buffer, for example, to use NVLink.

The compatibility mode and the seamless handling of cases that require extra steps broaden
the generality of GDS and makes it easier to use.

https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://docs.nvidia.com/gpudirect-storage/o-direct-guide/index.html
https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html

Functional Overview

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 10

2.4. Monitoring
This section provides information about the monitoring facilities that are available to track
functional and performance issues in GDS.

GDS supports the following monitoring facilities for tracking functional and performance
issues:

‣ Ftrace

Exported symbols for GDS functions can be traced using Ftrace. You can also use
static tracepoints in the libcufile.so library, but the tracepoints are not yet supported
for nvidia-fs.ko. Refer to the GPUDirect Storage Troubleshooting Guide for more
information.

‣ Logging

Error conditions and debugging outputs can be generated in a log file. This information is
useful for conditions that affect many of the APIs but need only be reported once or affect
APIs with no return value to report errors. The cufile.json file is used to select at least
reporting level, such as ERROR, WARN, INFO, DEBUG, and TRACE.

‣ Profiling

GDS can be configured to collect a variety of statistics.

These facilities, and the limitations of third-party tools support, are described in greater detail
in the GPUDirect Storage Troubleshooting Guide.

2.5. Scope of the Solutions in GDS
Here is some information about the solutions that are available in GDS.

GDS has added new APIs with functionality that is not supported by today’s operating systems,
including direct transfers to GPU buffers, asynchrony, and batching. These APIs offer a
performance boost, with a platform-tuned and topology-tuned selection of paths and staging,
which add enduring value.

The implementations under cuFile APIs overcome limitations in current operating systems.
Some of those limitations are transient and may be removed in future versions of operating
systems. Although these solutions are not currently available and may require time for
adoption, other GDS-enabled solutions are needed today. Here are the solutions currently
available in GDS:

‣ Third-party vendor solutions for distributed filesystems.

‣ Long-term support through open source, upstreamed Linux that future GDS
implementations will seamlessly use.

‣ Local filesystem support by using modified storage drivers.

‣ The overall cuFile architecture involves a combination of components, some from NVIDIA
and some from third parties.

https://docs.nvidia.com/gpudirect-storage/troubleshooting-guide/index.html
https://docs.nvidia.com/gpudirect-storage/troubleshooting-guide/index.html

Functional Overview

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 11

‣ Here is a list of the NVIDIA-originated content:

‣ User-level cuFile library, libcufile.so, which implements the following in the closed
source code:

‣ cuFile Driver APIs:

‣ cuFileDriver{Open, Close}

‣ cuFileDriver{GetProperties, Set*}

‣ cuFile IO APIs:

‣ cuFileHandle{Register, Deregister}

‣ cuFileBuf(Register, Deregister}

‣ cuFile{Read, Write}

‣
‣ Stream subset of the cuFile APIs (Future):

‣ cuFile{Read, Write}Async

‣ cuFileBatch APIs:

‣ cuFileBatchIO(Submit, GetStatus, Cancel, Destroy}

‣ Calls to VFS components in standard Linux whether the filesystem is standard
Linux, NFS, distributed filesystems, and so on.

‣ nvidia-fs.ko, the kernel-level driver:

‣ Implements callbacks from modified Linux kernel modules or from proprietary
filesystems that enable direct DMA to GPU memory.

‣ Licensed under GPLv2.

Likewise, any kernel third-party kernel components that call the nvidia-fs APIs
should expect to be subject to GPLv2.

‣ Third-party content

‣ Proprietary code stacks that replace portions of the Linux filesystem and block system,
and so on.

2.6. Dynamic Routing
GDS Dynamic Routing is a feature for choosing the optimal path for cuFileReads and
cuFileWrites to and from files on network-based file systems such as DDN-EXAScaler, VAST-
NFS, and WekaFS. For hardware platforms, where GPUs do not share the same Root Port with
the Storage NICs, peer to peer transactions (p2p) may have higher latency and are inefficient
compared to p2p traffic under PCIe switches.

With this feature, based on platform configuration, the cuFile library tries to efficiently route
the I/O to and from GPU without paying the penalty of cross-root port p2p traffic. For example,
if the storage NIC shares a common PCIe root port with another allowed GPU (say GPU1) and
the target GPU (say GPU0) is across the CPU root complex, cuFile library can use a bounce

Functional Overview

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 12

buffer on GPU1 to perform the p2p transaction to GPU1 and copy the data to target GPU0. The
presence of NVLINKs across GPUs can further accelerate the subsequent device to device
(GPU1->GPU0) I/O transfers using NVLINK instead of PCIe.

For each mount/volume, cuFile library pre-computes the best GPUs having the smallest PCI-
distance with the available storage NICs for routing the I/O. During reads and writes cuFile
checks if the target GPU shares a common PCIe switch and does not need traffic to cross
the CPU root complex. If the path is already optimal, then dynamic routing does not apply,
otherwise cuFile library selects a candidate GPU for intermediate bounce buffer and performs
a device to device copy to the target GPU buffer.

Note: There is a possibility that there might be multiple candidate GPUs for the staging the
intermediate buffer and may not be equidistant from all the Storage NICs, in that cuFile relies
on the underlying file-system driver to pick the best storage NIC for the candidate GPU based
on the nvidia-fs callback interface to choose the best NIC based on the GPU buffer.

2.6.1. cuFile Configuration for Dynamic Routing
The "properties.rdma_dynamic_routing" enables/disables dynamic routing feature for
distributed file systems (Lustre, WekaFS, NFS). By default, this feature is turned off.

In platforms where I/O transfer to a GPU will cause cross RootPort PCie transfers, enabling
this feature might help improve overall BW provided there exists a GPU(s) with Root Port
common to that of the storage NIC(s). If this feature is enabled, please provide the ip
addresses used by the mount either in file-system specific section for mount_table or in the
rdma_dev_addr_list property in properties section

"rdma_dynamic_routing": false,

The “properties.rdma_dynamic_routing order” expresses routing rules. The routing
policy is selected based on the order in which they are specified if they are applicable. By
default the routing order is as shown below. If the first policy is not applicable, fall back to the
next and so on.

‣ policy GPU_MEM_NVLINKS: use GPU memory with NVLink to transfer data between GPUs

‣ policy GPU_MEM: use GPU memory with PCIe to transfer data between GPUs

‣ policy SYS_MEM: use system memory with PCIe to transfer data to GPU

‣ policy P2P: use P2P PCIe to transfer across between NIC and GPU

‣ "rdma_dynamic_routing_order": ["GPU_MEM_NVLINKS", "GPU_MEM", "SYS_MEM",
"P2P"]

The table below summarizes the use cases where dynamic routing can apply and describes
each routing policy.

Functional Overview

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 13

Table 1. Dynamic Routing Policies

Use Case GPU_MEM_NVLINKSGPU_MEM SYS_MEM P2P

NIC and GPU
do not share a
common parent
PCIe switch

Dynamic Routing
will be used if
enabled

GPUs in the
system have
NVLINKS:

Use GPU memory
with NVLink to
transfer data
between GPUs.
This policy applies
only:

a) if there is
another GPU
which is in the
same PCIe tree as
the NIC

b) there exists an
NVLink between
the pair of GPUs

GPUs in the
system do not
have NVLINKS:

Use GPU memory
with PCIe to
transfer data
between GPUs.
This policy applies
only if there is a
GPU which is in
the same PCIe
tree as the NIC.

No GPUs share
a common Root-
Port with the
storage NIC(s)

Use pinned system
memory and PCIe
to transfer data to
GPU

This is default
mode without
dynamic routing.

Use P2P PCIe to
transfer between
NIC and GPU. The
PCIe traffic will be
across RootPorts

NIC and GPU
reside in the same
PCIe Tree

Dynamic Routing
will not be used
even if enabled

P2P/Compatible
Mode

P2P/Compatible
Mode

P2P/Compatible
Mode

P2P/Compatible
Mode

A sample routing order could be:

"rdma_dynamic_routing_order": [“GPU_MEM_NVLINKS”, “SYS_MEM”]

A use case could be if there exists a pair of GPUs but without NVLinks, the routing policy shall
fallback to using system memory for I/O transfer.

Another sample routing order could be:

"rdma_dynamic_routing_order": [“SYS_MEM”]

If such an order is specified, then even if there exists a pair of GPUs with NVLinks, the routing
policy will use system memory for I/O transfer.

2.6.2. cuFile Configuration for DFS Mount
The user can specify to the library the list of Storage NICS used by the file-system mount
through the json property rdma_dev_addr_list. This information is used by the library to
compute the best GPUs which can be used for routing the IO. The device addresses list can be
specified in a hierarchical format.

Functional Overview

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 14

Table 2. Dynamic Routing Policies

Property Name Description
property.rdma_dev_addr_list : {} Applies to a Single File System, Single Mount.

This is the global config which is used only if the
per file system or the per-mount IP address list is
empty.

fs.lustre.rdma_dev_addr_list : {} Applies to all Lustre file system mounts.

This is the per-file system IP address list. This
overrides the global IP address list for a file
belonging to this file-system. Please note that
if this key is set, the user should not configure
the per mount_table and it is treated as a config
error.

fs.lustre.mount_table : {
 /mnt/001 : { rdma_dev_addr_list : []
}

Applies to multiple Lustre mounts.

/mnt/002 : {
 rdma_dev_addr_list : [] }
}

This is the per mount IP address list. This
overrides the per-file system IP address list. This
setting has the highest priority in terms of the
address list configuration and overrides all above
settings for that mount.

fs.nfs.rdma_dev_addr_list : {} Applies to all NFS mounts.
fs.nfs.mount_table : {
 /mnt/003 : { rdma_dev_addr_list :
 [] }
 /mnt/004 : { rdma_dev_addr_list :
 [] }
}

Applies to NFS shares.

A Sample RDMA Configuration
{
 "lustre": {
 // IO threshold for read/write (param should be 4K aligned)) equal to or below
 which
 // cuFile will use posix read/write
 "posix_gds_min_kb" : 0,
 "rdma_dev_addr_list" : [],
 "mount_table" : {
 "/lustre/ai200/client1" : {
 "rdma_dev_addr_list" : ["172.172.1.40"]
 },
 "/lustre/ai200/client2" : {
 "rdma_dev_addr_list" : ["172.172.2.40"]
 }
 }
 },
 "nfs": {
 "rdma_dev_addr_list" : [],
 "mount_table" : {
 "/mnt/nfs/ib0/data/0" : {
 "rdma_dev_addr_list" : ["192.168.0.12"]
 },
 "/mnt/nfs/ib1/data/0" : {
 "rdma_dev_addr_list" : ["192.168.1.12"]

Functional Overview

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 15

 },
 "/mnt/nfs/ib2/data/0" : {
 "rdma_dev_addr_list" : ["192.168.2.12"]
 },
 "/mnt/nfs/ib3/data/0" : {
 "rdma_dev_addr_list" : ["192.168.3.12"]
 }
 },
 "weka": {
 // enable/disable RDMA write
 "rdma_write_support" : false
 },
 }
}

Limitation:

The library cannot distinguish multiple mount points which use the same network shared
file system share specified through the config; and considers all such IP addresses as a
unique mount entry. So it is advised to provide configuration only for unique shares in the
configuration.

2.6.3. cuFile Configuration Validation for Dynamic
Routing

Once the cuFile configuration is enabled for dynamic routing with the required IP address
configuration, users can use gdscheck to validate the same.
$./gdscheck -p
...
properties.rdma_dynamic_routing : 1
properties.rdma_dynamic_routing_order : GPU_MEM_NVLINKS GPU_MEM SYS_MEM P2P
fs.lustre.mount_table :
/lustre/ai200/client1 dev_id 64768 : 172.172.1.40
/lustre/ai200/client2 dev_id 64769 : 172.172.2.40
fs.weka.rdma_write_support: 0
fs.nfs.mount_table :
/mnt/nfs/ib0/data/0 dev_id 58 : 192.168.0.12
/mnt/nfs/ib1/data/0 dev_id 59 : 192.168.1.12
/mnt/nfs/ib2/data/0 dev_id 60 : 192.168.2.12
/mnt/nfs/ib3/data/0 dev_id 61 : 192.168.3.12
 ...

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 16

Chapter 3. Software Architecture

This section provides some basic information on how GDS works.

GDS enables a DMA engine near storage (NVMe or NIC) to push (or pull) data directly into
(and out of) GPU memory. cuFile APIs are passed parameters for one file, a file offset, a size
to transfer, and a GPU virtual address to which the parameters can read or write. Although
the resulting aggregate transfer is one contiguous virtual address range, several smaller
transfers may occur in the implementation. The filesystem breaks the contiguous virtual
address range into what might become multiple transfers that might span multiple devices.
An example is RAID-0 and potentially multiple pages with non-contiguous physical address
ranges. The resulting set of physical address ranges is called a scatter-gather list.

Existing operating systems attempting to program DMA engines cannot process GPU virtual
addresses without help. The GDS-enabled kernel drivers use callbacks to the GDS kernel
module, nvidia-fs.ko. These callbacks provide the GPU virtual addresses needed in the final
scatter-gather list used to program the DMA engine.

3.1. Software Components
This section provides information about the software stack in GDS.

The following layers exist in the GDS software stack:

‣ The application, which includes cufile.h and which makes cuFile API calls from the CPU.

‣ The GDS user-level library, libcufile.so.

‣ The Linux virtual filesystem, VFS.

‣ Linux or vendor kernel storage drivers.

‣ The GDS kernel-level library, nvidia-fs.ko.

3.2. Primary Components
This section describes the primary components in the GDS software architecture.

Here are the primary components:

‣ (From NVIDIA)libcufile.so, which is the user-level cuFile library:

‣ Implements the cuFile API, which is the application-facing API for GDS.

Software Architecture

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 17

cuFileRead is shown in the architecture overview graphic in Software Components.

‣ There are two alternatives to implement the cuFile API:

‣ Use the nvidia-fs.ko kernel driver.

All filesystems that use VFS use this path.

‣ The cuFile user library implements an alternative implementation that does the
following:

‣ Uses its non-page cache buffering in the CPU system memory.

‣ Uses the standard POSIX call implementations.

‣ Does not need to use the NVFS kernel driver.

This is a compatibility mode that does not enjoy the GDS benefits.

‣ (Not from NVIDIA) Non-block-based or distributed filesystems:

‣ These filesystems might be the standard Linux virtual filesystem (VFS), for example an
NFS driver or a third-party proprietary system.

The selection of control paths is based on how filesystems are mounted:

<file path> --> <mount point> --> <filesystem selection>

‣ In some cases, NVIDIA provides patches to these, or alternate, implementations, for
example, to kernel modules for NVMe and NVMe-oF.

‣ (From NVIDIA) Kernel-level nvidia-fs driver:

‣ Handles IOCTLs from the cuFile user library.

‣ Implements DMA callbacks to check and translate GPU virtual addresses to physical
addresses. These callbacks are called from storage drivers.

‣ Manages the mechanisms and buffering that enable DMA from the device.

Note: The Linux kernel core is completely unmodified.

3.2.1. Workflows for GDS Functionality
The following is information about the workflows that are associated with GDS.

The two workflows that are associated with GDS functionality are illustrated in the following
graphic:

Software Architecture

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 18

Figure 2. Workflows for GDS Functionality

For more information about these workflows, see Workflow 1 and Workflow 2.

3.2.2. Workflow 1
Use the following steps to complete Workflow 1.

The first workflow pertains to cuFileRead and cuFileWrite usage. The GPU virtual
addresses are represented by proxy CPU system memory addresses. The proxy CPU system
memory addresses are passed through the Linux IO stack and are converted to device-specific
DMA bus addresses.

Note: None of the following steps are used on a standard pread or pwrite POSIX call.

 1. App to libcufile.so.
 a). GPU applications or GPU-enabled frameworks link to the cuFile library
 b). The applications or frameworks call the cuFile Driver and IO APIs, such as

cuFileRead and cuFileWrite.

The alignment is handled at this level, and there might be some performance impact, so
that buffers do not need to be aligned, such as to 4KB pages or 512KB storage offsets and
chunk sizes.

 2. libcufile.
libcufile makes decisions about which mode to use based on the filesystem, the
configuration, and the hardware support to select between compatibility mode and GDS,
and whether to use internal GPU buffers for efficiency.

 3. libcufile to nvidia-fs.
 a). The cuFile library, libcufile.so, services those calls and makes appropriate IOCTL

calls to the nvidia-fs.ko driver.
 b). The library interacts with the CUDA user-mode driver library, libcuda.so, as

necessary for the stream subset of the cuFile APIs.
 4. nvidia-fs to VFS.

 a). The kernel driver iterates through the set of necessary IO operations and passes in the
IO completion callback, in kiocb->common.ki_complete with the callback function
value nvfs_io_complete that will be used in step 7.

Software Architecture

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 19

Those calls are to the VFS, which calls the appropriate lower layers, such as the
standard Linux block system (ext4 and NVMe) or another vendor distributed filesystem
such as EXAScaler.

 5. Storage kernel drivers to nvidia-fs.ko: Callback APIs are registered via the
cuFileDriverOpen initialization, as described in Filesystems Interoperability in the GDS
External Architecture Spec.

With this design, drivers need only need to handle GPU addresses through the substeps
below. GPU memory addresses are available in a separate map, outside the Linux page
map, so the nvidia-fs.ko APIs are used to complete the following tasks:

‣ Check whether the DMA target address is on the GPU (nvfs_is_gpu_page) and needs
to be handled differently.

‣ Query the list of S GPU DMA target addresses by using nvfs_dma_map_sg*, which are
used instead of the CPU system memory address that is passed through the VFS.

 6. Storage kernel drivers to DMA/RDMA engines: After the appropriate GPU memory
addresses are obtained, the underlying DMA engines at (for example, NVMe drivers)
or near (for example, NIC) storage can be programmed to move data directly between
storage (for example, NVMe or storage controller or NIC) and GPU memory.
The special proxy addresses in CPU system memory are not accessed by the DMA engines.

 7. DMA/RDMA engines to storage kernel driver: Completion of each block transfer is
signaled back to the storage driver layer.

The completion of each iteration is signaled back to the nvidia-fs driver by using the
callback that was registered in step 4.

3.2.3. Workflow 2
This section provides information about the second workflow that relates to reads and writes
with user-space RDMA using ib_verbs.

 1. App to libcufile.so: GPU applications or GPU-enabled frameworks link to the cuFile
library and call the cuFile Driver and IO APIs.
The alignment is handled at this level, though perhaps with some performance impact, so
that buffers do not need to be aligned, such as 4KB pages or 512KB storage offsets and
chunk sizes.

 2. libcufile.so: obtain RDMA info (keys, GID, LID, and so on) to libcufile.
 3. libcufile.so to vendor library: libcufile calls the appropriate vendor library callback

functions to communicate the Rkeys directly in userspace or through the nvidia-fs
kernel callbacks depending on the vendor driver implementation.

3.3. Aligning with Other Linux Initiatives
This section provides information about how to align GDS with other Linux initiatives.

There are efforts in the Linux community to add native support for DMA among peer devices,
which can include NICs and GPUs. After this support is upstreamed, it will take time for all

Software Architecture

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 20

users to adopt the new Linux versions via distributions. Until then, NVIDIA will work with third-
party vendors to enable GDS.

The cuFile APIs and their implementation is the mechanism by which CUDA adds support for
file IO. The cuFile APIs cover explicit transfers between CPU and GPU storage and memory.
The APIs also add support for asynchrony and batching, which are not available in POSIX IO.
The cuFile APIs will remain relevant after the functionalities mentioned earlier are added to
Linux. Only the underlying implementations will change, but not the existing cuFile APIs.

NVIDIA's initial implementations for cuFile focus on distributed filesystems and systems
where appropriate drivers have been installed to enable a direct transfer between storage
and GPU memory without using a bounce buffer in the CPU. For compatibility and broader
applicability, later implementations may support extensions for local storage and implicit
transfers.

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 21

Chapter 4. Deployment

This section provides information about how GDS is deployed, its dependencies, and its
limitations and constraints.

4.1. Software Components for
Deployment

Here is some information about the software components that are required to deploy GDS.

cuFile APIs are a supplement to the CUDA driver and runtime APIs and might eventually be
distributed and installed with the CUDA driver.

Applications access cuFile functionality by including cuFile.h and linking against the
libcufile.so library. The forthcoming stream subset of the cuFile APIs, a CUDA stream
parameter is needed, which takes different forms for runtime and driver APIs. The cudaFile
and cuFile prefixes are used for those two cases, respectively. The conversion from runtime to
drive APIs can be done in header files.

Beyond libcufile.so, there are no linker dependencies that are required to use the cuFile
API, but a runtime dynamic dependency on libcuda.so exists. No link dependency on other
CUDA Toolkit libraries, CUDA Runtime libraries, or any other components of the display driver
currently exist. However, an eventual runtime dependency on the CUDA Runtime library
should be anticipated for applications that are using the cudaFile* APIs after they are added
to CUDA Runtime. This is step is consistent with the application using any other cuda* API and
use of the CUDA Runtime in deployment is covered in the CUDA deployment documentation at
NVIDIA Developer Documentation.

In addition to libcuda.so, cuFile has dependencies on external third-party libraries.

The following table provides information about the third-party libraries and CUDA library
levels:

Deployment

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 22

Table 3. Third-Party Libraries and CUDA Library Levels

Level
APIs, Types, and
Enum Style Dependencies Packaged Together

cuFile user library Matches the following
CUDA driver
conventions:

‣ cuFile APIs

‣ cuFile_ enum vals
and defines

‣ CU_FILE_ errors

Here are the
dependencies:

‣ Provides libcufile.so
until perhaps it
gets merged into
libcuda.so.

‣ Provides cuFile.h
until perhaps it
gets merged into
cuda.h.

‣ External library
dependencies:
libudev-dev
liburcu-dev
libmount-dev
libnuma-dev
libJSONcpp-dev

Shipped separately
from libcufile.so.

CUDA runtime + toolkit Compatibility in cufile.h
for streams APIs’ usage
of cudaStream_t.

None cufile.h remains
distinct from cuda.h
and cuda_runtime.h.

nvidia-fs kernel
driver

nvfs_ prefix Provides nvidia-fs.ko
GPL

Separately shippable
with respect to the
NVIDIA driver (until
perhaps it gets
merged), but it might
become co-installed.

Until there is a complete integration with CUDA and its installer, a separate installer is used to
deploy libcufile.so, cuFile.h, and nvidia-fs.ko. Depending on the filesystem enabling,
the installer utilities and scripts may install the software as a stand-alone deployment, or the
software may be integrated into a third-party vendor’s installation framework.

4.2. Using GPUDirect Storage in
Containers

This section provides information about using GDS in containers.

GDS has user-level and kernel-level components. Containers include only user-level code
and rely on kernel-level components having been installed on the host machine. Applications
can be developed with GDS’s header files and user-level library and distributed in containers.
When the appropriate drivers and vendor-enable kernel software are not installed or properly
configured, GDS’s compatibility mode enables the cuFile APIs to continue to maintain
functional operation with minimized performance impact.

Deployment

NVIDIA Magnum IO GPUDirect Storage DU-10094-001 _v1.0.0 | 23

4.3. Internal and External Dependencies
This section provides information about the dependencies for GDS.

GDS has no internal dependencies on other libraries, but it does have the following external
dependencies:

‣ Internal dependencies: none

‣ cuFile libraries and drivers do not modify CUDA.

‣ The streams subset of the cuFile APIs use the CUDA user driver (libcuda.so) and
CUDA runtime (libcudart.so).

The only APIs used by those drivers are public APIs.

‣ External dependencies

‣ cuFile uses kernel facilities that are in Linux kernel version 4.15.0.x and later.

‣ cuFile has a dependency on MLNX_OFED versions (5.1 and later) for support for
RDMA-based filesystems.

‣ GPUDirect partners may have dependencies on host-channel adapters that are
Mellanox Connect X-5 or later.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no representations or

warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the

consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material

(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized

representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this

document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can

reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore

such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s

sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary

testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional

or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use

of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products

or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other

intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and

accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING

PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF

NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT

LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS

DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative

liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products

or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other

intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and

accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING

PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF

NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT

LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS

DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative

liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

Trademarks

NVIDIA, the NVIDIA logo, DGX, DGX-1, DGX-2, DGX-A100, Tesla, and Quadro are trademarks and/or registered trademarks of NVIDIA Corporation in the United States
and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2021 NVIDIA Corporation and affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	1.1. Related Documents
	1.2. Benefits for a Developer
	1.3. Intended Uses

	Functional Overview
	2.1. Explicit and Direct
	2.2. Performance Optimizations
	2.2.1. Implementation Performance Enhancements
	2.2.2. Concurrency Across Threads
	2.2.3. Asynchrony
	2.2.4. Batching

	2.3. Compatibility and Generality
	2.4. Monitoring
	2.5. Scope of the Solutions in GDS
	2.6. Dynamic Routing
	2.6.1. cuFile Configuration for Dynamic Routing
	2.6.2. cuFile Configuration for DFS Mount
	2.6.3. cuFile Configuration Validation for Dynamic Routing

	Software Architecture
	3.1. Software Components
	3.2. Primary Components
	3.2.1. Workflows for GDS Functionality
	3.2.2. Workflow 1
	3.2.3. Workflow 2

	3.3. Aligning with Other Linux Initiatives

	Deployment
	4.1. Software Components for Deployment
	4.2. Using GPUDirect Storage in Containers
	4.3. Internal and External Dependencies

