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1. Introduction 
 

1.1  Objective of this manual 
 

This Theory and Modeling Guide serves two purposes: 
 

To provide a concise summary of the theoretical basis of 
Advanced Nonlinear Solution as it applies to Solution 601 and 
Solution 701. This includes the finite element procedures used, 
the elements and the material models. The depth of coverage of 
these theoretical issues is such that the user can effectively use 
Solutions 601 and 701. A number of references are provided 
throughout the manual which give more details on the theory 
and procedure used in the program. These references should be 
consulted for further details. Much reference is made however 
to the book Finite Element Procedures (ref. KJB). 

 
ref.  K.J. Bathe, Finite Element Procedures, 2nd ed., 

Cambridge, MA, Klaus-Jürgen Bathe, 2014. 
 

 To provide guidelines for practical and efficient modeling using 
Advanced Nonlinear Solution. These modeling guidelines are 
based on the theoretical foundation mentioned above, and the 
capabilities and limitations of the different procedures, 
elements, material models and algorithms available in the 
program. NX Nastran commands and parameter settings needed 
to activate different analysis features are frequently mentioned. 

 
 It is assumed that the user is familiar with NX Nastran 
fundamentals pertaining to linear analysis. This includes general 
knowledge of the NX Nastran structure, commands, elements, 
materials, and loads. 

We intend to update this report as we continue our work on 
Advanced Nonlinear Solution. If you have any suggestions 
regarding the material discussed in this manual, we would be glad 
to hear from you. 
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1.2  Overview of Advanced Nonlinear Solution 
 

 Advanced Nonlinear Solution is a Nastran solution option 
focused on nonlinear problems. It is capable of treating geometric 
and material nonlinearities as well as nonlinearities resulting from 
contact conditions. State-of-the-art formulations and solution 
algorithms are used which have proven to be reliable and efficient. 
 
 Advanced Nonlinear Solution supports static and implicit 
dynamic nonlinear analysis via Solution 601, and explicit dynamic 
analysis via Solution 701. Solution 601 also supports heat transfer 
analysis and coupled structural heat transfer analysis. 
 
 Advanced Nonlinear Solution supports many of the standard 
Nastran commands and several commands specific to Advanced 
Nonlinear Solution that deal with nonlinear features such as 
contact. The NX Nastran Quick Reference Guide provides more 
details on the Nastran commands and entries that are supported in 
Advanced Nonlinear Solution. 
 
 Advanced Nonlinear Solution supports many of the commonly 
used features of linear Nastran analysis. This includes most of the 
elements, materials, boundary conditions, and loads. Some of these 
features are modified to be more suitable for nonlinear analysis, 
and many other new features are added that are needed for 
nonlinear analysis. 
 
 The elements available in Advanced Nonlinear Solution can be 
broadly classified into rods, beams, 2-D solids, 3-D solids, shells, 
2-D fluids, 3-D fluids, scalar elements and rigid elements. The 
formulations used for these elements have proven to be reliable and 
efficient in linear, large displacement, and large strain analyses. 
Chapter 2 provides more details on the elements. 
 
 The material models available in Advanced Nonlinear Solution 
are elastic isotropic, elastic orthotropic, plastic bilinear/multilinear, 
plastic-cyclic, hyperelastic, gasket, nonlinear elastic isotropic, 
shape memory alloy, viscoelastic and fluid. Thermal and creep 
effects can be added to some of these materials. Chapter 3 provides 
more details on these material models. 
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 Advanced Nonlinear Solution has very powerful features for 
contact analysis. These include several contact algorithms and 
different contact types such as single-sided contact, double-sided 
contact, self-contact, and tied contact. Chapter 4 provides more 
details on contact. 
 
 Loads, boundary conditions and constraints are addressed in 
Chapter 5. Time varying loads and boundary conditions are 
common to nonlinear analysis and their input in Advanced 
Nonlinear Solution is slightly different from other Nastran 
solutions, as discussed in Chapter 5. 
 
 Solution 601 of Advanced Nonlinear Solution currently 
supports two nonlinear structural analysis types: static and implicit 
transient dynamic. Details on the formulations used are provided in 
Chapter 6. Other features of nonlinear analysis, such as time 
stepping, load displacement control (arc length method), line 
search, and available solvers are also discussed in Chapter 6. 
 
 Solution 701 of Advanced Nonlinear Solution is dedicated to 
explicit transient dynamic analysis. Details on the formulations 
used are provided in Chapter 7. Other features of explicit analysis, 
such as stability and time step estimation, are also discussed in 
Chapter 7. 
 
 Solution 601 of Advanced Nonlinear Solution also supports two 
heat transfer or coupled structural heat transfer analysis types. The 
first type 153 is for static structural with steady state heat transfer, 
or just steady state heat transfer. The second analysis type 159 is 
for cases when either the structural or heat transfer models are 
transient (dynamic). This type can also be used for just transient 
heat transfer analysis. Details of the heat transfer analysis are 
provided in Chapter 8, and details of the thermo-mechanical 
coupled (TMC) analysis are provided in Chapter 9. 
 
 Additional capabilities present in Advanced Nonlinear Solution 
such as restarts, stiffness stabilization, initial conditions, and 
parallel processing are discussed in Chapter 10. 
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 Most of the global settings controlling the structural solutions in 
Advanced Nonlinear Solution are provided in the NXSTRAT bulk 
data entry. This includes parameters that control the solver 
selection, time integration values, convergence tolerances, contact 
settings, etc. An explanation of these parameters is found in the NX 
Nastran Quick Reference Guide. 
 
 Similarly, most of the global settings controlling the heat 
transfer or coupled solutions in Advanced Nonlinear Solution are 
provided in the TMCPARA bulk data entry. 
 

1.2.1  Choosing between Solutions 601 and 701 

 The main criterion governing the selection of the implicit 
(Solution 601) or explicit (Solution 701) formulations is the time 
scale of the solution. 
 
  The implicit method can use much larger time steps since it is 
unconditionally stable. However, it involves the assembly and 
solution of a system of equations, and it is iterative. Therefore, the 
computational time per load step is relatively high. The explicit 
method uses much smaller time steps since it is conditionally 
stable, meaning that the time step for the solution has to be less 
than a certain critical time step, which depends on the smallest 
element size and the material properties. However, it involves no 
matrix solution and is non-iterative. Therefore, the computational 
time per load step is relatively low. 
 
 For both linear and nonlinear static problems, the implicit 
method is the only option. 
 
 For heat transfer and coupled structural heat transfer problems, 
the implicit method is the only option. 
 
 For low-speed dynamic problems, the solution time spans a 
period of time considerably longer than the time it takes the wave 
to propagate through an element. The solution in this case is 
dominated by the lower frequencies of the structure. This class of 
problems covers most structural dynamics problems, certain metal 
forming problems, crush analysis, earthquake response and 
biomedical problems. When the explicit method is used for such 

ref. KJB 
Section 9.2 
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problems the resulting number of time steps will be excessive, 
unless mass-scaling is applied, or the loads are artificially applied 
over a shorter time frame. No such modifications are needed in the 
implicit method. Hence, the implicit method is the optimal choice. 
 
 For high-speed dynamic problems, the solution time is 
comparable to the time required for the wave to propagate through 
the structure. This class of problems covers most wave propagation 
problems, explosives problems, and high-speed impact problems. 
For these problems, the number of steps required with the explicit 
method is not excessive. If the implicit method uses a similar time 
step it will be much slower and if it uses a much larger time step it 
will introduce other solution errors since it will not be capturing the 
pertinent features of the solution (but it will remain stable). Hence, 
the explicit method is the optimal choice.  
 
 A large number of dynamics problems cannot be fully classified 
as either low-speed or high-speed dynamic. This includes many 
crash problems, drop tests and metal forming problems. For these 
problems both solution methods are comparable. However, 
whenever possible (when the time step is relatively large and there 
are no convergence difficulties) we recommend the use of the 
implicit solution method. 
 
 Note that the explicit solution provided in Solution 701 does not 
use reduced integration with hour-glassing. This technique reduces 
the computational time per load step. However, it can have 
detrimental effect on the accuracy and reliability of the solution. 
 
 Since the explicit time step size depends on the length of the 
smallest element, one excessively small element will reduce the 
stable time step for the whole model. Mass-scaling can be applied 
to these small elements to increase their stable time step. The 
implicit method is not sensitive to such small elements. 
 
 Since the explicit time step size depends on the material 
properties, a nearly incompressible material will also significantly 
reduce the stable time step. The compressibility of the material can 
be increased in explicit analysis to achieve a more acceptable 
solution time. The implicit method is not as sensitive to highly 
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incompressible materials (provided that a mixed formulation is 
used). 
 
 Higher order elements such as the 10-node tetrahederal, 20 and 
27 node brick elements are only available in implicit analysis. They 
are not used in explicit analysis because no suitable mass-lumping 
technique is available for these elements. 
 
 Model nonlinearity is another criterion influencing the choice 
between implicit and explicit solutions. As the level of nonlinearity 
increases, the implicit method requires more time steps, and each 
time step may require more iterations to converge. In some cases, 
no convergence is reached. The explicit method however, is less 
sensitive to the level of nonlinearity. 
 Note that when the implicit method fails it is usually due to non-
convergence within a time step, while when the explicit method 
fails it is usually due to a diverging solution. 
 
 The memory requirements is another factor. For the same mesh, 
the explicit method requires less memory since it does not store a 
stiffness matrix and does not require a solver. This can be 
significant for very large problems. 
 
 Since Advanced Nonlinear Solution handles both Solution 601 
and Solution 701 with very similar inputs, the user can in many 
cases restart from one analysis type to the other. This capability can 
be used, for example, to perform implicit springback analysis 
following an explicit metal forming simulation, or to perform an 
explicit analysis following the implicit application of a gravity 
load. 
 It can also be used to overcome certain convergence difficulties 
in implicit analyses. A restart from the last converged implicit 
solution to explicit can be performed, then, once that stage is 
passed, another restart from explicit to implicit can be performed to 
proceed with the rest of the solution. 
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1.2.2  Units 
 

In Advanced Nonlinear Solution, it is important to enter all 
physical quantities (lengths, forces, masses, times, etc.) using a 
consistent set of units. For example, when working with the SI 
system of units, enter lengths in meters, forces in Newtons, masses 
in kg, times in seconds. When working with other systems of units, 
all mass and mass-related units must be consistent with the length, 
force and time units. For example, in the USCS system (USCS is 
an abbreviation for the U.S. Customary System), when the length 
unit is inches, the force unit is pound and the time unit is second, 
the mass unit is lb-sec2/in, not lb. 
 Rotational degrees of freedom are always expressed in radians.  

 

1.3  Structure of Advanced Nonlinear Solution 
 

 The input data for Advanced Nonlinear Solution follows the 
standard Nastran format consisting of the following 5 sections: 
 
1. Nastran Statement (optional) 
2. File Management Statements (optional) 
3. Executive control Statements 
4. Case Control Statements 
5. Bulk Data Entries 
 
 The first two sections do not involve any special treatment in 
Advanced Nonlinear Solution. The remaining three sections 
involve some features specific to Advanced Nonlinear Solution, as 
described below. 
 

1.3.1  Executive Control 
 
 Solution 601 is invoked by selecting solution sequence 601 in 
the SOL Executive Control Statement. This statement has the 
following form: 
 
SOL 601,N 
 
where N determines the specific analysis type selected by Solution 
601. 
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 Currently, static and direct time-integration implicit dynamic 
structural analyses are available as shown in Table 1.3-1. In 
addition, two analysis types are available for thermal or coupled 
thermal-mechanical problems. 
 
 Solution 701 is invoked by selecting solution sequence 701 in 
the SOL Executive Control Statement. This statement has the 
following form: 
 
SOL 701 
 
and is used for explicit dynamic analyses. 
 
 In many aspects Solution 601,106 is similar to Solution 106 for 
nonlinear static analysis. However, it uses the advanced nonlinear 
features of Solution 601. Likewise, Solution 601,129 is similar to 
Solution 129 for nonlinear transient response analysis. Solution 701 
provides an alternative to the implicit nonlinear dynamic analysis 
of Solution 601,129.  
 
 
 
 
 
 
 
 
Table 1.3-1: Solution 601 Analysis Types 

 

N Solution 601 Analysis Type 

106 Static 

129 Transient dynamic 

153 
Steady state thermal + static 
structural 

159 
Transient thermal + dynamic 
structural1 

 

1 N = 159 also allows either of the structure or the thermal parts to 
be static or steady state. 
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1.3.2  Case Control 
 
 The Case Control Section supports several commands that 
control the solution, commands that select the input loads, 
temperatures and boundary conditions, commands that select the 
output data and commands that select contact sets. Table 1.3-2 lists 
the supported Case Control Commands. 
 
 
 

             Table 1.3-2: Case Control Commands 
 

Case Control Command Description 

Solution control  

SUBCASE1 Subcase delimiter 

TSTEP2 Time step set selection 

ANALYSIS3 Subcase analysis type solution 

Loads and boundary conditions  

LOAD Static load set selection 

DLOAD4 Dynamic load set selection 

SPC Single-point constraint set selection 

MPC Multipoint constraint set selection 

TEMPERATURE5 
        TEMPERATURE(LOAD) 
        TEMPERATURE(INITIAL) 

Temperature set selection 
        Temperature load 
        Initial temperature 

IC Transient initial condition set selection 

BGSET Glue contact set selection 

BOLTLD Bolt preload set selection 

DTEMP Time-dependent temperature set selection 

DMIG related 

B2GG Selects direct input damping matrices 

K2GG Selects direct input stiffness matrices 

M2GG Selects direct input mass matrices 

Element related  

EBDSET Element birth/death selection 
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            Table 1.3-2: Case Control Commands (continued) 
 

Output related  

SET Set definition 

DISPLACEMENT Displacement output request 

VELOCITY Velocity output request 

ACCELERATION Acceleration output request 

STRESS Element stress/strain output request 

SPCFORCES Reaction force output request 

GPFORCE Nodal force output request 

GKRESULTS Gasket results output request 

TITLE Output title 

SHELLTHK Shell thickness output request 

THERMAL Temperature output request 

FLUX Heat transfer output request 

OLOAD Applied load output request 

BGRESULTS Glue result output request 

Contact related  

BCSET Contact set selection 

BCRESULTS Contact results output request 
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Notes for Table 1.3-2: 

1. Only one subcase is allowed in structural analysis Advanced Nonlinear 
Solution (N = 106, 129). In coupled TMC analyses (N = 153, 159), two 
subcases are required, one for the structural and one for the thermal sub-
model. 

2. TSTEP is used for all analysis types in Advanced Nonlinear Solution. In 
explicit analysis with automatic time stepping it is used for determining the 
frequency of output of results. 

3. Supports ANALYSIS = STRUC and ANALYSIS = HEAT for SOL 601,153 
and SOL 601,159. 

4. DLOAD is used for time-varying loads for both static and transient dynamic 
analyses. 

5. TEMPERATURE, TEMPERATURE(BOTH) and TEMPERATURE(MAT) 
are not allowed for Advanced Nonlinear Solution. Use 
TEMPERATURE(INIT) and TEMPERATURE(LOAD) instead. 

 
1.3.3  Bulk Data 

 
 The Bulk Data section contains all the details of the model. 
Advanced Nonlinear Solution supports most of the commonly used 
Bulk Data entries. In many cases, restrictions are imposed on some 
of the parameters in a Bulk Data entry, and in some other cases, 
different interpretation is applied to some of the parameters to 
make them more suitable for nonlinear analysis. Several Bulk Data 
entries are also specific to Advanced Nonlinear Solution. 
 
 Table 1.3-3 lists the supported Bulk Data entries. 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 1: Introduction 
 

 
 
12 Advanced Nonlinear Solution  Theory and Modeling Guide 

Table 1.3-3: Bulk Data entries supported by Advanced Nonlinear Solution 
 

Element Connectivity 

CBAR 
CBEAM 
CBUSH 
CBUSH1D 
CDAMP1 
CDAMP2 
CELAS1 
CELAS2 
CGAP 
CHEXA 
 

CMASS1 
CMASS2 
CONM1 
CONM2 
CONROD 
CPENTA 
CPLSTN3 
CPLSTN4 
CPLSTN6 
CPLSTN8 
 

CPLSTS3 
CPLSTS4 
CPLSTS6 
CPLSTS8 
CPYRAM 
CQUAD4 
CQUAD8 
CQUADR 

CQUADX4 
CQUADX8 
CROD 
CTRIA3 
CTRIA6 
CTRIAR 
 

CTRAX3 
CTRAX6 
CTETRA 
RBAR 
RBE2 
RBE3 

Element Properties 

EBDSET 
EBDADD 
PBAR 
PBARL 

PBCOMP 
PBEAM 
PBEAML 
PBUSH 
PBUSH1D 

PCOMP 
PCOMPG 
PDAMP 
PELAS 
PELAST 
PGAP 

PLPLANE 
PLSOLID 
PMASS 
PPLANE 

PROD 
PSHELL 
PSHL3D 
PSOLID 
 

Material Properties 

CREEP 
MAT1 
MAT2 
MAT3 
MAT4 
MAT5 

MAT8 
MAT9 
MAT10 
MAT11 
MATCID 
MATCRP 
MATG 

MATHE 
MATHEV 
MATHEM 
MATHP 
MATPLCY 
MATS1 
MATSMA 
MATSR 
 

MATT1 
MATT2 
MATT3 
MATT4 
MATT5 
MATT8 
MATT9 
MATT11 
MATTC 
MATVE 

PCONV 
PLCYISO 
PLCYKIN 
PLCYRUP 
RADM 
RADMT 
TABLEM1 
TABLES1 
TABLEST 
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Table 1.3-3: Bulk Data entries supported by Advanced Nonlinear Solution 
(continued) 

 
 
 

Heat Transfer Loads and Boundary Conditions 

BDYOR 
CHBDYE 
CHBYDG 

CONV 
QBDY1 
QBDY2 

QHBDY 
QVOL 
RADBC 

TEMPBC  

Contact 

BCPROP 
BCPROPS 

BCRPARA 
BCTADD 

BCTPARA 
BCTSET 

BEDGE 
BLSEG 

BSURF 
BSURFS 

Direct Matrix Input 

DMIG     

Other Commands 

CORD1C 
CORD1R 

CORD1S 
CORD2C 

CORD2R 
CORD2S 

GRID 
GROUP 
NXSTRAT1 

PARAM2 
TMCPARA3 
TSTEP4 

Notes: 

1. NXSTRAT is the main entry defining the solution settings for Advanced 
Nonlinear Solution. 

2. Only a few PARAM variables are supported. Most are replaced by 
NXSTRAT variables.  

3. TMCPARA is the main entry defining the solution settings for heat 
transfer and TMC models.  

4. TSTEP is used for both static and dynamic analyses.  

Loads, Boundary Conditions and Constraints 

BCPROPS 
BEDGE 
BFLUID 
BGSET 
BOLT 
BOLTFOR 
BSURFS 
DLOAD 
DTEMP 

FORCE 
FORCE1 
FORCE2 
GRAV 
LOAD 
MOMENT 
MOMENT1 
MOMENT2 

MPC 
MPCADD 
PLOAD 
PLOAD1 
PLOAD2 
PLOAD4 
PLOADE1 

PLOADX1 
RFORCE 
RFORCE1 
SPC 
SPC1 
SPCADD 
SPCD 

TABLED1 
TABLED2 
TEMP 
TEMPD 
TIC 
TLOAD1 
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1.3.4  Terminology used in Advanced Nonlinear Solution 
 

The terminology used in Advanced Nonlinear Solution is for the most 
part the same as that used in other Nastran documents.  
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2. Elements 
 

 Advanced Nonlinear Solution supports most of the commonly 
used elements in linear Nastran analyses. Some of these elements 
are modified to be more suitable for nonlinear analysis. 
 
 The Advanced Nonlinear Solution elements are generally 
classified as line, surface, solid, scalar, R-type or potential-based 
fluid. 
 

Line elements are divided into 2 main categories – rod 
elements and beam elements. Rod elements only possess 
axial stiffness, while beam elements also possess bending, 
shear and torsional stiffness. 

Surface elements are also divided into 2 main categories – 
2-D solids and shell elements. 

 3-D solid elements are the only solid elements in Advanced 
Nonlinear Solution. 

 The scalar elements are spring, mass, damper elements and 
6-DOF spring elements. 

 R-type elements impose constraints between nodes, such as 
rigid elements.  

 Potential-based fluid elements are used in static analysis to 
model the compressibility of fluids. 

 Other element types available in Advanced Nonlinear 
Solution are the gap element, concentrated mass element, 
and the bushing element. 

 
 This chapter outlines the theory behind the different element 
classes, and also provides details on how to use the elements in 
modeling. This includes the materials that can be used with each 
element type, their applicability to large displacement and large 
strain problems, their numerical integration, etc. 
 
 More detailed descriptions of element input and output are 
provided in several other manuals, including: 
 

- NX Nastran Reference Manual 
- NX Nastran Quick Reference Guide 
- NX Nastran DMAP Programmer’s Guide 
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 Table 2-1 below shows the different elements available in 
Advanced Nonlinear Solution, and how they can be obtained from 
Nastran element connectivity and property ID entries. Restrictions 
related to Solution 701 are noted. 
  

 
 
 
Table 2-1: Elements available in Advanced Nonlinear Solution 
 
 

Element 
Connectivity Entry

Property ID Entry Advanced Nonlinear 
Solution Element 

Rod Elements 

CROD PROD 2-node rod element 

CONROD None 2-node rod element 

Beam Elements 

CBAR PBAR, PBARL 2-node beam element 

CBEAM PBEAM, PBEAML, 
PBCOMP 

2-node beam element 

Shell Elements3 

CQUAD4 PSHELL1, PCOMP2, 
PSHL3D7, PCOMPG 

4-node quadrilateral shell 
element 

CQUAD8 PSHELL1, PCOMP2, 
PCOMPG 

4-node to 8-node quadrilateral 
shell element 

CQUADR PSHELL, PCOMP2, 
PCOMPG 

4-node quadrilateral shell 
element 

CTRIA3 PSHELL1, PCOMP2, 
PSHL3D7, PCOMPG 

3-node triangular shell 
element 

CTRIA6 PSHELL1, PCOMP2, 
PCOMPG 

3-node to 6-node triangular 
shell element 

CTRIAR PSHELL, PCOMP2, 
PSHL3D7, PCOMPG 

3-node triangular shell 
element 
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Table 2-1: Elements available in Advanced Nonlinear Solution (continued) 
 

2D Solid and Fluid Elements4 

CPLSTN3 PPLANE, PLPLANE 3-node triangular 2D plane 
strain element 

CPLSTN4 PPLANE, PLPLANE 4-node quadrilateral 2D plane 
strain element 

CPLSTN6 PPLANE, PLPLANE 6-node triangular 2D plane 
strain element 

CPLSTN8 PPLANE, PLPLANE 8-node quadrilateral 2D plane 
strain element 

CPLSTS3 PPLANE, PLPLANE 3-node triangular 2D plane 
stress element 

CPLSTS4 PPLANE, PLPLANE 4-node quadrilateral 2D plane 
stress element 

CPLSTS6 PPLANE, PLPLANE 6-node triangular 2D plane 
stress element 

CPLSTS8 PPLANE, PLPLANE 8-node quadrilateral 2D plane 
stress element 

CQUAD6 PLPLANE 4-node to 9-node quadrilateral 
2D plane strain element with 
hyperelastic material 

CQUAD4 PLPLANE, PSHELL1 4-node quadrilateral 2D plane 
strain element 

CQUAD8 PLPLANE, PSHELL1 4-node to 8-node 2D plane 
strain element 

CTRIA3 PLPLANE, PSHELL1 3-node triangular 2D plane 
strain element 

CTRIA6 PLPLANE, PSHELL1 3-node to 6-node triangular 
2D plane strain element 
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Table 2-1: Elements available in Advanced Nonlinear Solution (continued) 
 

2D Solid and Fluid Elements (continued) 

CQUADX4 PSOLID, PLSOLID 4-node quadrilateral 2D 
axisymmetric element 

CQUADX8 PSOLID, PLSOLID 8-node quadrilateral 2D 
axisymmetric element 

CTRAX3 PSOLID, PLSOLID 3-node triangular 2D 
axisymmetric element 

CTRAX6 PSOLID, PLSOLID 6-node triangular 2D 
axisymmetric element 

3D Solid and Fluid Elements5 

CHEXA PSOLID, PLSOLID  8-node to 20-node brick 3D 
solid element 

CPENTA PSOLID, PLSOLID  6-node to 15-node wedge 3D 
solid element 

CTETRA PSOLID, PLSOLID  4-node to 10-node tetrahedral 
3D solid element 

CPYRAM PSOLID, PLSOLID  5-node to 13-node pyramid 
3D solid element 

Scalar Elements 

CELAS1; CELAS2 PELAS; None Spring element 

CDAMP1; CDAMP2 PDAMP; None Damper element 

CMASS1; CMASS2 PMASS; None Mass element 

R-Type Elements   

RBAR None Single rigid element 

RBE2 None Multiple rigid elements 

RBE3 None Interpolation constraint 
element 
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Table 2-1: Elements available in Advanced Nonlinear Solution (continued) 
 

Other Elements 

CGAP PGAP 2-node gap element 

CONM1, CONM2 None Concentrated mass element 

CBUSH1D PBUSH1D Rod Type Spring-and-Damper 
Connection 

CBUSH PBUSH Generalized Spring-and-
Damper Connection 

 
 
 
Notes: 
 
1. CQUAD4, CQUAD8, CTRIA3, and CTRIA6 with a PSHELL property ID are 

treated as either 2D plane strain elements or shell elements depending on the 
MID2 parameter. 

2. Elements with PCOMP or PCOMPG property ID entries are treated as multi-
layered shell elements. These elements are not supported in Solution 701. 

3.  Only 3-node and 4-node single layer shells are supported in Solution 701. 
4.  2-D solid elements are not supported in Solution 701. 
5.  Only 4-node tetrahedral, 6-node wedge and 8-node brick 3-D solid elements are 

supported in Solution 701. 
6. CQUAD cannot be used for potential-based fluid elements. 
7. PSHL3D is used to specify a 3D-shell element. 
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 Table 2-2 lists the acceptable combination of elements and 
materials for Solution 601. Thermal effects in this table imply 
temperature dependent material properties. Thermal strains are 
usually accounted for in isothermal material models. 
 For potential-based fluid elements, only the fluid material can 
be used. 

 
 
 
 
   Table 2-2: Element and material property combinations in Solution 601 
 

 Rod Beam Shell 2D Solid 3D Solid 

Elastic isotropic      

   ...Thermal      

   ...Creep      

Elastic orthotropic      

   ...Thermal      

Plastic bilinear/   
multilinear 

     

Plastic-cyclic      

Plastic thermal      

Plastic creep      

Hyperelastic   2   

Gasket      

Nonlinear elastic 
isotropic 

1  1 1 1 

Shape memory 
alloy 

     

Viscoelastic     
 

 
Notes:  

 
1. No thermal strains in these material models. 
2. 3D-shell element only. 
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 Table 2-3 lists the acceptable combination of elements and 
materials for Solution 701. Thermal effects in this table imply 
temperature dependent material properties. Thermal strains are 
usually accounted for in isothermal material models. Note that 
interpolation of temperature dependent material properties is only 
performed at the start of the analysis in Solution 701. 
 The potential-based fluid elements are not available in Solution 
701. 

 
 
  Table 2-3: Element and material property combinations in Solution 701 
 

 Rod Beam Shell 2D Solid 3D Solid 

Elastic isotropic      

   ...Thermal      

   ...Creep      

Elastic orthotropic      

   ...Thermal      

Plastic bilinear/   
multilinear 

     

Plastic-cyclic      

Plastic thermal      

Plastic creep      

Hyperelastic   2   

Gasket      

Nonlinear elastic 
isotropic 

1     

Shape memory 
alloy 

     

Viscoelastic      
 

 
Notes:  

 
1. No thermal strains in these material models. 
2. 3D-shell element only.
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2.1  Rod elements 
 

2.1.1  General considerations 
 

 Rod elements are generated using the CONROD and CROD 
entries. These line elements only possess axial stiffness. Fig. 2.1-1 
shows the nodes and degrees of freedom of a rod element. Note 
that the rod element only has 2 nodes. 
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(u, v, w) are nodal translational
degrees of freedom

Fig. 2.1-1: Rod element
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 Note that the only force transmitted by the rod element is the 
longitudinal force as illustrated in Fig. 2.1-2. This force is constant 
throughout the element. 
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Fig. 2.1-2: Stresses and forces in rod elements 
 
 
 
 

ref. KJB 
Sections 5.3.1, 

6.3.3 
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2.1.2  Material models and formulations 
 

 See Tables 2-2 and 2-3 for a list of the material models that are 
compatible with rod elements. 

 
 The rod elements can be used with small displacement/small 
strain or large displacement/small strain kinematics. In the small 
displacement case, the displacements and strains are assumed 
infinitesimally small. In the large displacement case, the 
displacements and rotations can be very large. In all cases, the 
cross-sectional area of the element is assumed to remain 
unchanged, and the strain is equal to the longitudinal displacement 
divided by the original length. 

All of the compatible material models listed in Tables 2-2 and 
2-3 can be used with both the small and large displacement 
formulations.  
 

2.1.3  Numerical integration 
 

 The rod elements use one point Gauss integration. 
  

2.1.4  Mass matrices 
 

 The consistent mass matrix is calculated using Eq. (4.25) in ref. 
KJB, p. 165. 
 
 The lumped mass matrix for the rod element is formed by 
dividing the element’s mass M among its nodes. The mass assigned 

to each node is iM
L

  
 


, in which L = total element length, i  = 

fraction of the total element length associated with element node i 

(i.e., for the 2-node rod element, 1 2

L
 and 2 2

L
 ). The 

element has no rotational mass. 
 
 The same lumped mass matrix is used for both Solution 601 and 
Solution 701. 
 
 
 



Chapter 2: Elements 
 

 
 
24 Advanced Nonlinear Solution  Theory and Modeling Guide 

2.1.5  Heat transfer capabilities 
 

 The rod element supports 1-D heat conductivity, heat capacity 
and heat generation features in heat transfer and coupled TMC 
analyses. 
 
 One temperature degree of freedom is present at each node. 
 
 The heat capacity matrix can be calculated based on a lumped or 
consistent heat capacity assumption. 

 
 In the lumped heat capacity assumption, each node gets a heat 
capacity of cAL/2. 

 
 This element can also be used as a general thermal link element 
between any two points in space. 

 

2.2  Beam elements 
 

 The beam element is a 2-node Hermitian beam with a constant 
cross-section. The element is initially straight.  
 
 The beam element can be employed in the following analysis 
conditions: 
 

 Linear analysis, in which case the displacements, rotations 
and strains are infinitesimally small, and the material is 
linear elastic.  

 Materially nonlinear analysis, in which case the 
displacements, rotations and strains are infinitesimally 
small, but the material is nonlinear.  

 Large displacement/large rotation analysis, in which case 
the displacements and rotations can be large, but the strains 
are small. The material can either be linear or nonlinear.  

 
 The beam element can be used in Solution 601 (statics and 
implicit dynamics) and in Solution 701 (explicit dynamics).  
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 The beam element can optionally include a bolt feature. The 
bolt feature is fully described in Section 10.7.  
 
 Throughout this section, the element formulations of the current 
version of Advanced Nonlinear Solution are described. It is, 
however, possible to choose the element formulations used in 
Advanced Nonlinear Solution of NX 8.5, using the BEAMALG 
parameter of the NXSTRAT entry. (However, if the elasto-plastic 
material model is chosen, then the current beam element algorithms 
are always used.) BEAMALG=0 corresponds to the current version 
(the default) and BEAMALG=1 corresponds to NX 8.5. 
 The results obtained will vary depending upon whether the 
current formulations or the NX 8.5 formulations are used. The 
major improvements are in the large displacement/large rotation 
formulation and in the elastic-plastic formulation. 
 
 Beam elements are generated using the CBAR and CBEAM 
entries. The properties for a CBAR entry are defined using PBAR 
or PBARL entries while the properties for CBEAM are defined 
using the PBEAM, PBEAML or PBCOMP entries. See Tables 2-2 
and 2-3 for a list of the material models that are compatible with 
the beam element.  
 

2.2.1 Beam geometry and cross-sections 
 
 Figs 2.2-1 and 2.2-2 show the beam element along with its local 
coordinate system (r,s,t). The r direction always lies along the 
neutral line of the beam (line connecting nodes GA and GB). The 
orientation of the s and t directions is defined using the v vector 
defined in the CBAR or CBEAM entries. 
 Notice that, for the Hermitian beam element, (r,s,t) are not 
isoparametric coordinates, rather (r,s,t) have the same units as the 
global coordinates. 
 Fig 2.2-2 also shows the degrees of freedom at the local nodes. 
These degrees of freedom are defined in the local coordinate 
system. 
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Fig. 2.2-1: Beam element

End A

End B

 
 
 

Z

YX

�

�

GA

GB w
_

v
_

u
_

_
�s

�
�r

_
�t

s

r

t

Fig. 2.2-2: Degrees of freedom and local axes

for beam element  
 

 
 The forces / moments in the beam element are shown in Fig. 
2.2-3. These forces / moments are also defined in the element local 
coordinate system.  
 
 The s and t directions give the orientation of the beam element 
cross-section. Care must be used in defining the s and t directions 
so that the beam element cross-section has the desired orientation. 
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Fig. 2.2-3: Element end forces/moments

S = r-direction force at node GA (axial force, positive in compression)1

S = r-direction force at node GB (axial force, positive in tension)7

S = s-direction force at node GA (shear force)2

S = s-direction force at node GB (shear force)8

S = t-direction force at node GA (shear force)3

S = t-direction force at node GB (shear force)9

S = r-direction moment at node GA (torsion)4

S = r-direction moment at node GB (torsion)10

S = t-direction moment at node GA (bending moment)6

S = t-direction moment at node GB (bending moment)12

S = s-direction moment at node GA (bending moment)5

S = s-direction moment at node GB (bending moment)11

 
                               
 
 The basic beam geometric properties are: 
 
A : Cross-sectional area 

 
L : Beam length 
 

sh
sA , sh

tA , effective shear cross-section areas in the s and t 

directions. These are calculated as 1sh
sA K A  , 2sh

tA K A  . 
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rrI : Polar moment of inertia: 2 2
rr

A

I s t dA   

 (do not confuse the polar moment of inertia rrI  with the Saint-

Venant torsional constant J ) 
 

ssI : Inertia for bending about the s-axis: 

  2
ss

A

I t dA   

ttI : Inertia for bending about the t-axis: 

  2
tt

A

I s dA   

stI : Product of inertia: 

  st

A

I stdA   

If s-t axes are coincident with the principal axes of the section then 
0stI  .  

 
J : Saint-Venant torsional constant 
 
Cross-sections 
 
 The following PBARL and PBEAML cross-sections are 
supported by Advanced Nonlinear Solution: BAR, BOX, CHAN, 
CHAN1, CHAN2, H, I, I1, ROD, T, T1, T2, TUBE 
 
 Table 2.2-1 shows the beam capabilities available for the 
available cross sections. 
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Table 2.2-1: Table of beam capabilities for the available cross-sections 
 

Formulation 
and material 
model 

General cross-section 
entered using PBAR, 
PBEAM or 
PBCOMP 

Cross-sections BOX, 
CHAN, CHAN1, 
CHAN2, H, I, I1, T, 
T1, T2, entered using 
PBARL or PBEAML 

Cross-sections 
BAR, ROD, 
TUBE, entered 
using PBARL or 
PBEAML 

Linear 
elastic 

   

Large 
displacement 
elastic 

   

MNO plastic --- ---  

Large 
displacement 
plastic 

--- ---  

     
 

2.2.2 Beam element formulations 
 

2.2.2.1 Kinematics 
 
 The element is formulated based on the Bernoulli-Euler beam 
theory, corrected for shear deformation effects if requested. 
 
 The beam displacements in the beam local coordinate system 
are u  (axial r-direction displacement), v  (transverse s-direction 
displacement) and w  (transverse t-direction displacement).  
 
 It is assumed that the cross-section rotates rigidly. Therefore the 
displacements at an arbitrary point on the beam cross-section can 
be written in terms of the displacements and rotations of the beam 
neutral axis: 
 

n t s

n r

n r

u u s t

v v t

w w s

 





  

 

 
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In addition, the transverse rotations of the beam neutral axis are 
assumed to be equal to the slopes of the transverse displacements: 
 

  

n
s

n
t

dw

dr
dv

dr





 


 

 
The neutral axis displacements and rotations are interpolated from 
the nodal displacements and rotations using 
 

  

1 2
1 2

1 1 2 2
1 2 3 4

1 1 2 2
1 2 3 4

n

n t t

n s s

u L u L u

v H v H H v H

w H w H H w H

 

 

 

   

   
 

  

1 2
1 2

1 1 2 231 2 4

1 1 2 231 2 4

r r r

s s s

t t t

L L

dHdH dH dH
w w

dr dr dr dr
dHdH dH dH

v v
dr dr dr dr

  

  

  

 

    

   

 

 
where the nodal displacements and rotations are 

 1 1 1 1 1 1, , , , ,r s tu v w     for node GA and  2 2 2 2 2 2, , , , ,r s tu v w     

for node GB, and in which 
 

    1 21 ,
r r

L L
L L

    
2 3 2 3

1 22 3 2

2 3 2 3

3 42 3 2

1 3 2 , 2 ,

3 2 ,

r r r r
H H r

L L L L

r r r r
H H

L L L L

     

    
 

 
are the linear and cubic interpolation functions (Hermitian 
displacement functions). It is seen that the transverse neutral axis 
displacements nv  and nw  are cubic and that the axial neutral axis 
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displacement nu  and torsional rotation r  are linear. 

 
 In all cases, the centroid of the cross-section is located at the 
origin of the cross-section axes (s,t), and, in addition, the principal 
axes of the cross-section are aligned with the cross-section axes 
(s,t). Thus 0stI  . 

  
 Note that axial forces applied at nodes GA or GB are assumed 
to be acting along the beam’s centroid and hence cause no bending. 
Also shear forces applied at nodes GA or GB are assumed to be 
acting through the beam’s shear center and hence cause no 
twisting. 
 
 The kinematics given above do not account for the torsional 
warping of non-circular cross-sections, or for shear deformations. 
For the linear elastic material model, the torsional warping is 
accounted for by choice of the torsional constant J, and shear 
deformations are accounted for by choice of the shear areas. For the 
elasto-plastic material model with BAR cross-section, the torsional 
warping is approximated as described in Section 2.2.2.7.  

 The stiffness matrix, mass matrix and force vector are 
formulated in the local degrees of freedom (in the r, s, t axes). 
These matrices and vectors are then transformed to the nodal 
degrees of freedom (either global or skew) and assembled into the 
global system matrices.  

 
2.2.2.2  Linear formulation 

 
 It is assumed that the displacements, rotations, and strains are 
infinitesimally small, and the elastic-isotropic material is used.  

 
2.2.2.3  Materially-nonlinear-only formulation 

 
 It is assumed that the displacements, rotations, and strains are 
infinitesimally small.  Either the elastic-isotropic material is used 
(for example, in conjunction with element birth-death) or the 
plastic material model is used.  
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2.2.2.4  Large displacement formulation 
 

 It is assumed that large displacements/rotations can occur, but 
only small strains. Any beam material model, linear or nonlinear, 
can be used. The input of beam cross-sections and material data is 
exactly the same as when using the linear or materially-nonlinear-
only beam elements. 

 If a stressed large displacement beam element is subjected to a 
rigid body rotation, the stresses/forces (expressed in the local 
coordinate system) do not change during the rigid body rotation. 
 
 The geometry of the large displacement beam element is shown 
in Fig 2.2-4. The shape of the beam neutral axis is completely 
specified by the positions of the end-nodes, and by the orientation 
of the end-node triads. Each end-node triad consists of three 
orthogonal unit vectors , ,r s tV V V . Initially the triads are identical 

to the element coordinate axes unit vectors, e.g, rV  is a unit vector 
in the r direction, etc. 
 During the deformations, the positions of the end-nodes are 
updated, as usual, by the nodal displacements. The orientations of 
the end-node triads are updated incrementally by the increments in 
nodal rotations. The end-node triads can rotate independently of 
each other, however it is assumed that the relative rotation of the 
end-node triads remains small.  
 The shape of the beam neutral axis becomes a curved space 
curve. The bending and torsion in the beam is obtained from the 
relative orientations of the end-node triads. 
 
 In the large displacement formulation, the coordinate system in 
which the beam local displacements and rotations are measured is 
updated during the solution. In the current version of Advanced 
Nonlinear Solution, this coordinate system is taken from the 
orientations of the end-node triads. In Advanced Nonlinear 
Solution of NXN 8.5, this coordinate system is taken from the 
coordinates of the end-nodes. Hence the solution output in the 
current version of Advanced Nonlinear Solution will in general be 
different than the solution output in Advanced Nonlinear Solution 
of NXN 8.5. 
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Fig. 2.2-4: Geometry of large displacement beam element

b) After deformation

a) Before deformation

Beam neutral axis

x y

z

GA

GA

GB

GB

1

rV

1

rV

1

sV

1

sV

1

tV

1

tV

2

rV

2

rV

2

sV

2

sV

2

tV

2

tV

 
 
 Fig 2.2-5 shows an example for in-plane bending. A single 
beam element is clamped at node GA and subjected to a prescribed 
rotation   at node GB. The coordinate system ,x y   used to 
measure beam local displacements and rotations is located halfway 
between the nodes, and is rotated an angle / 2  with respect to the 
global coordinate system ,x y . Notice that the x  direction does not 
coincide with the line between the end-nodes.  
 The rotation at local node GB with respect to the local 
coordinate system is / 2 , and the rotation at local node GA with 
respect to the local coordinate system is / 2 . Also, the 
transverse displacement at local node GB with respect to the local 
coordinate system is v   and the transverse displacement at local 
node GA with respect to the local coordinate system is v . 
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Fig. 2.2-5: Coordinate system update for large displacement beam

element, in-plane bending example

a) Viewed in global coordinate system

b) Viewed in local coordinate system

x

v

y

GA

GB

Beam neutral axis

�

y

y

v

�v

x

x

 
          
 
 The advantage of using a coordinate system defined from the 
orientations of the end-node triads is that this coordinate system is 
uniquely defined even for general 3-D deformations including 
torsion. A coordinate system defined from the end-nodes 
coordinates is not uniquely defined for 3-D deformations including 
torsion. 

 
2.2.2.5  Mass matrices 

 
 The beam element can be used with a lumped or a consistent 
mass matrix, except for explicit dynamic analysis (Solution 701) 
which always uses a lumped mass matrix. 
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 The consistent mass matrix of the beam element is evaluated in 
closed form, and does not include the effect of shear deformations. 
The matrix is defined in the local coordinate system using 
 
 

2 2

2 2

2 2

1 1
0 0 0 0 0 0 0 0 0 0

3 6
6 613 11 9 13

0 0 0 0 0 0 0
35 5 210 10 70 5 420 10

6 613 11 9 13
0 0 0 0 0 0

35 5 210 10 70 5 420 10

0 0 0 0 0 0 0
3 6

2 13
0 0 0 0

105 15 420 10 140 3

tt tt tt tt

ss ss ss ss

rr rr

ss ss ss

I I I IL L

AL AL AL AL
I I I IL L

AL AL AL AL
I I

A A

I I IL L L

A AL

AL

    

    

    

M

2 2

2

2

2

2

0
0

2 13
0 0 0 0

105 15 420 10 140 30
1

0 0 0 0 0
3

613 11
0 0 0

35 5 210 10
613 11

0 0
35 5 210 10

0 0
3

2
0

105 15

2

105 15

tt tt tt

tt tt

ss ss

rr

ss

tt

A

I I IL L L

A AL A

I IL

AL AL
I IL

AL AL
I

A

IL

A

IL
symmetric

A

 
 
 
 
 
 









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





  

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



 

 
 






























 
This matrix is derived in the following reference. 

 
ref. J.S. Przemieniecki, Theory of Matrix Structural 

Analysis, McGraw-Hill Book Co., 1968. 
 
 The lumped mass for translational degrees of freedom is M / 2  
where M is the total mass of the element. 
 
 The rotational lumped mass for static analysis is 0.  
 
 The rotational lumped mass for implicit dynamic analysis 

(Solution 601) is 
2

3 2
rr

rr

M I
M

A
   . This lumped mass is applied 

to all rotational degrees of freedom in order to obtain a diagonal 
mass matrix in any coordinate system. 
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 The rotational lumped mass for explicit dynamic analysis 

(Solution 701) is 3
2

m
rr

IM
M

A
    where  max ,m ss ttI I I  is 

the maximum bending moment of inertia of the beam. This lumped 
mass is applied to all rotational degrees of freedom. Note that this 
scaling of rotational masses ensures that the rotational degrees of 
freedom do not affect the critical stable time step of the element. 

 
2.2.2.6  Elastic beam element 

 
 The beam element stiffness matrix is evaluated in closed form. 
The stiffness matrix used is discussed in detail in the following 
reference: 

 
ref. J.S. Przemieniecki, Theory of Matrix Structural 

Analysis, McGraw-Hill Book Co., 1968. 
 

The stiffness matrix, in the local coordinate system, is 
 

11

22 263 2
2 2

33 353 2
3 3

44

3 3
35

3 3

2 2
26

2 2

0 0 0 0 0 0 0 0 0 0

12 6
0 0 0 0 0 0 0

(1 ) (1 )

12 6
0 0 0 0 0 0

(1 ) (1 )

0 0 0 0 0 0 0

(4 ) (2 )
0 0 0 0 0

(1 ) (1 )

(4 ) (2 )
0 0 0 0

(1 ) (1 )

tt tt

ss ss

ss ss

tt tt

AE
k

L
EI EI

k k
L L

EI EI
k k

L L

GJ
k

L
EI EI

k
L L

EI EI
k

L L

 

 

 
 

 
 




 




 



 
  

 


 

K

11

22 26

33 35

44

55

66

0 0 0 0 0

0 0 0

0 0

0 0

0

k

k k

k k

k

k
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 
 
 
 
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 
 
  
 
 
 
 
 
   

 
in which E = Young's modulus,   = Poisson's ratio, G = shear 

modulus =
2(1 )

E


. Also 
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2 2

24(1 )
, 0

0, 0

sh
tt ssh

s

sh
s

I A
L A

A

 
 

 
 

 

  
3 2

24(1 )
, 0

0, 0

sh
ss tsh

t

sh
t

I A
L A

A

 
 

 
 

 
are factors that are used to approximate the effects of shear 
deformations.  

 
 Note that torsional warping effects are only taken into account 
by the selection of the torsional constant J.  
 
 The coefficient of thermal expansion can be specified as a 
material property.  The coefficient of thermal expansion is constant 
(independent of the temperature). In addition, the beam temperature 
is taken as the average of the temperatures of the beam end-nodes. 
Temperature gradients at beam nodes are ignored. 
 
 Stress and strain output is not supported in elastic beam 
elements. 
.  

2.2.2.7  Elastic-plastic beam element 
 

 The element is used with the plastic-cyclic material model 
described in Section 3.4.2. The element can also be used with a 
plastic-bilinear material with isotropic hardening, but then the 
program automatically converts the material input into the 
equivalent plastic-cyclic material input. 
 The stress-strain law used incorporates the assumptions that the 
stresses ss , tt , st  are zero.  

 
 The beam element, using an elastic-plastic material model, can 
only be employed for the BAR, ROD and TUBE cross-sections. 
 
 The material model can be used either with the materially-
nonlinear-only formulation or with the large displacement 
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formulation (in which case the displacements/rotations can be 
large).  In all cases, the strains are assumed to be small. 
 
 Shear deformation effects are not included. 
  
 For beams with a BAR cross-section, warping effects are 
included by modifying the longitudinal displacement as follows: 
 

 3 3
1 2...u st s t st      

 
where 1 2,   are additional degrees of freedom. The additional 
degrees of freedom are condensed out at the element level. 
 This procedure is described in the following reference: 

 
ref. K.J. Bathe and A. Chaudhary, "On the Displacement 

Formulation of Torsion of Shafts with Rectangular 
Cross-Sections", Int. Num. Meth. in Eng., Vol. 18, pp. 
1565-1568, 1982. 

 
 All element matrices in elasto-plastic analysis are calculated 
using numerical integration.   The default integration orders are 
given in Tables 2.2-2 and 2.2-3. The locations and the labeling of 
the integration points are given in Fig. 2.2-6 and 2.2-7. For the 
ROD and TUBE sections, polar coordinates are used: 

2 2R s t  , 1tan
t

s
  . 

 
 
 
 

Table 2.2-2: Integration orders in elasto-plastic beam analysis, 
BAR section 
 
 
Coordinate Integration order1 

 
r                    5 

s,t 7 
 
1) Newton-Cotes integration is used in all coordinate directions 
 

ref. KJB 
Section 6.6.3 
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Table 2.2-3: Integration orders in elasto-plastic beam analysis, 
ROD and TUBE sections 
 
 

Coordinate Integration 
scheme 

Integration order 

 
r Newton-Cotes 5 

radius R Newton-Cotes 3 
tangential angle 

  
Composite 

trapezoidal rule
8 

 
 
 Note that the stiffness matrix is identical to the one used in 
linear elastic analysis if  

 
 The cross-section of the beam is circular (or rectangular) 
with b a  or b a , (because the exact warping functions are 
employed for b a  and b a , and the appropriate torsional 
rigidity is used). 
 
 The numerical integration is of high enough order  
 
 The material is (still) elastic 

 
 Stress and strain output is not supported in elastic-plastic beam 
elements. 
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Fig. 2.2-6: Integration point locations in elasto-

plastic beam analysis, BAR cross-section
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b) Integration point locations in radial direction

c) Integration point locations in tangential direction

Fig. 2.2-7: Integration point locations in elasto-

plastic beam analysis, ROD and TUBE sections
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2.2.3  Heat transfer capabilities  
 

 The beam element has the same heat transfer capabilities of the 
rod element. See Section 2.1.5 for details. 
 

2.2.4  Pin flag option 
 

To model beam internal hinges, a moment and force release option 
can be used (see Fig. 2.2-8).  Twisting moments and axial forces 
can also be released.  
 

��

Internal hinge

Element 1 Element 2

(a) Moment to be released at

internal hinge

Shear force

released

Element 1 Element 2

(b) Shear force to be released

Fig. 2.2-8: Use of pin flag options

r r rr

Specify 456 in the PB field in
CBAR for element 1, or
specify 456 in the PA field in
CBAR for element 2

Specify 23 in the PB field in
CBAR for element 1, or
specify 23 in the PA field in
CBAR for element 2

 
 
 A brief description of the theory of pin flags follows: 
 
For static linear elastic analysis without warping degrees of 
freedom, the stiffness matrix and internal force vector for a beam 
element can be written as 
 

Ku F  
 
In this expression, u  contains the displacements and rotations of 
the beam nodes, in the beam local coordinate system: 
 

1 1 1 1 1 1 2 2 2 2 2 2T
r s t r s t r s t r s tu u u u u u        u , 

 
F  contains the forces and moments of the beam nodes,   
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 1 2 3 4 5 6 7 8 9 10 11 12
T S S S S S S S S S S S SF

 
and K  is the stiffness matrix.  These expressions use the same 
notations as Figs. 2.2-1 and 2.2-2. 
 Now suppose that one or more of the local displacements or 
rotations is to be released.  “Releasing” means that the 
corresponding force is set equal to zero.  For example, if the axial 
displacement at local node GB is to be released, then force 7S  is 

set to zero.  The corresponding pin flag is PB=1 in the CBAR bulk 
data entry. 
 In order to release the selected local displacements or rotations, 
the following procedure is used: 
 

1) u  is rearranged and partitioned: T T T
A B   u u u , so that Au  

contains all of the local displacements / rotations to be retained, and 

Bu  contains all of the local displacements / rotations to be released.  
For example, if the axial displacement at local node 2 is to be 
released, then  
 

1 1 1 1 1 1 2 2 2 2 2T
A r s t r s t s t r s tu u u u u        u  

2T
B ru   u  

 
2)  F  and K  are similarly rearranged and partitioned.  The 
resulting system of equations is 
 

  
 

AA AA AB

T
AB B BB B

   



  

 


 
   

u F

u F

K K

K K
 

 
3) The pin flag condition is now expressed as B F 0 , and the 
resulting system of equations becomes 
 

  
 

AA AB
T
A

A

B

A

BBB

     
   

   


 

u F

u 0

K K

K K
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4) This system of equations is satisfied by choosing 
 

 1 T
AA AB A ABB B A

 K K K uK F  

1
B A

T
BB AB
  Ku K u  

 
Therefore the stiffness matrix that is assembled into the global 

system of equations is 1 T
AA AB BB AB

K K K K . 
 
 Any external forces acting onto the released degrees of freedom 
are ignored. 
 
 The pin flag procedure is also implemented for nonlinear 
analysis, both for materially nonlinear elements and also for 
geometrically nonlinear elements. 
 
 The pin flag procedure is available for static, implicit dynamic 
and explicit dynamic analysis.   
 
 Pin flags only affect the stiffness matrix and force vector, not 
the mass matrix. Therefore inertial forces and moments (forces and 
moments due to mass matrix effects) are not released in the above 
procedure.  
 
 If pin flags are used in dynamic analysis, the elements in which 
pin flags are specified should be very short, in order to minimize 
the inertial forces and moments. 
 
 Pin flags are applied to the element local nodes (not to the 
global nodes). Therefore, to model the hinge shown in Fig. 
2.2-8(a), pin flags that release the moments can be applied to local 
node GB of element 1, or to local node GA of element 2 (but not to 
both local nodes). 
 
 When the beam elements are geometrically nonlinear, the global 
directions corresponding to the released degrees of freedom change 
as the model deforms. By default, this effect is fully included in the 
pin flag calculations. However, this effect can occasionally slow 
down convergence. 
 The pin flags are evaluated in a local coordinate system 
corresponding to the configuration of the beam in the previous 
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equilibrium iteration.  Therefore, at convergence, the pin flags are 
evaluated in (almost) the current configuration of the beam.  (At 
convergence, the difference between the current equilibrium 
iteration and the previous equilibrium iteration is very small.) 
 In implicit static and implicit dynamic analysis, when the 
elements are geometrically nonlinear, the program performs at least 
two equilibrium iterations in each time step. 
 
 In explicit dynamic analysis, the use of pin flags will cause the 
program to run considerably more slowly than if this option were 
not used. 

 
2.2.5 Beam element modeling hints 

 
 For modeling tapered beams or curved beams, the user needs to 
divide such members into several elements. For the tapered beams 
the user needs to divide the beam into several elements and use an 
appropriate constant cross-section for each of these elements.  
 
 In order to model the bending due to an off-centroidal axial 
force or a shear force applied away from the shear center, the 
resulting moments can be applied directly or the forces can be 
applied at an offset location using rigid elements. 

 
 Off-centered beam elements can be modeled using rigid 
elements (see Fig. 2.2-9 and Section 2.7-1). 
 
 

                        

I-beam
I-beam

Rigid panel

Hollow square section

Beam element

Rigid elements

Beam elements

Physical problem: Finite element model:

Fig. 2.2-9: Use of rigid elements for modeling off-centered beams 
 



Chapter 2: Elements 
 

 
 
46 Advanced Nonlinear Solution  Theory and Modeling Guide 

2.3  Shell elements 
 

 Shell elements in Advanced Nonlinear Solution are generated 
when a PSHELL, PSHL3D, PCOMP or PCOMPG property ID 
entry is referenced by one of the following Nastran shell entries: 
CQUAD4, CTRIA3, CQUAD8, CTRIA6, CQUADR, or CTRIAR. 
The elements are shown in Fig. 2.3-1. 
 

   

�

�

�

�
�

�

�
�

(d) 8-node element

�

�

�

�

(b) 4-node element

�

�
��

�
�

�

(c) 6-node element

(a) 3-node element

�

�

�

Fig. 2.3-1: Shell elements in Advanced

Nonlinear Solution  
   
 The PSHELL entry results in a single-layered shell, while 
PCOMP and PCOMPG produces a composite shell. 
 
 The PSHL3D entry results in a single-layered 3D-shell. 3D-
shell elements are described in Section 2.3.9. 
 
 Shell elements are classified based on the number of nodes in 
the element. Table 2.3-1 shows the correspondence between the 
different shell elements and the NX element connectivity entries. 
 
 Solution 701 only supports 3-node and 4-node single-layered 
shell elements. 
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Table 2.3-1: Correspondence between shell elements and NX 
element connectivity 

 

Shell element  NX element connectivity entry 

3-node  CTRIA3, CTRIAR 

4-node  CQUAD4, CQUADR 

6-node1  CTRIA6 

8-node1  CQUAD8 

9-node1  CQUAD82 

 
Notes: 
1.  Only for Solution 601 
2. With ELCV = 1 in NXSTRAT entry 

 The extra middle node in the 9-node shell element is 
automatically added by the program when ELCV is set to 1 in the 
NXSTRAT entry. This extra node improves the performance of the 
shell element. The boundary conditions at the added node are 
predicted from the neighboring nodes. 

 
 Incompatible modes (bubble functions) can be used with 4-node 
shell elements. Additional displacement degrees of freedom are 
introduced which are not associated with nodes; therefore the 
condition of displacement compatibility between adjacent elements 
is not satisfied in general. The addition of the incompatible modes 
(bubble functions) increases the flexibility of the element, 
especially in bending situations. For theoretical considerations, see 
reference KJB, Section 4.4.1. Note that these incompatible-mode 
elements are formulated to pass the patch test. Also note that 
element distortions deteriorate the element performance when 
incompatible modes are used. 
 The incompatible modes feature can only be used with 4-node 
single layer shell elements. The feature is available in linear and 
nonlinear analysis.  
 The incompatible modes feature is set through ICMODE in the 
NXSTRAT entry. 
 
 Table 2.3-2 lists the features and capabilities available for the 
shell element types mentioned above. 
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       Table 2.3-2: Features available for shell elements 
 

Shell 
element 

Large 
displacement/ 
small strain 

Large 
strain ULJ 

formulation 

Large 
strain ULH 
formulation 

Bubble 
functions 

3D-
shell 

Soln 
701 

3-node       

4-node       

6-node       

8-node       

9-node       

 
2.3.1  Basic assumptions in element formulation 

 
 The basic equations used in the formulation of the shell 
elements in Advanced Nonlinear Solution are given in ref. KJB. 
These elements are based on the Mixed Interpolation of Tensorial 
Components (MITC). Tying points are used to interpolate the 
transverse shear strain and the membrane strains if necessary. 
These elements show excellent performance. 

 
 The shell element formulation treats the shell as a three-
dimensional continuum with the following two assumptions used in 
the Timoshenko beam theory and the Reissner-Mindlin plate 
theory: 

 
Assumption 1:  Material particles that originally lie on a 
straight line "normal" to the midsurface of the structure remain 
on that straight line during deformation. 
 
Assumption 2:  The stress in the direction normal to the 
midsurface of the structure is zero. 

 
For the Timoshenko beam theory, the structure is the beam, and 

for the Reissner/Mindlin plate theory, the structure is the plate 
under consideration. In shell analysis, these assumptions 
correspond to a very general shell theory. See the reference below 
for more details: 
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ref.  D. Chapelle and K.J. Bathe, The Finite Element Analysis 
of Shells — Fundamentals, 2nd ed, Springer, 2011. 

 
 In the calculations of the shell element matrices the following 
geometric quantities are used: 

 
 The coordinates of the node k that lies on the shell element 

midsurface at  , 1, 2,3t k
ix i    (see Fig. 2.3-2); (the left 

superscript denotes the configuration at time t) 
 

r

s

t

G3

G7

G4

G8

G1

G5

G2

G6

Midsurface nodes

Fig. 2.3-2: Some conventions for the shell element;

local node numbering; local element coordinate system 
 

 The director vectors  t k
nV  pointing in the direction 

"normal" to the shell midsurface 
 The shell thickness, ka , at the nodal points measured in the 

direction of the director vectors  t k
nV  (see Fig. 2.3-3).  

 
 
 
 
 

ref. KJB 
Fig. 5.33 

page 437 
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k
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Fig. 2.3-3: Shell degrees of freedom at node k  
 

 Based on these quantities the geometry of the shell is 
interpolated as follows: 

 

1 1

( 1, 2,3)
2

q q
tt t k k

i k i k k ni
k k

t
x h x a h V i

 

     

 

where q is the number of element nodes, 1, 2,3( )t k
niV i   are the 

components of the shell director vector  t k
nV  and ( , )kh r s  are the 

2-D interpolation functions. 
 
 At the element level the shell has 5 independent degrees of 
freedom per node: 3 displacements about the displacement 
coordinate system resulting from the displacement of the shell 
midsurface and 2 rotations resulting from the motion of the shell 

direction vector k
nV : 

 

 0

1 12

q q
t t k t k k

i k i k k ni ni
k k

t
u h u a h V V

 

     
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The motion of the director vector at node k is described using 2 

rotational degrees of freedom about 1
kV and 2

kV which are 2 axes 

perpendicular to the shell director k
nV as shown in Fig. 2.3-3. 

 

1

2

k
k n

k
n





Y V

V
Y V

 

 

2 1
k k k

n V V V  

 

For the special case when the k
nV  vector is parallel to the Y axis, 

the program uses the following conventions: 
 

1 2     when k k k
n   V Z V X V Y  

 
 and 

 

1 2     when k k k
n    V Z V X V Y  

 
The two rotational degrees of freedom named k  and k  are about 

axes 1
kV  and 2

kV  respectively. 
     When using the large displacement formulations, the definitions 

of  1
kV  and  2

kV  are only used at time = 0 (in the initial 

configuration) after which the vectors t k
nV  and 1

t kV  are updated 

using incremental rotations at the nodal points, and 2
t kV  is 

calculated by the cross-product 2 1
t k t k t k

n V V V . 

 Note that a shell node may however be assigned 3 rotational 
degrees of freedom. In this case, the element’s two rotational 
degrees of freedom are transformed to the displacement coordinate 
system before assembly. 
 
 Assumption 1 on the kinematic behavior of the shell enters the 
finite element solution in that the particles along the director vector 
t

nV  (interpolated from the nodal point director vectors t k
nV ) 

remain on a straight line during deformation.  
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Note that in the finite element solution, the vector t
nV  is not 

necessarily exactly normal to the shell midsurface. Fig. 2.3-4(a) 
demonstrates this observation for a very simple case, considering 

the shell initial configuration. Furthermore, even if  t
nV  is 

originally normal to the shell midsurface, after deformations have 
taken place this vector will in general not be exactly perpendicular 
to the midsurface because of shear deformations (see Fig. 2.3-4(b)). 

 

��

�

�

Angle 90� 	

Angle = 90	

Initial configuration

Final configurationZ

X
Y

��

�

( )L2

L1 + L2
�

k k + 1

L1 L2

0 k
nV

0 k+1
nV

0
nV

0
nV

t
Vn

a) Due to initial geometry

b) Due to displacements and deformations (with shear)

Fig. 2.3-4: Examples of director vectors not normal to the shell

midsurface  
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 The assumption 2 on the stress situation enters the finite 
element solution in a manner that is dependent on the formulation 
employed: 

 
 All formulations except for the large displacement/large strain 
shell element:  The stress in the t-direction (i.e., in the direction of 
t

nV ) is imposed to be zero. This is achieved by using the stress-

strain relationship in the , ,r s t  coordinate system, shown in Fig. 
2.3-5(a), with the condition that the stress in the direction t is zero. 

 

r

r

s

s

s

t

t

r

r
s t

=
�

s t�
s

t r
=

�

t r�2 2

(a) Definition of the local Cartesian system at an

integration point in the shell

Fig. 2.3-5: Local coordinate systems in shell element  
 

 Large displacement/large strain shell element:  The stress in the 

t̂ -direction (not necessarily in the direction of t
nV  ) is imposed to 

be zero. This is achieved by using the stress-strain relationship in 

the ˆˆ ˆ, ,r s t  coordinate system, shown in Fig. 2.3-5(b), with the 

condition that the stress in the direction t̂  is zero. 
 
 
 
 

ref. KJB 
Section 5.4.2 

page 440 
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b) Definition of the midsurface Cartesian system ( , , )

at an integration point

r s t

s t r= �

t

Fig. 2.3-5: (continued)  
 
 

 The interpolation of the geometry of the shell element is always 
as described above, but for a specific solution time the current 
coordinates of the midsurface nodal points are used, and the current 
director vectors are employed. The midsurface nodal point 
coordinates are updated by the translational displacements of the 
nodes and the director vectors are updated using the rotations at the 
nodes (rotation increments in large displacement analysis). 

 
 The transverse shear deformations are assumed to be constant 
across the shell thickness. 

 
 In large displacement analysis, the midsurface nodal point 
coordinates are updated by adding the translational displacements 
of the nodes, and the director vectors are updated using the 
incremental rotations at the nodes by applying the large rotation 
update transformation described in p. 580 of ref. KJB (Exercise 
6.56). 
 
 

 

ref. KJB 
pp. 399, 440 
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2.3.2  Material models and formulations 
 

 See Tables 2-2 and 2-3 for a list of the material models that are 
compatible with shell elements. 

 
 The shell element can be used with  
 
 small displacement/small strain kinematics,  
 large displacement/small strain kinematics, or 
 large displacement/large strain kinematics.  
 

In the small displacement/small strain case, the displacements 
and rotations are assumed to be infinitesimally small. Using a 
linear material results in a linear element formulation, and using a 
nonlinear material results in a materially-nonlinear-only 
formulation. 

In the large displacement/small strain case, the displacements 
and rotations can be large, but the strains are assumed to be small. 
In this case, a TL formulation is used. 

The large displacement/large strain formulation for shells can be 
either a ULJ (updated Lagrangian Jaumann) formulation or a ULH 
formulation (updated Lagrangian Hencky) depending on the 
ULFORM parameter in the NXSTRAT entry. In the ULJ 
formulation, the total strains can be large, but the incremental strain 
for each time step should be small (< 1%). The ULH formulation 
requires more computations, however, it has no such restriction on 
the size of the incremental strains.  

The large displacement/large strain kinematics can be only used 
with single layer shell elements with a plastic bilinear/multilinear 
or plastic-cyclic material. See Table 2.3-2 for a list of the supported 
shell elements. 

 
2.3.3  Shell nodal point degrees of freedom  

 
 Shell nodes can have either 2 or 3 rotational degrees of freedom 
which results in nodes having either 5 or 6 degrees of freedom.

 The criterion for determining whether a shell node is assigned 5 
or 6 degrees of freedom is as follows. 5 degrees of freedom are 
initially assigned to all shell midsurface nodes. The following cases 
change the node to 6 degrees of freedom: 

ref. KJB 
Section 6.6 
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Geometry. Shell elements at that node intersecting at an 
angle greater than a specified tolerance (SDOFANG parameter 
in the NXSTRAT entry). 

 
Other elements. If the node also has other elements with 
rotational degrees of freedom, i.e., beam elements, rotational 
springs, rotational masses or rotational dampers. 


Rotational loads, constraints or boundary conditions. 
This includes the following cases: 

 

- applied moment at the node 
 

- rotational fixed boundary condition at the node 
 

- rigid link connected to the node 
 

- constraint equation involving constrained rotations 
connected to the node 
 

- enforced rotations at the node 
 

 Shell nodes with 6 degrees of freedom may be a potential source 
for singularity. In this case, very weak springs are automatically 
added to prevent the singularity. The cases in which this happens 
are discussed later in this section. 
 

 Fig. 2.3-6 shows examples of 5 and 6 degree of freedom shell 
nodes. 

                       
 Note that for both 5 and 6 degree of freedom shell nodes, the 
translations uk, vk, wk are referred to the chosen displacement 
coordinate system. 
 
5 degrees of freedom node: A node "k" that is assigned 5 degrees 
of freedom incorporates the following assumption: 

 

 Only one director vector (denoted at time = 0 as 0 k
nV ) is 

associated with the node. The program calculates the director 
vector by taking the average of all normal vectors (one normal 
vector is generated per shell element attached to node k) at the 
node. This is illustrated in Fig. 2.3-7. 
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Fig. 2.3-6: Examples of shell nodes with 5 or 6 degrees of freedom  
 

 
 If two (or more) elements attached to the node have oppositely 
directed normals, the program reverses the oppositely directed 
normals, so that all normals attached to the node have (nearly) the 
same direction. 
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0 k
nV

0 k
nV

element 1

element 1

element 2

element 2

k

k k

�

�

�

� �

�

�

0 k
nV is the average of all element director vectors

0 k
nV

Fig. 2.3-7: 5 degree of freedom shell node with unique vector at node k  
 

6 degrees of freedom node: A node "k" that is assigned 6 degrees 
of freedom incorporates the following assumption: 

 
 The program generates as many normal vectors at node k as 
there are shell elements attached to the node. Hence each individual 
shell element establishes at node k a vector normal to its 
midsurface. This is illustrated in Fig. 2.3-8. The components of the 
shell element matrices corresponding to the rotational degrees of 
freedom at this node are first formulated in the local midsurface 
system defined by the normal vector and then rotated to the 
displacement coordinate system. 
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element 1
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element 1

element 1
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�

director for element 2
director for element 1

Fig. 2.3-8: 6 degree of freedom shell node with separate director

vectors at node k (each vector is used as a director vector for the

respective element)  
 
 The three rotational degrees of freedom at node k referred to the 
displacement coordinate system can be free or constrained. 

 
Singularity at 6 degree of freedom shell nodes 
 
 When a shell node is forced to have 6 degrees of freedom due to 
the reasons explained above, there may be a singularity at one of 
the rotational degrees of freedom. In this case, a weak rotational 
spring is added to the 3 rotational degrees of freedom. This is done 
automatically by Advanced Nonlinear Solution and usually does 
not require user intervention. The stiffness of the spring is set to be 
a small fraction of the average rotational stiffnesses at the shell 
node. This fraction is can be changed via the DRILLKF parameter 
in NXSTRAT. 

 
 Not all the cases that lead to a shell node possessing 6 degrees 
of freedom (listed at the beginning of this section) may introduce a 
singularity at the node. 
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Geometry. No potential singularity exists in this case, since 
the shell is curved.  

 
Other elements. Beam-stiffened shells will have a 
singularity at the shell nodes only if the beam is perpendicular 
to a flat shell surface. Otherwise, a singularity can still exist in 
the model if the beam is not properly restrained (see Fig. 2.3-9 
(a)). The same applies to rotational springs, masses and 
dampers. 
 
Rotational loads, constraints or boundary conditions. All 
the items listed earlier for this feature result in a potential 
singularity (see Fig. 2.3-9 (b)) except when all rotational 
degrees of freedom at the node are fixed. 
 

 If multiple factors lead to the presence of 6 degrees of freedom 
at a shell node, no singularity is present if any of the factors 
eliminates the singularity. For example, if a shell node has an 
applied moment and is attached to non-perpendicular beam 
elements there is no singularity.  

 
 Fig. 2.3-6 shows examples where shell singularity may or may 
not occur. 
 
 The singularity that may result from beams attached to shells 
requires some clarification. If a beam connects two shell structures 
as shown in Fig. 2.3-10, and it is perpendicular to both shells, then 
the beam is free to rotate about this perpendicular direction (the 
z-direction in this example). If the beam intersects the shells at an 
angle, this singularity is not present. 
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stiffness matrix.

F
t

nV

Fig. 2.3-9: Flat shell with 6 DOFs at a node with

singularity  
 
 
 An alternative to using the drilling stiffness option is to connect 
the 6 DOF nodes on flat shells to neighboring shell nodes using 
soft beam elements (so-called “weld elements”). This idea is shown 
in Fig 2.3-11. Then moments applied into the t

nV  direction will be 
taken by the weld elements, and these moments will cause 
equilibrating reactions at the fixities. The weld elements also 
provide stiffness in the t

nV  direction, so that there will be no zero 
pivots. 
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Fig. 2.3-10: Beams intersecting shell elements  
                              
 
 

Reactions at fixities
are nonzero.

Soft beam element.
t

nV
Mz

Fig. 2.3-11: Soft beam element takes applied

moment  
 
                 

2.3.4  Composite shell elements (Solution 601 only) 
 

 Composite shell elements are generated when a PCOMP or 
PCOMPG property ID is referenced by one of the following 
Nastran shell connectivity entries: CQUAD4, CTRIA3, CQUAD8, 
CTRIA6. 


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 The composite shell elements are kinematically formulated in 
the same way as the single layer shell elements, but 

 
 An arbitrary number of layers can be used to make up the 

total thickness of the shell, and each layer can be assigned a 
different thickness. 

 Each layer can be assigned one of the different material 
models available. The element is nonlinear if any of the 
material models is nonlinear, or if the large displacement 
formulation is used.  

 Large displacement/large strain kinematics are not 
supported for composite shell elements.  

 
 The conventions for defining the director vectors, the local axes 
V1 and V2, and the 5/6 degree of freedom selection are all the same 
as those for the single layer shell.

 In order to take into account the change of material properties 
from one layer to another, numerical integration of the mass and 
stiffness matrices is performed layer by layer using reduced natural 
coordinates through the thickness of the element (see Figs. 2.3-12 
and 2.3-13). The relation between the element natural coordinate t 
and the reduced natural coordinate tn of layer n is: 

 

  
1

1
1 2 1

n
i n n

i

t t
a 

  
      

  
   (2.3-1) 

 
with 

 
     t = element natural coordinate through the thickness 
     tn = layer n natural coordinate through the thickness 

     i  = thickness of layer i 
     a = total element thickness 

 

a and i  are functions of r and s. 
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Fig. 2.3-12: 8-node composite shell element  
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Fig. 2.3-13: Multilayered shell  
      
 
 

The geometry of layer n is given by: 
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 (2.3-2) 
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 with 
 

    t
ix  = coordinate of a point inside layer n in direction i 

     N = number of nodes 
     kh  = interpolation functions 

    t k
ix  = Cartesian coordinates of node k 

    t k
niV  = component of normal vector t k

nV  at node k 

    ka  = total element thickness at node k 

   j
k  = thickness of layer j at node k 

   n
km  = distance between element midsurface and midsurface of 

      layer n at node k 
   

In the above formula, n
km is given by 

 

 
12 2

nn
n jk k
k k

j

a
m



      (2.3-3) 

 
2.3.5  Numerical integration 

 
 Gauss numerical integration is used in the in-plane directions of 
the shell. For the 4-node shell element, 22 integration is used. For 
the 8-node and 9-node elements, 33 point integration is used. The 
3-node triangular shell element uses 4-point Gauss integration in 
the in-plane directions, and the 6-node triangular shell element uses 
7-point Gauss integration. 
 
 Numerical integration through the shell thickness is as follows: 
 

 For elastic materials, 2-point Gaussian integration is always 
used. 

 For elasto-plastic materials and the nonlinear elastic 
material, 5-point Newton-Cotes integration is the default. 
Although using 5-point integration is computationally more 
expensive, it gives much more accurate results for elasto-
plastic shells. 

 

ref. KJB 
Section 6.8.4 
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 For composite shells with elasto-plastic materials, 3-point 
Newton-Cotes integration is the default. 

 
The order of through-thickness integration can be modified via the 
TINT parameter in the NXSTRAT entry. If TINT is specified, it 
will be applied to both single-layered and composite elasto-plastic 
shells. 
 
 The same integration order is used for both Solution 601 and 
701. 
 

2.3.6  Mass matrices 
 
 In Solution 601 shell elements can be employed with a lumped 
or a consistent mass matrix. Only a lumped mass matrix is allowed 
in Solution 701. 
 
 The consistent mass matrix is calculated using the isoparametric 
formulation with the shell element interpolation functions. 

 
 The lumped mass for translational degrees of freedom of 
midsurface nodes is /M n   where M is the total element mass and 
n is the number of nodes. No special distributory concepts are 
employed to distinguish between corner and midside nodes, or to 
account for element distortion. 
 The rotational lumped mass for implicit analysis (Solution 601) 

is  2
av

1
12

M
t

n
 , where avt  is the average shell thickness. The same 

rotational mass matrix is assumed for 5- and 6-degree of freedom 
nodes, and is applied to all rotational degrees of freedom. 
 The rotational lumped mass for explicit analysis (Solution 701) 

is  2
av

1
12

M
t A

n
  , where avt  is the average shell thickness and A is 

the cross-sectional area. The rotational masses are scaled up to 
ensures that the rotational degrees of freedom will not reduce the 
critical time step for shell elements. The same rotational mass 
matrix is assumed for 5- and 6-degree of freedom nodes and is 
applied to all rotational degrees of freedom. 
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2.3.7  Heat transfer capabilities 
 

 Heat transfer capabilities are available for all supported shell 
elements, including composite shells. 

 
 The shell heat transfer capabilities are formulated by assuming 
that the temperature varies linearly through the shell thickness 
direction. Two degrees of freedom are therefore assigned at each 
shell node, one for the top shell surface and one for the bottom 
shell surface. 
 
 The element matrices are integrated numerically by Gauss 
integration using the same integration order as the structural 
matrices. 

 
 In the calculation of the top and bottom shell surfaces, the 
following geometric quantities are used: 

 
 The coordinates of the nodes that lie on the shell element 

midsurface. 

 The director vectors nV  normal to the shell midsurface.  

 The shell thicknesses a at the nodal points measured in the 

direction of the vector k
nV  (see Fig. 2.3-14)  

 
 Fig. 2.3-14 shows a 4-node thermal shell element with the shell 
midsurface nodes, the nodal director vectors and constructed top 
and bottom nodes. The director vectors are automatically calculated 
by the program, see Fig. 2.3-15. 

  
 In the calculation of the shell element matrices, i.e., 
conductivity, heat capacity, and heat generation, the top and bottom 
shell surfaces are used instead of the midsurface. 

 
 The shell heat capacity matrix can be calculated based on a 
lumped or a consistent formulation, similar to the mass matrix in 
structural analysis. 

ref KJB 
Section 5.4.2 
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Fig. 2.3-14: Description of the thermal shell element  
 
 
 
 Thermal loads and boundary conditions such as applied 
temperatures, heat flux, convection and radiation can all be applied 
to either the top or bottom shell surfaces. 
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Fig. 2.3-15: Program-calculated director vector at thermal shell nodes 
           
 

2.3.8  Selection of elements for analysis of thin and thick shells 
 

 The most effective element for analysis of general shells is 
usually the 4-node element. This element does not lock and has a 
high predictive capability and hence can be used for effective 
analysis of thin and thick shells. 
   
 The phenomenon of an element being much too stiff is, in the 
literature, referred to as element locking. In essence, the 
phenomenon arises because the interpolation functions used for an 
element are not “abundantly” able to represent zero (or very small) 
shearing or membrane strains. If the element cannot represent zero 
shearing strains, but the physical situation corresponds to zero (or 

ref. KJB 
pp. 403-408 
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very small) shearing strains, then the element becomes very stiff as 
its thickness over length ratio decreases. The MITC elements are 
implemented to overcome the locking problem. More details on the 
interpolations used for the transverse and membrane terms are 
provided in ref. KJB, pp. 403 – 406. 
 
 The 8-node element is not as effective as the other MITC 
elements, and its use is not recommended in general. 

 
 In order to arrive at an appropriate element idealization of a thin 
shell, it may be effective to consider the behavior of a single 
element in modeling a typical part of the shell.  As an example, if a 
shell of thickness h  and principal radii of curvatures 1R  and 2R  is 

to be analyzed, a single element of this thickness and these radii 
and supported as a cantilever could be subjected to different simple 
stress states.  The behavior of the single element when subjected to 
the simple stress states (e.g., constant bending moments) tells what 
size of element, and hence element idealization, can be used to 
solve the actual shell problem. 

 
 For cases where the ratio thickness/radius of curvature is large 
(in the original configuration or in the deformed configuration in 
large deformation analysis) it is best to use 5 dofs at each shell 
node. Then all elements will represent the hyperbolic stress 
distributions through the element thickness. If 6 dofs per node are 
used, then only the higher order elements will represent the 
hyperbolic stress distribution because the nodal director vectors are 
constructed from the geometry of the elements.
 
 Geometrically nonlinear incompatible modes elements with 
large aspect ratio should not be used, because spurious modes may 
be present in the finite element solution. 
 

2.3.9  3D-shell element 
 

Overview 
 
 One characteristic of the shell elements described earlier is that 
the change in thickness of the element is not explicitly calculated 
from the element degrees of freedom.  This is because the zero 
stress through the shell thickness assumption is used in the material 
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descriptions. 
 
 However, in large strain analysis, the change in thickness can 
become important.  For example, during out-of-plane bending, the 
material in compression thickens, and the material in tension thins 
(for nonzero Poisson's ratio).  Hence the midsurface is no longer 
exactly halfway between the top and bottom surfaces.  This effect 
is shown in Fig 2.3-16. 
 
 This change in thickness is naturally modeled when quadratic 
3D solid elements are used, because the nodes on the top and 
bottom surfaces can move relative to the nodes on the midsurface, 
as shown in Fig 2.3-17.  However 3D solid elements tend to lock 
when they are very thin, so that they are unsuitable for bending 
analysis of thin structures. 
 
 In the 3D-shell element, the change in thickness of the element 
is modeled using control vectors, as shown for the case of pure 
bending in Fig 2.3-18.  The motion of the control vectors is 
controlled by element degrees of freedom at the shell midsurface, 
as discussed in more detail below.   
 
 Because the change in thickness is explicitly calculated from 
element degrees of freedom, the assumption of zero stress through 
the shell thickness is not used in the 3D-shell element. 
 
 In addition, the 3D-shell elements use MITC tying rules to 
relieve shear locking.  Therefore these elements are suitable for 
out-of-plane bending analysis of thin structures, even for large 
bending strains. 
 
 The 3D-shell elements can be used with 3 or 4 nodes (CTRIA3 
or CQUAD4).  The 4-node element is recommended for general 
use. 
 
 The 3D-shell elements can be used in static, implicit dynamic or 
explicit dynamic analysis. 
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a) Undeformed configuration

Fig. 2.3-16: Kinematics of pure bending

Midsurface

Material particles
initially on midsurface

b) Deformed configuration

 
 
 
 The following features available for other shell elements are not 
available for the 3D-shell element: 6-, 8-node elements, composite 
(multilayer) shells.   
 
 When using contact groups with true offsets (BCTPARA entry, 
OFFTYPE=2), the 3D-shell elements contribute to the offsets.  
However, the offset at a 3D-shell element node is computed as half 
the current shell thickness at the node, and this offset is used 
regardless of whether the contact occurs on the shell top surface or 
on the shell bottom surface.   
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a) Undeformed configuration

Fig. 2.3-17: Pure bending modeled with quadratic 3D elements

b) Deformed configuration

 
 
 
 The 3D-shell is more fully described in the following reference: 
 

ref. T. Sussman & K.J. Bathe, 3D-shell elements for 
structures in large strains, Computers & Structures, 122, 
2-12, 2013. 
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a) Undeformed configuration

Bottom control vector

Bottom control vector elongates

Top control vector

Top control vector shrinks

Fig. 2.3-18: Pure bending modeled with 3D-shell elements

b) Deformed configuration

 
 
Kinematics and degrees of freedom of the 3D-shell element  
 
Fig. 2.3-19 shows the corner of a 3D-shell element, with its top and 
bottom surfaces described by control vectors.  Initially the control 
vectors are equal and opposite.  During deformations, the control 
vectors can evolve independently.  Thus in the deformed 
configuration, the control vectors are in general not equal and 
opposite, as shown in Fig 2.3-19(b).   
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a) Undeformed configuration b) Deformed configuration

Fig. 2.3-19: Control vectors at 3D-shell element node

Top surface

Bottom surface

 
 
The control vector motions are governed by element degrees of 
freedom.  For ease of use of the element, the element degrees of 
freedom include the same degrees of freedom as for the usual shell 
elements: 
 
 x, y, z translations 
  ,   rotations (5 DOF node), or x , y , z  rotations (6 DOF 

node) 
 
and extra degrees of freedom: 
 
 constant and linear thickness incremental strains 
 
The elongations of the control vectors are governed by the constant 
and linear thickness incremental strains.  The control vectors 
always point in opposite directions, but in general have different 
lengths after deformations.  And material particles that were 
initially on a straight line remain on a straight line after 
deformations. 
 
All of the considerations for selection of 5 and 6 DOF nodes 
discussed in Section 2.7.3 directly apply to the 3D-shell element 
nodes.   
 
It is not allowed to prescribe or fix any of the extra degrees of 
freedom.  
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Material models and formulations for the 3D-shell element 
 
Material models for the usual shell elements are developed using 
the assumption of zero stress through the shell thickness.  Hence 
these models do not directly apply to the 3D-shell element. 
 
The following material models are implemented for the 3D-shell 
element: elastic-isotropic (MAT1), plastic-cyclic (MATPLCY), 
hyperelastic (MATHE, MATHP).  
 
Small displacement/small strain, large displacement/small 
strain or large displacement/large strain formulations can be 
used with these material models, as described under the material 
models descriptions. 
 
Material model notes 
 
The thermal strains are assumed to be small in all material models, 
including the hyperelastic material models. 
 
When stresses are output in the shell local coordinate system, the 

coordinate system is the ˆˆ ˆ, ,r s t  system shown in Fig. 2.3-5(b). 
 
Mixed u/p formulation 
 
The mixed u/p formulation is used for the plastic-cyclic material 
and all of the hyperelastic materials except for the hyperfoam 
material.  When the u/p formulation is used, the assumed pressure 
field is 0 1p p p t   where 0p  and 1p  are the pressure degrees of 

freedom, and t  is the isoparametric coordinate through the shell 
thickness.  Note that it is necessary to allow a linear variation of 
pressure through the shell thickness in order to model out-of-plane 
bending. 
 
Incompatible modes 
 
Incompatible modes can be used in the 4-node 3D-shell element.  
However incompatible modes and the u/p formulation cannot be 
used together, therefore incompatible modes are not used for the 
materials in the last paragraph. 
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2.4  Surface elements – 2-D solids (Solution 601 only) 
 

 2-D solid elements are obtained in the following cases:  
 

 PPLANE property ID that is referenced by CPLSTS3, 
CPLSTS4, CPLSTS6 or CPLSTS8 plane stress elements, or 
the CPLSTN3, CPLSTN4, CPLSTN6 or CPLSTN8 plane 
strain elements. This leads to 2D plane strain or plane stress 
elements that must be oriented in either the X-Y or X-Z 
plane.  

 PSOLID or PLSOLID property ID entry that is referenced 
by the axisymmetric elements CQUADX4, CQUADX8, 
CTRAX3, or CTRAX6. This leads to an axisymmetric 2-D 
element which must be oriented in either the X-Y or X-Z 
plane. This is the preferred form for axisymmetric elements 
since elastic, plastic and hyperelastic materials can be used 
with these elements. Contact analysis can also be performed 
with these elements.  

 PLPLANE property ID that is referenced by the CPLSTS3, 
CPLSTS4, CPLSTS6 or CPLSTS8 plane stress elements, or 
the CPLSTN3, CPLSTN4, CPLSTN6 or CPLSTN8 plane 
strain elements. This leads to a hyperelastic 2-D plane strain 
or plane stress element which must be oriented in either the 
X-Y or X-Z plane.  

 PLPLANE property ID entry that is referenced by the 
CQUAD, CQUAD4, CQUAD8, CTRIA3 or CTRIA6 shell 
elements. This leads to a hyperelastic plane strain or 
axisymmetric 2-D element which must be oriented in the X-
Y plane.  

 PSHELL property ID entry with MID2 = -1 that is 
referenced by the shell elements CQUAD4, CQUAD8, 
CTRIA3, or CTRIA6. This leads to a plane strain 2-D 
element which must be oriented in the X-Y plane.  

 
 2-D elements are not supported in Solution 701.  
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2.4.1  General considerations 
 

 The following kinematic assumptions are available for two-
dimensional elements in Solution 601: plane strain, plane stress 
and axisymmetric. Fig. 2.4-1 and Fig. 2.4-2 show some typical 
2-D elements and the assumptions used in the formulations. 
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(c) 4-node quadrilateral element

Fig. 2.4-1: 2-D solid elements  
 

 2-D solid elements in Solution 601 are classified based on the 
number of nodes in the element and the element shape. Table 2.4-1 
shows the correspondence between the different 2-D solid elements 
and the NX element connectivity entries.  
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Fig. 2.4-2: Basic assumptions in 2-D analysis (assuming

element lies in X-Y plane)  
       
 
 Note that the extra middle node in the 7-node and 9-node 2-D 
elements is automatically added by the program when ELCV is set 
to 1 in the NXSTRAT entry. These extra nodes improve the 
performance of the 2-D elements as explained later in this section. 
The boundary conditions at the added node are predicted from the 
neighboring nodes. 

 
 The axisymmetric element must lie in the +X half plane.  
 
 2-D solid elements can be combined with any other elements 
available in Advanced Nonlinear Solution.  
 
 The axisymmetric element represents one radian of the 
structure, and defines the stiffness, mass and forces accordingly. 
Hence, when this element is combined with other elements, or 
when concentrated loads are defined, these must also refer to one 
radian, see ref. KJB, Examples 5.9 and 5.10, p. 356. 
 
 The plane strain element provides for the stiffness of a unit 
thickness of the structure, and defines the stiffness, mass and forces 
accordingly. 
 
 

ref. KJB 
Sections 5.3.1 

 and 5.3.2 
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     Table 2.4-1: Correspondence between 2-D solid elements and NX element 
     connectivity entries 
 

2-D solid element NX element connectivity entry 

3-node triangle 
CPLSTN31, CPLSTS32 
CTRIA34, CTRAX35 

4-node quadrilateral 
CPLSTN41, CPLSTS42 
CQUAD44, CQUADX45 

CQUAD3 (with 4 input nodes) 

6-node triangle 
CPLSTN61, CPLSTS62 
CTRIA64, CTRAX65 

7-node triangle 
CPLSTN61,6, CPLSTS62,6 
CTRIA64,6, CTRAX65,6 

8-node quadrilateral 
CPLSTN81, CPLSTS82 
CQUAD84, CQUADX85 
CQUAD3 (with 8 input nodes) 

9-node quadrilateral 

CPLSTN81,6, CPLSTS82,6 
CQUAD84,6, CQUADX85,6 
CQUAD3,6 (with 8 input nodes) 
CQUAD3 (with 9 input nodes) 

 
 
Notes: 1. Plane strain 

2. Plane stress 
3. Plane strain hyperelastic only 
4. Plane strain hyperelastic 
5. Axisymmetric with no restriction on material  
6. With ELCV = 1 in NXSTRAT entry 

 
 
 
 The plane stress 2-D element has an element thickness that is 
defined either in the CPLSTSi element entry or in the PPLANE or 
PLPLANE entry. The element can have a varying thickness, that is, 
the thickness can be different at each node. However, the thickness 
at a mid-side node is always taken as the average of the thickness 
of the corresponding corner nodes. 
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 The basic 2-D elements used in Solution 601 are isoparametric 
displacement-based elements, and their formulation is described in 
detail in ref. KJB, Section 5.3.  

 
 The basic finite element assumptions for the coordinates are 
(see Fig. 2.4-3): 

 

1

q

i i
i

x h x


  ;   
1

q

i i
i

y h y


   

 
and for the displacements: 

 

1

q

i i
i

u h u


 ;   
1

v v
q

i i
i

h


  

 
where 

 
      hi(r,s) = interpolation function corresponding to node i 
      (r,s) = isoparametric coordinates 

     q = number of element nodes 
      xi, yi = nodal point coordinates  
      ui, vi  = nodal point displacements 
 

The equations above are for 2-D solid elements that lie in the X-Y 
plane. A simple change of variable from y to z describes the 2-D 
solid elements in the X-Z plane. 

 In addition to the displacement-based elements, special mixed-
interpolated elements are also available, in which the displacements 
and pressure are interpolated separately. These elements are 
effective and should be preferred in the analysis of incompressible 
media and inelastic materials (elastic materials with Poisson's ratio 
close to 0.5, rubber-like materials, creep and elasto-plastic 
materials). The mixed formulation is only available for plane strain 
and axisymmetric 2-D elements. It is not available (and not needed) 
for plane stress 2-D elements.  



Chapter 2: Elements 
 

 
 
82 Advanced Nonlinear Solution  Theory and Modeling Guide 

�
�

�

�

�

�

� �

�

v2

u2

y2

x2

Displacement degrees

of freedom
r

s

X

Y

34

1 2

7

8

5

9 6

Z

Fig. 2.4-3: Conventions used for the 2-D solid element

(assuming element lies in X-Y plane)  
 
 
 Table 2.4-2 shows the number of pressure degrees of freedom 
used for each 2-D element type. For more details on the number of 
degrees of freedom ideal for each element, see the ref. KJB, 
Section 4.4.3 and Table 4.6, pp. 292-295. 
 
 
 
 
 
 
Table 2.4-2: Mixed formulation settings for 2-D solid elements 
 

2-D solid element 
Number of pressure 

DOFs 

3-node triangle - 

4-node quadrilateral 1 

6-node triangle 3 

7-node triangle 3 

8-node quadrilateral 3 

9-node quadrilateral 3 
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 The mixed interpolation is the default setting for hyperelastic 
materials. It can be activated for other materials, such as elastic 
with Poisson’s ratio close to 0.5, elasto-plastic, and creep, via the 
UPFORM flag in the NXSTRAT entry.  

 
 The 4-node element (1 pressure degree of freedom) and 9-node 
element (3 pressure degrees of freedom) are recommended for use 
with the mixed formulation.  

 
ref. T. Sussman and K.J. Bathe, "A Finite Element 

Formulation for Nonlinear Incompressible Elastic and 
Inelastic Analysis," J. Computers and Structures, Vol. 
26, No. 1/2, pp. 357-409, 1987. 

 
 In addition to the displacement-based and mixed-interpolated 
elements, Advanced Nonlinear Solution also includes the 
possibility of including incompatible modes (bubble functions) in 
the formulation of the 4-node 2-D solid element. Within this 
element, additional displacement degrees of freedom are 
introduced. These additional displacement degrees of freedom are 
not associated with nodes; therefore the condition of displacement 
compatibility between adjacent elements is not satisfied in general. 
The addition of the incompatible modes (bubble functions) 
increases the flexibility of the element, especially in bending 
situations. For theoretical considerations, see reference KJB, 
Section 4.4.1. Note that these incompatible-mode elements are 
formulated to pass the patch test. Also note that element distortions 
deteriorate the element performance when incompatible modes are 
used. 
 For plane stress and plane strain elements, the incompatible 
modes feature is activated by settting ICMODE=1 in the 
NXSTRAT entry. For axisymmetric elements, the incompatible 
modes feature is activiated by setting IN=BUBBLE in the PSOLID 
entry. 
 The incompatible modes feature should be used with caution 
when using large displacement/small strain or large displacement/ 
large strain kinematics, in conjunction with large aspect ratio 
elements, because meshes of incompatible modes elements can 
contain spurious modes under these conditions. 
 The incompatible modes feature cannot be used in conjunction 
with the mixed-interpolation formulation. 
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 The interpolation functions used for 2-D solid elements are 
defined in ref. KJB, Fig. 5.4, p. 344. 

 
 The 6-node spatially isotropic triangle is obtained by correcting 
the interpolation functions of the collapsed 8-node element. It then 
uses the same interpolation functions for each of the 3 corner nodes 
and for each of the midside nodes. 

The 3-node triangular element is obtained by collapsing one 
side of the 4-node element. This element exhibits the constant 
strain conditions (except that the hoop strain in axisymmetric 
analysis varies over the element). 

 
 The stresses/strains can be output either at the center and corner 
grid points (PSOLID STRESS=blank or GRID), or at the center 
and corner Gauss points (PSOLID STRESS=1 or GAUSS).  The 
option for output at the Gauss points is only available for 
axisymmetric elements.  

 
2.4.2  Material models and formulations 

 
 See Tables 2-2 and 2-3 for a list of the material models that are 
compatible with 2-D solid elements. 
 
 Advanced Nonlinear Solution automatically uses the mixed 
interpolation formulation for hyperelastic materials. The mixed 
formulation is also recommended for elastic-plastic materials and 
also elastic materials with a Poisson ratio close to 0.5. For these 
materials, the u/p mixed formulation can be activated by setting 
UPFORM = 1 in the NXSTRAT entry. 

 
 The two-dimensional elements can be used with 
 
 - small displacement/small strain kinematics, 
 
 - large displacement/small strain kinematics, or 
 
 - large displacement/large strain kinematics. 
 

 The small displacement/small strain and large 
displacement/small strain kinematics can be used with any of 
the compatible material models, except for the hyperelastic 

ref. KJB 
Section 5.3.2 



 2.4: Surface elements — 2-D solids 
 

 
 
Advanced Nonlinear Solution  Theory and Modeling Guide 85 

material. The use of a linear material with small 
displacement/small strain kinematics corresponds to a linear 
formulation, and the use of a nonlinear material with the 
small displacement/small strain kinematics corresponds to a 
materially-nonlinear-only formulation.  

  The program uses the TL (total Lagrangian) formulation 
when the large displacement/small strain formulation is 
selected. 

  The large displacement/large strain kinematics can be used 
with plastic materials including those with thermal and creep 
effects, as well as hyperelastic materials. The ULH (updated 
Lagrangian Hencky) formulation or ULJ (updated 
Lagrangian Jaumann) formulation can be used for all 
compatible material models except the hyperelastic material. 
For the hyperelastic material, the TL (total Lagrangian) 
formulation is used. The ULFORM parameter in the 
NXSTRAT entry determines the ULH/ULJ setting. 

 
 The basic continuum mechanics formulations of 2-D solid 
elements are described in ref. KJB, pp. 497-537, and the finite 
element discretization is given in ref. KJB pp. 538-542, 549-555. 

 
 Note that all these formulations can be mixed in the same finite 
element model. If the elements are initially compatible, then they 
will remain compatible throughout the analysis. 

 
2.4.3  Numerical integration 

 
 The 4-node quadrilateral element uses 22 Gauss integration for 
the calculation of element matrices. The 8-node and 9-node 
elements use 33 Gauss integration. See Fig 2.4-4(a). 
 

ref. KJB 
Sections 5.5.3, 

5.5.4 and 5.5.5 

ref. KJB 
Sections 6.2 and  

6.3.4 

ref. KJB 
Section 6.8.1 
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Fig. 2.4-4: Integration point positions for 2-D solid elements  
            
 The 3-node, 6-node and 7-node triangular elements are spatially 
isotropic with respect to integration point locations and 
interpolation functions (see Section 5.3.2, ref. KJB). The 3-node 
element uses a single point integration in plane strain and 4-point 
Gauss integration in the axisymmetric case. The 6-node and 7-node 
triangular elements use 7-point Gauss integration. See Fig 2.4-4(b). 
 
 Note that in geometrically nonlinear analysis, the spatial 
positions of the Gauss integration points change continuously as 
the element undergoes deformations, but throughout the response 
the same material particles are at the integration points. 
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2.4.4  Mass matrices 
 

 The consistent mass matrix is always calculated using either 
33 Gauss integration for rectangular elements or 7-point Gauss 
integration for triangular elements. 
 
 The lumped mass matrix of an element is formed by dividing 
the element’s mass M equally among its n nodes. Hence, the mass 
assigned to each node is /M n . No special distributory concepts 
are employed to distinguish between corner and midside nodes, or 
to account for element distortion.  
 

2.4.5  Heat transfer capabilities 
 

 Heat transfer capabilities are available for all 2-D solid 
elements. 
 
 The planar 2-D solid heat transfer elements may be defined 
using any of the 2-D solid plane strain or plane stress element 
entries. There is no difference between plane strain and plane stress 
for heat transfer analysis, except for the element thickness, see 
below. 
 
 One temperature degree of freedom is present at each node. 

 
 The axisymmetric elements must be defined using the 
CQUADXi or CTRAXi entries, and they cover one radian of the 
physical domain. 

 
 The element matrices are integrated numerically by Gauss 
integration using the same integration order as the structural 
matrices. 

 

 The planar 2-D heat transfer element assumes the same 
thickness as the underlying plane stress or plane strain element. 
The axisymmetric element always extends one radian in the 
circumferential direction. 
 
 The heat capacity matrix can be calculated based on a lumped or 
consistent heat capacity assumption. 
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 The lumped heat capacity matrix of an element is formed by 
dividing the element’s total heat capacity C equally among its n 
nodes. Hence, the mass assigned to each node is /C n . No special 
distributory concepts are employed to distinguish between corner 
and midside nodes, or to account for element distortion.  


2.4.6  Recommendations on use of elements 
 

 The 9-node element is usually the most effective. 
 

 The linear interpolation elements (3-node and 4-node) should 
only be used in analyses when bending effects are not dominant. If 
the 4-node element is used in problems where bending effects are 
significant, incompatible modes should be activated. 
 
 For nearly incompressible elastic materials, elasto-plastic 
materials and creep materials, and when using plane strain or 
axisymmetric elements, the use of the u/p mixed formulation 
elements is recommended. 

 

2.5  Solid elements – 3-D 
 

2.5.1  General considerations 
 

 3-D solid elements are generated using the CHEXA, CPENTA , 
CTETRA and CPYRAM element connectivity entries. They 
generate 6-, 5- and 4-sided 3-D elements. Typical 3-D solid 
elements are shown in Fig 2.5-1. 
 
 The PSOLID property ID entry is used for all of the supported 
materials, except hyperelastic, which uses PLSOLID. 
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(d) 5-, 13-, and 14-pyramid elements (CPYRAM)

Fig. 2.5-1: 3-D solid elements  
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 3-D solid elements in Advanced Nonlinear Solution are 
classified based on the number of nodes in the element, and the 
element shape.  
 
 Table 2.5-1 shows the correspondence between the different 
3-D solid elements and the NX element connectivity entries. Note 
that the elements are frequently referred to just by their number of 
nodes. 

 Solution 701 only supports linear elements (4-node tetrahedron, 
6-node wedge and 8-node brick elements). 
 
 
 
                                               

Table 2.5-1: Correspondence between 3-D solid elements and NX  
element connectivity entries 

 

3-D solid element NX element connectivity entry 

4-node tetrahedron  CTETRA 

10-node tetrahedron1  CTETRA 

11-node tetrahedron1  CTETRA and ELCV = 1 in NXSTRAT 

6-node wedge  CPENTA 

15-node wedge1  CPENTA 

21-node wedge1  CPENTA and ELCV = 1 in NXSTRAT 

8-node brick  CHEXA 

20-node brick1  CHEXA 

27-node brick1  CHEXA and ELCV = 1 in NXSTRAT 

5-node pyramid  CPYRAM 

13-node pyramid1  CPYRAM 

14-node pyramid1  CPYRAM and ELCV = 1 in NXSTRAT 

 
Note:  

 
1.  Only for Solution 601 

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 Advanced Nonlinear Solution supports incomplete quadratic 
3-D elements for tetrahedral and pyramid elements. Incomplete 
quadratic elements are not supported for brick and wedge elements. 
For example, a CHEXA entry can only have 8 nodes or 20 nodes. 
Anything in between is not supported. Also, a CTETRA can have 
any of its midside nodes removed. 
 
 For nonlinear analysis, stress/strain results for 3-D solid 
elements are output in the element coordinate system. ELRESCS = 
1 in NXSTRAT may be used to request output of nonlinear 
stress/strain results in the material coordinate system. The option is 
useful for post-processors that do not perform any transformation 
of the stress/strain coordinate system when importing the op2 file. 
 
 Note that the mid-volume and midsurface nodes in the 27-node, 
21-node, 14-node and 11-node elements are automatically added by 
Advanced Nonlinear Solution when ELCV is set to 1 in the 
NXSTRAT entry. The boundary conditions at the added nodes are 
predicted from the neighboring nodes. 

 
 The elements used in Advanced Nonlinear Solution are 
isoparametric displacement-based elements, and their formulation 
is described in ref. KJB, Section 5.3. 

 
 The basic finite element assumptions for the coordinates are 
(see Fig. 2.5-2, for the brick element): 

 

1 1 1

q q q

i i i i i i
i i i

x h x y h y z h z
  

      

  
and for the displacements: 

 

1 1 1

v v
q q q

i i i i i i
i i i

u h u h w h w
  

      

 

ref. KJB 
Section 5.3 
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Fig. 2.5-2: Conventions used for the nodal coordinates and

displacements of the 3-D solid element  
 
 

where 
      hi (r, s, t) = interpolation function corresponding to node i 

      r, s, t = isoparametric coordinates 
      q = number of element nodes 

      xi, yi, zi = nodal point coordinates 
      ui, vi, wi = nodal point displacements  


 In addition to the displacement-based elements, special mixed-
interpolated elements are also available, in which the displacements 
and pressure are interpolated separately. These elements are 
effective and should be preferred in the analysis of incompressible 
media and inelastic materials (specifically for materials in which 
Poisson's ratio is close to 0.5, for rubber-like materials and for 
elasto-plastic materials). Table 2.5-2 shows the number of pressure 
degrees of freedom for each 3-D element type. For more details on 
the mixed interpolation of pressure and displacement degrees of 
freedom for 3-D solids, see Section 4.4.3, p. 276, and Tables 4.6 
and 4.7, pp. 292 - 295 in ref. KJB.  
 



 2.5: Solid elements — 3-D 
 

 
 
Advanced Nonlinear Solution  Theory and Modeling Guide 93 

Table 2.5-2: Mixed u/p formulations available for 3-D solid elements 
 

3-D solid element 
Number of 

pressure DOFs 

4-node tetrahedron - 

10-node, 11-node  tetrahedron 4 

6-node wedge 1 

15-node, 21-node wedge 4 

8-node brick 1 

20-node, 27-node brick 4 

5-node pyramid 1 

13-node, 14-node pyramid 1 

 
 The mixed interpolation is the default setting for hyperelastic 
materials. It can be activated for other materials, such as elastic 
with Poisson’s ratio close to 0.5, elasto-plastic, and creep, via the 
UPFORM flag in the NXSTRAT entry. 

 
 The 8-node element (1 pressure degree of freedom) and 27-node 
element (4 pressure degrees of freedom) are recommended for use 
with the mixed formulation.  


 Note that 4 pressure degrees of freedom are used for the 10-
node tetrahedron, the 15-node wedge and the 20-node brick 
element. Even though this setting does not satisfy the inf-sup test, 
the elements generally perform better than with a single pressure 
degree of freedom. Still, it is better to add the midside nodes if 
possible. This is done by setting ELCV = 1 in the NXSTRAT 
entry. 
  
 In addition to the displacement-based and mixed-interpolated 
elements, Advanced Nonlinear Solution also includes the 
possibility of including incompatible modes (bubble functions) in 
the formulation of the 5-node pyramid, 6-node wedge and the 8-
node brick element. Within this element, additional displacement 
degrees of freedom are introduced. These additional displacement 
degrees of freedom are not associated with nodes; therefore the 
condition of displacement compatibility between adjacent elements 
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is not satisfied in general. The addition of the incompatible modes 
(bubble functions) increases the flexibility of the element, 
especially in bending situations. For theoretical considerations, see 
reference KJB, Section 4.4.1. Note that these incompatible-mode 
elements are formulated to pass the patch test. Also note that 
element distortions deteriorate the element performance when 
incompatible modes are used. 
 The incompatible modes feature is activiated by setting 
IN=BUBBLE in the PSOLID entry. 
 The incompatible modes feature should be used with caution 
when using large displacement/small strain or large displacement/ 
large strain kinematics, in conjunction with large aspect ratio 
elements, because meshes of incompatible modes elements can 
contain spurious modes under these conditions. 
 The incompatible modes feature cannot be used in conjunction 
with the mixed-interpolation formulation. 

 
 Table 2.5-3 shows which elements support incompatible modes 
(bubble functions). The incompatible modes feature is only 
available for the 5-node pyramid, 6- node wedge and the 8-node 
brick elements.  
 
 
 

         Table 2.5-3: Incompatible modes (bubble functions) available for  
3-D solid elements 
 

3-D solid element 
Support for 

incompatible 
modes 

4-node tetrahedron No 

5- to 11-node tetrahedron No 

6-node wedge Yes 

15-node, 21-node wedge No 

8-node brick Yes 

20-node, 27-node brick No 

5-node pyramid Yes 

6- to 14-node pyramid No 
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 The interpolation functions used for 3-D brick solid elements 
for q ≤ 20 are shown in Fig. 5.5, ref. KJB, p. 345 (note that ref KJB 
uses a different local node numbering convention). 

 
 The 10-node tetrahedron (see Fig. 2.5-1(c)) is obtained by 
collapsing nodes and sides of rectangular elements. Spatially 
isotropic 10-node and 11-node tetrahedra are used in Solution 601.  

The 4-node tetrahedron (see Fig. 2.5-1(c)) is obtained by 
collapsing nodes and sides of the 8-node brick element. This 
element exhibits constant strain conditions. 

 
 The stresses/strains can be output either at the center and corner 
grid points (PSOLID STRESS=blank or GRID), or at the center 
and corner Gauss points (PSOLID STRESS=1 or GAUSS).  
 

2.5.2  Material models and nonlinear formulations 
 

 See Tables 2-2 and 2-3 for a list of the material models that are 
compatible with 3-D solid elements. 

 
 Advanced Nonlinear Solution automatically uses the mixed 
interpolation formulation for hyperelastic materials. The mixed 
formulation is also recommended for elastic-plastic materials and 
elastic materials with a Poisson ratio close to 0.5. It can be 
activated by setting UPFORM = 1 in the NXSTRAT entry. 

 
 The 3-D elements can be used with  
 
 - small displacement/small strain kinematics, 
  
 - large displacement/small strain kinematics, or 
 
 - large displacement/large strain kinematics. 
 

The small displacement/small strain and large 
displacement/small strain kinematics can be used with any of 
the compatible material models, except for the hyperelastic 
material. The use of a linear material with small 
displacement/small strain kinematics corresponds to a linear 
formulation, and the use of a nonlinear material with the 
small displacement/small strain kinematics corresponds to a 
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materially-nonlinear-only formulation. 
The program uses the TL (total Lagrangian) formulation 

when large displacement/small strain kinematics is selected. 
The large displacement/large strain kinematics can be used 

with plastic materials including thermal and creep effects, as 
well as hyperelastic materials. The ULH (updated 
Lagrangian Hencky) formulation or the ULJ (updated 
Lagrangian Jaumann) formulation can be used for all 
compatible material models except the hyperelastic material. 
For the hyperelastic material models, a TL (total Lagrangian) 
formulation is used. The ULFORM parameter in the 
NXSTRAT entry determines the ULH/ULJ setting. 

 
 The basic continuum mechanics formulations are described in 
ref. KJB, pp. 497-568. The finite element discretization is 
summarized in Table 6.6, p. 555, ref. KJB. 
 
 Note that all these formulations can be used in the same finite 
element model. If the elements are initially compatible, they will 
remain compatible throughout the analysis. 

 
2.5.3  Numerical integration 

 
 The 8-node brick element uses 222 Gauss integration for the 
calculation of element matrices. The 20-node and 27-node elements 
use 333 Gauss integration. 

 
 Tetrahedral elements are spatially isotropic with respect to 
integration point locations and interpolation functions. By default, 
for the 4-node tetrahedral element, 1-point Gauss integration is 
used, for the 10-node tetrahedral element, 5-point Gauss integration 
is used, and 17-point Gauss integration is also used for the 11-node 
tetrahedral element. The Gauss integration order for tetrahedral 
elements can also be chosen using TETINT in the NXSTRAT 
entry. 
 
 Note that in geometrically nonlinear analysis, the spatial 
positions of the Gauss integration points change continuously as 
the element undergoes deformations, but throughout the response 
the same material particles are at the integration points. 
 

ref. KJB 
Sections 6.2 

 and 6.3.5 

ref. KJB 
Section 6.8.1 

ref. KJB 
Sections 5.5.3, 

 5.5.4 and 5.5.5 
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 The same integration order is used for both Solution 601 and 
701. 

 
2.5.4  Mass matrices 

 
 The consistent mass matrix is always calculated using 333 
Gauss integration except for the tetrahedral 4-node, 10-node and 
11-node elements which use a 17-point Gauss integration. 
 
 The lumped mass matrix of an element is formed by dividing 
the element’s mass M equally among each of its n nodal points. 
Hence the mass assigned to each node is /M n . No special 
distributory concepts are employed to distinguish between corner 
and midside nodes, or to account for element distortion. 

 
 The same lumped matrix is used for both Solution 601 and 
Solution 701. 
 

2.5.5  Heat transfer capabilities 
 

 Heat transfer capabilities are available for all 3-D solid 
elements. 
 
 One temperature degree of freedom is present at each node. 

 
 The element matrices are integrated numerically by Gauss 
integration using the same integration order as the structural 
matrices. 
 
 The heat capacity matrix can be calculated based on a lumped or 
consistent heat capacity assumption. 
 
 The lumped heat capacity matrix of an element is formed by 
dividing the element’s total heat capacity C equally among each of 
its n nodal points. Hence the mass assigned to each node is /C n . 
No special distributory concepts are employed to distinguish 
between corner and midside nodes, or to account for element 
distortion. 
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2.5.6  Recommendations on use of elements 
 

 The linear interpolation elements (4- to 8-node) usually perform 
better in contact problems.  

 
 The linear interpolation elements (5-node, 6-node and 8-node 
brick elements, without incompatible modes) should only be used 
in analyses when bending effects are not dominant. If bending 
effects are insignificant, it is usually best to not use incompatible 
modes. 
 
 Since the 4-node tetrahedron is a constant strain element, many 
elements (fine meshes) must usually be used in analyses. 
 
 For nearly incompressible elastic materials, elasto-plastic 
materials and creep materials, the use of the u/p mixed formulation 
elements is recommended. 

 When the structure to be modeled has a dimension which is 
extremely small compared with the others, e.g., thin plates and 
shells, the use of the 3-D solid element usually results in too stiff a 
model and a poor conditioning of the stiffness matrix. In this case, 
the use of shell elements, particularly the 4-node shell element (see 
Section 2.3), is more effective. 

 
Recommendations specific to Solution 601 

 
 The 27-node element is the most accurate among all available 
elements. However, the use of this element can be costly. 

 
 The 20-node element is usually the most effective, especially if 
the element is rectangular (undistorted).  
 
 
 
 

 
 
 
 

ref. KJB 
Page 383 



 2.6: Scalar elements — Springs, masses and dampers 
 

 
 
Advanced Nonlinear Solution  Theory and Modeling Guide 99 

2.6  Scalar elements – Springs, masses and dampers 
 

2.6.1  CELAS1, CELAS2, CMASS1, CMASS2, CDAMP1, CDAMP2 
 

 Scalar elements in Advanced Nonlinear Solution either connect 
2 degrees of freedom together or just a single degree of freedom to 
the ground. There are three forms of scalar elements: springs, 
masses, and dampers. 
 

 Spring elements are defined using the CELAS1 and 
CELAS2 element connectivity entries. 

 Mass elements are defined using the CMASS1 and 
CMASS2 element connectivity entries.  

 Damper elements are defined using the CDAMP1 and 
CDAMP2 element connectivity entries.  

 
 Fig. 2.6-1 shows the spring, mass and damper single degree of 
freedom elements available in Advanced Nonlinear Solution. They 
correspond to a grounded spring, a concentrated mass, and a 
grounded damper, respectively. 
                           
 Fig. 2.6-2 shows the available scalar elements connecting two 
degrees of freedom. Only the translational version of the spring and 
damper are shown in the figure, but they can connect rotational 
degrees of freedom as well. 
 

2.6.2  6-DOF spring element (Solution 601 only) 
 

 The 6-DOF spring element is a generalized spring-damper 
element which can be linear or materially-nonlinear only (MNO). 
This element is defined using the CBUSH element connectivity 
entries. It can have single node, two coincident or two non-
coincident nodes. In each degree of freedom, the element stiffness 
can be defined as a constant or using a force-displacement curve in 
the element coordinate system. The damping coefficients are 
always constants in units of force per unit velocity.  
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Fig. 2.6-1: Single degree of freedom scalar elements  
 
 
 A displacement (skew) system can be used in the 6-DOF spring 
element to prescribe loads and constraints. Element birth/death is 
also supported.  
 
 Currently, the 6-DOF spring element is not supported in 
Solution 701.  

 
 If a 6-DOF spring element has single node or two coincident 
nodes, its element coordinate system must be defined using a CID 
as shown in Fig. 2.6-3 and Fig. 2.6-4. A single node 6-DOF spring 
element corresponds to a grounded spring acting in the user-
specified degree of freedom.  
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Fig. 2.6-4: 6-DOF spring element with two
coincident nodes  
 
 
 If a 6-DOF spring element has two non-coincident nodes, its 
element coordinate system can be defined using a CID, an 
orientation vector or its axial direction as shown in Figs. 2.6-5 to 
2.6-7.  
 In Fig. 2.6-5, the element coordinate system is defined by a 
CID. Note that GA and GB might or might not have displacement 
(skew) coordinate systems.  
 `In Fig. 2.6-6, the element coordinate system is defined by an 
orientation vector using GO or X1, X2, X3. Note that X1, X2, X3 
refers to the displacement (skew) coordinate system of GA.  
 In Fig. 2.6-7, a 6-DOF spring element is defined with two non-
coincident nodes without GO, X1, X2, X3 or CID. This defines a 1-
D axial/torsional spring/damper. In this case, axial stiffness (or 
damping) or torsional stiffness (or damping) or both must be 
specified but all other stiffness (or damping) must not be specified. 
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x-element

x

y

CID

z

y-element

z-element

GA

GB

Fig. 2.6-5: 6-DOF spring element with two
non-coincident nodes  

                           
 
 
 

x-element

y-element
(in plane)

z-element
(normal to plane)

GA

GB

GO or (X1,X2,X3)

Plane of GA, GB, GO

Fig. 2.6-6: 6-DOF spring element with two non-coincident
nodes  

             
 
 
 
                                                        

 

x-elementGA

GB

Fig. 2.6-7: 1-D spring element with two non-
coincident nodes  
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2.7  R-type elements 
 

 R-type elements impose multipoint constraints on one or more 
nodes. The constraints are created automatically by the program 
based on the element’s input. The following R-type elements are 
supported in Advanced Nonlinear Solution: RBAR, RBE2 and 
RBE3. 
 
 Rigid elements are a subset of R-type elements that include 
RBAR and RBE2. 
 
 RBE3 is an interpolation constraint element which also 
produces constraint equations. 
 

2.7.1  Rigid elements 
 
 Solution 601 provides several options for modeling the Rigid 
elements. They can be modeled as perfectly rigid elements using 
constraint equations or as flexible (but stiff) elements. The 
EQRBAR or EQRBE2 parameters in the NXSTRAT entry 
determine how the Rigid elements are treated. 
 
 Solution 701 does not support the flexible option. 
 
 The RBAR entry generates a single Rigid element between two 
nodes. 
 
 The RBE2 entry generates multiple Rigid elements. They 
connect one independent node to several nodes. 
  
 If the perfectly rigid option is selected, Rigid elements are 
internally represented either as standard multipoint constraints, or 
as rigid links (see Section 5.8 for enforcement of constraint 
equations). Multipoint constraints have constant constraint 
coefficients and therefore do not give accurate results in large 
displacements (unless the 2 nodes are coincident or the constraints 
do not involve rotational degrees of freedom). Rigid links also 
create multipoint constraints but with variable coefficients that are 
updated based on the deformation of the structure. This is 
illustrated in Fig. 2.7-1. Therefore, whenever possible, large-
displacement rigid links are used.  
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�

using MPC — small rotations

3 RBAR elements with

one independent node

�

��

���

� ��

���

�

�

�

�
�

�

�
�

�rotation

using large displacement

rigid links

Fig. 2.7-1: Difference between small displacement MPC and

large displacement rigid links  
 
 Rigid elements that are internally represented as multipoint 
constraints are affected by the general constraint setting (GENMPC 
parameter in NXSTRAT). If constraints are set to general 
constraints (GENMPC=1), the constraint is enforced using 
Lagrange multipliers. Rigid elements represented by rigid links 
(which have variable constraint coefficients) are not influenced by 
the general constraint flag. They are always enforced using the 
default master-slave constraint approach. 
 
 If the flexible option is selected for Rigid elements, Solution 
601 internally generates beam or spring elements depending on the 
Rigid element parameters and the distance between the nodes 
(RBLCRIT parameter in NXSTRAT), or a spring element 
translation can be always requested (in the EQRBAR parameter in 
NXSTRAT). 
 
 The stiffness of the internal springs and the Young’s modulus 
and cross-sectional area of the internal beams can be automatically 
determined by Solution 601 or set by the user (see SPRINGK, 
BEAME and BEAMA parameters in NXSTRAT entry). 
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 The rigid option results in more accurate enforcement of the 
constraint. However, the compliance introduced in the model when 
using the flexible option can lead to easier convergence in 
nonlinear problems. 
 
 The flexible option results in none of the degrees of freedom 
becoming dependent. This allows multiple constraints to be defined 
at a node, and it is sometimes beneficial for contact. 
 
 A dependent degree of freedom of a constraint (standard, not 
general constraint) or rigid link cannot be used in another constraint 
or rigid link as an independent degree of freedom. Hence, chaining 
of constraints is not allowed. Chaining of rigid links is enabled by 
internally replacing the dependent node of each rigid link by the 
first node in the chain (to avoid the restriction mentioned above). 
 
Classification of Rigid elements 
 
 The internal representation of an RBAR rigid element depends 
on the options present in CNA, CNB, CMA and CMB, as shown in 
Fig. 2.7-2. 
 

Independent: CNA

Dependent: CMA

�

�

GB

GA
Independent: CNB

Dependent: CMB

Fig. 2.7-2: Relevant parameters in the RBAR

rigid element  
 

 Currently, Advanced Nonlinear Solution identifies 5 classes of 
RBAR settings. Each class gets a different internal representation. 
Checking for each class is done in sequence starting with Class 1. 
 
Class 1:  
All 6 degrees of freedom of one point are dependent on those of the 
other point. In other words,  
 
CNA = 123456, CNB = 0, CMA = 0, CMB = 123456 
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or  
 
CNA = 0, CNB = 123456, CMA = 123456, CMB = 0 
 
Class 2: 
One point has all the dependent degrees of freedom (but not all 6 of 
them), and all those that are not dependent (missing terms in CMA 
or CMB) involve degrees of freedom that do not exist at the slave 
node. For example, 
 
CNA = 123456, CNB = 0, CMA = 0, CMB = 123 
 
where node B is attached only to 3D solid elements (so degrees of 
freedom 456 do not exist). 
 
Another example, 
 
CNA = 0, CNB = 123456, CMA = 12, CMB = 0 
 
where node A is attached only to 2D solid elements (so degrees of 
freedom 3456 do not exist) 
 
Note that this only applies to non-existent degrees of freedom (not 
fixed ones). If an excluded DOF is fixed then the rigid element 
does not belong to this Class. 
 
Class 3: 
One point has all the dependent degrees of freedom (but not all 6 of 
them). In other words, 
 
CNA = 123456, CNB = 0, CMA = 0, CMB = Q 
 
or 
CNA = 0, CNB = 123456, CMA = Q, CMB = 0 

 
where Q is any combination of the 6 DOFs except “0” and 
“123456” (“0” is not allowed, and “123456” belongs to Class 1). 
Note that if the degrees of freedom not included in Q are all non-
existent at the node, then the rigid element belongs to Class 2. 
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Class 4:  
All 6 degrees of freedom active but not all dependent degrees of 
freedom belong to 1 point. For example,  
 

CNA CNB CMA CMB 
123 456 0 0 

12346 5 5 12346 
 
Class 5: 
Not all the 6 degrees of freedom are active in the constraint and 
rigid element fails criteria for Classes 2 and 3. For example,  
 

CNA CNB CMA CMB 
123 456 4 3 

  
 Note that there are some other valid settings for RBAR that are 
not supported in Advanced Nonlinear Solution. 
 
 The internal representation of Rigid elements for each class is 
described in Table 2.7-1. 
 
 RBE2 is interpreted in the same manner as RBAR except that it 
produces multiple Rigid elements. These elements can only belong 
to Class 1 or 3, and their internal representation is dictated by the 
EQRBE2 parameter in NXSTRAT. 
 
 
 
 
 

               Table 2.7-1: Internal representation of Rigid elements 
 

 Rigid option  Flexible option 
 L < Lcrit L > Lcrit L < Lcrit L > Lcrit

Class 1 MPC Rigid link1 Springs Beam1 
Class 2 MPC Rigid link1 Springs Beam1 
Class 3 MPC Rigid link1 Springs Springs 
Class 4 MPC MPC Springs Beam1 
Class 5 MPC MPC Springs Springs 

 

1This constraint is accurate in large displacement analysis 
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Rigid elements and continuum elements: Care must be used when 
connecting continuum elements (2-D and 3-D solid elements) with 
rigid elements.  In order for the rigid element to rotate, the master 
DOF of the rigid element must have its rotational DOFs free.   
 This situation is illustrated in Fig. 2.7-3.  Two assemblages of  
2-D solid elements are connected together with large displacement 
rigid elements.  If the z rotational DOFs are fixed, then when the 
lower element is rotated, the rigid elements maintain both their 
length and their angle, and the upper element assemblage distorts 
as shown in Fig 2.7-3(b).  If the z rotational DOFs are free, then 
when the lower element is rotated, the rigid elements are free to 
rotate and the upper element assemblage can also rotate without 
distortion as shown in Fig 2.7-3(c). 
 Solution 601 does not fix the rotational DOFs of all nodes 
connected to continuum elements.  Thus, the model in Fig. 2.7-3 
will behave as shown in Fig 2.7-3(c), as expected. 
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M

MM

Rigid link

M = Master node
S = Slave node

a) Two element assemblages connected with rigid elements

b) Master rotational DOFs are fixed, rigid elements cannot rotate

Elements must distort

Elements remain undistorted

c) Master rotational DOFs are free, rigid elements can rotate

Fig. 2.7-3: Rigid elements used with continuum elements

S

SS


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2.7.2  RBE3 element 
 
 The RBE3 R-type element defines the motion of a reference 
node as a weighted average of the motion of a set of other nodes. 
This element is a useful tool for distributing applied load and mass 
in a model.  
 
 he reference node is denoted REFGRID, and only the 
components REFC of this node are connected to the RBE3 
element. The other nodes in the RBE3 element are denoted Gi,j. 
The double indexing i,j is used so that weights WTi and 
components Ci can be associated with sets of nodes Gi,j. Only the 
components Ci of nodes Gi,j are connected to the RBE3 element. 
 
 The element is implemented as a set of constraint equations in 
which the motions of the reference node REFGRID are constrained 
to the motions of the other nodes Gi,j.                
 In the following, we briefly outline the derivation of the RBE3 
element. This derivation is based upon TAN 4494 "Mathematical 
Specification of the RBE3 Element". For simplicity, we consider 
just the case in which all components are given in the basic 
coordinate system, but the RBE3 element allows for the 
components of the reference node, and for the components of each 
of the connected nodes, to all be in a different coordinate system.  
 Let superscript q denote the reference node REFGRID and 
superscript k denote one of the connected nodes Gi,j, with 
associated weight WTi. 
 The derivation is based on the transmission of forces/moments 
from the connected nodes k to the reference node q, and on the 
transmission of forces/moments from the reference node q to the 
connected nodes k.  
 Firstly, if the forces/moments at a given connected node k are 
known, then these forces are transmitted to reference node q using 
the equilibrium equation 
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or, in matrix form, 
 

 ( )q k T kF S F  (2.7-1) 
 

where qF  and kF  are column vectors containing the forces and 

moments, and kS  is the transpose of the square matrix in the above 
equation.  
 Therefore if the forces/moments at all connected nodes k are 
known, then the forces/moments at reference node q is found using 
 

 ( )q k T k

k

F S F  (2.7-2) 

 
 Secondly, we now postulate that, if the forces/moments at 
reference node q are known, that these forces/moments are 
transmitted to connected node k using 
 

 k k k qF W S XF  (2.7-3) 
 

where 

1

2

3

4

5

6

k

k

k
k

k

k

k

w

w

w

w

w

w

 
 
 
 

  
 
 
 
  

W  is a diagonal 

matrix with weighting factors given by WTi and Ci as follows: 
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 For each component l, l=1,2,3,4,5,6, then 
  If component l is not in the Ci list, then 

   0k
lw   

  else 
   if l=1,2,3, then 

       WTik
lw   

   else 

       2WTi k
l cw L   

   endif 
  endif 
 end 
 

In this calculation, cL  is the average distance between the 

reference node and all of the connected nodes. If this average 

distance is zero, then 1cL  . cL  is introduced into the weighting 

matrix so that the element has dimensional independence. 
 Matrix X  is a 6x6 matrix that is the same for all of the 

connected nodes. Matrix X  is determined as follows. Combining 
(2.7-2) and (2.7-3) gives 
 

 ( )q k T k k q

k

F S W S XF  (2.7-4) 

 

and for this to be satisfied for all qF ,  
 

 

1

( )k T k k

k


 

  
 
X S W S  (2.7-5) 

 
Now let  
 

 k k kG W S X  (2.7-6) 
 
From (2.7-3),  
 

 k k qF G F  (2.7-7) 
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 Finally, we apply the principle of virtual work to the RBE3 
element: 
 

 

( ) ( )

( ) ( )

q T q k T k

k

q T k T k

k

 











F u F u

F G u
 (2.7-8) 

 
(in which u  are the virtual displacements/rotations), and for 

(2.7-8) to be satisfied for all qF ,  
 

 ( )q k T k

k

 u G u  (2.7-9) 

 
 (2.7-9) shows that the virtual displacements/rotations of the 
reference node must be related to the virtual displacements/ 
rotations of the connected nodes. This can only occur if the actual 
displacements/rotations of the reference node are related to the 
actual displacements/rotations of the connected nodes: 
 

 ( )q k T k

k

u G u  (2.7-10) 

 
(2.7-10) has six rows. Each row l selected by a component in REFC  

corresponds to a multipoint constraint equation, in which q
lu  is 

dependent and ku  is independent. Rows not selected by a 
component in REFC are discarded. 
 
 The RBE3 element assumes that the displacements of the 
reference and connected nodes are small. This is seen in the 

definition of matrix kS , since the original coordinates of the nodes 
are used in this matrix. 
 
 If a point mass is attached to the reference node, and the mass 
matrix is consistent, the point mass will be coupled to all connected 
nodes.  In the worst case, when the reference node is connected to 
all nodes in the model, the mass matrix will be full, leading to a 
very slow solution and high memory usage. To avoid this, use a 
lumped mass matrix. 
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 Similarly, if a nonzero stiffness is attached to the reference 
node, the stiffness will be coupled to all connected nodes. 
 

2.8  Potential-based fluid elements (Solution 601,106 only) 
 

 The elements discussed in this section incorporate the following 
assumptions: 

 
 Inviscid, irrotational medium with no heat transfer 
 Compressible or almost incompressible medium 
 Relatively small displacements of the fluid boundary 

 
 The potential-based fluid elements can be used in static 
analyses, where the pressure distribution in the fluid and the 
displacement and stress distribution in the structure is of interest. 

 
 The potential-based fluid elements can be employed in 2-D and 
3-D analyses.  Two-dimensional elements can be employed in 
planar and axisymmetric analyses.  Two-dimensional elements 
must be defined in the XZ plane, and axisymmetric elements must 
lie in the +X half plane (all nodal point coordinates must have non-
negative x values). 
 
 The potential-based fluid elements can be coupled with 
structural elements, as described in detail below.  The structural 
motions cause fluid pressure, and the fluid pressure causes 
additional forces to act on the structure.  
 
 The potential-based fluid elements can be coupled to a pressure 
boundary condition (i.e., no structure adjacent to the potential-
based fluid element boundary).  This feature can be used to model 
free surfaces. 

 
2.8.1  Theory 

 
Fluid 

 
Fig. 2.8-1 shows a generic fluid region. It is assumed that the fluid 
is inviscid and irrotational with no heat transfer, and that the 
velocities and density changes are infinitesimally small. Under 
these assumptions, the continuity equation in the fluid is 
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 2 20
0 0( ) 0

p       


        
   (2.8-1) 

 
the momentum/equilibrium equation is 
 

  p
h 


   x   (2.8-2) 

 
and the pressure-density relationship is 

 

 
0

1
p

 
   (2.8-3) 

 
where   is the density,   is the velocity potential (  v  where 

v  is the fluid velocity), h  is the specific enthalpy (defined as 
dp

h


  ), p  is the pressure,   is the bulk modulus and 0  is the 

nominal density.  Also   x  is the potential of the (conservative) 

body force accelerations at position x .  For example, when the 
body forces are due to gravity,   g , where g  is the 
acceleration due to gravity.  
 

Fluid region V

Bounding surface S

Unknowns in :V

Unknowns on :S

��� fluid potential

� = fluid potential
u = displacements

Essential boundary condition: prescribed�

Fig. 2.8-1: Fluid region

n

Body force acceleration

body force acceleration potential

g,

�

Natural boundary condition: prescribed�u n
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The momentum/equilibrium equation can also be written 
 

   0p    x   (2.8-4) 

  
Substituting (2.8-4) into (2.8-3) gives  

 

 2
0 0            (2.8-5) 

 
Equation (2.8-5) is a special form of the wave equation.  It is linear 
in the solution variable .  (2.8-5) can be written in variational 
form using standard techniques.  The result is 

 

 0

V V S

dV dV dS                 u n    

 0

V

dV      (2.8-6) 

 
Structure 

 
 We assume that part of the boundary S  is adjacent to the 
structure (Fig. 2.8-2).  The part of the boundary adjacent to the 
structure is denoted 1S . 
 
 
 
 
 
 

Fluid

Pressure p

Structure

Traction -pn

Fig. 2.8-2: Forces on structure from fluid

n

Surface S1 (Fluid and structure
are separated for
clarity)
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The fluid pressure on 1S  provides additional forces on the structure 

adjacent to 1S :  
 

 
1 1

1 0 0 0 1u

S S

F p dS dS             n u u n u
x

    (2.8-7) 

 
The finite element contributions to the system matrices 
corresponding to (2.8-6) and (2.8-7) are 
 

 

 

 

T
UUFU S

FFFF FU

UB S

FB

                                    =

        
                    

   
     

K 00 0 U0 CU U

0 K0 M C 0

0R

R0

 
 



 
 (2.8-8) 

 
where 
 

FFM  = matrix from    term in (2.8-6) 

FFK  = matrix from       term in (2.8-6) 

FUC  = matrix from u n  term in (2.8-6) 

 UU S
K  = matrix from 0  

  
u n u

x
   term in (2.8-7) 

 UB S
R  = loads vector from  0  n u  term in (2.8-7) 

FBR  = loads vector from 0   term in (2.8-6) 

U  = vector containing unknown nodal displacements 
  = vector containing unknown nodal fluid potentials. 

 

We note that the term  UU S
K  is numerically very small 

compared with the rest of the structural stiffness matrix, when there 

is a structure adjacent to the fluid.  But  UU S
K  is important in the 

case when there is no structure adjacent to the fluid. 
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 The left-hand-side of equation (2.8-8) with the exception of the 

term  UU S
K , is identical to the formulation presented in the 

following reference: 
 

ref. L.G. Olson and K.J. Bathe, “Analysis of fluid-structure 
interactions.  A direct symmetric coupled formulation 
based on the fluid velocity potential”, J. Computers and 
Structures, Vol 21, No. 1/2, pp 21-32, 1985. 

 
Static conditions 

 
The static equations of motion can be formally derived from 

(2.8-8) by applying the Laplace transform to both sides of (2.8-8) 
and applying the final value theorem.  The result is 

 

 
   T

UU FU UBS S

FU FF FB

=
    
           

K C U R

C M R
 (2.8-9) 

 
together with the condition 

 
 FF =K 0  (2.8-10) 
 

 There are a number of unusual characteristics of (2.8-9) and 
(2.8-10): 

 

 The solution involves   instead of  .  This makes sense as 

(2.8-4) then implies that p is constant (in time) in a static 
solution.  

 The condition (2.8-10) must be satisfied.  This condition is 

satisfied whenever constant=  within each separate fluid 
region.  Hence the number of unknown potential degrees of 
freedom in static analysis is equal to the number of separate 
fluid regions in the analysis.  

 The condition constant=  within each separate fluid 

region implies that 0p C   where C  is a constant 

determined from the solution.  Hence the variation of 
pressure within each separate fluid region is contained 
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within C  and any choice of constant of integration within 

0   (recall that   is a potential and therefore includes an 

arbitrary constant of integration) is balanced by an opposite 
change in C . 

 It is necessary to enter the density of the fluid in static 
analysis, even when the solution does not depend on the 
density.   

 The 2nd row of (2.8-9) represents mass conservation within 
each separate fluid region. Any structural motion that does 
not change the fluid volume of the fluid region is not given 
stiffness by the fluid.  As examples, consider motions 
tangential to the fluid, and also consider a "ripple" on a free 
surface in which the fluid volume is not changed.  

 
2.8.2  Elements  

 
 The volume V of the fluid domain is modeled using two-
dimensional or three-dimensional fluid elements.  These elements 
are analogous to the two-dimensional or three-dimensional solid 
elements and the nodal point numbering of the fluid elements is the 
same as the nodal point numbering of the solid elements. Thus for 
example, CHEXA, CTETRA, CPENTA, CPYRAM entries are 
used to define three-dimensional fluid elements.  

 
 The two-dimensional elements are either planar (unit thickness 
of fluid assumed) or axisymmetric (1 radian of fluid assumed). 
CPLSTNi entries are used to define planar elements and 
CQUADXi, CTRAXi entries are used to define axisymmetric 
elements. The elements must lie in the X-Z plane and the 
axisymmetric elements must lie in the +X half plane.  

 
 The bounding surface S of the fluid domain is modeled with 
fluid boundaries, as discussed in detail below.  

 
 It is required that each separate fluid domain be modeled with 
separate fluid element PIDs.  This is because Solution 601 
constrains the potential degrees of freedom of the elements with the 
same fluid element PIDs together in static analysis during phi 
model completion, step 7, see Section 2.8.5.  
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 It is not permitted to have fluid regions of different densities 
sharing the same potential degrees of freedom.  This is because the 
nodal pressure would be different as computed from the fluid 
regions connected to the node.  

 
 The fluid elements and adjacent structure elements must be 
compatible.  

 
 It is recommended that the fluid and adjacent structure not share 
the coincident nodes.  This allows Solution 601 to construct 
constraint equations between the fluid and structural degrees of 
freedom that are most appropriate during phi model completion, 
see Section 2.8.5.  

 
 The fluid material properties are specified via the MAT10 entry.  
 

2.8.3  Fluid boundary conditions 
 

For ease of modeling, fluid boundary conditions of various 
types can be defined along the surface of the fluid domain.  A fluid 
boundary is specified using the BFLUID entry, by referencing a 
BSURFS, BCPROPS or BEDGE entry. 

There are several types of fluid boundary: 
 
Fluid-structure: Place a fluid-structure fluid boundary on the 

boundary between a potential-based fluid and the adjacent 
structure. 

In many cases, Solution 601 can automatically generate fluid-
structure interface elements along the boundary between the fluid 
and structure during phi model completion, step 1, see Section 
2.8.5.  So fluid-structure boundaries typically need not be defined.   

We emphasize that the potential-based fluid elements must be 
compatible with the adjacent structural elements.  

It is assumed that the structure provides stiffness to all 
translational degrees of freedom, because the fluid-structure 
boundary does not provide stiffness to the translational directions 
that are tangential to the fluid boundary. 
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Free surface: Place a free surface fluid boundary on the 
boundary where the pressures are to be prescribed and the 
displacements are desired, for example, on the free surface of a 
fluid.  

It is necessary to fix all displacements that are tangential to the 
free surface fluid boundary, because the free surface fluid bondary 
does not provide stiffness to the translational directions that are 
tangential to the fluid boundary. 

In many cases, Solution 601 can generate skew systems and 
fixities corresponding to the tangential directions during phi model 
generation, see Section 2.8.5. 

 
 Fluid-fluid: Place a fluid-fluid boundary on the boundary 
between two potential-based fluid elements of two different fluid 
regions. 

We emphasize that the fluid elements must be compatible 
between the two different fluid regions.  
 Note that only one fluid-fluid boundary need be defined for 
each boundary.  Solution 601 generates a fluid-fluid interface 
element for each of the two elements that share a common 
boundary during phi model completion, step 1, see Section 2.8-5. 
 
 Rigid-wall: Place a rigid-wall potential interface wherever the 
fluid is not to flow through the boundary. 

 
Interface elements 

 
Each fluid boundary type has an associated interface element type.  
 The difference between fluid boundaries and interface elements 
is that a fluid boundary is specified as part of the model definition 
on a surface, but an interface element covers only the edge or face 
of a single fluid element. Thus a single fluid boundary corresponds 
to many interface elements.  
 Interface elements are automatically generated by Solution 601 
as part of the "phi model completion" process. 
 A rigid-wall fluid boundary suppresses any automatic 
generation of interface elements along the rigid-wall boundary.  
Solution 601 uses the rigid-wall boundary during phi model 
completion, step 2, in constructing structural normals, see Section 
2.11.15. 



 2.8: Potential-based fluid elements 
 

 
 
Advanced Nonlinear Solution  Theory and Modeling Guide 123 

2.8.4  Loads  
 

Concentrated forces, pressure loads, prescribed displacements 
 

Concentrated forces, pressure loads and/or prescribed 
displacements can be applied directly to any part of the fluid 
boundary on which there are fluid-structure, free surface or fluid-
fluid boundaries.  However, when applying concentrated forces, 
remember that Solution 601 can apply skew systems to certain 
nodes on the fluid boundary during phi model completion, see 
Section 2.8.5.  Therefore, make sure that the nodes on which you 
apply concentrated forces have the anticipated degree of freedom 
directions. 

 
Mass-proportional loads 

 
Mass-proportional loads applied to fluid elements are 

interpreted as physical body forces (and not, for example, as 
ground accelerations). These loads are used in the construction of 
 , and therefore these loads must be constant in time. 

 
Centrifugal loads  

 
Centrifugal load effects are not included in the potential-based 

fluid elements. 
 

2.8.5  Phi model completion 
 

As can be seen above, there are many restrictions and conditions 
that must be considered when specifying boundary conditions on 
potential-based fluid elements.  These conditions have been 
automated in Solution 601 in the following way.  Solution 601 
performs “phi model completion” before beginning an analysis in 
which potential-based fluid elements are used.  The steps in phi 
model completion are: 
 

1) Solution 601 loops over all fluid element sides on the 
boundary of each fluid element region.  If the fluid element side 
has a fluid boundary, an interface element of the appropriate type is 
generated.  Otherwise, the side is checked to see if it is attached to 
a structure (shares structural degrees of freedom with structural 



Chapter 2: Elements 
 

 
 
124 Advanced Nonlinear Solution  Theory and Modeling Guide 

elements) or is close to a structure (nodes coincident with nodes of 
a structural element); and, if any of the above conditions are met, 
an interface element of the appropriate type is generated.  The 
intent of this step is to cover as much of the fluid boundary as 
possible with interface elements. 

 
2) Solution 601 loops over all nodes attached to interface 

elements.  If the node is attached to structural elements, the node is 
skipped.  Otherwise the types of the attached interface elements are 
determined.  Then 

 
a) If the node is attached only to a free surface interface or fluid-

fluid interface, then the node has a free normal direction (normal to 
the interface) and zero stiffness directions that are tangential to the 
free normal.  The free normal and zero stiffness directions are 
identified, and if they are not aligned with the global directions, a 
skew system is generated that is aligned with the free normal and 
zero stiffness directions. 

 
b) If the node is attached to a free surface interface or fluid-fluid 

interface, and is also attached to a fluid-structure interface or rigid-
wall interface, Solution 601 proceeds as follows.  The node has a 
free normal direction (determined from the free surface interface or 
fluid-fluid interface), a structural normal direction (determined 
from the fluid-structure interface or rigid-wall interface), and, in 
3D, another direction orthogonal to the free normal and structural 
normal directions, which may be a zero stiffness direction or 
another structural normal direction.  The free normal direction is 
modified to be orthogonal to the structural normal directions.  The 
free normal, structural normal and zero stiffness directions are 
identified, and, if they are not aligned with the global directions, a 
skew system is generated that is aligned with the free normal, 
structural normal and zero stiffness directions. 

The intent of step 2 is to identify the zero stiffness and free 
normal directions of the nodes. 

 
3) Solution 601 loops over all nodes attached to interface 

elements.  If the node is attached to a structural element, the node is 
skipped.  If the node (node A) is attached to a fluid-structure 
interface element and is close to a structural node B, node A is 
constrained to node B as follows.  Each displacement degree of 
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freedom for node A is constrained to the corresponding degrees of 
freedom for node B, accounting for differences in skew systems 
between A and B, accounting for B possibly being a slave node in a 
constraint equation (but not accounting for B possibly being a slave 
in a rigid link), accounting for B possibly being fixed.  But a 
displacement degree of freedom for node A is not constrained if the 
degree of freedom is a free normal direction (see 2 above). 

The intent of step 3) is to connect the fluid mesh with the 
structural mesh, when different nodes are used for the fluid and 
structure.  The connection still allows the fluid nodes to slip 
relative to the structural nodes on intersections between free 
surfaces and the structure. 

 
4) In static analysis, when there are no body force loads, Solution 
601 loops over all nodes on a free surface or fluid-fluid interface.  
If the node is attached to a structural element, the node is skipped.  
Otherwise, constraint equations are defined for all nodes so that the 
displacements in the direction of the free normal are equal. 
 The intent is to remove the zero pivots in the stiffness matrix 
that are otherwise present (see the discussion after equation (2.8-
10)). 
 
5) When there are body force loads, Solution 601 loops over all 
nodes on a fluid-fluid interface. If the node is attached to a 
structural element, the node is skipped.  Otherwise constraint 
equations are defined for all pairs of nodes, so that the 
displacements in the direction of the free normal are compatible. 
 The intent is to enforce displacement compatibility between the 
fluids. 

 
6) Solution 601 then loops over all nodes with zero stiffness 
degrees of freedom and defines fixities for each zero stiffness 
degree of freedom. 
 
7) Solution 601 constrains all of the potential degrees of freedom 
for fluid elements with the same PID together. 
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Example 1: We now present a detailed example for a 2-D fluid 
filled basin with flexible walls.  

Fig. 2.8-3(a) shows the model before phi model completion. 
The model is defined with separate nodes for the fluid and the 
structure.  A fluid boundary of type free-surface is defined on the 
horizontal line, as shown.  
 

Fluid boundary of type
free surface is defined on
this line

Fluid nodes are at the same
coordinates as structural nodes.
The fluid nodes and structural
nodes are separated in this figure
for clarity.

a) Finite element model before phi model completion

Fig. 2.8-3: Example of phi model completion

Potential-based
fluid elements

Beam elements
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In step 1 of phi model completion, Solution 601 generates fluid-
structure interface elements where the fluid is adjacent to the 
structure, and free surface interface elements corresponding to the 
fluid boundary (Fig. 2.8-3(b)).  

In step 2 of phi model completion, Solution 601 classifies the 
displacement directions on the free surface (Fig. 2.8-3(c)).  Notice 
that the free normal for node 2 is taken from the free surface, but 
the free normal for node 3 is modified by the presence of the 
adjacent structure.  A skew system is defined for node 3 because 
the free normal and structural normal are not aligned with the 
global coordinate directions.  The zero stiffness direction of node 2 
will be fixed in step 6 below. 
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Interface elements
of type free surface

Interface elements of
type fluid-structure interface

b) Step 1 of phi model completion;
interface elements are created

123

46
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Node 1: = structural normal direction,
= free normal direction

x
z

Node 2: = zero stiffness direction,
= free normal direction

x
z

Node 3: = free normal direction,
= structural normal direction

b
c

c) Step 2 of phi model completion: classification
of displacement directions on free surface

Fig. 2.8-3: (continued)
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In step 3 of phi model completion, Solution 601 constrains the 

fluid displacement directions to the structure (Fig. 2.8-3(d)).  At 
node 1, only the x displacement direction is constrained; the z 
displacement is left free so that the free surface can slip along the 
wall.  At node 3, only the c displacement direction is constrained; 
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the b displacement is left free so that the free surface can slip along 
the wall. 

Notice that at node 4, both the x and z displacements are 
constrained to the structure.  The fluid still slips in the z direction 
because only the normal displacement (the x displacement in this 
case) is used by the fluid equations.  Similar statements hold for 
nodes 6 and 8.   

Nodes 7 and 9 are fixed because corresponding nodes 12 and 14 
are fixed. 

If the analysis is static without body forces, then Solution 601 
performs step 4 of phi model completion (Fig. 2.8-3(e)).  The free 
surface can only translate vertically as a rigid body. 

 
 
 
 
 
 
 
 
 
 

d) Step 3: Creation of constraint equations and fixities

Fig. 2.8-3: (continued)
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e) Step 4 of phi model completion: defining constraint
equations to set normal displacements equal on free surface

Step 4 is only performed in static analysis when
there are no body forces.

Fig. 2.8-3: (continued)
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Node 2: =u uz z
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Node 3: =u ub z
1 / cos30

o

 
 
This motion affects the total volume of the fluid region, so that 

there is no zero pivot in the system matrices. 
If there are body forces, then step 4 is not necessary because all 

boundary motions are given stiffness by the matrix  UU S
K  . 

Step 5 of phi model completion is skipped because there are no 
fluid-fluid boundaries. 

In step 6 of phi model completion, the zero stiffness direction at 
node 2 is fixed (Fig. 2.8-3(f)).  Vertical motions of the nodes 
attached only to free surface interface elements are allowed, but 
horizontal motions of these nodes are not allowed (because the 
fluid does not provide stiffness, damping or mass to horizontal 
motions). 
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f) Step 6 of phi model completion: defining fixities to
eliminate zero stiffness degrees of freedom

Fig. 2.8-3: (continued)

2
x

z

Node 2: =fixedux

. 
 
Then Solution 601 performs step 7 of phi model completion 

(Fig. 2.8-3g).  Only constant (in space) potentials are allowed in 
static analysis.   

 

 

g) Step 7: defining constraint equations to set all potential
degrees of freedom equal

Fig. 2.8-3: (continued)

123

456

79 8

� � �2 9 1== , ...,�1

 
 

Example 2: In 3-D analysis of a fluid-filled basin, there is one 
additional consideration.  Consider the model shown in Fig. 2.8-4, 
in which only the free surface and the adjacent structural nodes are 
shown. 
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Fluid nodes are at the same
coordinates as structural nodes.
The fluid nodes and structural
nodes are separated in this figure
for clarity.

a) Top view of finite element model

Fig. 2.8-4: Example 2 of phi model completion
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fluid elements on free surface
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During step 2 of phi model completion, Solution 601 determines 
the structural normal direction(s), zero stiffness direction(s) and 
free normal direction for the nodes of the free surface (Fig. 
2.8-4(b)).  Notice that node 3 has two structural normals, but node 
6 has only one structural normal.  That is because the angle 
between the two structural normals for node 3 is greater than 30 
degrees, but the angle between the two structural normals for node 
6 is less than 30 degrees. 

Nodes 3, 6, 9 and 12 are assigned skew systems because the 
structural normal directions are not aligned with the global system. 
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b) Classification of structural normals and zero stiffness directions
for some nodes on the free surface
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stiffness direction = remaining orthogonal direction

Fig. 2.8-4: (continued)
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During step 3 of phi model completion, Solution 601 creates 

constraint equations for the fluid nodes adjacent to the structural 
nodes.  For example, node 1 is constrained in both the x and y 
directions to node 13, because both directions are structural normal 
directions.  Node 2 is also constrained in both the x and y directions 
to node 14, here because the y direction is a structural normal 
direction and the x direction is a zero stiffness direction.  (It is 
assumed that the structure provides stiffness in the x direction.)  

During step 6 of phi model completion, Solution 601 fixes the x 
and y directions for nodes 5 and 8, because these directions are 
zero stiffness directions, and there is no adjacent structure. 
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Example 3:  We now present some of the steps for phi model 
completion of an enclosure with two distinct fluid regions.  Fig. 
2.8-5(a) shows the model before phi model completion. 

 

    

Fluid nodes are at the same coordinates as structural nodes.
The fluid nodes and structural nodes are separated in this figure
for clarity.

Enclosed nodes all lie on
the same line, fluid boundary
of type fluid-fluid is defined
on this line

a) Finite element model before phi model completion

Fig. 2.8-5: Example 3 of phi model completion
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In step 1 of phi model completion, Solution 601 generates fluid-
structure interface elements where the fluid is adjacent to the 
structure, and fluid-fluid interface elements corresponding to the 
fluid boundary.  Four fluid-fluid interface elements are generated, 
two for each shared element side. 

In step 2 of phi model completion, Solution 601 classifies the 
displacement directions on the fluid-fluid interface.  Here the free 
normal is always in the z direction and the zero stiffness directions 
for nodes 5 and 8 are in the x direction.  

In step 3 of phi model completion, the fluid nodes are 
constrained to the adjacent structural nodes (Fig. 2.8-5(b)).  Notice 
that the nodes on the fluid-fluid interface are allowed to slip 
relative to the structure. 
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b) Step 3: constraining fluid nodes to adjacent structural nodes

Fig. 2.8-5: (continued)
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If the analysis is static without body forces, then Solution 601 

performs step 4 of phi model completion.  In this case, the z 
displacements of nodes 5 to 9 are constrained to be equal to the z 
displacement of node 4.  The free surface can only translate 
vertically as a rigid body. 

In step 5 of phi model completion, the fluid nodes on the fluid-
fluid interface are constrained to each other (Fig. 2.8-5(c)).  Step 5 
is not performed if step 4 was performed.  Notice that the potential 
degrees of freedom are not constrained.   
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c) Step 5: constraining adjacent nodes of the two fluid regions together

Fig. 2.8-5: (continued)
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In step 6 of phi model completion, the zero stiffness direction of 

nodes 5 and 8 are fixed.  Vertical motions of the nodes attached 
only to fluid-fluid interface elements are allowed, but horizontal 
motions are not allowed (because the fluid does not provide 
stiffness, damping or mass to horizontal motions). 

Then Solution 601 performs step 7 of phi model completion 
(Fig. 2.8-5(d)).  Only constant (in space) potentials are allowed in 
static analysis, but the potential can be different for the regions 
with different PIDs. 
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d) Step 7: defining constraint equations to set the potential
degrees of freedom of each fluid region equal

Fig. 2.8-5: (continued)
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2.9  Other element types 
 

2.9.1  Gap element 
 

 The gap element is used in Advanced Nonlinear Solution to 
connect two nodes as shown in Fig. 2.9-1. Gap elements are 
defined using the CGAP element connectivity entry. 
 
 The initial gap opening is U0. When the gap is closed the 
element has a stiffness of KA (should be stiff), and when it is open 
the stiffness is KB (should be soft). 
 
 The tangential behavior of the gap element represented by KT, 
MUI and MUZ is not supported. 
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Fig. 2.9-1: CGAP element coordinate

system  
 

2.9.2  Concentrated mass element 
 

 Advanced Nonlinear Solution supports the CONM1 and 
CONM2 entries for defining concentrated masses.  
 
 For CONM1, only the diagonal mass terms are supported, and 
the resulting mass matrix is given by: 
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 For CONM2, the off-diagonal mass moments of inertia terms 
are neglected, and the resulting mass matrix is 
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2.9.3  Bushing element 

 
 The one-dimensional bushing element CBUSH1D is used in 
Advanced Nonlinear Solution to provide an axial stiffness and 
damping between two nodes as shown in Fig. 2.9-2. 
 
 

GA GB

Fig. 2.9-2: BUSH1D element  
                                         

 The stiffness and damping act along the axis of the element, 
which is the line connecting its two nodes. In large displacement 
analysis the element axis is updated with deformation. A fixed 
element axis can be specified via the CID parameter in the 
CBUSH1D entry. 
 
 The element can have a constant or a nonlinear stiffness defined 
via a lookup table. 
 
 Any mass assigned to the BUSH1D element is lumped at the 
grid points. 
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3. Material models and formulations 
 

The objective of this chapter is to summarize the theoretical basis and practical 
use of the material models and formulations available in Advanced Nonlinear 
Solution. 

The stress and strain measures used by different materials and formulations 
are first summarized in Section 3.1. 

The table below lists the material models available in Advanced Nonlinear 
Solution, and how they can be obtained from the material entry cards. Note that 
Tables 2-2 and 2-3 list the acceptable combinations of elements and material 
properties for Solutions 601 and 701. 

 
 

Table 3.1: Material models available in Advanced Nonlinear Solution 
 

Material Entries Advanced Nonlinear Solution 
material 

Sol 701 
availability1 

MAT1 Elastic isotropic  

MAT1, CREEP or  
MAT1, MATCRP 

Elastic-creep  

MAT1, CREEP, MATTC or 
MAT1, MATCRP 

Thermal elastic-creep  

MAT1, MATG Gasket  

MAT1, MATS12 Elastic isotropic nonlinear3  

MAT1, MATS14, MATSR Elasto-plastic  

MAT1, MATS16 Thermal elasto-plastic  

MAT1, MATS1, MATT16 Thermal elasto-plastic, 
temperature-dependent elastic 
properties 

 

MAT1, MATS15 Thermal elasto-plastic, 
temperature-dependent plastic 
properties 

 

MAT1, MATS1, MATT15 Thermal elasto-plastic, 
temperature-dependent elastic 
and plastic properties 

 
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Table 3.1: Material models available in Advanced Nonlinear Solution 
(continued) 

 

Material Entries Advanced Nonlinear Solution 
material 

Sol 701 
availability1 

MAT1, MATS1, 
CREEP6 

Plastic-creep  

MAT1, MATS1, CREEP, 
MATT16 

Plastic-creep with temperature-
dependent properties 

 

MAT1, MATS1, 
CREEP5 

Thermal plastic-creep, temperature-
dependent plastic properties 

 

MAT1, MATS1, 
MATT1, CREEP5 

Thermal plastic-creep, temperature-
dependent elastic and plastic 
properties 

 

MAT1, MATS1, CREEP, 
MATTC6 

Thermal plastic-creep, temperature-
dependent creep properties 

 

MAT1, MATS1, 
MATT1, CREEP, 
MATTC6 

Thermal plastic-creep, temperature-
dependent elastic and creep 
properties 

 

MAT1, MATS1, CREEP, 
MATTC5 

Thermal plastic-creep, temperature-
dependent plastic and creep 
properties 

 

MAT1, MATS1, 
MATT1, CREEP, 
MATTC5 

Thermal plastic-creep, temperature-
dependent elastic, plastic and creep 
properties 

 

MAT2 Elastic orthotropic (surface 
elements) 

 

MAT2, MATT2 Thermal elastic orthotropic (surface 
elements) 

 

MAT3 Elastic orthotropic (2D elements)  

MATT3, MAT3 Thermal elastic orthotropic (2D 
elements) 

 

MAT4 Isotropic heat transfer  
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Table 3.1: Material models available in Advanced Nonlinear Solution 
(continued) 
 

Material Entries Advanced Nonlinear Solution 
material 

Sol 701 
availability1 

MAT4, MATT4 Temperature dependent isotropic 
heat transfer 

 

MAT5 Orthotropic heat transfer  

MAT5, MATT5 Temperature dependent orthotropic 
heat transfer 

 

MAT8 Elastic orthotropic (surface 
elements) 

 

MAT8, MATT8 Thermal elastic orthotropic (surface 
elements) 

 

MAT9 Elastic orthotropic (solid elements)  

MAT9, MATT9 Thermal elastic orthotropic (solid 
elements) 

 

MAT10 Fluid  

MAT11 Elastic orthotropic (solid elements)  

MAT11, MATT11 Thermal elastic orthotropic (solid 
elements) 

 

MATHE, MATHEM, 
MATHEV 

Hyperelastic (Mooney-Rivlin, 
Ogden, Arruda-Boyce, Sussman-
Bathe and Hyperfoam) 

7 

MATHP Hyperelastic (Mooney-Rivlin only)  

MATPLCY, PLCYISO, 
PLCYKIN, PLCYRUP 

Plastic-cyclic  
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Table 3.1: Material models available in Advanced Nonlinear Solution 
(continued) 
 

Material Entries Advanced Nonlinear Solution 
material 

Sol 701 
availability1 

MATSMA Shape memory alloy (SMA)  

MATVE Viscoelastic  

Notes: 
1. Temperature interpolation at the start of the analysis only in Solution 701. 
2. With MATS1 TYPE=NELAST. 
3. Cannot be used with beam element for SOL 601. Can only be used with rod element 

for SOL 701. 
4. With MATS1 TYPE=PLASTIC. 
5. With MATS1 TYPE=PLASTIC and TID pointing to a TABLEST entry. 
6. With MATS1 TYPE=PLASTIC and TID pointing to a TABLES1 entry. 
7. Only Mooney-Rivlin, Ogden and Sussman-Bathe hyperelastic materials are available 

in Solution 701. 
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3.1  Stress and strain measures 
 

 It is important to recognize which stress and strain measures are 
employed in each material model: this is necessary in the 
preparation of the input data and the interpretation of the analysis 
results. 

 
 This section summarizes the stress and strain measures in 
Advanced Nonlinear Solution and how they are used with the 
different element types and nonlinear features. More details on 
stress/strain measures are provided in ref. KJB, Section 6.2. 

 
3.1.1  Kinematic formulations 

 
Small displacement/small strain kinematics 

 
Input of material parameters: All elements and material models 
use the engineering stress-engineering strain relationship. 

 
Output: All elements and material models output engineering 
stresses and engineering strains. Note that, as long as the 
displacements and strains are small, Cauchy stresses and 
engineering stresses are nealy equal.  
 
 Using a linear material model with small displacement/small 
strain kinematics results in a linear finite element formulation. 
 
 Using a nonlinear material model with small displacement/small 
strain kinematics results in a materially-nonlinear only (MNO) 
formulation. 

 
Large displacement/small strain kinematics  

 
Input of material parameters: 2nd Piola-Kirchhoff stresses and 
Green-Lagrange strains. Note that under small strain conditions, 2nd 
Piola-Kirchhoff stresses are nearly equal to engineering stresses, 
and Green-Lagrange strains are nearly equal to engineering strains. 
Strains should be less than 2%. 
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Output:  The output depends on the element type. Note that as long 
as the strains are small, Green-Lagrange strains are practically the 
same as engineering strains in the element coordinate system. 
Similarly, 2nd Piola-Kirchhoff stresses are practically the same as 
Cauchy stresses in the element coordinate system. 
 

(1) 2-D, 3-D solid elements: all supported material models 
output Cauchy stresses and Green-Lagrange strains. 

 
(2) Shell elements: all supported material models output 2nd  
Piola-Kirchhoff stresses and Green-Lagrange strains. 

 
(3) Rods and beams: all supported material models output 
Cauchy stresses and engineering strains in the element 
coordinate system. 
 

Large displacement/large strain kinematics 
 

This kind of formulation can only be used with 2-D and 3-D solid 
elements and with shell elements. 

 
For 2-D and 3-D solid elements 

 
(1) Both the updated Lagrangian Hencky formulation and the 
updated Lagrangian Jaumann formulation can be used with 
elastic-plastic materials (including thermal and creep effects). In 
this case, 

 
Input of material parameters: Cauchy (true) stresses and 
logarithmic (true) strains.  For the multilinear stress-strain 
curves, it is also possible to enter engineering stress-strain 
data along with the input NXSTRAT CVSSVAL=1, see 
detailed description of the CVSSVAL feature in Section 
3.4.1. 

 
Output:  

ULH formulation: Cauchy stresses and logarithmic 
strains in the element coordinate system. 

 
ULJ formulation: Cauchy stresses and Jaumann strains. 
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(2) For hyperelastic materials a total Lagrangian formulation is 
used. In this case,  

 
Input of material parameters: Hyperelastic material 
constants. 
 
Output: Cauchy stresses and Green-Lagrange strains in the 
element coordinate system. 
 

For shell elements  
 
Both the updated Lagrangian Jaumann (ULJ) formulation and the 
updated Lagrangian Hencky (ULH) formulation can be used. For 
more details on how these formulations apply to shell elements, see 
Section 2.3. 
 

Input of material parameters: Cauchy (true) stresses and 
logarithmic (true) strains.  For the multilinear stress-strain 
curves, it is also possible to enter engineering stress-strain 
data along with the input NXSTRAT CVSSVAL=1, see 
detailed description of the CVSSVAL feature in Section 
3.4.1. 
 

When the ULJ formulation is used: 
 

Output: Cauchy stresses and Jaumann strains. 
 

When the ULH formulation is used: 
 

Output: Kirchhoff stresses and left Hencky strains 
(practically equivalent to Cauchy stresses and logarithmic 
strains). 

 
3.1.2  Strain measures 

 
The strain measures used in Advanced Nonlinear Solution are 
illustrated here in the simplified case of a rod under uniaxial 
tension (see Fig. 3.1-1). 
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Fig. 3.1-1: Rod under uniaxial tension  
 
 

Engineering strain: 0
0

0

e



 


 

 

Green-Lagrange strain: 
2 2
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Logarithmic strain, Hencky strain, Jaumann strain: 
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ln
d

e
  

   
    





 
 

 

 

Stretch: 
0

 



 

 
 Note that for the small strains assumption to be valid, the strains 
should be less than about 2%. 

 Green-Lagrange strains are used in the large displacement/small 
strain formulations. This is because this strain measure is invariant 
with respect to rigid-body rotations. Therefore, for small strains, 
Green-Lagrange strains and the rotated engineering strains are 

ref. KJB 
Sec. 6.2.2 
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equivalent. 
 

 Engineering strains are also called nominal strains in the 
literature. 
 
 Logarithmic strains are also known as true strains. 
 

3.1.3  Stress measures  
 
The stress measures used in Advanced Nonlinear Solution include 
engineering stresses, 2nd Piola-Kirchhoff stresses, Kirchhoff 
stresses, and Cauchy stresses (see ref. KJB). These stress measures 
are illustrated here in the simplified case of a rod under uniaxial 
tension (see Fig. 3.1-1). 
 

Engineering stress: 
0

F

A
   

Cauchy stress: 0AF

A A

    

 

2nd Piola-Kirchhoff stress: 0 0

0

F
S

A


 

 
 

 

 

Kirchhoff stress: 
0 0 0

F
J

A

  
 
 

 

 
 Cauchy stresses are also called true stresses in the literature. 

 
 For the case in which the material is incompressible, 

0

J
  



 can be used to compute the Cauchy stress and the 

Kirchhoff stress from the engineering stress. 
 
 When the strains are small, the 2nd Piola-Kirchhoff stresses are 
nearly equal to the Cauchy stresses from which the rigid body 
rotations of the material have been removed. 

 
 When the volume change of the material is small, the Kirchhoff 
stresses are nearly equal to the Cauchy stresses. 
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 Since Kirchhoff stresses are input/output only for large strain 
analysis with materials that are nearly incompressible, practically 
speaking, the differences between Kirchhoff and Cauchy stresses 
are negligible. 
 

3.1.4  Large strain thermo-plasticity analysis with the ULH formulation 
 

 This section discusses the ULH formulation for large strain 
analysis. ULH stands for updated Lagrangian Hencky. 
 
 The following is a quick summary of the theory of large strain 
inelastic analysis with the ULH formulation. For further 
information, see ref KJB, Section 6.6.4 and also the following 
references: 
 

ref. F.J. Montáns and K.J. Bathe, "Computational issues in 
large strain elasto-plasticity: an algorithm for mixed 
hardening and plastic spin", Int. J. Numer. Meth. Engng, 
2005; 63;159-196. 

 
ref. M. Kojić and K.J. Bathe, Inelastic Analysis of Solids and 

Structures, Springer-Verlag, 2003. 
 
Total deformation gradient tensor: Let X be the total 
deformation gradient tensor at time t with respect to an initial 
configuration taken at time 0. For ease of writing, we do not 
include the usual left superscripts and subscripts.  
 
Polar decomposition into rotation and right stretch tensor: The 
total deformation gradient tensor X can be decomposed into a 
material rigid-body rotation tensor R and a symmetric positive-
definite (right) stretch tensor U (polar decomposition): 
 
  X R U  (3.1-1) 
 
Principal directions of right stretch tensor: The right stretch 
tensor U can be represented in its principal directions by a diagonal 
tensor Λ  , such that 
 
  T

L LU R Λ R  (3.1-2) 
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where  LR  is a rotation tensor with respect to the fixed global axes 
(see Fig. 3.1-2). 
 

L(t)

(0)
x

y

R

(0)

(t)

L

Initial configuration at time 0

Configuration at time t not including rigid body rotation

Configuration at time t

Directions of maximum/minimum total stretches
and strains

Material rigid-body rotation between time 0 and time t

Directions of initial configuration fibers with
maximum/minimum total stretches and strains

R

R

R

Fig. 3.1-2: Directions of maximum/minimum total stretches and

strains  
 

(Note that the rotation LR  does not correspond to a material 
rigid-body rotation, but to a rotation of the coordinate system: U 
and Λ  are two representations of the same deformed state, 
respectively in the basic coordinate system and in the U principal 
directions coordinate system.) 

 
Right Hencky strain tensor: The Hencky strain tensor (computed 
in the right basis) is given by 
 
  ln lnR T

L L E U R Λ R  (3.1-3) 
 
The superscript “R” symbolizes the right basis. 
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Polar decomposition into rotation and left stretch tensor: The 
total deformation gradient tensor X can also be decomposed into a 
material rigid-body rotation R and a symmetric positive-definite 
(left) stretch tensor V (polar decomposition): 
 
  X V R  (3.1-4) 
 
R in (3.1-4) is the same as R in (3.1-1). 
 
Principal directions of left stretch tensor: The left stretch tensor 
V can be represented in its principal directions by a diagonal tensor  
Λ , such that 
 
  T

E EV R Λ R  (3.1-5) 
 
where ER  is a rotation tensor with respect to the fixed global axes. 

Note that E LR R R . 
 
Left Hencky strain tensor: The Hencky strain tensor (computed 
in the left basis) is given by 
 
  ln lnL T

E E E V R Λ R  (3.1-6) 
 
The superscript “L” symbolizes the left basis. 
 
Comparison of left and right Hencky strain tensors: The 
principal values of the left and right Hencky strain tensors are 
identical, and equal to the logarithms of the principal stretches. 
Hence both of these strain tensors can be considered to be 
logarithmic strain tensors. However, the principal directions of the 
left and right Hencky strain tensors are different. The principal 
directions of the right Hencky strain tensor do not contain the rigid 
body rotations of the material, but the principal directions of the 
left Hencky strain tensor contain the rigid body rotations of the 
material.  
 Therefore, for a material undergoing rigid body rotations, the 
principal directions of the right Hencky strain tensor do not rotate, 
however the principal directions of the left Hencky strain tensor 
rotate with the material. Hence, the left Hencky strain tensor is 
preferred for output and visualization of the strain state. 
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Multiplicative decomposition of deformation gradient in 
inelastic analysis: In inelastic analysis, the following 
multiplicative decomposition of the total deformation gradient into 
an elastic deformation gradient EX  and an inelastic deformation 
gradient PX  is assumed: 
 
  E PX X X  (3.1-7) 
  
To understand (3.1-7), consider a small region of material under a 
given stress state with deformation gradient X. If this region of 
material is separated from the rest of the model and subjected to the 
same stress state, the deformation gradient is still X. Now if the 
stress state is removed, (3.1-7) implies that the deformation 
gradient of the unloaded material is PX . The stresses are due 
entirely to the strains associated with the elastic deformation 
gradient EX . 
 It can be shown (see Montáns and Bathe), that (3.1-7) is 
equivalent to the additive decomposition of the displacements into 
elastic displacements and plastic displacements.  
 For the materials considered here, det 1P X . 
 
Polar decomposition of elastic deformation gradient: The elastic 
deformation gradient can be decomposed into an elastic rotation 
tensor ER  and elastic right and left stretch tensors EU , EV : 
 
  E E E E E X R U V R  (3.18-a,b) 
 
Elastic Hencky strain tensors: The elastic Hencky strain tensors 
in the right and left bases are given by 
 
  ln , lnER E EL E E U E V  (3.1-9a,b) 
 
Stress-strain relationships: The stresses are computed from the 
elastic Hencky strain tensors using the usual stress-strain law of 
isotropic elasticity. However, the stress measures used depend upon 
the strain measures used. When the right Hencky strain measure is 
used, the stress measure used is the rotated Kirchhoff stress 
 

   TE EJτ R τ R  (3.1-10) 
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and when the left Hencky strain measure is used, the stress measure 
is the (unrotated) Kirchhoff stress Jτ . detJ  X is the volume 
change of the material, and, using det 1, detP EJ X X . 
 With these choices of stress and strain measures, the stresses 
and strains are work-conjugate.  
 The choice of right Hencky strain and rotated Kirchhoff stresses 
gives the same numerical results as the choice of left Hencky strain 
and (unrotated) Kirchhoff stresses. 
 
Implementation notes: For 2-D and 3-D solid elements, the 
difference between the Cauchy and Kirchhoff stresses is neglected. 
The stress measure used with the right Hencky strains is 

 TE Eτ R τ R . The input of material properties is assumed to be 

in terms of Cauchy stresses, and the output of stresses is in terms of 
Cauchy stresses. 
 For shell elements, Kirchhoff stresses are used throughout. The 
input of material properties is assumed to be in terms of Kirchhoff 
stresses, and the output of stresses is in terms of Kirchhoff stresses. 
 These assumptions are justified because they are used with 
material models in which the plastic deformations are 
incompressible and the plastic deformations are generally much 
larger than the elastic deformations.  

 
3.1.5  Large strain thermo-plasticity analysis with the ULJ formulation  

 
 This section discusses the ULJ formulation for large strain 
inelastic analysis (ULJ formulation). ULJ stands for updated 
Lagrangian Jaumann. 
 
 The following is a quick summary of the theory of large strain 
inelastic analysis with the ULJ formulation: 
 
For further information, see ref KJB, Section 6.2.2 and also the 
following reference: 

 
ref. M. Kojić and K.J. Bathe, Inelastic Analysis of Solids and 

Structures, Springer-Verlag, 2003. 
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Velocity gradient tensor: The velocity gradient tensor is defined 
as 
 

 1
t

i
t

j

u

x


 
  

  
L XX

   (3.1-11) 

 
Notice that the derivative is taken with respect to the current 
coordinates. 

 
Rate of deformation tensor, spin tensor: The rate of deformation 
tensor is defined as 
 

  1

2
T D L L  (3.1-12) 

 
and the spin tensor is defined as 
 

  1

2
T W L L  (3.1-13) 

 
D is the symmetric part of L and W is the skew-symmetric part of 
L.  

 
Rate of change of Jaumann strain tensor: The rate of change of 
the Jaumann strain is defined as 
 
 J J J  ε D Wε ε W  (3.1-14) 
 
The quantity Jε  is termed the Jaumann strain in analogy with the 
more often-used Jaumann stress. But we do not use the Jaumann 
stress in the ULJ formulation.  

 
Jaumann strain tensor:  In practice, increments are used in 
computing the Jaumann strain tensor, i.e.  
 
      t t J t J t J t Jt t t       ε ε D W ε ε W  (3.1-15) 
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Comparison of Jaumann strain with left Hencky strain:  When 
the rate of change of the principal directions of the left stretch 
tensor V is zero, the rate of change of the left Hencky strain is the 
same as the rate of change of the Jaumann strain. Hence the 
Jaumann strain can be used as an approximate replacement for the 
left Hencky strain. The Jaumann strain can be computed more 
efficiently than the left Hencky strain, because it is not necessary to 
take the square root or logarithm of a tensor when computing the 
Jaumann strain. On the other hand, the time step size affects the 
Jaumann strain, so that finite time step sizes lead to an error in the 
calculation of the Jaumann strain.  
 For a uniaxial deformation, the Jaumann strain approaches the 
logarithmic strain as the step size is reduced. For a rigid-body 
rotation, the Jaumann strain also rotates, with the rotation of the 
Jaumann strain approaching the expected rotation as the step size is 
reduced.  
 It can also be shown that the Jaumann strain is path-dependent 
in general, so that a deformation history in which the final 
deformations equal the initial deformations can produce (non-
physical) non-zero Jaumann strains, even in the limit of 
infinitesimally small time steps.  

 
Stress-strain relationships: In elasto-plasticity, the same 
algorithms are used as in small-strain elasto-plasticity. The 
mechanical strains are computed as the total strains minus the 
plastic strains (and also any thermal strains), in which the total 
strains are the Jaumann strains.  
 As in the ULH formulation, the stresses are Cauchy stresses for 
2-D / 3-D elements, and are Kirchhoff stresses for shell elements. 
 

3.1.6  Thermal strains 
 
 Calculation of thermal strains is needed for temperature-
dependent material models (thermo-elastic isotropic, thermo-elastic 
orthotropic, thermo-plastic), as well as temperature-invariant 
material models with non-zero thermal expansion coefficients. 
 

 The current temperature t  and the initial temperature 
0 (corresponding to zero thermal strains) are both needed for the 
calculation of thermal strains. The current temperature field is set 
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via the TEMPERATURE(LOAD) case control entry, while the 
initial temperature is set via the TEMPERATURE(INITIAL) case 
control entry. See Section 5.6 for more details. 
 
 The temperature at an integration point is evaluated based on 
the nodal temperatures and the element shape functions, and then 
used to calculate the thermal strains. 

 
 For isotropic temperature independent materials, the following 
expression is used for thermal expansion. 
 

  0t TH t
ij ije       (3.1-16) 

 
where ij  is the Kronecker delta ( ij = 1 for i = j and ij = 0 for 

i j ). 
  
 If the thermal expansion is temperature dependent and isotropic, 
the thermal strains are calculated as follows: 
 

  0t TH t t
ij ije       (3.1-17) 

 
where 
 

 
        0 0

0

1t t t
REF REFt

        
 

   


 

 (3.1-18) 
and REF  is the material reference temperature. 
 
 For temperature independent orthotropic materials Eq. (3.1-16) 
is replaced by a thermal expansion coefficient vector,  
 

  0 (no summation over )t TH t
ij i ije i      (3.1-19) 

 
 For temperature dependent orthotropic materials Eq. (3.1-17) 
and Eq. (3.1-18) are modified for each direction similar to Eq. 
(3.1-19). 
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 Equations (3.1-17) and (3.1-18) are derived as follows: Suppose 
that, from experimental data, the dependence of the length of a bar 
as a function of temperature is obtained, as shown in Fig. 3.1-3. 
 

 

Temperature, �
�REF �

L
en

g
th

,
L Secant to curve

L

LREF

Fig. 3.1-3: Length of bar vs. temperature 
  

The thermal strain with respect to the reference length may be 
calculated as 
 

 TH REF

REF

L L

L
 

  

 
Then we define the mean coefficient of thermal expansion for a 
given temperature as follows: 
 

    TH

REF

 
 

 



 

 

With this definition, the secant slope in Fig. 3.1-3 is  REFL   . 

Now, in Solution 601, we assume that the thermal strains are 
initially zero. To do this, we subtract the thermal strain 

corresponding to 0  to obtain 
 

      0 0t TH t t
REF REF             

 
which leads to Equations (3.1-17) and (3.1-18).  
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Notice that if the mean coefficient of thermal expansion is 

constant, REF  no longer enters into the definition of t  and the 
equations reduce to Eq. 3.1-16. In general, when the mean 
coefficient of thermal expansion is not constant, REF  must be 
chosen based on knowledge of the experiment used to determine 

    since for the same material curve, different choices of REF  

yield different values of    . 

 

3.2  Linear elastic material models 
 

 The following material models are discussed in this section: 
 

Elastic-isotropic: isotropic linear elastic non-thermal dependent 
material model obtained with MAT1 

 
Elastic-orthotropic: orthotropic linear elastic non-thermal 
dependent material model obtained with MAT2 and MAT8 for 
surface elements and MAT9 and MAT11 for 3-D solid elements 

 
 These models can be employed using small displacement/ 
small strain or large displacement/small strain kinematics. The 
strains are always assumed to be small. 
 
 Thermal strains are supported for the elastic isotropic materials 
and the elastic-orthotropic materials.  
 
 When the elastic-isotropic and elastic-orthotropic materials are 
used with the small displacement formulation, the formulation is 
linear. 

 
 In the small displacement formulation, the stress-strain 
relationship is 

 

 0 0
t tσ C e  

 

in which 0
t σ  = engineering stresses and 0

t e  = engineering strains. 
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 In the large displacement formulation used by 2-D solid, 3D-
solid and shell elements, the stress-strain relationship is 
 

 0 0
t tS C ε  

 

in which 0
t S  = second Piola-Kirchhoff stresses and 0

t ε  = Green-

Lagrange strains. 
 
 In the large displacement formulation used by rod and beam 
elements, the stress-strain relationship is  
 

*t t
tτ C ε  

 
in which t τ  = Cauchy stresses and *t

t ε  = rotated engineering 
strain. 
 
 In the presence of thermal strains the following stress-strain 
relationship is used instead in small displacement analysis: 
 

 0 0 0
t t t TH σ C e e  

 
where 0

t THe are the thermal strains. A similar 0
t THε  or *t TH

t ε  term is 
added for the large displacement formulations. The calculation of 
thermal strain is detailed in Section 3.1.6. 

 
 The same matrix C is employed in all of these formulations. As 
long as the strains remain small, the difference in the responses is 
negligible. 

 
 However, if the strains are large, the difference in the response 
predictions is very significant (see ref. KJB, pp 589-590). If the 
strains are large, it is recommended that these linear elastic material 
models not be used. 

 
3.2.1  Elastic-isotropic material model 

 
 This material model is available for the rod, 2-D solid, 3-D 
solid, beam, and shell type elements. 
 

ref. KJB 
Section 6.6.1 
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 The two material constants used to define the constitutive 
relation (the matrix C) are 

 
 E = Young's modulus, v = Poisson's ratio 
 

 The thermal expansion coefficient   is also used if thermal 
strains are present. 
 

3.2.2  Elastic-orthotropic material model 
 

 The elastic-orthotropic material model is available for the 2-D 
solid, 3-D solid and shell elements. 
 
 The thermal expansion coefficient   is also used if thermal 
strains are present. 
 
3-D solid elements: The orthotropic 3-D material is defined either 
using the MAT9 entry or the MAT11 entry. When the MAT9 entry 
is used, the following assumptions are made: 
 
C14 = C15 = C16 = C24 = C25 =C26 = C34 = C35 = C36 = 0 
 
and 
 
C45 = C46 = C56 = 0. 
 
resulting in  

 

11 11 12 13 11

22 22 23 22

33 33 33

12 44 12

23 55 23

31 66 31

symmetric

0 0 0

0 0 0

0 0 0

0 0

0

C C C e

C C e

C e

C

C

C

    
        
    

         
     
    
           
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When the MAT11 entry is used, the following inverse stress-strain 
relationship is used:   
 

11 1 12 1 13 1 11

22 21 2 2 23 2 22

33 31 3 32 3 3 33

12 12 12

23 23 23

31 13 31

00

1/ / / 0 0 0

/ 1/ / 0 0 0

/ / 1/ 0 0 0

0 0 0 1/ 0 0

0 0 1/ 0

0 0 0 0 0 1/

e E E E

e E E E

e E E E

G

G

G

      
          
      

         
     
    
           

 

 
The MATCID entry can be used to define the material coordinate 
system (when using either the MAT9 or MAT11 entries).   

 
Shell elements: The orthotropic shell material is preferably defined 
using the MAT8 entry, which leads to the following inverse stress-
strain relationship defined in the shell material coordinate system 
(1,2,3):   
 

11 111 12 1

22 2221 2 2

12 1212

13 131

23 232

1/ / 0 0 0

/ 1/ 0 0 0

0 0 1/ 0 0

0 0 0 1/ 0

0 0 0 0 1/
z

z

e E E

e E E

G

G

G

    
         
     
         
         

 

 
The MAT2 entry can also be used to define a shell material with 
only in-plane orthotropy: 
 

   

11 11 12 11

22 12 22 22

12 33 12

13 33 13

23 33 23

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

C C e

C C e

C

C

C

    
        
     
         
          
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2-D solid elements: The orthotropic 2-D material is defined using 
the MAT3 command.  
 For the axisymmetric element, the stress-strain relationship 
defined in the (x,θ,z) plane is 

 

1
0

1
0

1
0

1
0 0 0

x xx zx

x z

x z

x z

xz z
z z

x z

zx zx
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e
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e
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     
    
    
     

        

 

 
For the plane stress element, the stress-strain relationship defined in 
the (x,y,z) plane, with the y direction as the transverse direction, is: 

 

1
0
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1
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G
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For the plane strain element, the stress-strain relationship defined in 
the (x,y,z) plane, with the y direction as the transverse direction, is: 
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All elements when Young's moduli, Poisson's ratios and shear 
moduli are specified: The material constants must be defined so 
that the stress-strain constitutive matrix is positive-definite. The 
conditions are illustrated for the MAT11 entry. In this case, the 
following conditions must be satisfied: 

 

 

1

2

, , 1, 2,3j
ji

i

E
i j

E


 
  
 

 

 

 2 2 2 31 2
21 32 13 21 32 13

2 3 1

0.5 1 0.5
EE E

E E E
     

 
     

 
 

 

Based on the input values for ij , the remaining constants ji  are 

calculated so as to have a symmetric constitutive matrix; i.e., 
 

 ji ij

j iE E

 
  

 

3.3  Nonlinear elastic material model 
 

 Advanced Nonlinear Solution supports the nonlinear elastic 
material for the rod, 2-D solid, 3-D solid and shell elements. The 
nonlinear effect is obtained with a MATS1 entry which has 
TYPE = ‘NELAST’. The formulations used for the rod element are 
slightly different (and simpler) and are detailed in Section 3.3.1. 

 
 This material uses a nonlinear elastic uniaxial stress-strain data 
input in tabular form and shown in Fig. 3.3-1. This material is not 
based on the classical theory of finite elasticity, and is not intended 
for large strain analysis. However, it is a useful material model 
when used appropriately, and with awareness of its limitations. 
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�

�

�

�

Fig. 3.3-1: Stress-strain behavior of nonlinear

elastic material model  
 
 Note that the material unloads along the same curve, so that no 
permanent inelastic strains are introduced.  
 
 The material can have different stress-strain curves in tension 
and compression. Under predominantly uniaxial tension or 
compression, the material response will follow the input curve 
exactly. Under shear dominated loading, the stress is interpolated 
from both tension and compression parts of the material stress-
strain curve.  
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 In order to use the unaxial stress-stain data ( )   of Fig. 3.3-1, 

the effective stress and strain (  and  ) must be calculated based 
on the 2-D or 3-D total stress and strain tensors (σ  and ε ). The 
von-Mises stress is used as the effective stress, while the effective 
strain is based on 
 

  Td d   σ ε  (3.3-1) 

 
which equates the deformation work per unit volume in unaxial 
loading to the multi-dimensional state. This results in a unique 
equation for   as a function of ε ,   and the stress-strain state that 
depends on the element type. 
 
 The effective strain,  , is defined by 
 

  2
0 0

1 1

2 2
TE   ε C ε  (3.3-2) 

 
where 0E  is Young’s modulus which is determined by the most 

stiff region of the input stress-strain curve, 0C  is the elastic stress-

strain matrix obtained using 0E  and  . ( 0E  cancels out from both 

sides of Eq. (3.3-2)) 
 Differentiating Eq. (3.3-2) with respect to the total strain, we 
have 
 

  0
0

1 Td d
E




 ε C ε  (3.3-3) 

 
Substituting Eq. (3.3-3) into Eq. (3.3-1), the stresses can be 
expressed in terms of total strains, i.e., 
 

  0
0E




σ C ε  (3.3-4) 

 
or 
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0

eE




σ σ  (3.3-5) 

 
where 0e σ C ε  which is the elastic trial stress.  

 
 The effective stress   is taken from the tensile part of the 
stress-strain curve for predominantly tensile loading, from the 
compression part of the stress-strain curve for predominantly 
compression loading and is interpolated between the two curves 
otherwise. 
 
 The consistent tangent stress-strain matrix is obtained by 
differentiating Eq. (3.3-4) or (3.3-5) with respect to the total strain 
tensor. The stress-strain matrix is symmetric in predominant tensile 
or compression loading (when only one of the two material curves 
is used), and is non-symmetric otherwise (when interpolation 
between the curves is required). The constitutive matrix is 
symmetrized and in most cases reasonable convergence is obtained.  
 
 Note that discontinuities are not allowed in the user-supplied 
stress-strain curve. The table look-up is performed using linear 
interpolation within the table and linear extrapolation outside the 
table using the two starting or ending points. 
 
Stress update algorithm 
 

For an iteration i , given t σ , t ε , ( )t t i u , 0E ,  , update ( )t t i σ , 
( )t t i ε  

 

Step 1. Calculate the new total strain state ( )t t i ε  based on 

displacements ( )t t i u  
 
Step 2. Calculate the elastic trial stress, 
 

  0
t t t t

e
 σ C ε  (3.3-6) 

 
Step 3. Compute the magnitude of the effective strain,  . 
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Step 4. Calculate the ratio  
 

  
1e

t t
e

I
r C

  (3.3-7) 

 
where C  is a constant that biases the general stress state towards 
the pure tension or compression curves and is internally set to 3/2, 

1e
I  is the first elastic stress invariant, and t t

e
  is the effective 

elastic stress which is calculated as follows, 
 

  0
t t t t

e E    (3.3-8) 

 
Restrict r  to be between -1 and 1. 
 
Step 5. Calculate the effective stress in tension t  and in 

compression c , based on the user-supplied stress-strain curve and 

 , as follows: 
 

  ( )t t t t t t
t      (3.3-9) 

 

  ( )t t t t t t
c        (3.3-10) 

 

Step 6. Calculate the actual effective stress, t t , as 
 

  
1 1

2 2
t t t t t t

t c

r r     
   (3.3-11) 

 
Step 7. Evaluate the new stress state by 
 

  
0

t t
t t t t

et tE





 

σ σ  (3.3-12) 

 
Step 8. Evaluate the tangential stress-strain matrix and symmetrize 
it. 
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3.3.1  Nonlinear elastic material for rod element 
 
 For the rod element, the stress-strain relationship is defined as a 
piecewise linear function, as shown in Fig. 3.3-2. 

 

�
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�

�

�

�

Stress

�6

�5

�4

�3

�2

�1

e1 e2 e3

e4 e5 e6 Strain

Fig. 3.3-2: Nonlinear elastic material for rod elements  
 

Note that the stress is uniquely defined as a function of the 
strain only; hence for a specific strain te, reached in loading or 
unloading, a unique stress is obtained from the curve in Fig. 3.3-2. 

 
 A sufficient range (in terms of the strain) must be used in the 
definition of the stress-strain relation so that the element strain 
evaluated in the solution lies within that range; i.e., referring to Fig. 

3.3-2, we must have 1 6
te e e   for all t. 

 
 The stress-strain curve does not necessarily have to pass through 
the origin. 

 
 A typical example of the nonlinear elastic model for rod 
elements is shown in Fig. 3.3-3. This example corresponds to a 
cable-like behavior in which the rod supports tensile but no 
compressive loading. 
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Stress

Strain

�

� �

Point 1 Point 2

Point 3

Fig. 3.3-3: Nonlinear elastic material model corresponding

to a tension-only cable  
 

 The rod element with this nonlinear elastic material model is 
particularly useful in modeling gaps between structures. This 
modeling feature is illustrated in Fig. 3.3-4. Note that to use this 
element to simulate a contact gap, it is necessary to know which 
node of one body will come into contact with which node of the 
other body, and then to connect these two nodes with a rod 
element. 
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Fig. 3.3-4: Modeling of gaps
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3.4  Isothermal plastic material models 
 

  This section describes the following material models: 
 

Plastic bilinear, plastic multilinear: von Mises model with 
isotropic, kinematic hardening or mixed hardening 

 
Plastic-cyclic: von Mises model with hardening rules suitable 
for modeling cyclic plasticity. 
 

 All elasto-plasticity models use the flow theory to describe the 
elastic-plastic response; the basic formulations for the von Mises 
models are summarized on pp. 596-604, ref. KJB. 
 

3.4.1  Plastic-bilinear and plastic-multilinear material models 
 

 Elasto-plastic materials with bilinear or multilinear hardening 
are defined using the MATS1 material entry with TYPE = 
‘PLASTIC’. 

 
 These material models are based on 

 
 The von Mises yield condition (see p. 597, ref. KJB)  
 An associated flow rule using the von Mises yield function 
 Isotropic, kinematic, or mixed hardening 
 Bilinear or multilinear stress-strain curves (based on H and 

TID fields in MATS1)  
 

 Figs. 3.4-1 to 3.4-3 summarize some important features of these 
material models. Point A marks the first onset of plasticity, point B 
marks unloading into elasticity, point C marks reverse loading to 
plasticity and point D marks unloading into elasticity.  

 
 These models can be used with the rod, 2-D solid, 3-D solid, 
beam (plastic-bilinear only), and shell elements. 
 
 All elastic and plastic material constants are thermally invariant. 
However, thermal strains can be present when there is a 
temperature load and a coefficient of thermal expansion. 
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Fig. 3.4-1: von Mises model  
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Fig. 3.4-2: von Mises yield surface  
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b) Bilinear kinematic hardening
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2
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Fig. 3.4-3: Isotropic and kinematic hardening  
 

 These models can be used with small displacement/small 
strain, large displacement/small strain and large 
displacement/large strain kinematics. 
 When used with small displacements/small strain kinematics, a 
materially-nonlinear-only formulation is employed. 
 When used with large displacements/small strain kinematics, 
either a TL or a UL formulation is employed (depending on 
element type).   
 When used with large displacement/large strain kinematics, a 
ULH formulation or a ULJ formulation can be employed. Large 
displacement/large strain kinematics can only be used with the 2-D 
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solid, 3-D solid and shell elements (only single layer shell 
elements). 

If geometrically nonlinear effects are to be included, the large 
displacements/large strain kinematics are preferred to the large 
displacement/small strain kinematics, even when the strains are 
numerically small.  The large displacement/small strain kinematics 
should be used only when the large displacement/large strain 
kinematics are not supported by the element. 

 

 For multilinear plasticity, there is no restriction on the number 
of stress-strain points in the stress-strain curve. 

 

 Mixed hardening is available only for bilinear plasticity. 
 

 Plane strain, axisymmetric or 3-D solid elements that reference 
these material models should preferably employ the mixed 
displacement-pressure (u/p) element formulation. This is done by 
setting UPFORM = 1 in the NXSTRAT command. 

 

 In the von Mises model with isotropic hardening, the following 
yield surface equation is used: 

 

   21 1
0

2 3
t t t t

y yf    s s  

 

where ts is the deviatoric stress tensor and 0 2
y  the updated yield 

stress at time t. 
In the von Mises model with kinematic hardening, the following 

yield surface equation is used: 
 

     0 21 1
0

2 3
t t t t t

y yf      s α s α  

 

where tα  is the shift of the center of the yield surface (back stress 

tensor) and 0 2
y  is the virgin, or initial, yield stress. 

In the von Mises model with mixed hardening, the following 
yield surface equation is used: 
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     21 1
0

2 3
t t t t t t

y yf      s α s α  

 
where 

 0t p
y y pME   e  

 

The back stress tα  is evolved by 
 

  1 p
pd C M d α e  

 
Cp is Prager’s hardening parameter, related to the plastic 

modulus Ep and M is the factor used in general mixed hardening  
(0 < M < 1) which is currently restricted to 0.5.  

The formulation for the von Mises model with mixed hardening 
is given in the following reference: 

 
ref K.J. Bathe and F.J. Montáns, “On Modeling Mixed 

Hardening in Computational Plasticity”, Computers and 
Structures, Vol. 82, No. 6, pp. 535–539, 2004. 

 
The yield stress is a function of the effective plastic strain, 

which defines the hardening of the material. The effective plastic 
strain is defined as 

 

 
0

2

3

t
Pt p pe d d  e e  

 

in which pde  is the tensor of differential plastic strain increments 

and in which p pd de e is calculated as p p
ij ijde de  (see ref. KJB, p. 

599). In finite element analysis, 
Pt e  is approximated as the sum of 

all of the plastic strain increments up to the current solution time:  
 

 
Pt p

all solution steps

e   e  
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where 
2

3

P p pe   e e and pe  is the tensor of plastic strain 

increments in a solution step. Because of the summation over the 

solution steps, the calculated value of 
Pt e  is referred to as the 

accumulated effective plastic strain. 
 

 If a thermal load is applied to the structure, the thermal strains 
are taken into account but the material characteristics are 
considered to be temperature independent. 
 
 Notice that for the multilinear material models, the plastic 
tangent modulus at point C in Fig. 3.4-3 is smaller than the plastic 
tangent modulus at point A. The plastic tangent modulus decreases 
for each successive cycle. Hence these multilinear material models 
are not well suited for modeling cyclic behavior. 
 If cyclic behavior is to be modeled, either the bilinear kinematic 
model can be used (because the plastic tangent modulus is 
constant), or the plastic-cyclic material model can be used. 
 
Stress-strain input data for multilinear plasticity in large strain 
analysis 
 
In large strain analysis, Advanced Nonlinear Solution works 
internally with true (Cauchy) stresses and true (logarithmic) strains.  
However, typical tension tests used to determine experimental data 
return forces and displacements. These forces and displacements 
are used to compute engineering stresses (force per unit original 
area) and engineering strain (change in length per unit length).  
Therefore it is necessary to convert engineering stress-strain data to 
true stress-strain data.  This conversion is either done by the user, 
or is done automatically by Advanced Nonlinear Solution ( using 
the CVSSVAL=1 entry on the NXSTRAT card).  We now discuss 
this conversion process in detail. 
 Consider an experiment in which a fully incompressible 
material is put into uniaxial tension. The force-displacement curve 
is determined, and the following information extracted from the 
force-displacement curve: 
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The engineering stress is computed as the force / original area.  
The engineering strain is computed as the displacement / 
original length.  

 
This data is determined for a number of points on the force-
displacement curve, starting at point 2, which is considered to be 
the elastic limit (point 1 is at the origin).  And the Young’s 
modulus is also determined as the ratio of engineering stress / 
engineering strain at the elastic limit.  
 Now consider duplicating the experimental results with a finite 
element model that uses a large strain formulation.  The tension test 
finite element model should return the correct force for each 
displacement point on the force-displacement curve.   
 Because the stress and strain measures used in the large strain 
finite element formulation are true stress and true strain, it is 
necessary to convert the engineering stress / engineering strain data 
to true stress / true strain data.  
 The conversion can be done using an algorithm similar to  

 
{ 
 For (each stress-strain point i, i=1, 2, ... ) { 
  ie   engineering strain 

  i   engineering stress 

  (1 )i i ie    = true stress 

  ln(1 )i ie    = true strain 

 } 
 2 2/E     
} 

 
 Notice that E  also needs to be converted.  The reason is as 
follows. If E  is not converted, Advanced Nonlinear Solution 
computes 2 2 / E   but now 2  is no longer the true strain at the 
elastic limit.  
 Here is a numerical example:  

 

2 0.1e  , 2 30 MPa  , 2 2/ 300 MPaE e   
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The conversion given above produces 
 

2 0.09531  , 2 33 MPa   
 

This point is assumed to be at the elastic limit.  If E  is kept at 300, 
then Advanced Nonlinear Solution computes 
 

2 33 / 300 0.11    
 

and this 2  is no longer at the elastic limit.  Therefore E  must be 
recalculated as part of the conversion process: 
 
 33 / 0.09531 346.2 MPaE    

 
Assuming that the above conversion is performed, then the tension 
test finite element model will return the correct force for each of 
the displacements corresponding to the points on the original force-
displacement curve.  

 
Assumptions in the conversion formulas 
 
There are a number of assumptions in the above formulas, as 
follows:  

 
Elastic response   

 
 It is assumed that the stress-strain behavior is linearly elastic up 
to the elastic limit.  However, since Advanced Nonlinear Solution 
uses true stress / true strain data internally, the linear elastic 
behavior is also based on true stress / true strain data.  In the above 
example, the linear elastic response computed by the tension test 
finite element model is based on a Young’s modulus of 346.2 MPa. 
This response is, of course, quite different than a linear elastic 
response based on a Young’s modulus of 300 MPa. 
 The reason that the Young’s modulus is so different is because 
the strain at the elastic limit is “large”.  When the strain at the 
elastic limit is small, then the change in Young’s modulus is also 
small. The change in Young’s modulus caused by the conversion is 
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approximately equal to 2

3

2
E e E  . 

 
Compressible elastic material  

 
 The above conversion assumes that the material response is 
fully incompressible, under both elastic and plastic conditions. 
However, in most cases, the material is compressible under elastic 
conditions.   
 Nevertheless, the above formulas are frequently used anyway. 
The error thus incurred will be largest for point 2, and will diminish 
for larger values of strain.  

 
Response in uniaxial compression 

 
 The above formulas use tension data to convert from 
engineering to true values.  However, it should be recognized that 
Advanced Nonlinear Solution uses the same stress-strain curve in 
both tension and compression.  Therefore, if a large strain finite 
element model is put into uniaxial compression, the observed 
(compressive) force will not be equal in magnitude to the expected 
(tensile) force, at a given (compressive) displacement level.  
 Here is an example. Suppose that in a tensile test, the following 
data is obtained:  

 
Point Engineering 

strain 
Engineering 
stress (MPa) 

True strain True 
stress 

... 
3 0.05 50 0.04879 52.5 
4 0.05263 51 0.05129 53.7 
...     

 
 First consider a materially-nonlinear-only analysis.  Enter the 
engineering stress and strain values for the two points as part of the 
stress-strain input data.  When the model is run in compression to 
an engineering strain of -0.05, the engineering stress is -50 MPa. 
The force-displacement response is symmetric in tension and 
compression.  
 Next consider a large strain analysis.  Enter the true stress and 
strain values for the two points as part of the stress-strain input 
data. Now run the model in compression to an engineering strain of 
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-0.05.  An engineering strain of -0.05 corresponds to a true strain of 
-0.05129, therefore the true stress is -53.7 and the engineering 
stress is -56.5.  The force-displacement response is not symmetric 
in tension and compression.  

 
Homogeneous deformation 
 
The above conversion assumes that the specimen is uniform and 
that the specimen deforms homogeneously under load.  Therefore 
the conversion is only valid up to the ultimate tensile strength of 
the material, because beyond that point the deformation of the 
specimen might be no longer homogeneous due to localized 
necking. 

 
NXSTRAT CVSSVAL feature 

 
 When CVSSVAL=0 on the NXSTRAT card (the default), 
Advanced Nonlinear Solution does not perform any conversion. 
True stress-strain data should be input, and the user could compute 
this true stress-strain data using the formulas given above.  
 When CVSSVAL=1, then Advanced Nonlinear Solution 
performs this conversion using the formulas given above.  
Therefore engineering stress-strain data should be input.  
 The CVSSVAL=1 feature should only be used when all of the 
elements that use multilinear plastic materials also use large strain 
formulations.  
 The CVSSVAL=1 feature does not perform any conversions for 
the bilinear plastic material models, or for the plastic-cyclic 
material models.  
 
Material behavior beyond the last point of the stress-strain 
curve in multilinear plasticity 
 
The material behavior beyond the last point of the stress-strain 
curve in multilinear plasticity can be considered ruptured, or the 
curve can be extended indefinitely with the slope of its final 
segment. This depends on a global setting of the XTCURVE 
parameter in NXSTRAT with indefinite extension as the default. 
 
Modeling of rupture: Rupture conditions can also be modeled for 
the multilinear stress-strain curve. The rupture plastic strain 
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corresponds to the effective plastic strain at the last point input for 
the stress-strain curve. No rupture strain exists for the bilinear case. 

When rupture is reached at a given element integration point, 
the corresponding element is removed from the model (see Section 
10.4). 

 
Rate-dependent plasticity: The rate-dependent model is used to 
simulate the increase in the yield stress with an increase in strain 
rate.  

The rate-dependent model only applies to the isotropic plasticity 
models with isotropic hardening (bilinear or multilinear). 

The rate-dependent model is implemented for 2-D solid, 3-D 
solid, rod and shell elements. 

The effective yield stress including strain rate effects is 
 

0

0

1 ln 1
P

y y b
 


  
    

  




 

 

where 0
y  is the static yield stress, 0  is the transition strain rate 

and b  is the strain hardening parameter. Here P  is calculated 

using 
P

P

t

 



 .  

For more information on this formula, see the following 
reference 

 
ref W.H. Drysdale and A.R. Zak, “Mechanics of Materials 

and Structural Theories  A Theory for Rate Dependent 
Plasticity”, Computers and Structures, Vol. 20, pp. 259-
264, 1985. 

 
Rate-dependent plasticity is specified using the MATSR entry, 

in which the MID number refers to the MATS1 entry for the 
material. The MATSR entry contains BVALUE (corresponds to b ) 
and TSRATE (corresponds to 0 ).  MADSR also contains TID, the 

identification number of a TABLEST entry. If TID is specified, and 
the referenced TABLEST entry contains stress-strain curves at one 
or more strain rates, then Solution 601 calculates BVALUE by 
curve-fitting, overwriting any specified BVALUE.  If TID is 
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specified, and the referenced TABLEST entry contains stress-strain 
curves at two or more strain rates, then Solution 601 calculates 
BVALUE and TSRATE by curve-fitting, overwriting any specified 
BVALUE and TSRATE. 

In the TABLEST entry, the Ti are interpreted as plastic strain-

rates P , not as temperatures. In the TABLES1 entries referred to 
by the TIDi parameters, (xi, yi) are interpreted as (strain, stress). 

The curve-fitting is done as follows: For each plastic strain rate 

P , the average overstress ratio 
0

y

y




 is determined from the 

associated user-input stress-strain curve (in TABLES1). Then the 
curve-fitting is performed using the plastic strain rates and 
overstress ratios. 
 

3.4.2  Plastic-cyclic material model 
 

 This material model is based on 
 

 The von Mises yield condition (see p. 597, ref. KJB) 
 A flow rule using the von Mises yield function 
 An isotropic and/or kinematic hardening rule.  The isotropic 

and kinematic hardening rules used in the plastic-cyclic 
model are suitable for use in modeling cyclic plasticity.  

 
 The plastic-cyclic material model differs from the plastic-
bilinear and plastic-multilinear material models because the 
isotropic and kinematic hardening rules are different.  However, the 
plastic-cyclic material model can reproduce the plastic-bilinear and 
plastic-multilinear models when suitable material constants are 
chosen. 
 
 This material model can be used with the rod, 2-D solid, 3-D 
solid, Hermitian beam and shell elements. However this material 
model cannot be used with the CQUAD8 shell element, or with the 
composite shell element. 
 
 This model can be used with the small displacement/small 
strain, large displacement/small strain and large 
displacement/large strain formulations . Large displacement/large 
strain kinematics can only be used with the 2-D solid, 3-D solid 
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and shell elements. 
 

3.4.2.1  Fundamental concepts 
 
 Many of the ideas used in the plastic-cyclic material model are 
given in the following reference:  
 

ref J. Lemaitre and J.-L. Chaboche, Mechanics of Solid 
Materials, Cambridge University Press, 1990.  

 
We abbreviate this reference as ref LC in the discussion below. As 
an aid to understanding the model, whenever our notation differs 
from the notation used in ref LC, we give the equivalent Lemaitre 
and Chaboche notation. 
 
 The motivation for the plastic-cyclic material model is 
illustrated in Figs. 3.4-4 and 3.4-5. Fig. 3.4-4 shows a bar subjected 
to uniaxial cycling, with the strain prescribed. Fig. 3.4-5 shows 
response predictions from the plastic-bilinear and plastic-
multilinear material models of Section 3.4.1. On repeated cyclic 
loading, perfect plasticity and multilinear hardening plasticity 
produce stabilized plastic cycles with no additional hardening. 
Bilinear isotropic hardening does not produce a stable plastic cycle 
and bilinear kinematic hardening produces a very rough 
approximation to a stable plastic cycle. 
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Time

b) Prescribed strain time historya) Uniaxial cycling of a bar

S
tr

ai
n

Fig. 3.4-4: Uniaxial cycling example  
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Strain Strain

Strain

Strain

Strain

Stress

Stress

Stress

Stress

Stress

a) Perfect plasticity b) Bilinear isotropic hardening

c) Bilinear kinematic hardening d) Multilinear isotropic hardening

e) Multilinear kinematic hardening

Fig. 3.4-5: Response predictions using the plastic-bilinear and plastic-multilinear models 
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 Response predictions from the plastic-cyclic material model are 
illustrated in Fig. 3.4-6. When nonlinear kinematic hardening is 
used without isotropic hardening, a stable plastic cycle is reached 
after one cycle. In this stable plastic cycle, the transition from 
elastic to plastic conditions occurs more gradually than the 
corresponding transition from bilinear kinematic hardening. Cyclic 
hardening and cyclic softening are obtained by combining the 
nonlinear kinematic hardening with isotropic hardening or 
softening.  

 

Strain Strain

Strain

Stress

Stress

Stress

a) Nonlinear kinematic hardening,
no isotropic hardening or softening

b) Nonlinear kinematic hardening,
isotropic hardening

c) Nonlinear kinematic hardening,
isotropic softening

Fig. 3.4-6: Response predictions using the plastic-cyclic material model  
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 The plastic-cyclic material model can optionally contain a strain 
memory surface. The motivation for using the strain memory 
surface is shown in Fig. 3.4-7. Considering an increase in the 
prescribed strain amplitude, if no strain memory surface is used, 
then no additional cyclic hardening takes place, whereas if a strain 
memory surface is used, additional cyclic hardening takes place. 
 
 

Time

Strain

StrainStrain

StressStress

a) Prescribed strain time history

b) Stress-strain curve without
strain memory surface

Additional
cyclic
hardening

c) Stress-strain curve with
strain memory surface

Fig. 3.4-7: Response predictions with and without

strain memory surface  
 
 

 Ratchetting occurs when prescribed stresses with non-zero mean 
stress are applied to the bar, as shown in Fig. 3.4-8. 
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Time
Strain

Stress Stress

a) Prescribed stress time history

Fig. 3.4-8: Ratchetting using the plastic-cyclic material model

b) Stress-strain curve

 
 
 

Stresses, strains, stress-strain law: 
 

t t t t t t
m

   τ s I  

 

where t t τ  is the stress tensor ( σ  in ref LC), t t s  is the deviatoric 

stress tensor ( σ  in ref LC) and t t
m

  is the mean stress 

(hydrostatic stress H  in ref LC). 
 

t t t t t t
me   e e I  

 

where t t e  is the strain tensor (ε  in ref LC), t t e  is the 

deviatoric strain tensor ( ε  in ref LC) and t t
me  is the mean strain 

(hydrostatic strain H  in ref LC). 
 

3t t t t
m me    

2 ( )t t t t t t PG   s e e  
 
where   and G  are the bulk modulus and shear modulus, and 
t t P e  is the plastic strain ( Pε  in ref LC).  Thermal strains are not 
included in the above equations, but are included in the program 
when there are thermal effects. 
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Yield condition: The von Mises yield condition is 
 

        
2 21 1

0
2 3

t t t t t t t t
y yf       s α  

  

where t t α  is the back stress tensor ( X  and X  in ref LC, note 

that back stress is always deviatoric) and t t
y  is the yield stress 

( Y R   or k  in ref LC).  The norm of a symmetric tensor a  is 

defined as :a a a .  The yield condition is always evaluated 

at time t t  . 
 Fig. 3.4-9 shows the yield condition. 
 

s1

s3

t+ t� �

t+ t� s

t+ t�

s2

2
3

t+ t� �y

Fig. 3.4-9: von Mises yield surface in principal
deviatoric stress space

f =0y

 
 
 
Flow rule: The flow rule states that the direction of plastic strain 
increments is normal to the yield surface.   
 

  directions of directions of t t t t     PΔe s α  

 

where PΔe  is the increment in plastic strain, and   is a constant 

used to choose the yield surface configuration ( 0   corresponds 
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to the configuration at time t , 1   corresponds to the 

configuration at time t t  , other values of   correspond to 
intermediate configurations).  (The concept is similar to that used 
in alpha-integration; we would have used   instead of  , except 

that   is used for the back stresses.) The directions of a symmetric 

tensor a  are defined as directions of 
a

a
a

. 

 Fig. 3.4-10 shows the evolution of the yield surface using the 
stress-strain law, yield condition and flow rule. 
 
Strain memory surface: The memory-exponential isotropic 
hardening rule uses the concept of a strain memory surface with 

additional internal variables t t ξ  and t tq .  The strain memory 
surface is now briefly described. 
 
 The strain memory surface is defined in the space of plastic 

strains as the surface of a sphere centered at position t t ξ  with 

radius 
3

2
t tq .  (In ref LC, t t ξ  is written ζ ).  This surface can 

be written as 
 

   
2 22

0
3

t t t t t t
mf q     Pe ξ  

 
 Fig. 3.4-11 shows the strain memory surface. 
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Fig. 3.4-10: Incremental update of yield surface and plastic strains

a) Overview
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e3
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e1
P
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P
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Fig. 3.4-11: Strain memory surface in principal
plastic strain space

t+ t�
f =0m

 
 

The differential rules used for the evolution of the strain memory 
surface are 
 

(directions of ) : (directions of ( ))t t Pdq de P Pde e ξ  

 
and 
 

 directions of directions of ( )t t Pdξ e ξ  

 
in which the symbol <> means that <u>=0 when u<0, and <u>=u 
when u>0.   The incremental versions of these rules are 
 

                       (directions of ) : (directions of ( ))t t t t Pq e        P PΔe e ξ  

 
and 
 

 directions of directions of ( )t t t t     PΔξ e ξ  

 
Again, the  notation is used to denote a configuration between t  

and t t  .  These concepts are illustrated in Fig. 3.4-12.  
 

 



 3.4: Isothermal plastic material models 
 

 
 
Advanced Nonlinear Solution  Theory and Modeling Guide 191 

t�

t+ t� ���

�� parallel to n

te
P

�e
P

t+ t�
e

P

2
3 tq

t+ t�
2
3 q

Fig. 3.4-12: Incremental update of strain memory

surface, for =1�

n

 
 
 

  is a material constant that must be between 0 and 
1

2
.  Typically 

1

2
  . 

 These rules ensure that the strain memory surface at time t t   
encloses the strain memory surface for all preceding times.  The 
evolution of the strain memory surface in 1D uniaxial straining is 
shown in Fig. 3.4-13. 
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Fig. 3.4-13: Evolution of strain memory surface in
uniaxial cyclic straining

Time

e1
P

�1

q
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Shaded area is area
enclosed by strain
memory surface

 
 
Isotropic hardening rules: The isotropic hardening rules are 
shown in Fig. 3.4-14. 
 
Bilinear hardening: 
 

0t t t t P
y y PE e     

 

where 0
y  and PE  are material constants, and t t Pe  is the 

accumulated effective plastic strain ( p  in ref LC).  t t Pe  is 

calculated using t t P t P Pe e e    , where 
2

:
3

Pe  P PΔe Δe . 

 For bilinear hardening, T
P

T

EE
E

E E



 where TE  is the slope of 

the stress-strain curve during plasticity (this formula assumes no 
kinematic hardening). 
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�y

Fig. 3.4-14: Dependence of stress radius on accumulated
effective plastic strain
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Multilinear hardening: 
 

Pairs of ( , )P
ye   are given.  It is allowed for y  to either increase 

or decrease as Pe  increases. 
 If the multilinear hardening curve is given in terms of the 
uniaxial response ( , )e   where   is the tensile stress 

corresponding to the unaxial strain e , then  

,P
ye e

E

      
 

 are the corresponding points for the points 

( , )e  .  This formula assumes no kinematic hardening. 
 
Exponential hardening: 
 

0 (1 exp( ))t t t t P
y y Q b e       
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where Q  and b  are material constants.  Q  can be positive to 

model cyclic hardening, and Q  can be negative to model cyclic 
softening. 
 
Memory-exponential hardening (exponential hardening with strain 
memory surface): 
 

In this model, the yield surface size t t
y  depends on the strain 

memory size t tq  (see above for a description of the strain 
memory surface). 
 The yield surface size is 
 

0t t t t
y y R     

 

where t tR  is the change in the size of the yield surface.  t tR  is 
defined using the differential equation 
 

 ( )t t PdR b Q R de   
 

and is calculated using t t tR R R    , 

( )t t t t PR b Q R e     .  t tQ  is the asymptotic change in 
yield surface size, and is calculated as 
 

0( ) ( ) exp( 2 )t t t t t t
M MQ Q q Q Q Q q        

 

where t tq  is the size of the strain memory surface.   
 The material constants for the memory-exponential material 

model are 0
y , b , 0Q , MQ , b ,   and the strain memory surface 

parameter .  
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Kinematic hardening rule: The kinematic hardening rule is: 
 
Armstrong-Fredrick nonlinear kinematic hardening: 
 
The back stress is expressed as a sum of partial back stresses  
 

  ( )t t t t m α α  

 

where ( )t t m α  is partial back stress number m.  All of the partial 
back stresses are independent of each other. 
 Each partial back stress evolves according to the differential 
rule 
 

  ( ) ( ) ( ) ( )2

3
m m m t m Ph de Pdα de α  

 

where ( )mh  and ( )m  are material constants (these material 

constants are lC  and l  for partial back stress number l in ref LC).  

Assuming that the directions of plastic strain increments are 
constant during a time step, this can be integrated to obtain 
 

  ( ) ( ) ( ) ( ) ( )( ) exp( )t t m m m t m mb    α A A α  
 

where 
( )

( )
( )

2
(directions of )

3

m
m

m

h


 PA Δe , ( ) ( )m m Pb e   . 

 It is allowed to use one partial back stress, with 0  .  Then 

linear kinematic hardening is recovered, with pE h  (this formula 

assumes no isotropic hardening). 
 
Stress  plastic strain curve for uniaxial cycling 
 
 In uniaxial cycling, a typical stress – plastic strain curve is 
shown in Fig. 3.4-15.  Here only one partial back stress is used with 
material constants h  and  .  Since a stable cycle is considered 

here, y  is taken from the isotropic hardening rule assuming a 

very large value of Pe .  The hardening modulus is given by 
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 P yE h       on segment A-B.  The size of the plastic 

strain cycle can be related to the material constants using the 
relation 
 

  tanh
2 2

P

y

h e  


  
  

 
 

 

Thus, given several cycles for different cyclic strains, the material 
constants can be estimated using the above formula. 
 

     

�

��

2�y

Fig. 3.4-15: Stable uniaxial plastic cycle using
one term in Armstrong-Fredrick nonlinear
kinematic hardening rule
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A
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Stress  plastic strain curve for initial loading 
 
During initial loading, it can be shown that 
 

  1 exp P
y

h
e  


    

 
The corresponding stress  plastic strain curve is shown in Fig. 
3.4-16. Here only one partial back stress is used with material 
constants h  and  .  In this formula it is assumed that there is no 
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isotropic hardening, and that the yield stress is y .  Hence the 

hardening observed during initial loading can be modeled using 
nonlinear kinematic hardening, without the use of isotropic 
hardening. 
 

�

�y

Fig 3.4-16: Stress - plastic strain curve during initial loading,
using nonlinear kinematic hardening

eP

h ���

 
 
Combination of isotropic and kinematic hardening rules: By 
combining the Armstrong-Fredrick nonlinear kinematic hardening 
rule with the isotropic hardening rules, a wide variety of cyclic 
phenomena can be simulated, such as cyclic hardening and 
softening, shakedown and ratcheting.  See ref LC for details. 
 
Stress-strain integration: When plasticity is detected, the 
incremental plastic strains are solved for using an iterative solution 
procedure.  The maximum number of iterations can be specified, 
and the tolerance used in assessing convergence can be specified. 
 
Constitutive tensor: The constitutive tensor (stress-strain matrix) 
is constructed to be tangent. However, in general, the tangent 
constitutive tensor is non-symmetric, therefore the constitutive 
tensor is symmetrized. 
 
Formulations: When used with the small displacement/small 
strain formulation, a materially-nonlinear-only formulation is 
employed, when used with the large displacement/small strain 
formulation, a TL formulation is employed, and when used with the 
large displacement/large strain formulation, either a ULH or ULJ 
formulation is employed. 
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If geometrically nonlinear effects are to be included, the large 
displacements/large strain kinematics are preferred to the large 
displacement/small strain kinematics, even when the strains are 
numerically small.  The large displacement/small strain kinematics 
should be used only when the large displacement/large strain 
kinematics are not supported by the element. 
 
Mixed displacement-pressure formulation:  Plane strain, 
axisymmetric or 3-D solid elements that reference this material 
model should use the mixed displacement-pressure (u/p) element 
formulation. This is because the plastic strains are incompressible. 
This is done by setting UPFORM = 1 in the NXSTRAT command. 
 
Thermal strains: If a thermal load is applied to the structure, the 
thermal strains are taken into account but the material 
characteristics are considered to be temperature independent. 

 
Modeling of rupture: Rupture conditions can also be included 
with this model.   
 The maximum accumulated effective plastic strain can be 
specified for the rupture condition.  When rupture is reached at a 
given element integration point, the corresponding element is 
removed from the model (see Section 10.4). 
 

3.4.2.2  Specification of input 
 
MATPLCY entry  
 
Parameters ISO, KIN, RUP in this entry reference data defined in 
entries PLCYISO, PLCYKIN, PLCYRUP respectively. These 
entries provide the input for the isotropic, kinematic and rupture 
parts of the plastic-cyclic model, see below for a detailed 
description of these commands. 
 It is allowed to not specify a value for KIN or RUP.  Then these 
effects are not included in the model. 
 BETA is the integration factor   described above.  When 

BETA is blank (the default), the program chooses the value of   

as follows:  =1 for static or implicit time integration (Solution 

601);  =0 for explicit time integration (Solution 701).  MAXITE 
is the maximum number of iterations used to solve for the 
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incremental plastic strains. RTOL is a tolerance used to assess 
convergence of the iterations. RTOL can be thought of as a 
reference incremental plastic strain. 
 
PLCYISO entry 
 
Parameter TYPE=BLIN, MTLIN, EXP, MEMEXP specifies the 
isotropic hardening type as bilinear, multilinear, exponential or 
memory-exponential respectively. The remaining parameters of 
this entry specify the material constants for the isotropic hardening. 
 
PLCYKIN entry 
 
The parameters of this entry are used to specify the constants for 
the kinematic part of the plastic-cyclic model. 
 
PLCYRUP entry 
 
The parametrs of this entry are used to specify the constants for the 
rupture part of the plastic-cyclic model.  Rupture is based on the 
accumulated effective plastic strain. 
 
Conversion formulas 

 
Plastic-bilinear to plastic-cyclic: 

 
In general, given a plastic-bilinear material with given yield stress 
and tangent modulus ET, this material can be converted into an 
equivalent plastic-cyclic material with bilinear isotropic hardening, 

the same yield stress, and plastic modulus 
(E)(ET)

EP
E - ET

 . 

Plastic-multilinear to plastic-cyclic: 
 

In general, given a plastic-multilinear material with Young's 
modulus E and stress-strain points  
 
   strain(i)  stress(i)  

 
this material can be converted into an equivalent plastic-cyclic 
material with multilinear isotropic hardening and multilinear points  
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   aeps(i)  sr(i)  
 

using the formulas  
 
 aeps(i) strain(i) (stress(i) / E)  ,   sr(i) stress(i)  
 
Note that aeps at the elastic limit will always be zero. 

 

3.5  Temperature-dependent elastic material models 
 

 The thermal isotropic and thermal orthotropic material models 
are discussed in this section.  
 The thermal isotropic material is obtained with the MAT1 and 
MATT1 material entries.  
 The thermal orthotropic material is obtained for surface 
elements with the MAT2 and MATT2 material entries, or MAT8 
and MATT8 material entries; for 2-D elements with MAT3 and 
MATT3 material entries; and for solid elements with the MAT9 
and MATT9 material entries, or MAT11 and MATT11 material 
entries.  
 These commands allow the different elastic material constants 
to vary with temperature. Thermal strains are taken into account in 
these materials. 
 
 The thermal isotropic model is available for the rod, 2-D solid, 
3-D solid and shell elements. 
 
 The thermal orthotropic model is available for the 2-D solid, 
3-D solid and shell elements. 
 
 Both models can be used with small displacement/small strain 
and large displacement/small strain kinematics. The strains are 
always assumed to be small. 

When used with small displacement/small strain kinematics, a 
materially-nonlinear-only formulation is employed. 

When used with large displacement/small strain kinematics, 
either the TL or UL formulation is employed. 2-D, 3-D solids and 
shells use the TL formulations, and rods use a UL formulation. 
 
 In the data input for the analysis, the nodal point temperatures 
must be defined for all time steps. See Section 5.6. 
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 For these models, the elastic moduli, the shear moduli, the 
Poisson's ratios and the coefficients of thermal expansion defined 
in Section 3.2 are input as piecewise linear functions of the 
temperature, as illustrated in Fig. 3.5-1. Linear interpolation is used 
to calculate the material properties between input points. 
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Fig. 3.5-1: Variation of material properties for thermo-elastic model  
 
 The calculation of thermal strains is described in Section 3.1.6. 

                   
 Note that if the material constants are all temperature 
independent, and the material is isotropic, then thermal strains 
could alternatively have been modeled using the elastic isotropic 
material (non-thermal) of Section 3.2. 
 

 For the evaluation of the temperatures t  and 0  at the 
integration point considered, the isoparametric interpolation 
functions hi are used; e.g., in two-dimensional analysis we have 

 

 
1

q

i i
i

h 


  

 

where i  is the temperature at element nodal point i (see Fig. 
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3.5-2).  Note that when higher-order elements are used the 
temperatures at the integration point can be significantly different 
from the values at the nodal point (for example negative although 
all nodal point temperatures are greater than or equal to zero). 

 

 

Fig. 3.5-2: Interpolation of temperature at

integration points
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 For shell elements, the temperature at an integration point is 
established using the temperatures at the midsurface nodes and the 
temperature gradients.  Note that the temperature gradient at a shell 
midsurface node is defined in the direction of the mid-surface 
director vector at that node, see Section 2.3.3. 
 

3.6  Thermal elasto-plastic and creep material models 
 

 This section groups together thermal elasto-plastic materials and 
creep materials, since a unified general solution can be applied to 
these material types. The computational procedure is based on the 
effective stress function algorithm, detailed in Section 3.6.4. 

 
 The thermal elasto-plastic and creep models include the effects 
of 

 

 Isotropic elastic strains, via the MAT1 entry 

 Thermal strains, t TH
rse , via the MATT1 or the MAT1 entries.  

 Time-independent plastic strains, t p
rse , via the MATS1 entry 

 Time-dependent creep strains, t C
rse , via the CREEP entry, 

the CREEP and MATTC entries, or the MATCRP entry.  

ref. KJB 
Section 6.6.3 
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 The constitutive relation used is 
 

  t t E t t P t C t TH
ij ijrs rs rs rs rsC e e e e      (3.6-1) 

 

where t
ij  is the stress tensor at time t and t E

ijrsC  is the elasticity 

tensor at the temperature corresponding to time t. The tensor t E
ijrsC  

can be expressed in terms of Young's modulus tE and Poisson's 
ratio tv both of which may be temperature-dependent. 
 
 Note that the thermal, plastic and creep parts of these material 
models are optional. If, however, the omitted strain components 
result in one of the material models detailed in one of the previous 
sections, then the program will select that material model. 
 
 The formulations provided in this section are very general, and 
can describe any material combining elastic, plastic, thermal and 
creep strains. The combinations given in Table 3.6-1 are allowed. 
 
 These material models can be used with the rod, 2-D solid, 3-D 
solid, and shell elements. 
 
 These models can be used with small displacement/small 
strain, large displacement/small strain and large 
displacement/large strain kinematics. 

When used with small displacement/small strain kinematics, a 
materially-nonlinear-only formulation is employed. 

When used with large displacement/small strain kinematics, 
either a TL or a UL formulation is employed (TL for 2-D and 3-D 
solids and shells, and UL for rods). 

When used with large displacement/large strain kinematics, the 
ULH (updated Lagrangian Hencky) formulation is employed. This 
is only supported for 2-D solid and 3-D solid elements. 

 
 If geometrically nonlinear effects are to be included, the large 
displacements/large strain kinematics are preferred to the large 
displacement/small strain kinematics, even when the strains are 
numerically small.  The large displacement/small strain kinematics 
should be used only when the large displacement/large strain 
kinematics are not supported by the element. 
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Table 3.6-1: Combinations of elastic, plastic and creep strains 
 

Description Elastic Plastic Creep Bulk data entries 
Elastic 
creep 

Yes No Yes MAT1, CREEP, or MAT1, MATCRP 

Thermal 
elastic 
creep 

Yes No Temp-
dep 

MAT1, CREEP, MATTC, or MAT1, MATCRP 

Thermal 
elasto-
plastic 

Temp-
dep 

Yes No MAT1, MATT1, MATS1, with TID in MATS1 
pointing to a TABLES1 entry 

Yes Temp-
dep 

No MAT1, MATS1, with TID in MATS1 pointing to 
a TABELST entry 

Temp-
dep 

Temp-
dep 

No MAT1, MATT1, MATS1, with TID in MATS1 
pointing to a TABELST entry 

Plastic-
creep 

Yes Yes Yes MAT1, MATS1, CREEP, with TID in MATS1 
pointing to a TABLES1 entry 

Temp-
dep 

Yes Yes MAT1, MATT1, MATS1, CREEP, with TID in 
MATS1 pointing to a TABLES1 entry 

Thermal 
plastic-
creep 

Yes Temp-
dep 

Yes MAT1, MATS1, CREEP, with TID in MATS1 
pointing to a TABLEST entry 

Temp-
dep 

Temp-
dep 

Yes MAT1, MATT1, MATS1, CREEP, with TID in 
MATS1 pointing to a TABLEST entry 

Yes Yes Temp-
dep 

MAT1, MATS1, CREEP, MATTC, with TID in 
MATS1 pointing to a TABLES1 entry 

Temp-
dep 

Yes Temp-
dep 

MAT1, MATT1, MATS1, CREEP, MATTC, 
with TID in MATS1 pointing to a TABLES1 
entry 

Yes Temp-
dep 

Temp-
dep 

MAT1, MATS1, CREEP, MATTC, with TID in 
MATS1 pointing to a TABLEST entry 

Temp-
dep 

Temp-
dep 

Temp-
dep 

MAT1, MATT1, MATS1, CREEP, MATTC, 
with TID in MATS1 pointing to a TABLEST 
entry 

 
Notes: 

 
1. "No" means that this strain is not included in the material. "Yes" means that this strain is 
included in the material description, and that the material constants for this strain are 
temperature-independent. "Temp-dep" means that this strain is included in the material 
description, and that the material constants for this strain are temperature-dependent. 
 
2. Instead of using TID in MATS1 pointing to a TABLES1 entry, it is also allowed to specify 
H and LIMIT1 in MATS1.  The resulting material uses bilinear hardening, however the yield 
stress and hardening modulus are temperature-independent. 
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 Plane strain, axisymmetric or 3-D solid elements that reference 
these material models should preferably employ the mixed u/p 
element formulation.  This is done by setting UPFORM=1 in the 
NXSTRAT entry.  
 
 Note that the constitutive relations for the thermal, plastic and 
creep strains are independent of each other; hence the only 
interaction between the strains comes from the fact that all strains 
affect the stresses according to Eq. 3.6-1. Fig. 3.6-1 summarizes the 
constitutive description for a one-dimensional stress situation and a 
bilinear stress-strain curve. 
 
 Since there is no direct coupling in the evaluation of the 
different strain components, we can discuss the calculation of each 
strain component independently. 
 

ref. M.D. Snyder and K.J. Bathe, "A Solution Procedure for 
Thermo-Elastic-Plastic and Creep Problems," J. Nuclear 
Eng. and Design, Vol. 64, pp. 49-80, 1981. 

 
ref. M. Kojić and K.J. Bathe, "The Effective-Stress-Function 

Algorithm for Thermo-Elasto-Plasticity and Creep," Int. 
J. Numer. Meth. Engng., Vol. 24, No. 8, pp. 1509-1532, 
1987. 

 
 In multilinear plasticity, the rupture plastic strain corresponds to 
the effective plastic strain at the last point input for the stress-strain 
curve. 

 
 When rupture is reached at a given element integration point, 
the corresponding element is removed from the model (see Section 
10.4). 
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(b) Strains considered in the model
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Fig. 3.6-1: Thermo-elasto-plasticity and creep constitutive

description in one-dimensional analysis  
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3.6.1  Evaluation of thermal strains 
 

 The thermal strains are calculated as described in Section 3.1.6.  
 

3.6.2  Evaluation of plastic strains 
 
 Plasticity effects are included in the thermal elasto-plastic 
material model and is based on the von Mises yield criterion, an 
associated flow rule, isotropic or kinematic hardening (no mixed 
hardening), and bilinear or multilinear stress-strain curves (based 
on the H, LIMIT1 and TID fields in MATS1). 

 The plastic strains are calculated using the von Mises plasticity 
model (see Section 3.4) with temperature-dependent material 
parameters (Young's modulus, Poisson's ratio, stress-strain curves, 
...).  
 
 The yield function is, for the case of isotropic hardening 

 

 2
v

1 1

2 3
t t t t

y yf   s s  

 
and for the case of kinematic hardening 

 

     2
v

1 1

2 3
t t t t t t

y yf     s α s α  

 

where ts  is the deviatoric stress tensor, v
t

y  is the virgin yield 

stress corresponding to temperature t  and tα  is the shift of the 
stress tensor due to kinematic hardening. 

 
 The expressions for plastic strain increments resulting from the 

flow theory are P t
ij ijde d s  for isotropic hardening and 

 P t t
ij ij ijde d s    for kinematic hardening, in which d  is the 

plastic multiplier (positive scalar) which can be determined from 

the yield condition 0t
yf  . In the case of kinematic hardening, we 

express the change of the yield surface position in the form 
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 t P
ij ijd Cde   

 

where tC  is the modulus 
 

 
2 2

3 3

t t
t tT

Pt t
T

E E
C E

E E
 


 

 

In the case of multilinear yield curves, t
TE  represents the tangent 

modulus of the segment on the stress - total strain yield curve 

corresponding to the accumulated effective plastic strain t Pe , and 
t

PE  represents the tangent modulus of the segment on the stress - 

plastic strain yield curve corresponding to the accumulated 

effective plastic strain t Pe . 
 
 When H and LIMIT1 are specified in MATS1, bilinear 
hardening plasticity is assumed, in which only the elastic material 
parameters can be temperature dependent (Young’s modulus, 
Poisson’s ratio and coefficient of thermal expansion). The yield 
stress and hardening modulus are temperature independent.  
 
 When TID in MATS1 points to a TABLES1 entry, multilinear  
hardening plasticity is assumed, in which only the elastic material 
parameters can be temperature dependent. The yield curve is 
temperature independent.  
 
 When TID in MATS1 points to a TABLEST entry, multilinear  
hardening plasticity is assumed, in which the elastic material 
parameters, and also the yield curves, can be temperature 
dependent  
 The yield curves are interpolated as shown in Fig. 3.6-2. 
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a) Stress-strain curves input data

b) Yield curves
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Fig. 3.6-2: Interpolation of multilinear yield curves with temperature 
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 The formula t P
ij ijd Cde   used in kinematic hardening 

requires modification to avoid nonphysical effects when t
PE  , and 

hence t C , is a function of temperature. 
 
 Here is an example showing a nonphysical effect that occurs 

when the formula t P
ij ijd Cde   is used without modification.  

Consider the following material description, in which kinematic 
hardening is used: 

 
Temperature E  

yv  TE  PE  

0 1E6 0 100 1996.008 2000 
200 1E6 0 100 999.001 1000 

 
The yield curves for this material are shown in Fig. 3.6-3.  Take a 
uniaxial specimen, set the temperature to 0 and load with 
prescribed force until the uniaxial stress is 130.  The corresponding 

plastic strain is 0.015Pe   (since 100 2000 130Pe  ).  This 
point is labeled A in Fig. 3.6.3. 
 Now, without changing the prescribed force, change the 

temperature to 200.  For the plastic strain 0.015Pe  , the yield 

stress is 100 1000 115Pe  , which is less than the stress of 130.  
So we would expect that the material would plastically deform 
further until the (plastic strain, stress) point is on the yield curve 
corresponding to temperature 200 (point B in Fig. 3.6-4).  However 
the plastic strain does not change and the current stress remains 
above the yield curve for temperature 200 (point A).  
 The reason for this unexpected behavior is as follows: The yield 
condition involves the initial yield stress, which is unchanged, the 
current stress, which is unchanged and the back stress, which is 
also unchanged (if the back stress had changed, then the yield 
condition would not be satisfied).  Since the change in plastic strain 

is related to the change in back stress through t P
ij ijd Cde  , 

because the back stress does not change, the plastic strain does not 
change either.  
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Stress

A B�y=130
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Fig. 3.6-3: Example showing nonphysical results in kinematic

hardening when is a function of temperatureEP

Plastic strain

 
 
 Chaboche has discussed the formulation of kinematic hardening 
under varying temperature conditions, and has pointed out other 
nonphysical effects when the above back stress evolution rule is 
used in varying temperature conditions, see Section 4.4 of the 
following reference:  

 
ref. J.L. Chaboche, “Cyclic viscoplastic constitutive 

equations, part I: A thermodynamically consistent 
formulation”, J. Appl. Mech, December 1993, Vol 60, pp 
813-821.  

 
When the yield curve is a straight line for each temperature (that is, 

when tC  is a function of temperature but not of plastic strain), 
Chaboche suggests a rule equivalent to  

 
t t t P

ij ijC e    

 
which in differential form becomes  

 
t P t P

ij ij ijd C de e dC     

 
It is seen that the first term on the right-hand-side corresponds to 
the formulation presented above.  The second term on the right-
hand side corresponds to a “back stress temperature correction”, 
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since this term is nonzero only if the temperature is varying. 
 When the yield curve is not a straight line for each temperature 

(that is, when tC  is a function of temperature and of plastic strain), 
we again include a temperature correction corresponding to the 
second term on the right-hand side, but in which dC  in the second 
term is evaluated only due to changes in temperature.  
 When the temperature correction is included in the above 
example, the plastic strain in the above example increases to point 
B when the temperature is increased to 200, so that the current 
stress remains on the yield curve.  This response is the expected 
behavior. 

 
 The back stress temperature correction can be selected using the 
BSTC parameter of the NXSTRAT entry. BSTC=0 means to not 
use the back stress temperature correction (the default).  BSTC=1 
means to use the back stress temperature correction. 
 

3.6.3  Evaluation of creep strains 
 

 Two creep laws are currently available in Solution 601. The first 
called the Power creep law is obtained by setting TYPE = 300 in 
the CREEP material entry, or by setting TYPE = 301 in the 
MATCRP material entry. The second creep law called the 
Exponential creep law is obtained by setting TYPE = 222 in the 
CREEP material entry. The Power creep law is currently supported 
for the elastic-creep, thermal elastic-creep, plastic-creep and 
thermal plastic-creep material models. The Exponential creep law 
is currently supported only for the elastic-creep and plastic-creep 
material models. 
 
 The effective creep strain is calculated as follows: 

 
Power creep law (creep law 1) : 
 

 t C t b de a t    
 
in which σ is the effective stress, t is the time, and a, b, d are 
material constants from the CREEP or MATCRP material 
entries. These three constants can be set to be temperature 
dependent via the MATTC entry. 
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Exponential creep law (creep law 2) : 
 

       1 R tt Ce F e G t          

with 
 

            ; ;
t tdb t fF a e R c G e e              

 
in which a through f are material constants from the CREEP 
material entry. 

 The creep strains are evaluated using the strain hardening  
procedure for load and temperature variations, and the O.R.N.L. 
rules for cyclic loading conditions. 

 
ref. C.E. Pugh, J.M. Corum, K.C. Liu and W.L. Greenstreet, 

"Currently Recommended Constitutive Equations for 
Inelastic Design of FFTF Components," Report No. TM-
3602, Oak Ridge National Laboratory, Oak Ridge, 
Tennessee, 1972. 

 
The procedure used to evaluate the incremental creep strains is 

summarized in the following: Given the total creep strains t C
ije  and 

the deviatoric stresses t t
ijs , 

 
1) Calculate the effective stress 

 

 

1

23

2
t t t t t t

ij ijs s      
 

 
2) Calculate the pseudo-effective creep strain 

 

   
1

22

3
t C t C orig t C orig

ij ij ij ije e e e e
     

 

 
 

3a)  For power creep with temperature-independent material 
constants, calculate the effective creep strain and effective creep 
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strain rate at time t t  using  
 

      22 2
1

1/1/ 1/

0

aa a at t C t C t te e a t     

 
t t C t C

t t C e e
e

t


 




  

 
3b) For other creep laws (including power creep with 
temperature dependent constants), calculate the pseudo-time t  
satisfying  
 

   C t t t t t C C t t t te t e e t t              

 

where  C t t t te t     is the generalized uniaxial creep law 

and    C t t t t

C t t t t
d e t

e t
d t

 
 

 
 

 
  


 . Then calculate 

the effective creep strain and effective creep strain rate at time 
t t   using  
 

 t t C C t t t te e t      ,   t t C C t t t te e t       . 

 

4) Calculate t t  using 
 

 
t t C

t t
t t

e












 

 
5) Calculate the incremental creep strains using  

 

 C t t t t
ij ije t s     

 
The use of the pseudo-time in step 3b corresponds to a strain 

hardening procedure. See ref. KJB, pp 607-608 for a discussion of 
strain hardening for calculation of creep strains. 
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3.6.4  Computational procedures 
 

 The stresses and strains at the integration points are evaluated 
using the effective-stress-function algorithm. 

 
ref. M. Kojić and K.J. Bathe, "The Effective-Stress-Function 

Algorithm for Thermo-Elasto-Plasticity and Creep," Int. 
J. Numer. Meth. Engng., Vol. 24, No. 8, pp. 1509-1532, 
1987. 

Briefly, the procedure used consists of the following calculations. 
The general constitutive equation  

 

  ( ) ( ) ( ) ( )t t i t t E t t i t t P i t t C i t t TH        C e e e e  (3.6-1) 

 
is solved separately for the mean stress and for the deviatoric 
stresses. In this equation the index (i) denotes the iteration counter 
in the iteration for nodal point equilibrium. For easier writing this 
index will be dropped in the discussion to follow. The mean stress 
is calculated as 
 

  
1 2

t t
t t t t t t TH

m mt t

E
e e


  

 
 

 (3.6-2) 

 

The deviatoric stresses t t s  depend on the inelastic strains and 
they can be expressed as 
 

  1
1t t t t t

t t
E

t
a t


  

  
 


         

s e s  (3.6-3) 

 

where 
1

t t
t t

E t t

E
a





 

, ts  = deviatoric stress at the start of the 

time step and  is the integration parameter used for stress 

evaluation  0 1  . The creep and plastic multipliers   and 

 are functions of the effective stress t t  only, and they 
account for creep and plasticity; also 
 

ref. KJB 
Section 6.6.3 
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 t t t t t P t C    e e e e  
 

is known since the deviatoric strains t t e , plastic strains t Pe  and 

creep strains t Ce  are known from the current displacements and 
the stress/strain state at the start of the current time step. 

The following scalar function  t tf   is obtained from Eq. 

(3.6-3) 
 

   2 2 2 0t t t tf a b c d             (3.6-4) 

 
The zero of Eq. (3.6-4) provides the solution for the effective stress 
t t , where  

 
t t

Ea a t         

 3 1 t t t
ij ijb t e s      

 1 tc t     

2 3

2
t t t t

ij ijd e e    

 
with summation on the indices i, j. 

Once the solution for t t  has been determined from Eq. 

(3.6-4), simultaneously with the scalars   and   from the creep 

and plasticity conditions, the deviatoric stress t t s  is calculated 
from Eq. (3.6-3), and the plastic and creep strains at the end of the 
time step are obtained as  

 

 
(1

t t P t P t t

t t C t C t t t t 



  

 

 

 

       

e e s

e e s s
 

 
The above equations correspond to isotropic hardening 

conditions and a general 3-D analysis. The solution details for 
kinematic hardening conditions and for special problems (for the 
plane stress and shell elements) are given in the above cited 
references, and also in the following reference: 
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ref. M. Kojić and K.J. Bathe, "Thermo-Elastic-Plastic and 
Creep Analysis of Shell Structures", Computers & 
Structures, Vol. 26, No 1/2, pp. 135-143, 1987. 

 
 

3.7  Hyperelastic material models 
 

 The hyperelastic material models available in Advanced 
Nonlinear Solution are the Mooney-Rivlin, Ogden, Arruda-Boyce, 
Hyperfoam, and Sussman-Bathe material models. They are all 
defined using the MATHE command. In addition MATHP can be 
used to define a hyperelastic Mooney-Rivlin material. 
 
 This material model can be employed with the 2-D solid, 3-D 
solid and 3D-shell elements. 

 
 This material model uses large displacement/large strain 
kinematics. A total Lagrangian (TL) formulation is employed. The 
same formulation is used if a large displacement/small strain 
kinematics is selected. 
 
 Viscoelastic effects and Mullins effects can be included using 
the MATHEV and MATHEM entries. 
 
 Thermal strains can be included via a constant thermal 
expansion coefficient. Section 3.7.6 shows how thermal strains are 
computed for hyperelastic materials. 
 
 In Solution 701 only the Mooney-Rivlin, Ogden and Sussman-
Bathe  material models can be used, and only for 3-D solid 
elements. 
 
 The isotropic hyperelastic effects are mathematically described 
by specifying the dependence of the strain energy density (per unit 
original volume) W  on the Green-Lagrange strain tensor ij . 

 
 We now give a brief summary of the quantities and concepts 
used. For more information, refer to ref KJB, section 6.6.2. Here 
and below, we omit the usual left superscripts and subscripts for 
ease of writing. Unless otherwise stated, all quantities are evaluated 
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at time t  and referred to reference time 0 . 
 
 Useful quantities are the Cauchy-Green deformation tensor ijC , 

given by 
 
 2ij ij ijC      (3.7-1) 

 
where ij  is the Kronecker delta; the principal invariants of the 

Cauchy-Green deformation tensor,  
 

 1 kkI C ,     2
2 1

1

2 ij ijI I C C  ,    3 detI  C  (3.7-2a,b,c) 

 
the reduced invariants: 
 

 
1

3
1 1 3I I I  , 

2

3
2 2 3 I I I  , 

1

2
3J I , (3.7-3a,b,c) 

 
the stretches i  where the i ’s are the square roots of the principal 

stretches of the Cauchy-Green deformation tensor; and the reduced 
stretches:  
 

   
1

3
i i 1 2 3       (3.7-4) 

 
Note that  
 
  1 2 3J     (3.7-5) 

 
is the volume ratio (ratio of the deformed volume to the 
undeformed volume). 
 
 The strain energy density W  is written either in terms of the 
invariants or in terms of the stretches. In many cases, the strain 
energy density is conveniently written as the sum of the deviatoric 
strain energy density DW  and the volumetric strain energy density 

VW .  
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 With knowledge of how the strain energy density W  depends 
on the Green-Lagrange strain tensor (through the invariants or 
stretches), the 2nd Piola-Kirchhoff stress tensor is evaluated using 
 

 
1

2ij
ij ji

W W
S

  
     

 (3.7-6) 

 
and the incremental material tensor is evaluated using 

 

 
1

2
ij ij

ijrs
rs sr

S S
C

  
    

 (3.7-7) 

 
3.7.1  Mooney-Rivlin material model 


 The Mooney-Rivlin material model is obtained by setting 
Model=Mooney in the MATHE material entry. It can also be 
obtained using the MATHP material entry. It is based on the 
following expression of the strain energy density: 

 

        
       
    

2

10 1 01 2 20 1 11 1 2

2 3 2

02 2 30 1 21 1 2

2 3

12 1 2 03 2

3 3 3 3 3

3 3 3 3

3 3 3

DW C I C I C I C I I

C I C I C I I

C I I C I

         

      

   

 

 (3.7-8) 
 
where Cij are material constants , and 1I  and 2I  are the first and 
second strain invariants at time t, referring to the original 
configuration (see ref. KJB, Section 6.6.2 for the definitions of the 
strain invariants). 
 Note that constants Aij used in the MATHP material entry are 
identical to Cij constants used in MATHE and in the equation 
above. 

 
 This strain energy density expression assumes a totally 

incompressible material  3 1 .I   It is modified as explained below 

for plane strain, axisymmetric or 3-D analysis. 
 

ref. KJB 
Section 6.6.2 
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Plane stress analysis: In plane stress analysis, the material is 
assumed to be totally incompressible. Therefore VW  is zero and 

DW W . A displacement-based finite element formulation is used, 
in which the incompressibility condition of the material is imposed 
by calculating the appropriate thickness of the material. 
 
Plane strain, axisymmetric and 3-D analysis: In plane strain, 
axisymmetric and 3-D analysis, the material is modeled as 
compressible (that is, the bulk modulus is not infinite), but the bulk 
modulus can be set high so that the material is “almost 
incompressible”.  
 The Mooney-Rivlin strain energy density equation is modified 
by: 
 
1) substituting for the invariants 1 2,I I  the reduced invariants 

1 2,I I , 

2) removing the condition 3 1I  , and  

3) adding the volumetric strain energy density 
 

  21
1

2VW J   (3.7-9) 

 
where κ is the bulk modulus given by K in the MATHE material 
entry (or two times D1 in the MATHP material entry). This 
expression for the volumetric strain energy density yields the 
following relationship between the pressure and the volume ratio: 
 

   1p J    (3.7-10) 

 
 The mixed u/p formulation (u/p formulation) is always used for 
these elements, to avoid volumetric locking. The material stress-
strain descriptions are obtained by differentiation of W  to obtain 
stresses due to the element displacements and then taking into 
account the effect of the separately interpolated pressure. 

 
ref. T. Sussman and K.J. Bathe, "A Finite Element 

Formulation for Nonlinear Incompressible Elastic and 
Inelastic Analysis," J. Computers and Structures, Vol. 

ref. KJB 
Section 6.6.2 
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26, No. 1/2, pp. 357-409, 1987. 
 

Selection of material constants: The Mooney-Rivlin material 
description used here has 9 Cij constants and the bulk modulus κ. 
Strictly speaking, this material law is termed a higher-order or 
generalized Mooney-Rivlin material law. Choosing only C10 ≠ 0 
yields the neo-Hookean material law, and choosing only C10 ≠ 0, 
C01 ≠ 0 yields the standard two-term Mooney-Rivlin material law.  

The small strain shear modulus and small strain Young’s 
modulus can be written in terms of these constants as (assuming 
   ) 

 

  10 012G C C   (3.7-11) 

  10 016E C C   (3.7-12) 

 
These moduli must be greater than zero. 
 
 The bulk modulus κ is used to model the compressibility of the 
material for plane strain, axisymmetric and 3-D analysis. 

 
 Solution 601 assumes a default for the bulk modulus based on 
small strain near-incompressibility, i.e., 

 

 
 

   with 
3 1 2

E 


  


 (3.7-13) 

 
where E is the small strain Young's modulus or, in terms of the 
small strain shear modulus G, 

 

 
 

 
2 1

500     for 
3 1 2

G
G


 




   


 (3.7-14) 

 
This rule of thumb can be used to estimate the bulk modulus in the 
absence of experimental data. However, lower values of the bulk 
modulus can be used to model compressible materials. 

 
 Solution 701 assumes the same bulk modulus based on small 
strain near-incompressibility. However, this can significantly 
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reduce the stable time step. In such cases, is better to use a bulk 
modulus that results in ν=0.49. 
 
 When automatic time step calculation is used for a Mooney-
Rivlin material in Solution 701, the critical time step is governed 
by the dilatational wave speed. This is most frequently an 
acceptable assumption since the material is almost incompressible. 
 
 As the material deforms, the bulk to shear modulus ratio may 
change, because the instantaneous shear modulus is dependent on 
the amount of deformation. A value of the bulk modulus that 
corresponds to near incompressibility for small strains may not be 
large enough to correspond to near incompressibility for large 
strains.  

 
3.7.2  Ogden material model 

 

 The Ogden material model is obtained by setting Model=Ogden 
in the MATHE material entry. It is based on the following 
expression: 
 

 
9

1 2 3
1

3n n nn
D

n n

W      


 
      

 
  (3.7-15) 

 
where n and n  are Ogden material constants. 

 
 This strain energy density expression assumes a totally 

incompressible material  3 1I  . As in the Mooney-Rivlin 

material, the strain energy density expression of the Ogden material 
is used unmodified for plane stress analysis, and is modified for 
plane strain, axisymmetric and 3-D analysis. The modification is 
made by: 
 
1) substituting for the stretches 1 2 3, ,    the reduced stretches 

1 2 3, ,   , 

2) removing the condition 11 2 3    , and 

3) adding the volumetric strain energy density 
 

ref. KJB 
Section 6.6.2 
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    2 21 1
1 1

2 2V 1 2 3W J         (3.7-16) 

 
where κ is the bulk modulus. The relationship between the pressure 
and the volumetric ratio is the same as for the Mooney-Rivlin 
material. 
 The u/p formulation is always used for plane strain, 
axisymmetric and 3-D elements. For comments about the u/p 
formulation, see the corresponding comments in the Mooney-
Rivlin material description. 

 
Selection of material constants: The Ogden material description 
used here has 19 constants: , ,  1,...,9n n n    and the bulk 

modulus. Choosing only , 0,  1, 2,3n n n     the standard three-

term Ogden material description is recovered. 
The small strain shear modulus and small strain Young’s 

modulus can be written as (assuming    ) 
 

 
9

1

1

2 n n
n

G  


   (3.7-17) 

 

 
9

1

3

2 n n
n

E  


   (3.7-18) 

 
These moduli must be greater than zero. 

 When automatic time step calculation is used for an Ogden 
material in Solution 701, the critical time step is governed by the 
dilatational wave speed. This is most frequently an acceptable 
assumption since the material is almost incompressible. 
 
 For comments about the bulk modulus, see the corresponding 
comments about the bulk modulus in the Mooney-Rivlin material 
description. 

 
3.7.3  Arruda-Boyce material model 

 

 The Arruda-Boyce model is obtained by setting MODEL = 
ABOYCE in the MATHE material entry. It is based on the 



Chapter 3: Material models and formulations 
 

 
 
224 Advanced Nonlinear Solution  Theory and Modeling Guide 

following expression: 
 

 
     

   

2 3
1 1 12

4 5
1 13 4

1 1 11
[ 3 9 27
2 20 1050

19 519
81 243 ]

7000 673750

D KTW N I I I
N N

I I
N N

     

   
(3.7-19) 

 
where NKT is a material constant and N is a material parameter 
representing the number of statistical links of the material chain. 
 
 The Arruda-Boyce material model is described in the following 
reference: 
 

ref. E. M. Arruda and M. C. Boyce, “A three-dimensional 
constitutive model for the large stretch behavior of 
rubber elastic materials”, J. Mech. Phys. Solids, Vol,. 41 
(2), pp 389-412 (1993).  

 
 This strain energy density expression assumes a totally 

incompressible material  3 1 .I   As in the Mooney-Rivlin 

material, the strain energy density expression of the Arruda-Boyce 
material is used unmodified for plane stress analysis, and is 
modified for plane strain, axisymmetric and 3-D analysis. The 
modification is made by: 
 
1) substituting for the strain invariant 1I  the reduced strain 

invariant 1I , 

2) removing the condition 3 1I  , and 

3) adding the volumetric energy term  
 

  ln ( 1)VW J J J    (3.7-20) 

 
where κ is the small-strain bulk modulus. The relationship between 
the pressure and the volume ratio is 
 
  lnp J   (3.7-21) 
 
 

ref. KJB 
Section 6.6.2 
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 The u/p formulation is always used for plane strain, 
axisymmetric and 3-D elements. For comments about the u/p 
formulation, see the corresponding comments in the Mooney-
Rivlin material description. 
 
 When plane strain, axisymmetric or 3-D elements are used, 
there should be at least one solution unknown. This is because the 
constraint equation used in the u/p formulation is nonlinear in the 
unknown pressures. Therefore equilibrium iterations are required 
for convergence, even when all of the displacements in the model 
are prescribed. 
 
 Material constant KTN  is only an approximation to the initial 

shear modulus G .  The relationship between KTN  and G  is 
 

 
2 3 4

3 99 513 42039
1

5 175 875 67375KTG N
N N N N

      
 

 

 
3.7.4  Hyperfoam material model 


 The hyperfoam material model is obtained by setting 
Model=Foam in the MATHE material entry. It is based on the 
following expression: 

 

  1 2 3
1

1
3 1n n n n n

N
n

n n n

W J       
 





 
      

 
  (3.7-22) 

 
in which there are the material constants , , , 1,...,n n n n N    . 

The maximum value of N is 9. 
 
 A material model similar to the hyperfoam material model is 
described in the following reference: 
 

ref. B. Storåkers, “On material representation and 
constitutive branching in finite compressible elasticity”, 
J. Mech. Phys. Solids, Vol,. 34(2), pp 125-145 (1986).  

 
In this reference, n  is the same for all values of n. 
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 The strain energy density can be split into deviatoric and 
volumetric parts 

  /3
1 2 3 3

1

3n n n n

N
n

D
n n

W J      


       (3.7-23) 

     / 3
3 3

1

1
3 1 1n n n

N
n

V
n n n

W J J  
 





 
    

 
  (3.7-24) 

 
Notice that D VW W W  . This decomposition of the strain energy 

density has the advantage that the stresses obtained from the 
deviatoric and volumetric parts separately are zero when there are 
no deformations: 
 

  
0

0

1
0

2ij

ij

D D D
ij

ij ji

W W
S

 
 

  
      

, 

  
0

0

1
0

2ij

ij

V V V
ij

ij ji

W W
S

 
 

  
      

 

 
Notice that DW  contains the volumetric part of the motion through 

the term /3
33 nJ  . Therefore DW  is not entirely deviatoric. 

 
 The material is not assumed to be totally incompressible. 
Because both DW  and VW  contain the volumetric part of the 

motion, the mixed u/p formulation cannot be used with the 
hyperfoam material. A displacement-based formulation is used. 
 
Selection of material constants: The hyperfoam material 
description used here has 27 constants: , , ,  1,...,9n n n n    .  

The small strain shear modulus and small strain bulk modulus 
can be written as  

 

 
9

1

1

2 n n
n

G  


   (3.7-25) 
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9

1

1

3n n n
n

   


   
 

  (3.7-26) 

 
These moduli must be greater than zero, hence we note that n  

should be greater than –1/3.  
 When all of the n  are equal to each other  , then the 

Poisson’s ratio is related to   using 
 

 
1 2







 (3.7-27) 

 
 The hyperfoam material model is generally used for highly 
compressible elastomers.  
 If the ratio of the bulk modulus to shear modulus is high 
(greater than about 10), the material is almost incompressible and 
we recommend that one of the other hyperelastic materials be used. 
 

3.7.5  Sussman-Bathe material model 
 
 The Sussman-Bathe model is obtained by setting MODEL = 
SUSSBAT in the MATHE material entry. It is based on the 
following equation: 
 
 1 2 3( ) ( ) ( )DW w e w e w e    (3.7-28) 

 
where w(e) is a function of the principal logarithmic strain (Hencky 
strain) and e1, e2, and e3 are the principal logarithmic strains. 
 
 The primary goal of the model is to fit given uniaxial 
tension/compression data very well. This goal is accomplished by 
using a spline to fit the derivative of w(e), as described in detail 
below. 
 Of course, when uniaxial tension/compression data is known, a 
curve fitting approach can, in theory, be used to determine the 
constants for the other hyperelastic models, e.g. the Ogden material 
model. But this curve fitting in practice does not provide good fits 
to the data under many circumstances.  
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 This strain energy density expression assumes a totally 
incompressible material (I3 = 1) and is modified as explained below 
for plane strain, axisymmetric or 3-D analysis. 
 
 The Sussman-Bathe model is given in the following reference 
 

ref. T. Sussman and K.J. Bathe, “A model of incompressible 
isotropic hyperelastic material behavior using spline 
interpolations of tension-compression test data”, 
Commun. Numer. Meth. Engng, Vol. 25, Issue 1, pp. 53-
63, January 2009.  


 The following gives a quick summary of the Sussman-Bathe 
model. In this summary, we assume that the material is totally 
incompressible. Differences due to slight compressibility are small. 
 
Theoretical background: 
 
1) The Cauchy stress i  corresponding to the principal strain ie  is 

 

 ( )D
i i

i

W
p w e p

e
     


 (3.7-29) 

 
where ( ) /iw e dw de  . 

 
2) In uniaxial tension/compression (Fig. 3.7-1), 1 ,e e  

1
2 3 2e e e    so 

 
 1

2( ) ( )w e w e      (3.7-30) 

 
(3.7-30) can be inverted to obtain 
 

   1
2

0

( )
k

k

w e e




    (3.7-31) 

 
The series converges when ( ) 0e  as 0e  . 
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L1
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L3

Original
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F1

Fig. 3.7-1: Uniaxial tension/compression test
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3) The asymptotic conditions for w are ( )w e    as e  ; 

( )w e   as e  . These asymptotic conditions correspond to 
the asymptotic conditions of infinite stresses for infinite strains. 
 
4) For a stable material, it is necessary (but not sufficient) that 

( ) 0w e   for all e. Not all materials for which ( ) 0e   have 

( ) 0w e  . For example, the material with 
 

 
( ) , 0

, 0
T

C

e E e e

E e e

  
 

 

 
where  ET  and  EC  are constants greater than zero, has ( ) 0w e   
only if  
 

 1
2 2T C TE E E   

 
5) Given only simple tension data for ( )e , there are multiple 

( )w e that exactly correspond to ( )e , for positive e only. Two 

such ( )w e are 
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( ) 0, 0

( ), 0

w e e

e e
  

 
 

 
and  
 

 
( ) ( 2 ), 0

0, 0

w e e e

e

    
 

 

 
Hence the material is not uniquely described given only uniaxial 
tension (or uniaxial compression) data. Both uniaxial tension and 
uniaxial compression data must be provided to uniquely describe 
the material. 
 
6) The small-strain Young’s modulus E is found by differentiating 
the uniaxial stress-strain curve, and evaluating at e = 0, and, since 
the material is almost incompressible, the small-strain shear 

modulus G is 
1

3
G E . The results are 

 

 
3

(0)
2

E w , 
1

(0)
2

G w  (3.7-32a, b) 

 
8) The Ogden material model can be considered a special case of 
(3.7-28), since the Ogden material model can be written in terms of 

( )w e : 
 

  ( ) exp( ) 1n n
n

w e e     (3.7-33) 

 
Spline representation of ( )w e : 
 
In the Sussman-Bathe model, we choose ( )w e  to fit given uniaxial 
tension/compression data very well, as follows. 
 
The uniaxial tension-compression data is in the form of user-

specified data points  ,i ie  . From these data points, we build a 

non-uniform cubic spline representation of the uniaxial 
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tension/compression stress-strain data ( )e  , as shown in Fig. 

3.7-2. For the non-uniform cubic spline representation of ( )e , 
 

Fig. 3.7-2: Uniaxial tension/compression stress-

strain spline

�( )e

e

emin,�

emax,�

Measured data point

Segment of
cubic spline

Slope > 0

Slope > 0

 
 
1) A spline segment is placed between two successive user-input 
data points. The user-input data points need not be equally spaced. 
 
2) The range of the cubic spline is between the first and last user-
input data points. 

 
3) Outside the range of the cubic spline, the slope of ( )e is greater 
than zero. This ensures that the asymptotic conditions of 

( )    , ( )     are met. 
 
Using the non-uniform cubic spline representation of ( )e  and 

(3.7-31), we build a uniform cubic spline for ( )w e  as shown in 

Fig. 3.7-3. For the uniform cubic spline representation of ( )w e , 
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Fig. 3.7-3: ( ) splinew e’

w e’( )

e
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Segment of
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1) The same number of spline segments is used in tension and in 
compression.  
 
2) The range of the cubic spline is the same in tension and in 
compression. This range includes the range of the user-input data 
points.  

 
3) Outside the range of the cubic spline, the slope of ( )w e  is 
greater than zero, whenever possible.  

 
 In order to measure the accuracy of the spline representation of 

( )w e , we define the relative interpolation error 
 

 
( ) ( )

max
( )e

e e
r

e

 







 (3.7-34) 

 
in which ( )e  is the stress evaluated from the spline representation 

of ( )w e  (using 3.7-30), and ( )e  is the stress evaluated from the 

spline representation of ( )e . 
 The number of spline segments is automatically chosen to make 
the interpolation error r smaller than a user-specified value. 
Typically only a few spline segments need be used for ( )w e  in 
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order to reduce the interpolation error to a value smaller than 
experimental error. 
 Each cubic spline segment in ( )w e can be written  
 

3 3
1 1( ) (1 ) (1 )i i i iw e A z B z A z B z         (3.7-35) 

 
for the segment 1i ie e e    where 1( ) /( )i i iz e e e e   . With 

this definition, ( )w e can be written 
 

2 4 2 4

1 1 1

1 (1 ) 1 (1 )
( ) ( )

2 4 2 4i i i i i i i

z z z z
w e C e e A B A B  

    
      

 
 

  (3.7-36) 
 
The program determines the constants Ai, Bi, Ci from uniaxial 
stress-strain data, as described above.  
 
Plane stress analysis: The material is assumed to be totally 
incompressible. Therefore WV  is zero and W = WD. A 
displacement-based finite element formulation is used, exactly as 
for the Mooney-Rivlin material model described above.  
 
Plane strain, axisymmetric and 3-D analysis: The material is 
modeled as compressible (that is, the bulk modulus is not infinite), 
but the bulk modulus can be set high so that the material is “almost 
incompressible”. 
 Equation (3.7-28) is modified by 1) substituting the deviatoric 
principal strains for the corresponding principal strains, 2) 
removing the condition e1 + e2 + e3 = 0, and 3) adding the 
volumetric strain energy density 
 

   ln ( 1)VW J J J    (3.7-37) 

 
where κ is the bulk modulus. The relationship between the pressure 
and the volume ratio is 
 

   1 2 3lnp J e e e        (3.7-38) 

 
which is a generalization of the small-strain pressure-strain 
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relationship. The u/p formulation is always used. For comments 
about the u/p formulation, see the corresponding comments in the 
Mooney-Rivlin material description. 
 
Data input considerations: 
 
1) Data input is in the form of a set of stress-strain data points, with 
positive stresses/strains corresponding to uniaxial tension and 
negative stresses/strains corresponding to uniaxial compression. 
Compression and tension data are entered together in the same data 
set. 
 
2) The data set should contain both tension and compression data 
(compression data is possibly converted from equibiaxial tension 
data, see below). If the data set contains only tension data, the 
program will assume that the true stress / true strain curve in 
compression is a straight line, which is most likely not a good 
assumption. 
 
3) The stresses and strains in the set of stress-strain data points can 
be either 
 
a) True stresses and logarithmic strains (SSTYPE=True in 

MATHE) 
b) Engineering stresses and engineering strains (SSTYPE=Eng in 

MATHE) 
c) Engineering stresses and stretches (SSTYPE=Stretch in 

MATHE) 
 
4) Data points from equibiaxial tension experiments can be 
converted into equivalent uniaxial compression data. The 
conversion formulas are: 
 

 2u be e  , 2
u b  ,   2

0 01 1u be e
    (3.7-39) 

 u b   , 3
0 0u b b     

 
where eu is the is the equivalent uniaxial logarithmic strain (< 0), eb 
is the equibiaxial logarithmic strain (> 0), u is the equivalent 
uniaxial stretch, b is the equibiaxial stretch, 0 eu is the equivalent 
uniaxial engineering strain, 0 eb is the equibiaxial engineering 
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strain, u is the equivalent uniaxial true (Cauchy) stress,  b is the 
equibiaxial true (Cauchy) stress, 0u is the equivalent uniaxial 
engineering stress, 0b  is the equibiaxial engineering stress. All of 
these conversion formulas assume that the material is 
incompressible. 
 
5) The Sussman-Bathe model fits the data so closely that roughness 
and waviness in the data causes roughness and waviness in the 

( )w e  splines. The program does not smooth the data in order to 
eliminate roughness and waviness. If the original data set contains 
roughness and waviness that should not be present in the analysis, 
the data set should be smoothed before entering the data into the 
program. 
 
6) If the data set corresponds to a stable material, then the 
Sussman-Bathe model is stable, otherwise the Sussman-Bathe 
model may not be stable. 

 
7) The strain range of the data set should contain the range of 
strains anticipated during the analysis. 
 
8) Do not confuse uniaxial compression with hydrostatic 
compression. These two test cases are very different. 

 
3.7.6  Thermal strain effect 

 
 When the material is temperature-dependent, a coefficient of 
thermal expansion can be included. The coefficient of thermal 
expansion is constant. The thermal strain is calculated as 
 

   0th      (3.7-40) 

 
where 0  is the initial temperature, and the thermal strain is 

assumed to be isotropic. This is similar to the formula as is used for 
the other thermo-elastic materials, see Section 3.1.6 assuming a 
constant thermal expansion coefficient. 
 
 When the thermal strain is non-zero, the deformation gradient 
X  is assumed to be decomposed into a thermal deformation 
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gradient thX  and a mechanical deformation gradient mX , using 

 
  m thX X X  (3.7-41) 

 
The thermal deformation gradient is 
 
  (1 )th the X I   (3.7-42) 
 

therefore the mechanical deformation gradient is  
 

  1(1 )m the  X X  (3.7-43) 

 
the mechanical Cauchy-Green deformation tensor is  
 

  2(1 )m the  C C  (3.7-44) 
 

and the mechanical Green-Lagrange strain tensor is  
 

  2 21
(1 ) 1 (1 )

2m th the e     ε ε I  (3.7-45) 

 

For small thermal strains, the last equation reduces to 

m the ε ε I , so that the strains are nearly the sum of the 

mechanical and thermal strains, as in small strain analysis. 
However, we do not assume that the thermal strains are small. 
 
 The strain energy densities are computed using the mechanical 
deformations. This is done by computing all invariants and 
stretches using the mechanical deformations, e.g. the mechanical 
Cauchy-Green deformation tensor. 
 The 2nd Piola-Kirchhoff stresses are obtained by differentiating 
the strain energy density with respect to the total strains. Since the 
strain energy density is a function of the mechanical strains, we 
obtain 
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   
        

  
      

 (3.7-46) 

 
With this definition, the 2nd Piola-Kirchhoff stresses are conjugate 
to the Green-Lagrange strains. 
 

3.7.7  Viscoelastic effects (Solution 601 only) 
 
 Viscoelastic effects can be included in the Mooney-Rivlin, 
Ogden, Arruda-Boyce, hyperfoam and Sussman-Bathe material 
models.  
 The viscoelastic model used is due to Holzapfel, see the 
following references: 

 
ref. G. A. Holzapfel, “On large strain viscoelasticity: 

continuum formulation and finite element applications to 
elastomeric structures”, Int. J. Num. Meth. Engng., Vol. 
39, pp 3903-3926, 1996.  

 
ref. G. A. Holzapfel, Nonlinear solid mechanics. A 

continuum approach for engineering. John Wiley & 
Sons, Chichester, pp 278-295, 2000.  

 
ref. G. A. Holzapfel, “Biomechanics of soft tissue”, in 

Lemaitre (ed.), Handbook of Materials Behavior 
Models: Nonlinear Models and Properties, Academic 
Press, 2001, pp 1057-1071. 

 
In the following, we give a brief discussion of the Holzapfel 

model for finite strain viscoelasticity. 
 

Equivalent 1D model:  The equivalent 1D model is shown in Fig 
3.7-4. It is the same as a generalized Maxwell model with many 
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chains. A generic chain is denoted with superscript  , as shown in 
the figure. 
 

 

E
�

E
1 �1

��
E

�

Strain

g
�

Strain
stress

e,
�

Strain

��

Fig. 3.7-4: Equivalent 1D model

for viscoelastic effects

...

 
  

The spring E  is equivalent to the elastic stiffness of the 

model. Each chain contains a spring with stiffness E  and dashpot 

with viscosity  . (Note that the superscripts   and   do not 
denote exponentiation.)  The strain in each chain is the sum of the 

strain in the spring g  and the strain in the dashpot  . The 
observed stress is 

 

 q



     (3.7-47) 

 

where E e    is the elastic stress and q E g        is 

the stress in chain  . Using the definition 
E






   and the 

assumption E E   , the following expression is obtained: 
 

 
1

q q  
  


    (3.7-48) 
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Assuming that 0 0q  , (3.7-48) can be written in convolution 
form as  

 

 
0

exp
t

tt t
q dt 

  


     
    (3.7-49) 

 
from which the total stress is 

 

 
0

1 exp
t

tt t
E e dt




 


           
   (3.7-50) 

 
Evidently the relaxation modulus is 

( ) 1 exp
t

E t E 







         
  which is a Prony series 

expression. 
 
The dissipation in dashpot   is 
 

  1 q
D q q e g q e

E


     

 

 
      

 

     (3.7-51) 

 

and the total dissipation is D D



 . In the above, the 

viscoelastic material constants for each chain are and .    
 

Potential-based 1D model:  The 1D model can be written in terms 
of a potential as follows: 

 

 ( ) ( )e g 



      (3.7-52) 

 

where 21
( )

2
e E e    is the strain energy of the elastic chain 

and  21
( )

2
g E g      is the strain energy in the spring of 
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chain  . In terms of  ,    g g       . The 1D model 

is recovered by defining 
 

 
fixede 








, 
fixede

q



 


 (3.7-53a,b) 

 
Notice that (3.7-47) and (3.7-53a) imply  

 

  fixed

q
e g

 





 
 

 
.  

 
Finite strain model:  The finite strain model is derived from the 
potential-based 1D model as follows. The elastic potential is 
defined as 

 

    W ε ε  (3.7-54) 

 

where  ijW   is the strain energy density from the elastic part of 

the material model. The potential of each chain   is defined as  
 

   
 
 

, , usage=combined

, usage=deviatoric

, usage=volumetric

ij ij ij

D ij

V ij

W G

W G

W G

   

 

 

 





  





  (3.7-55a,b,c) 

 
in which the usage flag (which is a user-input flag) determines 
whether the entire elastic strain energy density, deviatoric strain 
energy density or volumetric strain energy density is taken for 

chain  . Here ijG  is analogous to the strain in the 1D spring g , 

and we assume ij ij ijG   . Note that with this definition of 

ijG , we have 
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fixedij

ij
ij

S









, 

fixed fixedij ij

ij
ij ij ij

Q
G




 






  
   
  

  

 (3.7-56a,b) 
 

where ijS  are the 2nd Piola-Kirchhoff stresses and ijQ  is analogous 

to the stress q .  
Following exactly the same arguments as in the 1D case, we 

obtain 
 

 
1

ij ij ijQ Q S  
 


    (3.7-57) 

 

Assuming that 0 0ijQ  , (3.7-57) can be written in convolution 

form as  
 

 
0

exp
t

t
ij ij

t t
Q S dt 

 


     
    (3.7-58) 

 
and (3.7-58) can be numerically approximated using 

 

  
1 exp

expt t t t t t
ij ij ij ij

t
t

Q Q S S
t


  










   

            
 

 (3.7-59) 
 

(3.7-59) is exact when ijS  does not change during the time step, 

and is more accurate than the formula given by Holzapfel: 
 

  exp exp
2

t t t t t t
ij ij ij ij

t t
Q Q S S  

 
 

              
   

 

 (3.7-60) 
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especially when 
t



 is large. 

 
Dissipation calculations: If the dissipation is required, it is 
calculated using 

 

  ij ij ij ij ijD Q Q G           (3.7-61) 

 
where 
 

 
2

rs ij
ij rs

G Q
G G


 

 

 


 
   (3.7-62) 

 

is used to compute the unknown rsG  from the known ijQ .  

If usage=combined,  
 

 
2 2

ijrs
ij rs ij rs

W
C

G G


 

   
 

  
 

   
. (3.7-63) 

 

where the tensor ijrsC  is evaluated at the strain state ijG . The 

dissipation calculation requires the solution of a set of simultaneous 
linear equations of at most order 6 (in the 3D case) at each 
integration point. 

If usage=deviatoric,  
 

  
2 2

D
D ijrs

ij rs ij rs

W
C

G G


 

   
 

  
 

   
 (3.7-64) 

 

where the tensor  D ijrs
C  is evaluated at the strain state ijG . Here, 

the dissipation calculation requires a singular value decomposition 

of  D ijrs
C , since  D ijrs

C  has a zero eigenvalue. A similar 

situation applies when usage=volumetric, except that the 
corresponding material tensor has only one nonzero eigenvalue. 
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 The procedure given in (3.7-61) to (3.7-64) is only 

approximate, since the fundamental assumption ij ij ijG    

strictly speaking only holds for small strain analysis. 
 

Restrictions and recommendations: The allowed values of the 
usage flag depend upon the material model and finite element type, 
as shown in Table 3.7-1. 

In view of the restrictions, we recommend that 
usage=“combined” be used in conjunction with the hyperfoam 
material model, and that usage=“deviatoric” be used in conjunction 
with the Mooney-Rivlin, Ogden, Arruda-Boyce and Sussman-
Bathe material models. 
 

 
               Table 3.7-1: Allowed values of the usage flag 

 

Mooney-Rivlin, Ogden, 
Arruda-Boyce, 
Sussman-Bathe 

hyperfoam 

Plane 
stress1 

Plane strain, 
axisymmetric, 

3D2

Plane 
stress3  

Plane strain, 
axisymmetric, 

3D 
usage=combined 

(usage(i)=2)
yes no yes yes

usage=deviatoric 
(usage(i)=0)

yes yes no yes

usage=volumetric 
(usage(i)=1)

no no no yes

 
1. Usage cannot be equal to “volumetric”. This is because the material is 

assumed to be fully incompressible, hence the volumetric strain energy 
density is zero. 

2. When the u/p formulation is used, the usage flag cannot be “combined” or 
“volumetric”. This is because the modification to the volumetric stresses 
caused when the usage flag is “combined” or “volumetric” is not taken into 
account in the u/p formulation. 

3. The only allowable value of the usage flag is “combined”. This is because 
the out-of-plane stress component xxS  must be zero, and in the Holzapfel 

finite strain viscoelastic model, the only way that this can happen is if xxS  

is zero.  
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Time-temperature superposition: The preceding derivation 
assumes that the viscoelastic response is not temperature-
dependent. One method of including the effects of temperature is 
the method of time-temperature superposition. 

In time-temperature superposition, the actual time t  is replaced 
by the reduced time  . The relationship between the actual time 
and reduced time is given by 

 

 
1

( )t
T

d

dt a




  (3.7-65) 

 

where t  is the temperature and ( )t
Ta   is the shift function. 

Evidently 
 

 
0

1

( )

t
t

t
T

dt
a




   (3.7-66) 

 
The shift function used here is either the WLF shift function, 

 

 1
10

2

( )
log ( )

t
reft

T t
ref

C
a

C

 


 


 
 

 (3.7-67a) 

 
or the Arrhenius shift function 

 

 

10 1

2

1 1
log ( ) ,

1 1
,

t t
T reft

ref

t
reft

ref

a C

C

  
 

 
 

 
    

 
 

    
 

 (3.7-67b) 

 
where ref  is the reference temperature and 1C , 2C  are material 

constants. Notice that as t  increases, ( )t
Ta   decreases and 

d

dt


 

increases.  
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 When using the Arrhenius shift function, the temperature unit 
must be absolute (Kelvin or Rankine). 

For the viscoelastic model used here, the differential equation of 
the 1D model (3.7-48) becomes 

 

 
1dq d

q
d d


 




  



   (3.7-68) 

 
and using (3.7-65), (3.7-68) can be written as 

 

 
1

( )T

q q
a

  
  

 
    (3.7-69) 

 
It is seen that the effect of temperature is to modify the time 
constants. As the temperature increases, the modified time 
constants become smaller, that is, the material relaxes more 
quickly. 

The convolution equation of the finite strain model becomes 
 

 
0

exp

t t
ij

ij

d S
Q d

d


 



   
 

     
   (3.7-70) 

 
and (3.7-70) is numerically approximated by  
 

 
1 exp

expt t t t t t
ij ij ij ijQ Q S S


  






  



   

            
  

 (3.7-71) 
 
The only additional consideration is to calculate  , and this is 
done using 

 

 
1

( )

t t

t
Tt

dt
a







    (3.7-72) 
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This integration is performed numerically assuming that ln ( )Ta   
varies linearly over the time step. 
  
Heat generation:  A user-specified fraction of the energy 
dissipated by the viscoelastic model can be considered as heat 
generation. This heat generation can cause heating in a TMC 
(thermo-mechanical-coupling) analysis. 

 
Specification of input: Viscoelastic effects are added to rubber-
like materials using the MATHEV bulk data entry. The MATHEV 
bulk data entry includes: 

 
 SHIFT: Indicates the shift function (none, WLF or 

Arrhenius).  
 C1, C2: The shift function material constants 1C , 2C  
 A table with one row for each chain. Each row in the table 

contains beta(i)=  , tau(i)=  , hgen(i)= the heat 
generation factor (fraction of dissipation considered as heat 
generation, default value is 0.0), and usage(i)=usage flag 
(default value is deviatoric). There is no restriction on the 
number of chains permitted. The usage flag can be different 
for each chain.  

 
 It is seen that the dissipation calculation can be quite expensive. 
Furthermore the dissipation is not required for the stress solution. 
Therefore it is the default to not perform the dissipation calculation. 
The dissipation is only calculated for the chain   when the heat 
generation factor is non-zero. 

 
3.7.8  Mullins effect (Solution 601 only) 

 
When rubber is loaded to a given strain state, unloaded, then 

reloaded to the same strain state, the stress required for the 
reloading is less than the stress required for the initial loading. This 
phenomenon is referred to as the Mullins effect. 

The Mullins effect can be included in the rubber-like materials. 
The material model used is the one described in the following 
reference: 
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ref. R.W. Ogden and D. G. Roxburgh, “A pseudo-elastic 
model for the Mullins effect in filled rubber”, Proc. R. 
Soc. Lond. A (1999) 455, 2861-2877.  

 
We briefly summarize the main concepts below. 
 

Fig 3.7-5 shows the Mullins effect in simple tension. On initial 
loading to force cF , the specimen follows the force-deflection 

curve a-b-c. When the load is removed, the specimen follows the 
unloading curve c-d-a. On reloading to force cF , the specimen 

follows the reloading curve a-d-c, and on further loading to force 

fF , the specimen follows the loading curve c-e-f. When the load is 

removed, the specimen follows the unloading curve f-g-a, and, on 
reloading to force gF , the specimen follows the reloading curve a-

g-f. 
 

 

Fig 3.7-5: Mullins effect loading-

unloading-reloading curves

Force

a

b

c

d

e
f

g

h

Deflection

 
 
Note that any permanent set associated with the Mullins effect 

is not included in the Ogden-Roxburgh model used here. 
The Ogden-Roxburgh model, as implemented in Advanced 

Nonlinear Solution, uses the following strain energy density 
expression: 

 

( ) ( ), all except hyper-foam

= ( ) ( ), hyper-foam

D ij

ij

W W

W

   

   

 




 (3.7-73a,b) 
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where ( )ijW   is the total elastic strain energy density, ( )D ijW   is 

the deviatoric elastic strain energy density,   is an additional 

solution variable describing the amount of unloading and ( )   is 

the damage function. W  is referred to as the pseudo-energy 
function. In our implementation, the deviatoric strain energy 
density is used for the (almost) incompressible materials and the 
total strain energy density is used for compressible materials. For 
ease of writing, we discuss only the case of compressible materials; 
for incompressible materials, replace W  by DW  in the equations 
below. 

  is computed as 
 

  1 1
1 erf mW W

r m
      

 (3.7-74) 

 
where erf( )x  is the error function 

 

  2

0

2
erf( ) exp

x

x u du


   (3.7-75) 

 

mW  is the maximum value of W  encountered during the 

deformation history and m  and r  are material constants. 
( )   is defined by  

 

 
( )d

W
d

 


    (3.7-76) 

 

and is computed by numerical integration of ( ) W     . For a 

given value of mW , there is a minimum value of   computed as  

 

 
1

1 erf m
m

W

r m
      

 (3.7-77) 
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The value of ( )   at m   is written ( )m  . (Note: the 

subscript m in the term mW  means “maximum”, but the subscript m 

in the term m  means “minimum”.)  The time rate of change of 

( )m   can be written as 

 

   1
( ) 1 erf m

m m m m

W
W W

r m
         
    (3.7-78) 

 
Physically, ( )m   is interpreted as the dissipation. 

During loading, mW W , 0mW   and 1  . Therefore 

( ) 0    and ( ) 0m    during loading. 

During unloading or reloading, mW W , 0mW   and 

1m   . Therefore ( ) 0    and ( ) 0m    during unloading 

or reloading.  
Material constants m  and r  do not have any direct physical 

significance. However Fig 3.7-6 shows the dependence of an 
unloading-reloading curve in simple tension on these parameters. It 
is seen that, for an unloading-reloading loop in which mW m , 

the initial slope of the reloading curve is reduced by the factor 
1

1
r

 . r  must therefore be greater than 1.  

 It can also be shown that the dissipation of a loading-unloading 
cycle, as shown in Fig 3.7-7, can be written as 

 

 
2

0

1
erf 1 exp

E
m m m

A

W W Wm
de

r m m m
 



                         
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 (3.7-79) 
 
where  
 

 0

C

m

A

W de   (3.7-80) 
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Fig. 3.7-6: Dependence of reloading curve on Mullins

effect material constants
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Fig. 3.7-7: Dissipation in Mullins effect in a

loading-unloading cycle
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0  is the engineering stress, e is the engineering strain. Therefore, 

given   and mW  from two loading-unloading cycles of different 

amplitude, m  and r  can be computed. 
 
Heat generation:  A user-specified fraction of the energy 
dissipated by the Mullins effect model can be considered as heat 
generation. This heat generation can cause heating in a TMC 
(thermo-mechanical-coupling) analysis. 
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Specification of input: Mullins effects are added to the rubber-like 
material model using the MATHEM bulk data entry.  

The rubber-Mullins data set includes: 
 
 R, M: The material constants r and m. 
 HGEN: The heat generation factor (fraction of dissipation 

considered as heat generation). The default value is 0.  
 

3.8  Gasket material model (Solution 601 only) 
 

 Gaskets are relatively thin components placed between two 
bodies/surfaces to create a sealing effect and prevent fluid leakage 
(see Fig. 3.8-1). While most gaskets are flat, any arbitrary gasket 
geometry can be modeled in Solution 601.  
 

Gasket thickness direction
(material X axis)

Only one element
through the thickness

Gasket in-plane
directions

Fig. 3.8-1: Schematic of gasket  
  
 The sealing effect is created when the compressive load, applied 
in the direction of the gasket thickness, exceeds the initial yield 
stress of the gasket. The sealing effect is maintained as long as the 
compressive stress does not drop beyond a specified threshold 
value. The gasket ruptures if the compressive stress exceeds the 
gasket’s ultimate stress. Unlike rupture, if a gasket leaks it still 
maintains its load-deflection characteristics. 
 
 The gasket model can be used with 3-D solid elements. It can 
also be used with small displacement/small strain, large 
displacement/small strain formulations. 
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 The gasket behaves as a nonlinear elasto-plastic material when 
compressed in the thickness or gasket direction. Its load-
deformation characteristics are typically represented by pressure-
closure curves. Tensile stiffness can be assumed to be constant or 
zero. Hardening is assumed to be isotropic. 
 
 Since the gasket material has different properties in different 
directions, it is considered to be an orthotropic material. The gasket 
thickness direction is defined as the x direction of the material 
coordinate system. The program attempts to determine this 
direction automatically, see below. 
 
 The closure strain is always defined as the change in gasket 
thickness divided by the original gasket thickness. It is positive in 
compression. The gasket pressure has units of stress, and it is also 
positive in compression. 
 
 The gasket’s uni-directional plasticity model speeds up 
computations, and allows more flexibility in defining the shape of 
the loading and unloading curves. 
 
User input 
 
The gasket material is obtained using the MATG material entry to 
define the transverse and through-thickness gasket properties 
together with an elastic isotropic MAT1 material entry to define the 
in-plane gasket properties. 
 EPL is the Young's modulus for tensile loading in the thickness 
direction ( tensileE ).It is allowed to set EPL to a very small number, 

such as 1E-5, to model a gasket with very small tensile stiffness.  
 GPL is the transverse shear modulus.  
 YPRESS specifies the initial yield pressure. This value must 
correspond to a point on the TABLD curve, see below. 
 IDMEM is the ID of a MAT1 entry that provides the material 
constants for the membrane (in-plane) behavior. 
 TABLD and the TABLUi are used to enter the pressure - 
closure strain relationship. These curves are defined using the 
TABLES1 entry.  
 The leakage pressure is automatically set to 1% of the initial 
yield pressure. 

 



 3.8: Gasket material model 
 

 
 
Advanced Nonlinear Solution  Theory and Modeling Guide 253 

Pressure - closure strain input 
 
We now describe the pressure - closure strain input in more detail. 
Fig. 3.8-2 shows a typical pressure - closure strain relationship. The 
main loading curve is specified by parameter TABLD. The 
corresponding TABLES1 entry can contain any number of points, 
and successive points are connected by straight lines. 

 

Main loading curve

Leakage
pressure

Closure strain

G
as

k
et

p
re

ss
u
re

Unloading curves

E
tensile

p
yield

Initial yield
point

2nd yield
point

Last yield
point (rupture

point)

Fig. 3.8-2: Pressure-closure strain input for a gasket material  
 

 The point number of the first yield point on the yield curve is 
given by the value of yieldp  (parameter YPRESS). yieldp  must 

match the third, fourth or higher point on the yield curve. For future 
reference, the point number corresponding to yieldp  is denoted 

NPOINTS.  NPOINTS must be greater than or equal to 3. 
 For each point on the main loading curve higher than the first 
yield point, there is an associated unloading curve, as shown. 
Notice that each unloading curve must have the same number of 



Chapter 3: Material models and formulations 
 

 
 
254 Advanced Nonlinear Solution  Theory and Modeling Guide 

points, and this number of points is equal to NPOINTS.  There 
must be at least three unloading curves, and therefore the total 
number of points on the yield curve must be at least NPOINTS + 2. 
 There are two options for specification of each unloading curve: 
 

1) The unloading curve can be specified using one of the 
TABLUi. The corresponding TABLES1 entry must contain 
NPOINTS points, the first point must have zero pressure, 
and the last point must correspond to the (closure strain, 
pressure) of the main loading curve yield point. 

2) The program can automatically construct the unloading 
curve by interpolation of the user-input unloading curves.  

 
It is necessary to specify at least one of the unloading curves using 
the TABLUi. 

 
User input for nonlinear elastic gasket 
 
We now describe how to input material data for a nonlinear elastic 
gasket. 
 Fig. 3.8-3 shows an example for input of pressure - closure 
strain data for a nonlinear elastic gasket. In this example, we 
assume that points 2 to 4 correspond to experimental data. Points 5 
to 7 are on a line extended from segment 3-4.  
 NPOINTS for this example is 5.  
 Points NPOINTS to NPOINTS+2 should correspond to very 
high closure strain, so that the program never reaches the closure 
strain corresponding to point NPOINTS. 
 The gasket material will be nonlinear elastic as long as the 
closure strain is less than the closure strain at point NPOINTS, and 
the relationship between closure strain and gasket pressure is given 
by the segments connecting points 1 to NPOINTS. 
 Two unloading curves must be entered, corresponding to points 
NPOINTS+1 and NPOINTS+2 on the loading curve, as shown. 
Each unloading curve has NPOINTS equally spaced points, with 
unloading point 1 for pressure =0 and unloading point NPOINTS 
for the point coincident with the loading curve. 
 The tensile behavior of the gasket is governed by constant EPL 
( tensileE ). 
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Fig. 3.8-3: Example input for nonlinear elastic gasket
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NPOINTS=5 in this example
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Pressure - closure strain response 
 
Fig. 3.8-4 shows a typical pressure - closure strain response. The 
gasket is loaded to point B, then unloaded to point C. When the 
closure strain becomes negative, the response is governed by 

tensileE . Then the gasket is loaded to point D. Up to this time, the 

gasket behaves as a nonlinear elastic material. Then the gasket is 
loaded to point E and unloaded to point F. The unloading to point F 
is done on an unloading curve based at point E; this unloading 
curve is interpolated from the input unloading curves. The gasket is 
loaded to point G and unloaded to point H. The gasket follows an 
unloading curve based at point G and interpolated from the input 
unloading data. During the loading to point I, the gasket follows the 
unloading curve to point G, then follows the loading curve to point 
I. The gasket is then unloaded to points J and K. When the pressure 
becomes negative, the response is again governed by tensileE . 

During reloading to point L, the gasket follows the same unloading 
curve as used for points J and K. The gasket is then loaded to point 
M, at which time the gasket ruptures. The pressure drops to zero 
and remains zero thereafter (point N). 
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Fig. 3.8-4: Typical pressure - closure strain history
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 Each gasket can have one of the following five states: 
 

Open: The gasket pressure is less than the leakage pressure 
and the gasket has never undergone plastic 
deformation . 

Closed: The gasket pressure is higher than the leakage 
pressure and the gasket has never undergone plastic 
deformation. 

Sealed: There has been plastic gasket deformation, and 
thereafter the pressure has always remained above 
the gasket leakage pressure. 

Leaked: There has been plastic gasket deformation, and the 
gasket pressure has dropped below the gasket 
leakage pressure for at least one solution step after 
the plastic deformation occurred. 

Crushed: Gasket closure strain has exceeded the rupture value 
for at least one solution step. 
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Modeling issues 
 
 The gasket must be modeled as a single layer of 3-D elements. 
Only linear elements are possible (6-node wedge and 8-node brick 
elements). 
 
 If the user does not explicitly set the material axes coordinate 
system in gasket elements (using CORDM of the PSOLID entry), 
the program attempts to automatically determine the gasket 
material axes directions. This automatic determination is made 
based on the element layout. Fig 3.8-5 shows element layouts in 
which the program can and cannot automatically determine the 
gasket material directions. If the program can automatically 
determine the gasket material directions, then the program 
constructs a material coordinate system in which the x direction 
corresponds to the gasket thickness direction.  
 
 Warning, if the program cannot automatically determine the 
gasket material directions, and if the material axes for the gasket 
are not explicitly defined by the user, then the basic coordinate 
system is used, and the x direction of the basic coordinate system 
corresponds to the gasket thickness direction.  If the gasket 
thickness direction is in fact not the x direction of the basic 
coordinate system, the results will be incorrect. 
 
 The top and bottom surfaces of a gasket can be separate from 
those of the mating surfaces. In this case, they should be connected 
via contact. The gasket can also share a common surface with the 
intended mating surface. In this case, contact is not needed, 
however, the gasket cannot separate from its target. A gasket 
surface can also be attached to its mating surface via tied contact, 
mesh glueing, constraint conditions, or rigid elements. 

 
Output variables: The following gasket output variables are 
available: Gasket pressure, Gasket closure strain, Gasket yield 
stress, Gasket plastic closure strain, Gasket status. 
 
 Note that all these output variables are scalar quantities. 
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Fig. 3.8-5: Automatic determination of gasket material directions

(a) Each element is surrounded by neighboring elements on adjacent sides.

Gasket direction can be automatically determined.

(b) At least one element is surrounded by neighboring elements on opposite sides only.

Gasket direction cannot be automatically determined.

 

3.9. Shape memory alloy (Solution 601 only) 
 

 The Shape Memory Alloy (SMA) material model is intended to 
model the superelastic effect (SE) and the shape memory effect 
(SME) of shape-memory alloys. It is defined using the MATSMA 
material entry. 
 
 The SMA material model can be used with rod, 2-D solid, 3-D 
solid and shell elements. It is available only for implicit analysis 
(Solution 601). 
 
 Shape memory alloy materials can undergo solid-to-solid phase 
transformations induced by stress or temperature. The high 
temperature phase is called austenite (A) with a body-centered 
cubic structure and the low-temperature phase is called martensite 
(M) with a monoclinic crystal structure in several variants.  
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 Fig.3.9-1 shows a schematic SMA stress-temperature diagram. 
The martensite phase in two generalized variants and the austenite 
phase are shown, as well as stress- and temperature-dependent 
transformation conditions. The martensite phase is favored at low 
temperatures or high stresses. Upon heating from low temperature 
the material begins transforming from martensite to austenite at 
temperature As. The transformation is 100% complete at 
temperature Af. If the material is then cooled again, the austenite 
starts transforming back to martensite at temperature Ms. This 
transformation is 100% complete at temperature Mf. These four 
temperatures are also stress dependent with high stresses favoring 
the martensite phase. This stress dependence is assumed linear with 
slope CM and CA for the martensite and austenite temperatures, 
respectively. A typical variation of volume fraction of martensite in 
the SMA material with temperature is shown in Fig. 3.9-2. 

 
 A typical uniaxial isothermal stress-strain curve is shown in Fig. 
3.9-3. 
 
 The superelastic effect is evident when the material is deformed 
at temperature fA 

 
and is displayed in Fig. 3.9-3(a). The stress 

cycle application induces transformations from AM and then 
from MA to exhibit the hysteresis loop. The shape memory 
effect is evident when the material is deformed at temperature 

sA   and is displayed in Fig. 3.9-3(b). A residual transformation 

strain remains after unloading; however heating the material to 
temperature above fA  leads to thermally induced MA 

transformation and the recovery of transformation strain. 
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Fig. 3.9-1: SMA stress-temperature phase diagram
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Fig. 3.9-2: Volume fraction of martensite vs. temperature
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� > Af

Fig. 3.9-3: Schematic of stress-strain curves for shape-memory
alloys
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(a) Superelasticity
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(b) Shape memory effect

 


 Both shape memory effects due to transformation from 
martensite to austenite and due to re-orientation of the martensite 
are captured by modeling the twinned and detwinned martensites as 
different phases. 
 
 The SMA material model is based on the following equations: 
 

 The total strain, 
 

e t        
 
where 
 

 e= elastic strain 

  = thermal strain 

 t = transformation strain; to be evaluated 
 
 The one-dimensional macro-scale model, 
 

s t    ;  0    

   = 1 
 t =  tmax s 
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max((1 ) )( )t
A M sE E            

 
t = twinned martensite volume fraction 
s = detwinned martensite volume fraction  
A  = austenite volume fraction  
t

max = maximum recoverable residual strain; a material 
property usually obtained from a simple tension test 
when the material is fully detwinned martensite (s  = 1) 

 
The flow rule of three-dimensional constitutive model, 
 

max
t t t
ij s ijn      

 

3

2
ijt

ij

s
n


 

  
 

; for the martensitic transformation 

 

3

2

t
ijt

ij t
n




 
   

 
; for the reverse transformation 

where 
 

sij  = deviatoric stresses 
 

3

2 ij ijs s    is the effective von Mises stress 

 

3

2
t t t

ij ij     is the effective transformation strain 

 
This results in the following equation for deviatoric stress 
calculation: 
 

 
   

1

t t
t t t t t

ij ij ijt t

E
s


 

 


 


 


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where 
 

t t t t t t
ij ij ij       

 
Four phase transformation conditions, 
 
1. Starting condition for the martensitic transformation 
 

23 ( )
SM M Sf J C M    

 
2. Ending condition for the martensitic transformation 
 

23 ( )
fM M ff J C M    

 
3. Starting condition for the reverse transformation 
 

23 ( )
SA A Sf J C A    

 
4. Ending condition for the reverse transformation 
 

23 ( )
fA A ff J C A    

 
The phase transformation rate using linear kinetic rule 
(Auricchio and E. Sacco, 1999), 
 

f
f

R
f

f
    

 

2 23
( )

2

t t t
t t t

t t

J J
f c  









     

 
where, for the austenite to martensite transformation, 
 

- ,  
ff M Mf f c C   and  R  = 1 -      

 
and for the reverse martensite to austenite transformation, 



Chapter 3: Material models and formulations 
 

 
 
264 Advanced Nonlinear Solution  Theory and Modeling Guide 

,  
ff A Af f c C   and  R  =    

 
 Evolution of single-variant detwinned martensite: 
 
Martensite re-orientation is based on the following condition 
 

23R R Rf J C      

 
where 
 

R  material yield property at   = 0 
 
CR = slope of yield function temperature variation 
 
Austenite to martensite transformation leads to 
 

s    

 
Martensite to austenite transformation leads to proportional 
transformation of the twinned and detwinned phases: 
 

s
s

 


   

 

t
t

 


   

 
 The computational steps for the stress-integration of the SMA 
model are as follows (Kojić and Bathe, 2005): 
 
1. Calculate the trial deviatoric stresses, assuming no additional 
phase transformation or re-orientation, 
 

 
( )

( )
1 ( )

t
t t TR t t

ij ijt

E
s

 
 

  


 

 
2. Check for martensitic re-orientation, 
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 0Rf   and t t
s   and 1t   

 
 Check for austenite to martensite transformation, 
 

 0
f sM Mf f   and 1t   and 0f   

 
 Check for martensite to austenite transformation, 
 

 0
f sA Af f   and 0t   and 0f   

 
3. In case of martensitic re-orientation solve the following 
governing equation: 
 

2

"
max

3
( ) 0

2

( )
( )

1 ( )

t t t t t t
s ij ij R R

t t
t t t t t t t t
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 
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  



    


  

 

 (3.9-1) 

 
The martensite reorientation calculation step is optional; it is 
activated when σR  > 0 is input. 
 
4. In case of austenite to martensite transformation, solve the 
following governing equation: 
 

2 23 ( )
( ) ( ) 0

2

t t t t t
t t t

t t t t
f

R J J
g c

f
    



 


 

  
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 
  

  (3.9-2) 
 
where 
 

"
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( )
( ( ) )

1 ( )

t t
t t t t t t t t

ij ij s ijt t
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1R   , 
ff Mf f   and  c = CM 

 
5. In case of martensite to austenite transformation, solve the 
governing equation (3.9-2) with 
 
R  ,  

ff Af f and  c = CA 

 
6. Update history-dependent variables for this time step/iteration 
step. 
 
7.  Calculate the consistent tangent constitutive matrix. 
 

ref. M. Kojić and K.J. Bathe, Inelastic Analysis of Solids and 
Structures, Springer, 2005 

 
ref. F. Auricchio and E. Sacco, “A Temperature-Dependent 

Beam for Shape-Memory Alloys: Constitutive 
            Modelling, Finite-Element Implementation and 

Numerical Simulation”, Computer Methods in Applied 
Mechanics and Engineering, Vol. 174, pp. 171-190 
(1999) 

 

3.10  Viscoelastic material model (Solution 601 only) 
 

 The viscoelastic model can be used with the rod, 2-D solid, 3-D 
solid and shell elements. 
 
 The viscoelastic model can be used with the small 
displacement/small strain, large displacement/small strain and 
large displacement/large strain kinematics (2-D solid and 3-D 
solid elements only). 

When used with the small displacement/small strain kinematics, 
a materially-nonlinear-only formulation is employed, when used 
with the large displacement/small strain kinematics, a TL 
formulation is employed and when used with the large 
displacement/large strain kinematics, the ULH formulation is 
employed. 
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 The mechanical behavior for an isotropic and linear viscoelastic 
material may be expressed in tensor notation as 

 

 
0

( )
( ) 2 (0) ( ) 2 ( )

t

ij ij ij

dG
s t G e t e t d

d

 


    (3.10-1) 

 

 
0
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( ) 3 (0) ( ) 3 ( )

t

kk kk kk

dK
t K t t d

d

    


    (3.10-2) 

 

where t is the time, 
1

3ij ij ij kks      is the deviatoric stress, ij  

is the Kronecker delta, ij  is the stress, 
1

3ij ij ij kke      is the 

deviatoric strain, ij  is the strain, G(t) is the shear modulus and 

K(t) is the bulk modulus. 
In the presence of a temperature variation ( )t  the stresses for 

an isotropic and thermorheologically linear viscoelastic material 
may be written as 
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d
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 (3.10-4) 
where 
 

    
0 0

,
t

d d


         
 

          (3.10-5) 

 

and the thermal strain is given by 
 

         0 03 ( ) 3th
kk TALPHA TALPHAt t t               (3.10-6) 
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 ( )t   is the temperature-dependent coefficient of thermal 

expansion and ( )t  is the shift function, which obeys 
 

 ( ) 1, ( ) 0, 0TALPHA

d

d

   


    (3.10-7) 

 

Note that TALPHA  is the reference temperature used for thermal 
strain calculation. 

In equations (3.10-3) and (3.10-4) it is assumed that the 
mechanical and thermal responses are uncoupled. Furthermore if 
the temperature is constant, equations (3.10-3) and (3.10-4) reduce 
to equations (3.10-1) and (3.10-2). 

 
 We assume the following thermo-material properties: 
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   (3.10-9) 

 
 ( ) 0t   (3.10-10) 
 

  ( )t    (3.10-11) 
 

where G  and K  are the long-time shear modulus and bulk 

modulus respectively, i  and i  are the decay constants for the 

shear modulus and bulk modulus respectively and G  and K  are 

the number of time-dependent terms for the shear modulus and 
bulk modulus respectively. Equations (3.10-8) and (3.10-9) are 
referred to in the literature as Prony or Dirichlet series. G  and K  

are limited to a maximum value of 15. 
The shift function used is either the Williams-Landell-Ferry 

(WLF) equation, written as follows 
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 (3.10-12) 
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or the Arrhenius shift function  
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 (3.10-13) 

 

in which C1 and C2 are material constants, and 0  is defined as the 

initial temperature of the model, which must be the same as the 
reference temperature of the viscoelastic material model. 
 
 The viscoelastic material is specified using the MATVE bulk 
data entry. The MATVE bulk data entry uses TABVE bulk data 
entries for the input of the shear and bulk modulus relaxation 
functions. 

 
 The nodal point temperatures are input as discussed in Section 
5.6. 

 
 For more information, see the following references: 

 

ref. W.N. Findley, J.S. Lai and K. Onaran, Creep and 
relaxation of nonlinear viscoelastic materials, Dover 
Publications, 1976. 

 

ref. R.L. Frutiger and T.C. Woo,  “A thermoviscoelastic 
analysis for circular plates of thermorheologically simple 
material”, Journal of Thermal Stresses, 2:45-60, 1979. 

 

3.11  Heat transfer materials (Solution 601 only) 
 

 Heat transfer materials are available for heat transfer analyses 
and coupled structural heat transfer analyses (SOL 601,153 and 
SOL 601,159) 
 
  The isotropic materials in this section (MAT4 and MATT4) are 
available for rod, beam, 2-D solid, 3-D solid, and shell elements. 
The orthotropic materials (MAT5 and MATT5) are only available 
for 3-D solid and shell elements. 
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 The convection heat transfer coefficient and heat generation 
capacity are input via the MAT4/MAT5 entries. However, in this 
manual they are considered as loads and boundary conditions and 
are therefore addressed in Chapter 5. 
 

3.11.1  Constant isotropic material properties 
 

 This material model is obtained with a MAT4 material entry. 
The thermal conductivity and heat capacity are independent of 
temperature and time and do not exhibit any directional 
dependence due to the material. 

 
3.11.2  Constant orthotropic conductivity 

 
 This material model is obtained with a MAT5 material entry. 
The thermal conductivity is orthotropic, that is, the model exhibits 
a directional dependency. Three constants 1 2 3, ,k k k  give the 

thermal conductivity along material axes (1,2,3), respectively. 
 

 The heat capacity is isotropic for this model. 
 

3.11.3  Temperature dependent thermal properties 
 

 Both the constant isotropic and the constant orthotropic material 
models can be made temperature dependent by adding MATT4 or 
MATT5 material entries. 
 
 Both thermal conductivity and heat capacity can be made 
temperature dependent. In this case they are defined using 
piecewise linear input curves.



 4. Contact conditions 
 

 
 
Advanced Nonlinear Solution  Theory and Modeling Guide 271 

4. Contact conditions 
 

 Contact conditions can be specified in Advanced Nonlinear 
Solution to model contact involving 3-D solid elements, shell 
elements, 2-D solid elements, and rigid surfaces. 

 
 Very general contact conditions are assumed: 

 

 The points of contact are assumed not known a priori. 
 Friction can be modeled according to various friction laws 

(only standard Coulomb friction for Solution 701). 
 Both sticking and sliding can be modeled. 
 Repeated contact and separation between multiple bodies is 

permitted in any sequence. 
 Self-contact and double-sided contact are permitted. 
 Tied contact can be modeled (Solution 601 only). 
 A small displacement contact feature is available. 
 

Some of the contact algorithms used in Advanced Nonlinear 
Solution are described in the following references: 

 
ref. Bathe, K.J. and Chaudhary, A., "A Solution Method for 

Planar and Axisymmetric Contact Problems,"  Int. J. 
Num. Meth. in Eng., Vol. 21, pp. 65-88, 1985. 

 

ref. Eterovic, A. and Bathe, K.J., "On the Treatment of 
Inequality Constraints Arising From Contact Conditions 
in Finite Element Analysis," J. Computers & Structures, 
Vol. 40, No. 2, pp. 203-209, July 1991. 

 

ref. Pantuso, D., Bathe, K.J. and Bouzinov, P.A."A Finite 
Element Procedure for the Analysis of Thermo-
mechanical Solids in Contact," J. Computers & 
Structures, Vol. 75, No. 6, pp. 551-573, May 2000. 

 
 Contact in Advanced Nonlinear Solution is modeled using 
contact sets, contact surfaces (regions), contact segments and 
contact pairs, as explained in much greater detail below.  
 
 
 
 
 

ref. KJB 
Section 6.7 
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 Table 4-1 lists the case control commands related to contact, 
Table 4-2 lists the bulk data entries related to contact surface 
definition, and Table 4-3 lists the bulk data entries related to 
contact set definition. 
 
 Most of the features and tolerances needed for contact sets are 
provided in the BCTPARA entry. An explanation of this entry is 
provided in the NX Nastran Quick Reference Guide. Some contact 
settings however apply to all contact sets (such as contact 
convergence tolerances, suppression of contact oscillations). These 
settings are provided in the NXSTRAT entry. 
 
 

  Table 4-1: Case Control commands related to contact 
 
 

Contact Case Control 
Command 

Description 

BCSET Selects which contact set to use 

BCRESULTS Selects which contact results to output 

 
 

Table 4-2: Bulk Data entries related to contact surface definition 

 
Contact Surface Bulk 
Data Entry 

Description 

BSURFS 
Define contact surface on 3-D solid elements (by element and 
nodes) 

BSURF Define contact surface on shell elements (by element number) 

BCPROP Define contact surface on shell elements (by property ID) 

BCPROPS 
Define contact surface on free faces of 3-D solid elements (by 
property ID) 

BEDGE 
Define contact surface on 2-D axisymmetric, plane strain and 
plane stress solid elements (by element edges) 

BLSEG 
Define contact surface on 2-D axisymmetric, plane strain and 
plane stress solid elements (by node numbers) 

BCRPARA Set parameters for contact surface 



 4. Contact conditions 
 

 
 
Advanced Nonlinear Solution  Theory and Modeling Guide 273 

   Table 4-3: Bulk Data entries related to contact set definition 

 
Contact Set Bulk Data 
Entry 

Description 

BCTSET Define contact sets 

BCTADD Define union of contact sets 

BCTPARA Set parameters for contact sets 

 
 

4.1  Overview 
 

 Contact sets (and their contact surfaces) in Advanced Nonlinear 
Solution can be either 2-D or 3-D. The contact surfaces should be 
defined as regions that are initially in contact or that are anticipated 
to come into contact during the solution. 
 

 2-D contact surfaces are either axisymmetric or planar and 
must lie in the global XZ plane, with all Y coordinates equal 
to zero.  Typical two-dimensional contact surfaces are 
shown in Fig. 4.1-1.  

 A 3-D contact surface is made up of a group of 3-D contact 
segments (faces) either on solid elements, shell elements or 
attached to rigid nodes. See Fig. 4.1-2 for an illustration.  

 
 A contact pair consists of the two contact surfaces that may 
come into contact during the solution. One of the contact surfaces 
in the pair is selected to be the contactor surface and the other 
contact surface to be the target surface. In the case of self-contact, 
the same surface is selected to be both contactor and target.Self-
contact is when a contact surface is expected to come into contact 
with itself during the solution.)  
 
 Within a contact pair, the nodes of the contactor surface are 
prevented from penetrating the segments of the target surface, and 
not vice versa.  
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Fig. 4.1-1: Typical 2-D contact surfaces  
 

3-D contact surface pair

Body 2

Body 1

Target surface

(top surface of

body 2)

Contactor surface

(surface of cylinder)

Fig. 4.1-2: Typical contact surfaces and contact pair  
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 Fig. 4.1-3 shows the effect of contactor and target selection on 
the different contact configurations. 

 

Contactor
surface

No penetration

No penetration

Target
surface

Target
surface

Contactor
surface

Fig. 4.1-3: Contactor and target selection  

 In Solution 601 at least one of the two contact surfaces in a 
contact pair must not be rigid. If one surface is rigid, this surface 
should, in most cases, be the target surface. 
 
 In Solution 701 both contactor and target surfaces can be rigid if 
the penalty algorithm is used. Otherwise, the same restriction 
mentioned above for Solution 601 applies. 
 
 Rigid surfaces have no underlying elements and therefore no 
flexibility apart from rigid body motions. All their nodal degrees of 
freedom must be either fixed, have enforced displacement, or be 
rigidly linked to a master node which is defined on the BCRPARA 
entry. 
 
 Symmetric contact pairs can be defined, where in one contact 
pair surface A can be the contactor and surface B the target, and in 
another contact pair surface B is the contactor and surface A is the 
target. 
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 In Solution 601, a non-zero contact surface compliance should 
always be used with symmetric contact pairs. (Contact surface 
compliance is discussed in Section 4.4.) Without compliance, the 
system of contact equations can become overconstrained, that is, 
the same contact equation can be present more than once in the 
system of contact equations. When this happens, the global system 
of equations becomes singular and the solution diverges. 
 
 Basic concepts 
 
 The normal contact conditions can ideally be expressed as 
 

 0; 0; 0g g     (4.1-1) 
 

where g is a gap, and λ is the normal contact force. Different 
algorithms may vary in the way they impose this condition. 
 
 For friction, a nondimensional friction variable  can be defined 
as  

 TF


  (4.1-2) 

 

where FT  is the tangential force and  is the normal contact force. 
 
 The standard Coulomb friction condition can be expressed as 
 

 

   

1

and 1 implies 0 

while 1 implies sign sign

u

u




 


 

 




 (4.1-3) 

 
where u  is the sliding velocity. 
 
 In static analysis, the sliding velocity is calculated by dividing 
the incremental sliding displacement by the time increment. Hence, 
time is not a dummy variable in static frictional contact problems. 
 
 When (Coulomb) friction is used, the friction coefficient can be 
constant or calculated from one of several predefined friction laws. 
 
 

ref. KJB 
Section 6.7.2 
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 The possible states of the contactor nodes and/or segments are 
 

No contact: the gap between the contactor node and target 
segment is open. 
 
Sliding: the gap between the contactor node and the target 
segment is closed; a compression force is acting onto the 
contactor node and the node kinematically slides along the 
target segments (either due to frictionless contact or to a 
frictional restrictive force less than the limit Coulomb force. 

 
Sticking: as long as the tangential force on the contactor node 
that initiates sliding is less than the frictional capacity (equal to 
the normal force times the Coulomb friction coefficient), the 
contactor node sticks to the target segment. 

 
 Old and new contact surface representations 
Two types of contact surface representation are supported in 
Advanced Nonlinear Simulation, an old and a new contact surface 
representation (set via the CSTYPE parameter in the NXSTRAT 
entry). The new contact surface representation is the default. The 
main differences between the two representations are: 
 

 In the old representation, contact segments are linear (2 
nodes for 2D contact; 3- or 4 nodes for 3D contact). In the 
new representation, contact segments can be linear or 
quadratic (up to 3 nodes for 2D contact, up to 9 nodes for 
3D contact). 

 In the new representation, contact is based on the actual 
faces of the contact segments which results in more accurate 
contact constraints.  

 The new representation uses a more accurate contact 
traction calculation algorithm.  

 The new representation generates more accurate contact 
constraints for 3-D contact segments resulting from 10, 11 
node tet elements and 20, 21 node brick elements. These 
elements generate zero (10, 11 node tets) or negative (20, 21 
node bricks) contact forces at their corner nodes when 
subjected to a uniform contact pressure.  

 Tractions are reported as nodal quantities in the new surface 
representation.  
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  The new contact surfaces cannot be used with the following 
features: 
 

 Segment method algorithm 
 Rigid target algorithms 

 
 Single-sided contact 
For single-sided contact, which is defined using NSIDE=1 
parameter on the BCTPARA card (see Fig. 4.1-4), one side of the 
contact surface is assumed to be internal and the other side to be 
external. Any contactor node within the internal side of a target 
surface is assumed to be penetrating and will be moved back to the 
surface. This single-sided option is ideal for contact surfaces on the 
faces of solid elements since in that case it is clear that one side is 
internal to the solid while the other is external. In this case, the 
external side can usually be predicted from the geometry. This 
option is also useful for shells when it is known that contact will 
definitely occur from one direction. In this case, however, the 
program cannot intuitively predict the internal side of the contact 
surface. 
 

Target
surface

External side

Internal side
(no contactor nodes allowed)

Fig. 4.1-4: Single-sided contact surface  
 
 Double-sided contact
In double-sided contact, which is defined using NSIDE=2 
parameter on the BCTPARA card (see Fig. 4.1-5), there are no 
internal or external sides. The contactor surface nodes in this case 
are prevented from crossing from one side of the target contact 
surface to the other during solution. This option is more common 
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for shell-based contact surfaces. If a contactor node is on one side 
of the target surface at time t, it will remain on the same side at 
time t t  . Note that double sided contact is only supported in 
3-D. 
 

Contactor node cannot
penetrate upper side

Contactor node cannot
penetrate lower side

Target
surface

Fig. 4.1-5: Double-sided contact  
 

 Tied contact 
When the tied contact feature is selected for a contact set (TIED 
parameter in the BCTPARA card), Solution 601 performs an initial 
contact check at the start of the analysis. All contactor nodes that 
are found to be in contact or overlapping are permanently attached 
to their respective target segments. Contactor nodes that are not in 
contact are also set to be tied if the contact gap is less than a user-
specified contact tolerance (TIEDTOL parameter in the BCTPARA 
card). This tolerance is useful when the contact gap is due to non-
matching finite element discretizations of the contacting surfaces. 
 The tied contact feature is conceptually similar to using Rigid 
elements or multipoint constraints to attach the node to the target 
surface. The main difference is that the coefficients for the rigid 
elements are automatically determined by the program and they are 
only applied for the nodes that are initially in contact. The basic 
idea is illustrated in Fig. 4.1-6. 

Tied contact is not "real" contact because there can be tension 
between tied contact surfaces. Also no sliding can occur between 
tied contact surfaces. 
 The tied contact option can be used to connect two incompatible 
meshes. However, the mesh glueing feature described in Section 
5.9 produces more accurate results. 
 



Chapter 4: Contact conditions 
 

 
 
280 Advanced Nonlinear Solution  Theory and Modeling Guide 

Contactor surface

Target surface

Gap between
contact surfaces
(exaggerated)

Permanent rigid
connections

Fig. 4.1-6: Tied contact option  
 
If the contact surfaces initially overlap, they are not pushed back 

to eliminate the overlap. Similarly, if there is an initial gap it is not 
eliminated. 

The tied contact constraint equations are computed based on the 
initial nodal positions only. The constraints generated in tied 
contact are not updated during the analysis. Hence, the constraints 
will be inaccurate if the bodies experience large rotations. 
 
 Small displacement contact 
If the small displacement contact feature is used (CTDISP = 1 in 
the NXSTRAT entry or DISP =1 in the BCTPARA entry), the 
contact constraints are generated once in the beginning of the 
analysis and are kept constant, as shown in Fig. 4.1-7. A target 
location is identified for each contactor node if possible, and its gap 
and normal direction are determined. The local coordinates of the 
target point and the normal direction are then kept constant for the 
remainder of the analysis. This is in contrast to the standard large 
displacement contact, where the contact constraints are updated 
every iteration, and the contactor nodes can undergo any amount of 
sliding. 
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Contactor surface

Small displacement contact acceptable

Small displacement contact not
acceptable due to excessive displacement

Small displacement contact not
acceptable due to excessive rotation

x1

N

x1

x1

x1

*

Original geometry: Determine target
point normal vectorx N1 and*

*

*

x1

x1

*x1

x1

Target surface

Fig. 4.1-7: Small displacement contact feature  
 

This feature is useful when there is very little relative 
deformation around the contact region. For such problems, it is 
much more computationally efficient to perform only one detailed 
contact search at the beginning of the analysis, rather than 
repeating the search every iteration. Also, in some cases, 
convergence can also be slow or unachievable with the general 
algorithm, for example as nodes oscillate between one target 
segment and another equally valid neighboring target segment. 

 
 Contact result output is controlled by the BCRESULTS Case 
Control command. The user can request output of nodal contact 
forces, nodal contact tractions and/or contact gap distances. 
Tractions and contact gap distances are only generated on contactor 
surfaces. 
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4.2  Contact algorithms for Solution 601 
 

 Solution 601 offers three contact solution algorithms (set via the 
TYPE flag in the BCTPARA entry): 
 
 Constraint-function method, 
 Segment (Lagrange multiplier) method, or
 Rigid target method 

 
 Each contact set must belong to one of these three contact 
algorithms. However, different contact sets can use different 
algorithms. 
 
 All 3 contact algorithms can be used with or without friction. 

 
4.2.1  Constraint-function method 

 
 In this algorithm (selected using TYPE=0 on BCTPARA card), 
constraint functions are used to enforce the no-penetration and the 
frictional contact conditions.  
 The inequality constraints of Eq. (4.1-1) are replaced by the 
following normal constraint function: 
 

   
2

,
2 2 N

g g
w g

       
 

 

 
where εN is a small user-defined parameter. The function is shown 
in Fig. 4.2-1. It involves no inequalities, and is smooth and 
differentiable. The parameter εN  is set via the EPSN variable in the 
BCTPARA entry. The default value of 1.0x10-12 is suitable for 
most applications and should rarely be modified. 
 It is possible to set EPSN=0.0. In this case Solution 601 
automatically determines EPSN. However, this determination may 
not result in correct results for some problems. Hence EPSN=0.0 
should not be used in general.  
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g

*

w(g, )*

Fig. 4.2-1: Constraint function for

normal contact  
 
 The constraint function method is also used to approximate the 
rigid non-differentiable stick-slip transition of Eq. (4.1-3). This 
results in a smooth transition from stick to slip and vice versa, and 
it also results in a differentiable friction law that is less likely to 
cause convergence difficulties. 
 Two friction regularization algorithms are available in 
Advanced Nonlinear Solution. Both constraint functions take the 

form  v , 0u   .
 

 The newer default algorithm involves a more accurate 
linearization of the frictional constraints and, in general, converges 
much faster than its predecessor. The v function is defined 
implicitly as a multilinear function as shown in Fig. 4.2-2. Here εT 
is a small parameter (EPST parameter in the BCTPARA entry) 
which has the physical meaning of the "sticking velocity", that is, 
the maximum velocity corresponding to sticking conditions. The 
default value of EPST is 0.001. 
 In the old friction algorithm, the v function is defined implicitly 
via 

    
v

v arctan 0
T

u


  
     


 

  
Here εT is a small parameter (EPST parameter in BCTPARA entry) 
which provides some elastic slip to the Coulomb friction law as 
shown in Fig. 4.2-3. Guidelines for selecting εT are provided in 
section 4.7.3. 
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Fig. 4.2-2: Frictional contact constraint function for new

friction algorithm  
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Fig. 4.2-3: Frictional contact constraint function for old

friction algorithm  
 
 

 
The old friction algorithm can still be accessed via the FRICALG 
parameter in the NXSTRAT entry. 
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4.2.2  Segment (Lagrange multiplier) method 
 

 In this method (selected using TYPE=1 on BCTPARA card), 
Lagrange multipliers are used to enforce the contact conditions of 
Eq. (4.1-1). The kinematic conditions are enforced at the contactor 
nodes, and the frictional conditions are enforced over the contact 
segments. 
 
 This method involves distinct sticking and sliding states. It also 
calculates this state for each contactor node based on the contact 
forces on the target segment. 

 
4.2.3  Rigid target method 

  
 This is a simplified contact algorithm (selected using TYPE=2 
on BCTPARA card). The algorithm is fully described in Section 
4.8.  
 

4.2.4  Selection of contact algorithm 
 

 Our experience is that in most frictionless contact problems the 
constraint function method is more effective than the segment 
method. The constraint function method is the default. 
 
 For problems involving rigid targets, either the constraint 
function or the rigid target algorithm can be employed. 
 
 Note that the target surface can be rigid in all three contact 
algorithms. The presence of a rigid target does not mean that the 
rigid target algorithm must be used.

 

4.3  Contact algorithms for Solution 701 
 

 Solution 701 offers three contact solution algorithms (set via the 
XTYPE flag in the BCTPARA entry): 
 
 Kinematic constraint method, 
 Penalty method, or 
 Rigid target method 
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 Each contact set must belong to one of these three contact 
algorithms. However, different contact sets can use different 
algorithms. 
 
 All Solution 701 contact algorithms can be used with or without 
friction. 

 
4.3.1  Kinematic constraint method 

 
 This algorithm is selected by setting XTYPE=0 on BCTPARA 
card). It is the default explicit contact algorithm for Solution 701. 
 
 A predictor step is first done without applying contact 
constraints or forces. Then displacements are evaluated and 
penetration is detected and corrected. The exact correction of 
displacements requires the solution of a non-diagonal system of 
equations. Instead, a good approximation is done. In this case, for 
each penetrating contactor node, a penetration force 
 

*
2

N N N
C C C CM M

t


 


F a N  

 
is calculated. This is the force required to remove the penetration at 
the contactor node. However, not all the penetration will be 
removed by moving the contactor. The target will get some motion 
depending on its mass relative to the contactor and how many 

contactor nodes are touching it. So, the N
CF  force above is 

projected to the target segment nodes: 
 

i

N N
T i CNF F  

 
where Ni is the shape function relating the contactor displacement 
to that of each target node. Similarly, the mass of the contactor 
node is projected to the target in the same way: 
 

iT i CM N M  

 
and this mass is added to that of the target node itself. Then the 
acceleration of the target node is determined as 
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( )
i i

N N
T T T TM M  a F  

 
This correction is then used to update the target displacements. The 
contactor acceleration is  
 

*N N N
C C T iN a a a  

 
 For friction, a similar approach is used. A correction force is 
calculated 
 

*T T
C CM

t



v

F  

 
where vT is the tangential sliding velocity. However, this force 
cannot exceed the limit force based on the normal force and the 
coefficient of friction 
 

 *min ,T N T
C C CF F F  

 
The rest of the procedure is very similar to the case of normal 
contact. The form of the equations is different if there is damping, 
and is also different if the previous and current time steps are not 
the same. 

 
 A modification is also required for rigid targets, which are 
common in contact. The form of the equations in this case depends 
on whether the rigid target has natural or essential boundary 
conditions. 
 
 The kinematic constraint algorithm should not be used when the 
target surface degrees of freedom are fixed. 

 
4.3.2  Penalty method 

 
 In this algorithm (selected using XTYPE=1 on BCTPARA 
card), contact conditions are imposed by penalizing the inter-
penetration between contacting surfaces. When a penetration is 
detected, a normal force of  
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( )N N D NA A K K   F P N   

 
is applied to the contactor node, where KN is the normal stiffness, 

KD is a normal rate stiffness, δN is the penetration, N is the 

penetration rate, N is the normal vector pointing towards the 
contactor, A is the contact area and P is the normal contact traction. 
An opposing force is distributed to the target nodes. 
 
 Similarly, in the presence of friction, the relative sliding 
velocity between the two bodies is penalized as follows: 
 

min , T
T T T N

T

A K 
 

   
 

x
F x F

x
 

 
where xT is the relative tangential sliding displacement. 
  
 The normal and tangential penalty stiffnesses KN and KT can be 
selected by the user, or determined automatically by the program 
based on the following BCTPARA parameters: XKN, XKNCRIT, 
XKT, XKTCRIT. The penalty rate stiffness KD can be explicitly 
selected by the user, or determined by the program as a ratio of 
critical damping for the contact node (using the XDAMP and 
XNDAMP parameters). 
 
 When penalty stiffnesses are automatically determined they are 
chosen based on the masses of the contactor nodes and the time 
step. They are selected such that they have a minimal effect on the 
existing time step. 
 Note that unduly small penalty stiffnesses will lead to excessive 
penetrations, and unduly large penalty stiffnesses will lead to 
excessive oscillations or unstable explicit time integration. 
 

4.3.3  Rigid target method 
 

 This algorithm is similar to the rigid target method used in 
Solution 601. It is selected using XTYPE=3 on the BCTPARA 
card. The algorithm is fully described in Section 4.8. 
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4.3.4  Selection of contact algorithm 
 

 The kinematic constraint method is the default in Solution 701.  
 
 The penalty method is the simplest and fastest of the explicit 
contact algorithms. It can also handle rigid contactor and target 
surfaces. It also allows a contactor node to be in contact with 
multiple targets simultaneously. 
 
 The main disadvantage of the penalty method is that contact 
conditions are not exactly satisfied and it usually shows oscillations 
in contact forces. These oscillations can usually be removed by 
using the penalty rate stiffness factor DK . The penalty method is 
also sensitive to the choice of the penalty stiffness. If that stiffness 
is too large it leads to instability and oscillations, and if it is too 
small it leads to excessive penetrations. 
 
 The default penalty stiffness selected by Solution 701 is, in 
most cases, a suitable compromise. 

 

4.4  Contact set properties 
 

This section describes the main options available for contact sets. 
 
 Contact surface offsets 
Penetration of a contact surface occurs when the plane or line 
defined by the contact segment nodes is penetrated. However, an 
offset distance can be specified which causes the actual contact 
surface to be offset from the plane defined by the contact surface 
nodes. In the case of double-sided contact, the offset creates two 
separate surfaces above and below the reference surface. Fig. 4.4-1 
shows the possibilities for single and double-sided contact. Note 
that the offset distance should be small compared to the contact 
surface length.  
 Offsets for a whole contact set are specified via the OFFSET 
parameter in the BCTPARA entry, while offsets for a specific 
contact surface are set via the OFFSET parameter in the 
BCRPARA entry. If one of the contact surfaces has a defined 
offset, it will overwrite the contact set offset. 
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Internal side Defined contact
surface

Defined contact surface

Actual contact
surface

Actual contact
surfaces

Offset

(a) single-sided contact
(using NSIDE=1, OFFSET=t on BCTPARA card)

(b) double-sided contact
(using NSIDE=2, OFFTYPE=1, OFFSET=t on BCTPARA card)

Offset

t
t

t

Offset

Fig. 4.4-1: Contact surface offsets  
 
 
 If the contact surface is on a shell then half the true shell 
thickness can automatically be used as the offset (OFFTYPE=2 in 
the BCTPARA entry). In this case the shell thickness at a node is 
obtained as the average of all of the shell thicknesses at that node. 
 The use of contact surface offsets in double-sided contact is not 
recommended.  

 
 Continuous normals (Solution 601 only) 
The normal direction to a contact segment will in general not be 
continuous between segments as illustrated in Fig. 4.4-2. This 
sometimes causes convergence difficulties due to the non-unique 
normals at nodes and segment edges. The continuous normals 
feature first calculates nodal normals as averages of all the normals 
from the attached segments, and then interpolates these nodal 
normals across the segment. This leads to a uniformly varying 
normal direction.  
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Nodal normals

(a) Discontinuous normals (b) Continuous normals

Fig. 4.4-2: Contact surface normals  
 

 The SEGNORM parameter in the BCTPARA card determines 
the setting for continuous normals. Continuous normals 
(SEGNORM=1) is the default.  
 In modeling target surfaces with sharp corners, either use 
discontinuous normal vectors, or use small segments near the 
corners, in order that the normal vectors for segments near the 
corners be computed correctly. See Section 4.7.2 for modeling tips 
related to this feature. 
 Continuous normals give poor results with explicit time 
integration. Therefore, they are blocked from Solution 701. 

 Contact surface depth 
By default, the contact region extends for an infinite distance below 
the contact surface (for single-sided contact). However, a contact 
surface depth can be defined (by setting the PDEPTH parameter in 
the BCTPARA card), below which the contact surface is no longer 
active. The default PDEPTH=0.0 results in an infinite contact depth 
extension. Fig. 4.4-3 shows some of the possibilities. 

 
 Initial penetration 
The treatment of initial penetrations in Solution 601 is governed by 
the INIPENE parameter in the BCTPARA entry. By default, if 
there is initial overlap (penetration) between a contact node and a 
target segment in the first solution step, the program attempts to 
eliminate the overlap. Advanced Nonlinear Solution can eliminate 
the overlap at the first step or over a user-specified time using the 
TZPENE parameter in BCTPARA. This feature is useful if the 
initial penetrations are too large to be eliminated in a single step. 
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Contact surface is used in self-contact.

Fig. 4.4-3: Contact surface depth.
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by segment A-B
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a) Target depth option not used

Nodes F and G have
penetrated segment A-B.

Target depth

PDEPTH

b) Target depth option used

Nodes F and G have not
penetrated segment A-B.

 
 

 The program can also calculate initial penetrations at the start of 
solution and ignore them in future steps. In this case the program 
does not detect penetration for a contactor node if the amount of 
penetration is less than or equal to the recorded amount. Fig. 4.4-4 
shows some of the possibilities. See Section 4.7.2 for modeling tips 
related to this feature. 
 This feature can be interpreted as a redefinition of the contact 
gap, as follows: 
 

 Eliminate penetration option (INIPENE=0): The contact 
gap is equal to the geometric gap.  

 Ignore penetration option (INIPENE=2):  
— Initial geometric gap is positive or zero: The contact gap 

is equal to the geometric gap. 
— Initial geometric gap is negative: The contact gap is equal 

to the geometric gap minus the initial geometric gap.  
 

 Initial penetrations can also be set to gap override (see below). 
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Continuum

Target surface

Contactor node

Solution start, contactor node
initially penetrates target surface

First solution time,
overlap is eliminated

Overlap is gradually eliminated

Fig. 4.4-4: Initial penetration options

First solution time,
overlap is recorded

Overlap
distance

Eliminate penetration

INIPENE = 0, TZPENE = 0.0

INIPENE = 0, TZPENE > 0.0 INIPENE = 2

Ignore penetration
Eliminate penetration

over time period

 
 

 Gap override 
In the gap override feature (set via the initial penetration flag 
INIPENE=3 in BCTPARA), the gaps and penetrations calculated 
from the finite element mesh are replaced by a fixed user-specified 
value (GAPVAL parameter in the BCTPARA entry). A positive 
value represents an initial gap, zero means that the contact is 
touching the target, and a negative value represents an initial 
penetration (which can be removed either immediately or over a 
user-specified time as explained in the Section on initial 
penetration above). 
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 This feature can also be interpreted as a redefinition of the 
contact gap, as follows:  
 

 Gap-override option (INIPENE=3): The contact gap is 
equal to the geometric gap minus the initial geometric gap 
plus the gap override GAPVAL. This formula is applied 
regardless of whether the initial geometric gap is positive, 
zero or negative.  

 
 This feature is useful for problems involving curved meshes in 
close proximity, such as the shrink fit example shown in Fig. 4.4-5. 
The gaps and penetrations measured from the discretized finite 
element mesh are sometimes inaccurate for such problems (unless 
matching meshes are used). In some problems, such as that shown 
in the figure, a constant geometry based overlap should be applied 
to all nodes, which corresponds to a gap override value of –. 
 Note that mesh refinement and quadratic elements reduce the 
error in the measured overlaps but frequently a very high mesh 
density would have to be used if gap override is not used. 
 

Proper initial overlap at

all nodes should be +

Two rings with a geometric overlap (shrink fit)+

Directly measured overlaps
are incorrect at most nodes

Fig. 4.4-5: Significance of gap override for curved non-matched geometries  
 
 Note also that the error in mesh based gaps and penetrations for 
curved surfaces can be more significant when low precision 
numbers are used for the node coordinates (such as when short 
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input file format is used). Gap override is also useful for such 
cases. 

 
 Contact surface extension 
The target surface can be enlarged beyond its geometric bounds, so 
that contactor nodes that slip outside the target can still be 
considered in contact (via the EXTFAC parameter on the 
BCTPARA card). This feature is useful where the edge of the 
contactor and target surfaces coincide, as shown in Fig. 4.4-6. Each 
target segment is enlarged by an amount equal to the contact 
surface extension factor multiplied by the length of the segment. 
 

Extended target
surface

Corner contactor node may slip
outside bounds of target due to
numerical round-off, or lateral
displacements

Target
surface

L
e

e = L contact surface extension�

Fig. 4.4-6: Contact requiring contact surface extension  
 

 Contact surface compliance (Solution 601 only) 
Contact surface compliance is set via the CFACTOR1 parameter 
on the BCTPARA card and is only available with the constraint 
function algorithm in Solution 601. Contact surfaces are commonly 
assumed to be rigid meaning that no interpenetration is allowed. 
This situation corresponds to a contact surface compliance of 0.0. 
However, the contact surface compliance feature can be used to 
simulate soft or compliant surfaces. The amount of allowed 
interpenetration between the contacting surfaces in this case is 
 
  penetration normal contact pressurep   (4.4-1) 
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where 
 
 normal contact pressure = normal contact force / contact area 
 
The constraint function in the presence of a compliance factor is 
modified as shown in Fig. 4.4-7.  A is the contact area of the 
contactor node. 
 

 

1

g

�
P
/A

*

Fig. 4.4-7: Constraint function for
compliant contact  

 
The benefits of contact compliance are that it:  
 

Improves the convergence rate. By adding compliance to the 
contact surface, more contactor nodes come into contact with 
the target surface. It is better for convergence to have many 
nodes in contact with small forces at each contactor node, than 
to have few nodes in contact with large forces at each contactor 
node.  

 
Improves the contact tractions. Without contact compliance, the 
discretization error of the mesh often cause some contactor 
nodes on the contact area to not be in contact which results in 
spotty contact (or patchy) contact tractions. An example of 
spotty contact is shown in Fig. 4.4-8.  
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Contact force

Closed
Open

Fig. 4.4-8: Spotty contact on a plate  
 

Reduces numerical oscillations that sometimes result from 
dynamic time integration. Numerical oscillations, such as 
chatter or ringing, can be triggered by contact reversal. A node 
that is out of contact at time t t  , in contact at time t and out 
of contact at time t t   is said to have had contact reversal. 
Contact surface compliance can be used to prevent these 
oscillations.  
 

However, the drawbacks of contact compliance are:  
 

Nodal contact overlap. The contactor nodes penetrate the target 
segment when contact compliance is used. The compliance 
factor must be selected such that the contact pressures do not 
cause excessive nodal overlap.  

 
Additional (spurious) energy is stored in the contact pair. 
Elastic energy is stored in the compliant contact surface. This 
energy is released when the contact pair opens which can have 
an effect in certain dynamic problems.  

 
Can reduce the resultant contact force and stresses. If a 
prescribed displacement is applied, the contact surface 
compliance feature will reduce the stress in the body for a given 
displacement. The stresses are not reduced if the body is 
subjected to an applied load.  

 
By default, the compliance factor is set to zero ( 0p  ). However, 

in general, some amount of contact compliance should always be 
used. It is not the default because the appropriate compliance factor 
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is model dependent.  
 The value of the contact compliance factor is usually set by trial 
and error. A good starting value is 510 . The objective is to find the 
smallest compliance factor that results in convergence with good 
tractions (i.e., not spotty contact), but does not cause excessive 
penetration (nodal contact overlap).  
 After contact compliance is used, the amount of penetration 
should always be checked to make sure the maximum overlap is 
acceptable.  
 When deciding on what penetration is acceptably small we must 
consider the mesh used. For example, if the target surface is 
curved, there will be a geometric error associated with using a 
coarse contractor surface. There is no advantage if the maximum 
penetration is less than the geometric error. So, if the target surface 
is coarse, a large maximum penetration can be used.  

 
 Consistent contact stiffness (Solution 601 only)
The consistent contact stiffness feature is set via the parameter 
CSTIFF on the BCTPARA card. Changes in the direction of the 
contact normal provide an additional contribution to the stiffness 
matrix that is proportional to the value of the contact force and the 
change in the normal direction. Therefore, higher convergence rates 
(closer to quadratic) can sometimes be obtained by selecting the 
consistent contact stiffness option which accounts for these 
additional stiffness contributions. This results, however, in an 
increase in the size of the stiffness matrix which is detrimental for 
large problems. This option is more beneficial when discontinuous 
contact normals are selected, because the derivation assumes that 
the contact normals are discontinuous. 
 The consistent contact stiffness feature is not used when the 
target surface is rigid. 
 Consistent contact stiffness is not used in dynamic analysis. 
 The default is CSTIFF=0 (consistent contact stiffness is not 
used). 
 
 Contact birth/death 
The contact birth feature activates a contact set at a specific time, 
while the contact death feature disables a contact set at a specific 
time. They are set via the TBIRTH and TDEATH parameters on 
the BCTPARA card. A 0.0 birth time means that the contact set 
starts active at the beginning of the analysis, and a death time less 
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than or equal to the birth time means that the contact set does not 
die. 
 
 Friction delay (Solution 601 only) 
When the friction delay feature is activated (FRICDLY parameter 
in the BCTPARA entry), frictional conditions are applied to a 
contactor node one time step after contact is established. This 
feature can be useful in many problems, since it delays the non-
linearity associated with friction until contact is established.  
 Note that the relative sliding velocity cannot be uniquely 
determined when a node was not in contact at time t, and is in 
contact at time t t  . That velocity depends on the exact time at 
which contact started, which is somewhere between times t and 
t t   (see Fig. 4.4-9). Delaying friction is equivalent to assuming 
that contact was established close to time t t  , and hence the 
sliding velocity is zero and so is the frictional force. 
 Frictoin delay is off by default (FRICDLY=0). 
 

Time = t

Friction delay

non-uniqueunique

x1

x1 Rx1 R

x1 R= Relative sliding velocity
.

..

Fig. 4.4-9: Friction delay feature
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4.5  Friction 
 

Advanced Nonlinear Solution has a general Coulomb type friction 
model, where the coefficient of friction   can be a constant or 
calculated based on several pre-defined friction laws. Solution 701 
however, only supports standard Coulomb friction. 
 
 In friction, the slip velocity is used to determine whether 
sticking or slipping conditions are occuring. 
 The slip velocity at a contactor node is defined as the velocity of 
the contactor node relative to the contacting point of the target 
surface, projected onto the contact plane.  This definition is 
opposite to the definition used in ref KJB equation (6.310) (in 
which the slip velocity is defined as the velocity of the contacting 
point of the target surface relative to the contactor node, projected 
onto the contact plane).   
 The slip velocity is evaluated as the change in slip displacement 
divided by the change in solution time.  In this way the same 
evaluation is used in static and dynamic analysis. 
 

4.5.1  Basic friction model 
 

By default, a constant coefficient friction is used. It is specified for 
each contact pair via the BCTSET entry. 

 
4.5.2  Pre-defined friction models (Solution 601 only) 

 
One of the following predefined friction laws can be used instead 
of constant Coulomb friction. The friction law and its input 
parameters are set via the BCTPARA entry. The following 
variables are used in the friction laws: the magnitude of the relative 
sliding velocity ,u  the contact traction ,nT  the consistent contact 

force ,nF  the current nodal coordinates x, the direction of sliding v, 

and the time t. The setting for the FRICMOD parameter required 
for each friction law is given in parentheses. The A1 through A5 
constants used in the predefined friction laws are set up via 
FPARA1 through FPARA5 parameters in BCTPARA. 
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 Constant coefficient of friction (FRICMOD = 1) 
 

1A   
 

 Different static and dynamic friction coefficients  
 (FRICMOD = 4) 

 

1 3

2 3

if 

if 

A u A

A u A



  




 

 
 Friction coefficient varying with sliding velocity  
 (FRICMOD = 5) 

 

1 3 1 2
2

3 2

( ) if 

if 

u
A A A u A

A

A u A


    
 

 


 

 
 Anisotropic friction model (FRICMOD = 6) 

 
2 2 2

1 (1) 2 (2) 3 (3) 5

4 5

( ) ( ) ( ) if 

if 

A A A u A

A u A


    


v v v 


 

 
where v(1), v(2) and v(3) are the x, y and z components of the sliding 
direction. 

 
 Friction coefficient varying with consistent contact force 
(FRICMOD = 7) 

 

1 2 , 0 1nA A F      

 
 Time varying friction model (FRICMOD = 8) 

1 3 1 2
2

3 2

( ) if 

if 

t
A A A t A

A

A t A


    
 
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 Coordinate-dependent friction model (FRICMOD = 9) 
 

1 3 (1) 4 (2)

2
1 3 (1) 4 (2) 5 (3)

in 2D
, 0

in 3D

A A A
A

A A A A
 

 
     

x x

x x x
 

 
 Friction model 1a (FRICMOD = 2) 

 

2

1

1 exp( )n

n

A T

T A
  
  

  
 Friction model 1b (FRICMOD = 12) 

 

2

1

1 exp( )n

n

A F

F A
  
  

 
 Friction model 2a (FRICMOD =3) 

 

2 2 1 3( ) exp( )nA A A A T      

 
 Friction model 2b (FRICMOD = 13) 

 

2 2 1 3( ) exp( )nA A A A F      

 
4.5.3  Frictional heat generation 

 
The heat generation resulting from frictional contact can be 
accounted for in a coupled TMC analysis. The user selects the 
fractions of the generated heat going into the contactor and target 
surfaces via the TMCFC and TMCFT parameters in the BCTPARA 
entry. If these two fractions do not add up to 1.0 the remaining 
portion is assumed to be lost. 
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4.6  Contact analysis features 
 

4.6.1  Dynamic contact/impact 
  
For Solution 601 
 Oscillations in velocities and accelerations can sometimes be 
present in implicit dynamic contact analysis especially for high 
speed impact problems. These oscillations can be reduced by  
 
 Applying post-impact corrections,  
 Setting the Newmark parameter  = 0.5, 
 Adding compliance to the contact surfaces, 
 Using the Bathe time integration method. 
 
 In post-impact corrections, the velocities and accelerations of 
the contactor and target can be forced to be compatible during 
contact (only in the normal contact direction). This feature is 
activated by setting IMPACT = 1 in the NXSTRAT entry. This is 
achieved by modifying the velocities and accelerations of the 
contact nodes once convergence is reached such that they satisfy 
conservation of linear and angular momentum. 
 The post-impact correction option requires additional memory 
and computations. 
 The post-impact correction feature should not be used together 
with compliant contact surfaces, since the velocities and 
accelerations of the contactor and target surfaces are no longer 
expected to be identical. 
 If post-impact correction is activated, all target nodes, except 
those with all degrees of freedom fixed or enforced displacements, 
must have a positive non-zero mass. The contactor nodes can have 
zero mass. 
 
 Setting the Newmark  = 0.5 instead of the default  = 0.25 
(trapezoidal rule — see Section 6.3) results in an accurate solution 
of rigid body impact problems, and frequently has a positive effect 
on reducing numerical oscillations in flexible body contact. This 
feature can be activated by setting IMPACT = 2 in the NXSTRAT 
entry, or by changing ALPHA to 0.5 also in the NXSTRAT entry. 
It is, however, recommended that the Bathe method be used 
instead, whenever possible. 
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 Adding compliance to the contact surface can also significantly 
reduce the numerical oscillations that result from dynamic time 
integration. This is done by setting a non-zero CFACTOR1 in the 
BCTPARA entry. In this case, the compliance factor must be 
selected based on Eq. (4.4-1) such that the contact pressures do not 
cause excessive penetration. Allowing penetration of the order of 
1% of the element size usually eliminates numerical oscillations. 
 
 The Bathe time integration method provides some numerical 
damping to the high frequency content of the solution, which 
includes the contact oscillations. 
 
For Solution 701 
 Oscillations in velocities and accelerations can sometimes be 
present in explicit dynamic contact analysis especially for high 
speed impact problems. These oscillations are more common with 
the penalty contact algorithm. In that case, they can be reduced by  
 
   Reducing the normal penalty stiffness, 
 Adding penalty contact damping. 
 
See Section 4.3.2 for details on the explicit penalty contact 
algorithm. 
 In addition, other sources of damping such as Rayleigh damping 
can reduce contact oscillations by damping the high frequency 
modes that generate them. 
 
 Oscillations in results can also occur when using the kinematic 
constraint algorithm. These oscillations can be due to a mismatch 
in the masses of the two contacting surfaces. See Section 4.7.3 for 
more details. 
 

4.6.2  Contact detection 
 

 As explained earlier in this chapter, the contact conditions 
prevent the contactor nodes from penetrating the target segments. 
During each equilibrium iteration, the most current geometry of the 
contactor and target surfaces is used to determine and eliminate the 
overlap at the contactor nodes. 
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 For single-sided contact, the calculation of overlap at a 
contactor node k consists of a contact search, followed by a 
penetration calculation. The contact search starts by identifying all 
possible target surfaces where node k can come into contact. For 
each of these target surfaces: 

 
  Find the closest target node n to node k.  
 Find all the target segments attached to node n.  
 Determine if node k is in contact with any of these 

segments.  
  If node k is in contact, update the information.  
  If no appropriate target segment is detected, the contact 

search is expanded beyond the target segments attached to 
node n.  

 
 For double-sided contact, the contact search algorithm uses time 
tracking and checks whether the contactor node penetrated a target 
segment between times t and t + Δt. 

 
4.6.3  Suppression of contact oscillations (Solution 601) 

 
 In some problems contactor nodes may oscillate during 
equilibrium iterations between several (usually two) neighboring 
target segments. Frequently, both solutions are acceptable. A 
special procedure can be used to prevent such oscillations. This is 
done by selecting a non-zero NSUPP parameter in the NXSTRAT 
entry. In this case, the program records the pairing target segment 
for each contactor node in the previous NSUPP iterations. Once 
this array is full, and the contactor node is still in contact, and the 
pairing target segment is one of those recorded in previous 
iterations, the suppression feature is activated. The contactor node 
from this iteration onwards is associated with only that target 
segment. It may remain in contact with the segment, or in contact 
with an infinite plane passing through the segment, or it can 
separate from contact completely. The node is released from its 
restrictions once iteration ceases, either because convergence is 
reached, or due to non-convergence. 
 The default is not to use oscillation suppression (NSUPP=0). 
 
 If this oscillation suppression feature is used, it is recommended 
that NSUPP be set greater or equal to 5 and at least 5 less than the 
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maximum number of iterations. 
 
 Note that there is memory overhead associated with this feature, 
where an integer array of size NSUPP is defined for all contactor 
nodes. 

 
4.6.4  Restart with contact 

 
 Changes in contact parameters are allowed between restarts, 
with some exceptions. Some restrictions exist, such as no restart 
from friction to frictionless and vice versa. 
 
 The contact algorithm itself for a certain contact set can also 
change in a restart. For this purpose, the contact algorithms can be 
divided into two categories. The first category includes the 
constraint function (implicit), Lagrange multiplier segment 
(implicit), kinematic constraint (explicit), and penalty (explicit). 
Restarts are possible between different algorithms in this category. 
The second category includes the implicit and explicit Rigid Target 
algorithms. Restarts are possible between these algorithms. 
However, restarts are not allowed between the two categories. 
 

4.6.5  Contact damping 
 
 The contact damping feature allows the user to add normal and 
tangential grounded viscous dampers to all contactor nodes in the 
model. The damping is activated via the CTDAMP parameter in 
NXSTRAT, and the normal and tangential damping coefficients are 
CTDAMPN and CTDAMPT. Using the same value for both 
normal and tangential direction results in isotropic viscous 
damping. The damping force on each node is 
 

Damp N N T TC C F u u   

 
 This damping can be useful in static problems for stabilizing the 
model especially when there are insufficient boundary conditions to 
remove rigid body modes. It can also be useful in dynamic analysis 
to dampen out high frequency numerical oscillations. The damping 
can be set to act only at the initial time step (CTDAMP=1), or to be 
constant throughout the analysis (CTDAMP=2). 
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 Using the initial damping option, the damping will be active at 
the beginning of the first time step, and will be reduced gradually 
(between iterations) until it fully dies out by the end of the first 
time step. Thus the final solution at the first time step will be free 
of any damping. Note that if contact is not established and nothing 
else stabilizes the model, the program will not converge and will 
give an appropriate warning message. 
 
 Constant damping remains active throughout the analysis. In 
this case, the program outputs the sum of all damping forces in the 
output file, and the user must check that these forces are 
significantly smaller than the sum of the reaction forces (also 
written to the output file). 
 See Section 4.7.6 for modeling hints on using contact damping 
to handle improperly supported structures and how to choose the 
damping constants. 
 

4.7  Modeling considerations 
 

4.7.1  Contactor and target selection 
 

 For some contact problems, the contactor and target surfaces in 
a contact pair can be interchanged without much effect on the 
solution. However, for many cases, one of the two alternatives is 
better. 
 
 If it is more important for the nodes of one surface not to 
penetrate the other, then that surface should be the contactor. This 
factor is usually important when one surface has a much coarser 
mesh than the other as shown in Fig. 4.7-1. The coarse surface 
should preferably be the target in this case. A related condition 
occurs around corners or edges as shown in Fig. 4.7-2. The upper 
surface should preferably be the contactor in this case. 
 
 



Chapter 4: Contact conditions 
 

 
 
308 Advanced Nonlinear Solution  Theory and Modeling Guide 

Contactor nodes
Target segments

Body 1 (contactor)

Body 2 (target)

Fig. 4.7-1: Effect of incorrect contactor-target selection due to
mesh density  

 

Contactor
surface

Target
surface

Fig. 4.7-2: Target selection for surfaces of
different sizes  

 
 If one of the surfaces has mostly dependent degrees of freedom, 
it should be the target. This dependency can be due to boundary 
conditions, constraints or rigid elements. The surface can also be 
rigid if its nodes are not attached to any elements. In that case too it 
has to be the target (except in the explicit penalty algorithm where 
this is permitted). 
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 If one surface is significantly stiffer than the other, it should 
preferably be the target, unless one of the two conditions above 
also exist. 
 

4.7.2  General modeling hints 
 

 Advanced Nonlinear Solution automatically defines the 
direction of the contact surfaces on the faces of solid elements 
(defined using the BSURFS or BCPROPS entries in 3-D or the 
BEDGE or BLSEG entries in 2-D). For target contact surfaces 
defined on shells (using the BSURF or BCPROP entries) the user 
has to ensure that the correct direction is defined using the 
BCRPARA entry (except when double-sided contact is used). 
 
 In some cases, even though the contact surface is on the faces of 
3D solid elements, it is more convenient to define the surface using 
shell elements. In this case, fictitious shell elements should be 
defined and referenced in the BSURF or BCPROP entries, and 
TYPE should be set to COATING in BCRPARA. The program 
will automatically transfer the contact surface to the underlying 
solid elements and delete the fictitious shell elements. 
 
 Rigid target surfaces can be modeled using nodes with no 
degrees of freedom or nodes with enforced displacements for all 
active degrees of freedom. As a result, a fine discretization of a 
complex rigid surface geometry is possible with only a small 
increase in the solution cost. 
 
 The commands for 3-D contact surface definition all require the 
contact surface nodes to be connected with 3-D solid or shell 
elements. Therefore, to model a rigid target, dummy shell elements 
should be used to define the surface. These shell elements are 
removed from the model if they are found to be attached to a rigid 
contact surface. A contact surface is deemed rigid if: 
 

 It is the target of a contact pair in a contact set using the 
rigid target algorithm, or 

 The TYPE flag in the BCRPARA entry is set to RIGID.  
 

 If the contact surface is rigid the MGP parameter in the 
BCRPARA command can also be used to define a master node that 
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will control the motion of the rigid surface. Internally, rigid links 
are created between the master node and all the nodes on the rigid 
target. 
 
 It is acceptable for the nodes on the contactor and target 
surfaces to be coincident (have identical coordinates).  In this case, 
it is important to ensure that the two surfaces do not share the same 
nodes. 
 
 In general it is recommended that the lengths of segments on the 
contactor and target surfaces be approximately equal. This is 
particularly important if multiple contact surface pairs are 
considered in the analysis or if the contact surface geometries are 
complex. 
 
 If required, a contactor surface can be modeled as almost rigid 
by choosing a reasonably high Young's modulus for the finite 
elements modeling the contactor surface. However, the stiffness of 
the surface elements should not be excessively high and make the 
model ill-conditioned. 
 
 If the degrees of freedom of a node on a contactor surface are 
used in constraint equations or attached to a rigid element (see 
Section 5.8), the contactor node degrees of freedom should 
preferably be independent. 
 
 If the contact surfaces are smooth (i.e., the coefficient of friction 
is small), the frictionless model is recommended as it is less costly 
to use. It is also recommended that prior to any contact analysis 
involving friction, the frictionless solution is first obtained, 
whenever possible. 
 
 It is not recommended that contact pairs with friction coexist 
with contact pairs without friction in the same contact set. 
 
 A contactor node should preferably not belong to more than one 
contact surface in a contact set, otherwise the contactor node may 
be over-constrained.  If it is necessary for a contactor node to 
belong to more than one contact surface, then contact compliance 
should be used. 
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 For problems in which the contactor and target surfaces are 
initially relatively close to each other and no significant sliding 
between these surfaces is expected throughout the analysis, the 
small displacement contact feature may be used. The analysis will 
be faster in this case, since the relatively time consuming contact 
search is only performed once, and convergence difficulties 
associated with a contactor node oscillating between one target to 
another are eliminated. It is the user’s responsibility however, to 
make sure that the problem is suitable for small displacement 
contact. 
 
 The friction delay feature can sometimes lead to better 
convergence since friction will only act once a converged contact 
solution is established. This feature is also very useful for many 
problems involving initial penetrations. In this case, the first time 
step during which these initial penetrations are removed will be 
frictionless. 
 
 Restarting from frictionless contact to contact with friction and 
vice versa is not possible. However, it can be done if the 
frictionless analysis is replaced by a frictional analysis with a very 
small friction coefficient. 
 

 Ignoring initial penetrations is a useful option when these 
penetrations are just a product of the finite element discretization, 
meaning that they do not exist in the physical model. Fig. 4.7-3 
illustrates one such case involving contact between concentric 
cylinders. In this situation, if initial penetrations are eliminated, the 
contact algorithm will try to push the penetrating contactor nodes to 
the target surface segments in the first step, creating initial 
prestressing. These initial penetrations and any prestressing that 
they might cause are unrealistic. Ignoring them is useful in this 
case. Note however, that if either cylinder is significantly rotated 
the initial penetrations calculated at each contactor node (in the 
initial configuration) will no longer be valid. In this case, the best 
alternative would be to use a much finer mesh. 
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Target surface,
marked with

Contactor surface,
marked with

Geometry before
discretization

Overlap to ignore

Outer cylinder

Inner cylinder

Fig. 4.7-3: Analysis of contact between concentric cylinders, initial
penetration is ignored  

 
 
 When higher order elements are used in contact, specifically the 
10-node tetrahedral and the 20-node brick elements, tensile 
consistent nodal contact forces can develop even when the 
underlying contact tractions are compressive. The program can 
accept such tensile forces as if they are compressive. This is done 
via the TNSLCF flag in NXSTRAT. Accepting these tensile forces 
gives more uniform results for problems involving the above 
mentioned elements. However, it may slow down or even prevent 
convergence in other problems. It is off by default. 
 
 The option NXSTRAT DIAGSOL=2 outputs much useful 
information.  In Solution 601, this information is output every 
equilibrium iteration.  This information includes the number of 
nodes going into and out of contact, the number of nodes 
transisioning between stick and slip (in frictional contact), the 
number of nodes exceeding the boundaries of target surfaces, etc.  
Because this information is so useful, it is recommended that 
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NXSTRAT DIAGSOL=2 be used when there are convergence 
difficulties (not the default). 

 
4.7.3  Modeling hints specific to Solution 601 

 
 It is recommended that the ATS method be used in contact 
analysis (see Section 6.2.4). It can also be effective to use the low-
speed dynamics option of the ATS method (ATSLOWS parameter 
of the NXSTRAT entry). 
 
 Line search can sometimes be beneficial for contact problems. 

 
 Frictional contact problems using the constraint function 
algorithm can be sensitive to the choice of frictional regularization 
constant (EPST parameter in BCTPARA entry). For most 
problems, this parameter should be one or two orders of magnitude 
smaller than the expected sliding velocity. Using an excessively 
large value leads to a smoother friction law, which generally 
converges faster but results in smaller frictional forces or more 
sliding. Using an excessively small value enforces the Coulomb 
law more accurately but is more likely to experience convergence 
difficulties. 
 
 Friction is not regularized or smoothed in the Lagrange 
multiplier segment algorithm. This results in accurate enforcement 
of stick and slip, but is more likely to experience convergence 
difficulties. 
 
 Geometric and material nonlinearities can highly depend on the 
sequence of load application. Thus, for problems involving such 
features, the load steps should be small. The time step Δt should 
also be small in dynamic analysis and when time dependent 
material constitutive relations (e.g., creep) are used. 
 
 If rigid elements are connected to contact surface nodes, the 
flexible option can be used. In this case, the rigid element does not 
create any dependent degrees of freedom. This feature is activated 
via the EQRBAR and EQRBE2 flags in the NXSTRAT entry. 

 If a contact surface with corners or edges is modeled with 
continuous contact normals, the normal vectors may be inaccurate 
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as shown in Fig. 4.7-4(a). In this case, switch to discontinuous 
normals, use different contact surfaces for each smooth part      
(Fig. 4.7-4(b)) or use a fine mesh close to the corners or edges  
(Fig. 4.7-4(c)). 
 

Contact surface
with sharp corners

Contact surface 1

Contact
surface 1

Contact
surface 3

Contact surface 2

Contact surface 1
(with fine

corner mesh)

Arrows correspond to normal
vectors pointing to exterior side

a) Single contact surface

b) Three separate contact surfaces c) Single contact surfaces with
fine mesh at corners

Fig. 4.7-4: Defining contact surfaces (with continuous normal vectors)
in the presence of corners  

 
 

4.7.4  Modeling hints specific to Solution 701 
 

 The penalty algorithm is preferred when both surfaces are rigid 
or have many fixed or prescribed nodes. 
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 Large oscillations in the contact forces may occur when using 
the penalty method even though the model is stable. These can be 
reduced by adding a penalty damping term and/or reducing the 
penalty stiffness. 
 
 When using the penalty contact algorithm it is important to 
check that the contact stiffnesses are properly selected. Unduly 
small penalty stiffnesses will lead to excessive penetrations, while 
unduly large penalty stiffnesses will lead to excessive oscillations 
or unstable time integration. 
 
 Large mismatches between the masses of contacting surfaces 
should be avoided when using the kinematic constraint method. 
This mismatch is common when contact involves a rigid surface 
with a small mass and an applied force, as shown in Fig. 4.7-5. The 
best solution in such cases is to minimize the mismatch by 
increasing the mass of the rigid surface. 
 The inaccuracy in this case results from the way the contact is 
enforced. The kinematic constraint method first predicts 
displacements without contact then applies a contact correction. 
The contact conditions are satisfied more accurately when the 
penetrations in the predicted configuration are small which is 
usually the case due to the small time step size of explicit analysis. 
However, some cases such as that mentioned above lead to large 
projected penetrations which results in incorrect contact conditions 
and tensile contact forces. 
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F

Tensile forces

One node
in contact

Small mass assigned to rigid surface

Correct solutionOriginal configuration

Final configuration
Projected configuration

(before contact correction)

Wrong contact
region

Fig. 4.7-5: Performance of kinematic contact algorithm when contact
surfaces have a large mass mismatch  

 
 Large mismatches between the masses of contacting surfaces 
can also lead to problems when using the penalty method. In this 
case, the normal penalty stiffness required to avoid instability 
(without reducing the time step) can be unduly small leading to 
excessive penetrations. The best solution in such cases is to 
minimize the mismatch by increasing the mass of the rigid surface, 
or increase the penalty stiffness by setting it manually or by 
reducing the time step. 
 

4.7.5  Convergence considerations (Solution 601 only) 
 

 When Solution 601 fails to converge during the incremental 
analysis, the intermediate printout given by Solution 601 in the 
output listing can provide some useful information (see Fig. 4.7-6). 
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OUT-OF- NORM OF ...

BALANCE OUT-OF-BALANCE NORM OF INCREMENTAL ...

ENERGY FORCE MOMENT DISP. ROTN. CFORCE ...

NODE-DOF NODE-DOF NODE-DOF NODE-DOF CFNORM ...

MAX VALUE MAX VALUE MAX VALUE MAX VALUE

ITE= 0 1.14E+00 1.41E+02 9.99E-17 5.35E-02 5.12E-02 1.27E-15 ...

36-Z 35-X 31-Z 31-X 0.00E+00 ...

-1.00E+02 4.71E-17 -5.68E-03 -3.30E-02

ITE= 1 -1.29E-03 2.56E+01 1.92E-04 1.56E-02 2.45E-01 2.65E+03 ...

121-Z 31-X 64-Z 34-X 1.27E-15 ...

-9.85E+00 -1.06E-04 5.07E-03 1.26E-01

ITE= 2 3.32E-04 2.51E+01 1.88E-04 1.80E-02 1.77E-01 1.95E+03 ...

117-Z 31-X 64-Z 32-X 5.08E+01 ...

-9.66E+00 -1.04E-04 4.97E-03 -9.02E-02

ITE= 3 7.69E-02 4.46E+02 8.18E-04 1.04E-03 1.17E-02 1.95E+03 ...

64-Z 34-X 120-Z 33-X 2.00E+03 ...

3.21E+02 5.15E-04 -1.33E-04 -7.92E-03

... CONVERGENCE RATIOS CONVERGENCE RATIOS OUT-OF-BALANCE LOAD

... FOR OUT-OF-BALANCE FOR INCREMENTAL VECTOR CALCULATION

... ENERGY FORCE DISP. CFORCE BETA RATIO

... MOMENT ROTN. (ITERNS)

COMPARE WITH COMPARE WITH

ETOL RTOL DTOL RCTOL

1.00E-03 1.00E-02 (NOT USED) 5.00E-02

... 1.00E+00 1.41E+01 0.00E+00 1.27E-05

... 9.99E-17 0.00E+00

... -9.69E-03 2.56E+00 0.00E+00 2.65E+05 1.00E+00 -5.54E-02

... 1.92E-04 0.00E+00 ( 1)

... 2.49E-03 2.51E+00 0.00E+00 3.85E+01 1.92E-02 5.08E-03

... 1.88E-04 0.00E+00 ( 9)

... 5.76E-01 4.46E+01 0.00E+00 9.77E-01 1.00E+00 3.94E+03

... 8.18E-04 0.00E+00 ( 2)

box b box c box d box e box f

Fig. 4.7-6: Solution 601 output listing of convergence criteria
during equilibrium iterations  

 
 Three non-contact related norms are given: first, the energy 
convergence criterion, the displacement and rotation convergence 
criterion (boxes d and e), and the force and moment convergence 
criterion (boxes b and c). Each box has 3 lines of output with the 
top one giving the norm of the quantity, the second one giving the 
node number corresponding to the maximum value, and the third 
line giving the maximum value. See Chapter 6 for definitions and 
more details on these norms. 
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 Box f of Fig. 4.7-6 shows the contact related norms. Parameter 
CFORCE indicates the norm of the change in the contact forces 
(between two iterations), and parameter CFNORM gives the norm 
of the contact force vector.  
 
 The following additional convergence criterion is used when 
contact is present: 

 

 
CFORCE

RCTOL
max(CFNORM,RCONSM)

  

 
where RCTOL is the contact force convergence tolerance and 
RCONSM is the reference contact force to prevent possible 
division by zero in the contact convergence criterion above. 
RCONSM and RCTOL are set in the NXSTRAT entry. 
 
 When the maximum number of iterations is reached without 
convergence, and all norms are decreasing, the maximum number 
of iterations should be increased.

 When the norms are rapidly changing before convergence fails, 
it is commonly caused by applying the load too quickly or using a 
large time step. 
 
 When CFNORM is stable but CFORCE changes rapidly during 
equilibrium iterations, the contact can be oscillating between 2 or 
more close solutions. In this case, try to change the time stepping, 
or turn on the suppression of contact oscillations feature. When 
CFNORM varies rapidly, usually the other three norms also vary. 
 
 The additional output from NXSTRAT DIAGSOL=2 can also 
assist in determining the reasons for convergence difficulties. 
 

4.7.6  Handling improperly supported bodies 
 

Many static problems depend on contact to provide the boundary 
conditions necessary for a stable problem (one in which there are 
no rigid body modes). Some examples are shown in Fig. 4.7-7. 
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Fig. 4.7-7: Examples of improperly supported bodies
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In such cases, the stiffness matrix is singular if the contact 
constraints are inactive. Even if the constraints are active the 
stiffness matrix is still not positive definite. The problem is more 
serious if natural boundary conditions are applied (forces, 
moments, or pressure). Weak springs can be added by the user to 
make the model stable. However, the selection of appropriate 
locations and stiffnesses for such springs may not be feasible. 
 Some models may be better suited for a dynamic analysis or the 
low-speed dynamics feature. However, in many cases, this too is 
not a feasible option. Therefore, several other modeling techniques 
are available in Solution 601 to handle such problems. These are 
stiffness stabilization, contact damping and limiting incremental 
displacements. These techniques can be used separately or 
combined in the same model. 
 
Stiffness stabilization (see Section 10.6 for details). 
This feature provides a stabilizing effect by scaling all diagonal 
stiffness terms without affecting the right-hand-side load vector. 
The outcome of each iteration will be affected, but the final 
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converged solution will not be (within the bounds of the 
convergence tolerances). Since the stabilization constant in non-
dimensional, it should always be a small number. Typical values 
are between 10-12 and 10-9. 
 
Contact damping (see Section 4.6.5 for details). 
Contact damping adds grounded viscous dampers to all contactor 
nodes. Setting the damping to be only at the initial time step is 
sufficient for some problems such as those in Fig. 4.7-7. When the 
first time step converges contact must be established and damping 
will have been removed. This way, the converged solution will be 
free of any contact damping. Other problems however, require the 
damping to be constantly present. In this case, the program outputs 
the damping forces at every time step. These forces should be 
compared with the reactions in order to ensure that damping is not 
excessive. 
 The damping constants have units of force per unit velocity. 
Hence, their proper value is problem dependent. If initial contact 
damping is used to stabilize a problem involving two contact 
bodies at least one of which is unsupported, and with a gap 
between them, then a good estimate of the damping constants NC  

and TC  is one in which the gap is nearly closed in the first 
iteration. Starting with the dynamic equations of motion (see 
Equation 6.3-1) and canceling out the inertial term (static analysis), 
and the stiffness term (since one or both bodies are initially 
unsupported), we obtain 
 

C U R  
 
where C is the total damping matrix, which in this case is diagonal, 
and R  is the applied load vector. We can assume the normal and 
tangential damping constants to be equal, the total damping 
contribution to be the damping constant times the number of 
contact nodes on the unsupported contact surface N (the top 
circular body in the example in Fig. 4.7-7), and the velocity to be 
approximately equal to the minimum initial gap between the two 
bodies, g , divided by the time step size t . This leads to the 
following value of the damping constants 
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N T

R t
C C

N g


   

 

where R  is the sum of the applied loads at the first time step.  
 Note that this is only an estimate, but is frequently an acceptable 
one. 
 

Limiting maximum incremental displacement (see Section 6.2.1 
for details). 
 
Limiting the maximum incremental displacement per iteration is 
useful when a load is applied to a body that is not initially in 
contact. The model at that stage is unstable and even when stiffness 
stabilization or viscous damping is used, the initial displacement 
can be excessive leading the program away from the converged 
solution, and thus making the return to the proper solution difficult. 
Setting the limiting displacement to about the element length size 
in this case would scale down the potentially huge displacement in 
the first iteration so that the results remain close to the converged 
solution.  
 Note that this feature does not stabilize the stiffness matrix, so 
in many cases it may be necessary to use it together with stiffness 
stabilization or viscous contact damping or both. 
 

4.8  Rigid target contact algorithm 
 

4.8.1  Introduction 
 

 The rigid target contact algorithm is intended for use in 
applications in which the target surfaces are considered to be rigid. 
It is only available for 3-D contact. 
 Fig. 4.8-1 shows a typical application in metal forming. 
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Blank

Blank holder

Blank holder force

Prescribed punch
displacement

a) Physical problem
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Contact
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(contactor),
offsets used
to model blank
thickness

Contact
surface 2
(target)

b) Modeling with contact surfaces

Contact
surface
4 (target)

Contact
surface 3
(target)

Fig. 4.8-1: Sample metal forming analysis using the
rigid-target contact algorithm  
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 A target surface can either be stationary, can translate as a rigid 
body or can rotate as a rigid body. 
 
 Contact can be frictionless or can include Coulomb friction. 

 
 The rigid target contact algorithm is completely revised in 
Advanced Nonlinear Solution of NX 5. However the rigid target 
contact algorithm in Advanced Nonlinear Solution of NX 4 is 
retained in Advanced Nonlinear Solution for backwards 
compatibility. The revised rigid target contact algorithm of NX 5 is 
the default. 
 Throughout this section, the rigid target contact algorithm in 
Advanced Nonlinear Solution of NX 4 is referred to as the “NX4” 
rigid target contact algorithm. This section does not describe the 
NX4 rigid target contact algorithm; for information on the NX4 
rigid target contact algorithm, see the NX Nastran 4 Advanced 
Nonlinear Theory and Modeling Guide. 
 Models that were set up using the NX4 rigid target contact 
algorithm may need to be revised when using the current rigid 
target contact algorithm. We suggest that new models not be set up 
using the NX4 rigid target contact algorithm. 

 
 It is also possible to solve many problems involving rigid 
targets using the constraint function and segment contact 
algorithms described earlier in this chapter. However, the rigid 
target contact algorithm described here is frequently more 
effective, because the rigid target contact algorithm uses the 
assumption of rigid targets to simplify the contact searching. 

 
4.8.2  Basic concepts 

 
4.8.2.1  Contactor surfaces 

 
Similar to the other contact algorithms in Advanced Nonlinear 
Solution, the contact surfaces are organized into contact sets. Each 
contact surface consists of 3- or 4-node contact segments. A 
contact pair consists of a contactor surface and a target surface. In 
the rigid target algorithm, it is allowed for a contactor surface to be 
in contact with more than one target surface simultaneously. 
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Contactor surface: The contactor surface definition includes the 
possibility of offsets.  
 When there are no offsets specified, the contactor surface is 
described entirely by the contactor nodes. (Fig. 4.8-2(a)).  
 
 

Contact
segment 1

Contact
segment 2

Segment normals

a) Contactor segments without offsets. Segment normals are not used. 
 

Lower surface

Radius of sphere
= contactor offsetUpper surface

b) Contactor segments with spherical offsets. Segment normals are not used.

Fig. 4.8-2: Contactor segments  
 

 When there are offsets specified, the offsets can either be 
described using spheres centered around the contactor nodes (Fig. 
4.8-2(b)), or using the contactor normals (Fig. 4.8-2(c)). In either 
case, the offset magnitude is either constant or taken from the 
current thickness of attached shell elements, as described below. 
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Lower contactor point

Contactor
node normal

Contactor node normal = average of all segment normals

Offset vector = contactor node normal offset magnitude�

Offset
vector

Upper contactor point

c) Contactor segments with offsets, normals used to describe offsets

Fig. 4.8-2: Contactor segments (continued)  
 

 When the offsets are described using the contactor normals, 
offset vectors are constructed using the averaged contactor normals 
and the offset magnitude. The upper and lower contactor points are 
constructed from the contactor nodes and the offset vectors. 
 When the target surface is concave, it is possible for the contact 
situation to be similar to the one shown in Fig. 4.8-3. In this case, 
when the offsets are described using spheres, the center contactor 
node cannot be in contact with both target segments at once, hence 
the center contactor node will oscillate between them. The center 
contactor node cannot be in contact with target edge 1 since edge 1 
is farther away than either of the target segments. Equilibrium 
iterations in static and implicit dynamic analysis will not converge, 
because of the oscillation. However contact is correctly modeled 
when the offsets are described using normals, because the center 
contactor node can be in contact with target edge 1. 
 



Chapter 4: Contact conditions 
 

 
 
326 Advanced Nonlinear Solution  Theory and Modeling Guide 

Target segment 1

Spherical offset

a) Spherical offsets, contact incorrectly modeled

Contactor and target surfaces viewed from the side
for ease of visualization.

Contactor surface

This contactor node cannot be in contact
with both target segments at the same time.

In contact with target segment 1

In contact with target segment 2

Target segment 2

Fig. 4.8-3: Concave target surface, contactor surface with offsets  
 

            
4.8.2.2  Target surfaces 

  
Each target surface is either stationary, or can rigidly move 
(translate, rotate or a combination of translations and rotations). 

 
4.8.2.3  Determination of contact between contactor and target 

 
No contactor offsets: It is allowed for a contactor node to be in 
contact with a target segment, target edge or target node. The 
program searches for the target segment, edge or node for which 
the absolute value of the distance d between the contactor node and 
the target segment, edge or node is minimized, where the distance 
is measured in the direction opposite to the target normal (Fig. 
4.8-4). A positive distance corresponds to a geometric gap; a 
negative distance corresponds to geometric overlap. 
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Target segment 1

Normals offset

b) Normals offsets, contact correctly modeled

Target edge 1

In contact with target edge 1

In contact with target segment 1
In contact with target segment 2

Target segment 2

Fig. 4.8-3: (continued)  
 
 Notice that, for interaction between a contactor node and target 
edge, or between a contactor node and target node, the normal 
direction is taken from the line segment connecting the contactor 
node and the target, as shown in Fig. 4.8-4. 
 Fig 4.8-5 shows two target segments with a common target 
edge. The shaded volumes indicate which of the target entities any 
contactor node is closest to. Notice that the shaded volume in 
which the contactor node is closest to the target edge depends upon 
the angles between the target segments attached to the edge. 
 Once the target segment, edge or node is determined, then the 
contact gap is computed using 

 
GAPBIASg d   

 
where GAPBIAS can be chosen to, for example, not model contact 
even if there is geometric overlap. (The default for GAPBIAS is 0.) 
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c) Interaction between contactor
node and target node

Target node

Contactor node

d

n

Fig. 4.8-4: Interaction between contactor node and target surface

b) Interaction between contactor node
and target edge

Target edge

Contactor node

d

n Closest point on
target edge

a) Interaction between contactor node and target segment

Target segment

Target segment normal

Contactor node

d

n

Closest point on
target segment

 
 

 
 If the corresponding gap is negative, and less than DEPTH, then 
contact occurs, in other words DEPTH 0g    is the contact 
condition. DEPTH can be chosen to limit the depth of the target 
surface, exactly as in the other contact algorithms. 
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Fig. 4.8-5: Interaction of contactor node with target segments and edges

Contactor node in this
shaded volume is
closest to segment 1.

Contactor node in this
shaded volume is
closest to segment 2.

Contactor node in this shaded volume
is closest to edge 1.

Segment 1

Segment 2

Edge 1

 
 

Contactor offsets described using spheres:  In this case, the 
distance d is determined exactly as if there are no offsets. Then the 
contact gap is computed using  

 
OFFSET GAPBIASg d    

 
where OFFSET is the offset magnitude. The process is illustrated 
for interaction between a contactor node and target segment, 
assuming that GAPBIAS = 0 (Fig. 4.8-6). The same idea is used for 
interaction between a contactor node and target edge or node. 
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Fig. 4.8-6: Interaction between contactor node and target segment,
spherical offsets

Target segment

Contactor node

d - OFFSET

d

n

Closest point on
target segment

OFFSET

 
 
Contactor offsets described using normals:  In this case, contact is 
detected using the upper and lower contactor points instead of the 
contactor nodes.  

 
Oscillation checking:  The search for the nearest target segment, 
edge or node is performed every equilibrium iteration in Solution 
601. During the equilibrium iterations, it is possible for the 
contactor node to move in such a way as to be alternately in contact 
with two neighboring segments. This is especially true if the target 
surface is concave. When the contactor node oscillates between two 
neighboring segments, the solution cannot converge unless 
oscillation checking is turned on. When oscillation checking is 
turned on, then, when oscillation is detected between two 
neighboring segments, the contactor node is placed into contact 
with the shared target edge. In many cases, this procedure allows 
the iterations to converge, if in fact the contactor node “should” 
have been in contact with the shared target edge. 
 Oscillation checking only forces the contact between the 
contactor node and shared target edge for the current equilibrium 
iteration. For the successive equilibrium iterations, the contactor 
node is always in contact with the nearest target segment, edge or 
node. So oscillation checking cannot force contact to the “wrong” 
target segment, edge or node in a converged solution. 
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Contact normal force: The normal force corresponding to contact 
is computed as n nF k g   where the normal force acts in the 

direction opposite to the target normal direction (Fig. 4.8-7). nk  is 

the contact normal stiffness, entered as a parameter (see Section 
4.8.3 for hints about choosing nk ). nk  can be considered to be a 

penalty parameter. 
 

Fig. 4.8-7: Normal contact force vs. gap

Fn

g-DEPTH

Tensile contact curve

Slope -kn

 
 

Tensile contact:  During equilibrium iterations in Solution 601, a 
node can temporarily be in “tensile contact”. The basic ideas for 
tensile contact are illustrated in Figs. 4.8-8 to 4.8-10. 
 Fig. 4.8-8 shows the iteration history when tensile contact is not 
used. For iteration ite-2, the contactor node and target segment 
overlap. Hence contact is assumed between the contactor node and 
target segment. For iteration ite-1, because of the relative motion of 
the contactor node and target segment, the contactor node and 
target segment do not overlap. For this iteration, no contact is 
assumed between the contactor node and target segment. For 
iteration ite, there is a large overlap because the contactor spring 
unloads, since there are no forces acting on the contactor spring, 
and the target does not provide any stiffness to the contactor node. 
This large overlap causes large contact forces, which can cause 
trouble in convergence in the successive iterations. 
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Fig. 4.8-8: Iterations when tensile contact is not used

Contactor node

Spring is compressed

Spring is uncompressed

b) Iteration ite-1,
no contact force

c) Iteration ite,
contact force F
is large and compressive

ite

a) Iteration ite-2,
contact force F
is compressive

ite-2

Target segment

 
 

 Fig. 4.8-9 shows the iteration history when tensile contact is 
used. Now, in iteration ite-1, tensile contact is assumed between the 
contactor node and target segment. In tensile contact; the target 
surface still provides stiffness to the contactor node. Hence the 
overlap in iteration ite is small.  
 

Fig. 4.8-9: Iterations when tensile contact is used

Contactor node

b) Iteration ite-1,
contact force F
is tensile

ite-1

c) Iteration ite,
contact force F
is compressive

ite

a) Iteration ite-2,
contact force F
is compressive

ite-2

Target segment

 
 

 Fig.4.8-10 shows the iteration history when tensile contact is 
used, and the gap is large. In iteration ite-1, tensile contact is 
assumed, and in iteration ite, no contact is assumed. 
 It is seen that tensile contact speeds up the convergence when 
the converged solution is in contact, and slows down the 
convergence when the converged solution is not in contact. 
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Fig. 4.8-10: Iterations when tensile contact is used, converged solution
not in contact

Contactor node

b) Iteration ite-1,
contact force F
is tensile

ite-1

c) Iteration ite,
no contact force

a) Iteration ite-2,
contact force F
is compressive

ite-2

Target segment

 
  
 It is not permitted for a solution in which tensile contact is 
present to converge, unless the tensile forces are all less than the 
value of a user-input parameter (see Section 4.8.3). Hence the 
tensile contact feature does not affect the converged solution. 
 Tensile contact is always used in Solution 601. 

 
4.8.2.4  Frictional contact 

 
 The friction force is calculated using the relative sliding velocity 
between the target and contactor. The relative sliding velocity fu  

is calculated from the velocities of the contactor and target using 
 

    f c t c t    u u u u u n n      

 
where cu  is the velocity of the contactor node, tu  is the velocity 

of the target and n  is the target normal. 
 In static analysis, the contactor and target velocities are 
calculated using the nodal incremental displacements divided by 
the time step. In dynamic analysis, the contactor and target 
velocities are taken from the nodal velocities. 
 The friction force magnitude is computed using 
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where nF  is the normal contact force and   is the Coulomb 

friction constant (Fig. 4.8-11). minfu  is the minimum sliding 

velocity, entered as a parameter (see Section 4.8.3 for hints about 
choosing minfu ). The direction of the friction force is always 

opposite to fu .  

 

Fig. 4.8-11: Friction force vs. velocity
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Sliding

Sliding
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When minf fuu  , the friction is sticking, otherwise the friction is 

sliding.  
 

Oscillation checking with friction: During equilibrium iterations in 
Solution 601, it is possible for the contactor node to undergo 
“sliding reversals”. Namely, the contactor node slides in one 
direction for an equilibrium iteration, then reverses sliding 
direction for the next equilibrium iteration. When sliding reversals 
occur, the solution cannot converge unless oscillation checking is 
turned on. When oscillation checking is turned on, then, when 
sliding reversals are detected, the contactor node is placed into 
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sticking contact, even if the sticking force is larger than the sliding 
force, and convergence is prevented for the current equilibrium 
iteration. 
 Oscillation checking only forces sticking friction for the current 
equilibrium iteration. For successive equilibrium iterations, the 
frictional state (sliding or sticking) is determined as usual from the 
sliding and sticking forces. So oscillation checking cannot 
converge to a solution in which the frictional state is wrong. 

 
4.8.3  Modeling considerations 

 
Selection of rigid target contact: For Solution 601, set TYPE=2 on 
the BCTPARA card. For Solution 701, set XTYPE=3 on the 
BCTPARA card. 
 
Algorithm used:  The current rigid target contact algorithm is 
selected by default. To select the NX4 rigid target contact 
algorithm, set RTALG=1 on the NXSTRAT card. 
 
Modeling of target surfaces:  If the target surface translates or 
rotates, all of the nodes on the target surface must be connected to a 
“master node”, either using constraint equations or using rigid 
links. For example, in Fig. 4.8-12, all of the nodes on the lower 
target surface are connected to a master node using rigid links. 
 It is not allowed for the nodes on a target surface to have 
independent degrees of freedom. All degrees of freedom for the 
nodes on a target surface must be fixed or constrained. 
 
Modeling of contactor surfaces: The amount and description of 
offset is determined by the BCTPARA parameters OFFTYPE, 
OFFSET and OFFDET. If OFFTYPE=0 (the default), there is no 
offset. If OFFTYPE=1, a constant offset of value OFFSET is used. 
If OFFTYPE=2, an offset equal to half of the current shell element 
thickness is used. 
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Fig. 4.8-12: Modeling of fixed and moving target
surfaces

Moving target surface

Rigid links

Master node, independent degrees of freedom

Slave nodes

Fixed nodes

Fixed target surface

 
 
 When there is an offset, then BCTPARA parameter OFFDET 
determines the description of the offset. If OFFDET=0, then 
Advanced Nonlinear Solution determines the offset description 
(either spheres or normals, see Section 4.8.2.1). The criterion used 
by Advanced Nonlinear Solution is that an offset description of 
spheres is used for each target surface that is convex or flat, and an 
offset description of normals is used for each target surface that is 
concave. If OFFDET=1, then the offset description is spheres, and 
if OFFDET=2, then the offset description is normals. 
 When normals are used for the offset description, small steps 
should be used in Solution 601. This is because the offset vectors 
are assumed to remain constant during the equilibrium iterations. In 
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particular, at convergence, the offset vectors corresponding to the 
previous converged solution are used. 
 
Determination of contact, modeling issues: Contact is affected by 
variables GAPBIAS and DEPTH, as described in Section 4.8.2.3. 
GAPBIAS is set using BCTPARA parameter GAPBIAS (default 
=0) and DEPTH is set using BCTPARA parameter PDEPTH 
(default=0). 
 It is possible for the closest target segment, edge or node to not 
be the expected one. An example is shown in Fig. 4.8-13. In this 
example, the rim of the wheel is modeled with target segments. 
Because the distance between a contactor node and a target 
segment is measured in the direction of the target segment normal, 
a contactor node interacts with the lower target surface, and the 
contact algorithm detects a large overlap between this contactor 
node and the lower target surface. 
 Another example is shown in Fig. 4.8-14. In Fig. 4.8-14(a), 
there is a gap between the contactor node and the closest target 
segment, as expected. In Fig. 4.8-14(b), the punch has moved 
upward relative to the contactor node. Now there is a large overlap 
between the contactor node and the closest target segment. This 
segment is the only segment with a normal that points in the 
direction of the contactor node.  
 In both Fig. 4.8-13 and Fig. 4.8-14, the large overlap is 
unintended. In Solution 601, the equilibrium iterations would most 
likely not converge. In Solution 701, the large forces between 
contactor and target would overdistort the elements attached to the 
contactor node. 
 One way to avoid the large overlaps is to use the DEPTH 
feature so that contact is not detected between the contactor node 
and the incorrect target segment. Another way to avoid this issue is 
to create additional target segments as shown. Then the contactor 
node is closest to one of the additional target segments. 
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Fig. 4.8-13: Modeling of a wheel

a) Orthographic view of wheel b) Side view of wheel

c) DEPTH feature used

DEPTH

d) Wheel modeled with additional
target surfaces

Contactor node
is closest to
upper target

Contactor node is closest to lower target. Contactor node is not closest to upper target,
since there is no upper target segment with normal that points in the direction of the
contactor node.

Contactor node cannot be
in contact with lower target

Contactor node is closest
to target edge

Upper target

Upper target

Upper target

Lower target

Lower target
Lower target



 4.8: Rigid target contact algorithm 
 

 
 
Advanced Nonlinear Solution  Theory and Modeling Guide 339 

Fig. 4.8-14: Modeling of a punch

a) Intended interaction of contactor
node and target surface; contactor
node is not in contact with target

b) Unintended interaction of contactor
node and target surface; contactor is
in contact with target with large overlap

d) Additional target segments used, contactor
is not in contact with target

c) DEPTH feature used, contactor node
is not in contact with target

DEPTH

Contactor
node

Contactor
node

Closest point
on target surface
that interacts
with contactor node

Closest point
on target surface
that interacts
with contactor node

Closest point
on target surface
that interacts
with contactor node

Target surface

 
 

Choice of nk : nk  is set using BCTPARA parameter NCMOD. The 

default value of the normal contact stiffness nk  is 1E11. However, 

nk  can be chosen for optimal convergence. Note that increasing nk  

causes the maximum overlap between the contactor and the target 
to become smaller. Also, increasing nk  can lead to convergence 

difficulties. 
 We recommend that the smallest value of nk  be used such that 

the maximum overlap is still acceptably small. For example, if the 
target surface is curved, there will be a geometric error associated 
with using a coarse contractor surface (Fig. 4.8-15). There is no 
advantage if the maximum overlap is less than the geometric error. 
So, if the mesh is coarse, a large maximum overlap can be used. 
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Fig. 4.8-15: Modeling of a curved target
surface

Target surface, fine mesh used

Contactor surface, coarse mesh used

Geometric error

 
 
 Another consideration for the choice of nk  is the following. 

Because the rigid target algorithm is node-based, and because the 
contact stiffness is the same for each node in contact, the stresses 
computed in higher-order elements on the contactor surface will be 
inaccurate, if nk  is too small. For example, in a problem involving 

pressing an element onto a contact surface, nk  should be greater 

than 100
EA

nL
 where E  is the Young’s modulus, A  is the contact 

area, L  is the element thickness (in the contact direction) and n  is 
the number of nodes on the contact area. The basic concept is 
illustrated in Fig. 4.8-16. 
 This issue also arises when lower-order elements are used, but 
when lower-order elements are used, the variation in the consistent 
nodal point forces is much less, so nk  can be smaller for the same 

accuracy in the element stresses. 
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                                   Fig. 4.8-16: Higher-order elements and rigid-target contact

a) Soft target surface, k small, element stresses are
inaccurate

n

b) Hard target surface, k large, element stresses are
accurate

n

Contact forces acting on contactor nodes
are all nearly equal

Contact forces acting on contactor nodes
are nearly equal to consistent forces
corresponding to pressure load

Uniform pressure load

Contact
area A

Young’s
modulus E

L

Uniform pressure load
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Time step for Solution 701: For Solution 701, the time step should 
be smaller than 
 

2
n

m
t

k
   

 
This formula is derived from the following considerations. 
Consider a single contactor node with mass m  and no additional 
stiffness or damping, with a velocity normal to the target. If this 
node just touches the target at time t t , and penetrates the target 
at time t , the node should remain in contact at time t t  . The 
choice of t  in the above equation satisfies this condition. 
 Clearly, decreasing nk  will increase the time step t . 

 A node that is out of contact at time t t , in contact at time t  
and out of contact at time t t   is said to have had a contact 
reversal (Fig. 4.8-17).  

 

Fig. 4.8-17: Contact reversal due to too
large time step in Solution 701
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Time step selection in frictional contact:  The time step size will 
affect the frictional velocities and hence the results. This is 
because, in static analysis, the nodal velocities used in the friction 
calculations are calculated as the incremental displacements 
divided by the time step. 
 In those parts of the analysis in which friction is important, a 
“realistic” time step should be used. 
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 In those steps of the analysis in which friction is not important, 
a large time step can be used, which causes the velocities to be 
small. For example, in metal forming analysis, a large time step 
size can be used when establishing the blank holder force, and 
during springback calculations. 

 
Choice of minfu  for frictional contact: minfu  is set using 

BCTPARA parameter SLIDVEL. The default value of the 
minimum sliding velocity minfu  is 1E-10. However minfu  can be 

chosen for optimal convergence. Decreasing minfu  can lead to 

convergence difficulties. 
 We recommend that minfu  be chosen from experimental data, or 

that the largest acceptable value of minfu  be used. 

 
Time step for Solution 701 for frictional contact: For Solution 701, 
the time step should be smaller than 
 

min2 f

n

mu
t

F
 


 

 
to prevent reverse sliding. This formula is derived from the finite 
difference equation corresponding to explicit time integration, 
when applied to a single contactor node with mass m  and no 
additional stiffness or damping, sticking to the target, but with a 
nonzero sticking velocity. If t  is larger than the value in the 
above equation, the velocity will increase, and eventually the node 
will slide. The sliding will then tend to “reverse”, that is, for a 
given time step, the sliding direction will be opposite to the sliding 
direction in the previous step (Fig. 4.8-18). 

 Note that when the time step is greater than min2 f

n

mu
t

F
 


, the 

solution is still stable. 
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Fig. 4.8-18: Reverse sliding due to too large
time step in Solution 701
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Automatic time step selection in Solution 701: When using the 
automatic time step selection options in Solution 701, the time step 
returned from the rigid target contact algorithm is  
 

min i

i
n

m
t

k
   

 
where the minimum is taken over all contactor nodes. Notice that 
friction is not considered in the automatic time step selection; this 
is because the model remains stable even if the time step is larger 
than the friction time step discussed above. 
 
Birth/death: Rigid target contact surfaces can have a birth and 
death time, similar to other contact surfaces. The birth and death 
times are set by BCTPARA parameters TBIRTH and TDEATH 
(default =0.0, corresponding to no birth and death). 
 
Other user-input parameters: 
 
BCTPARA TFORCE 
 
The maximum tensile force for a node in tensile contact for which 
convergence is allowed (default value 0.001). All nodes in tensile 
contact must have a tensile force less than this value for the 
solution to converge. Tensile contact is not used in Solution 701. 
 
BCTPARA OCHECK 
 
If OCHECK = 0, then oscillation checking (described in Section 
4.8.2.3) is turned off. If OCHECK = ITE>0, then oscillation 
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checking is activated after equilibrium iteration ITE. The default is 
5. Oscillation checking is not used in Solution 701. 

 
4.8.4  Rigid target contact reports for Solution 601 

 
The following messages are output at the end of each converged 
solution. 
 
Maximum overlap at convergence: 
 

Meaning: self-explanatory 
 
Recommend: If the maximum overlap is too large, increase nk ; 

if the maximum overlap is too small, decrease nk . 

 
Maximum tensile contact gap during iterations for nodes in contact 
at convergence: 
 

Meaning: A node that is in contact at the start of the time step 
may temporarily move out of contact during the iterations, then 
go back into contact before convergence. This report item 
reports the maximum contact gap of all such nodes. When the 
tensile contact gap is large, then convergence may be difficult.  
 
Recommend: Either reduce the time step or decrease nk  to 

reduce the tensile contact gap. 
 
Maximum friction velocity at convergence:  
 

Meaning: For nodes in frictional contact, this is the maximum 
friction velocity of a node (either sticking or sliding).  
 
Recommend: If the maximum velocity is less than minfu , and 

the corresponding node should be sliding, decrease minfu .  
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Number of nodes in contact, number of nodes in sticking contact, 
number of nodes in sliding contact: 
 

Meaning: Self-explanatory. Each node is counted once for each 
target surface that the node is in contact with. So a node that is 
in contact with two target surfaces simultaneously is counted 
twice. 

 
Change of contact status during iterations: 
 

Meaning: The number of nodes that switch contact status (not in 
contact to in contact, or vice versa), is reported. If there are 
many nodes that switch contact status, this may cause 
convergence difficulties.  
 
Recommend:  Either reduce the time step or decrease nk . 

 
In contact at convergence, in tensile contact during iterations.  
  

Meaning: The number of nodes which were in tensile contact 
during the iterations (meaning that the nodes were almost out of 
contact) and in contact in the converged solution. When there 
are many such nodes then convergence may be difficult. 
 
Recommend: Either reduce the time step or decrease nk  to 

reduce the likelihood that nodes go into tensile contact. 
 
Change in frictional contact status during iterations:   
 

Meaning: The number of nodes that change frictional contact 
status (from sticking to sliding or vice versa) is reported.  
 
Recommend: If there are many nodes that switch frictional 
contact status, reduce the time step or increase minfu . 

 
The following messages are output at the end of each solution that 
did not converge. 
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Maximum change of contact force at end of iterations: 
 

Meaning: The contactor node for which the contact force had 
the largest change is output. 
 
Recommend: Examine the model near that contactor node for 
hints about why the solution did not converge. 

 
Change of contact status at end of iterations:  
 

Meaning: The number of nodes that are changing contact status 
at the end of the iterations. 

 
 Recommend: Reduce the time step or decrease nk . 

 
Sliding reversal at end of iterations: 
 

Meaning: The number of nodes that are undergoing sliding 
reversals at the end of the iterations. 
Recommend: Reduce the time step or increase minfu  

 
Change of target entity at end of iterations.  
 

Meaning: The number of nodes that are oscillating between 
different target entities at the end of the iterations.  
 
Recommend: If oscillation checking is not turned on, turn it on. 
Otherwise refine the target surfaces, or reduce the time step. 

 
4.8.5  Rigid target contact report for Solution 701 

 
The following items are output for each time step in which results 
are printed or saved: 
 
Number of nodes in contact, number of nodes in sticking contact, 
number of nodes in sliding contact: 
 
 Meaning: See the corresponding message in Section 4.8.4. 
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Maximum overlap since solution start; maximum overlap since last 
report:   
 

Meaning: See the corresponding message in Section 4.8.4. 
 
Recommend: See the corresponding recommendations in 
Section 4.8.4. 

 
Maximum friction velocity since solution start, maximum friction 
velocity since last report: 
 

Meaning: See the corresponding message in Section 4.8.4. 
 
Recommend: See the corresponding recommendations in 
Section 4.8.4. 

 
Contact reversals since solution start, since last report:  
 

Meaning: This is a count of the total number of contact 
reversals. Also the number of contact reversals for the node with 
the most contact reversals is given, along with the mass of the 
node.  
 
Recommend: To reduce the number of contact reversals, either 
reduce the time step or decrease nk  . 

 
Sliding reversals since solution start, since last report:  
  

Meaning: This is a count of the total number of sliding 
reversals. Also the number of sliding reversals for the node with 
the most sliding reversals is given, along with the mass of the 
node.  
 
Recommend: To reduce the number of sliding reversals, either 
reduce the time step or increase minfu . 

 
4.8.6  Modeling hints and recommendations 

 
 For a time step in which contact is established over a large area, 
many equilibrium iterations may be required in Solution 601. This 
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is because the solution cannot converge until the nodes in and out 
of contact are determined, and it may take many equilibrium 
iterations to determine which nodes are in and out of contact. An 
example is shown in Fig. 4.8-19. The ATS cutback method will not 
be effective for this time step. Rather, the maximum number of 
iterations should be set very large, so that the program can find the 
converged solution. 
 

Fig. 4.8-19: Establishment of contact over a large area during a
solution step

a) Solution step before contact with target surface 2

b) Solution step after contact with target surface 2

Contactor surfaces

Possible contact in this area, many
equilibrium iterations may be required
to accurately determine contact here.

Prescribed displacement

Target surface 1

Target surface 1

Target surface 2

Target surface 2

 
 

 When forming a part that is relatively thin, setting the 
PLASALG flag of the NXSTRAT card to 2 can allow the use of 
larger time steps. 
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 The contact search algorithm may take a relatively long time for 
the first iteration of the first time step. Similarly, the contact search 
algorithm may take a relatively long time for the first iteration of 
any time step in which a contact set is born. 
  

 As the contactor surface is refined, keeping nk  constant, the 

overlap and contact force will decrease at each contactor node. 
Hence nk  may need to be adjusted as the mesh is refined. In 

general, as the mesh is refined, nk  can be decreased in order to 

keep the overlap reasonable. 
 

 Convergence in Solution 601 may become difficult when 
contactor nodes that were not in contact with the target suddenly 
interact with the target. An example is illustrated in Fig. 4.8-20. 
Eventually the contactor nodes on the right will come into contact 
with the target, and convergence may be difficult. Alternate ways 
to model this situation are shown in Fig. 4.8-20. 
 
 
 

Fig. 4.8-20: Contactor nodes suddenly coming into contact

a) Poor modeling

b) Good modeling

c) Good modeling

Contactor node in contact

Drawing
direction

Contactor node not in contact
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 Another example is shown in Fig. 4.8-21. In Fig. 4.8-21(a), the 
top target surface is flat, and the indicated node suddenly comes 
into contact with the top target surface. Convergence is very 
difficult, because a very small change in the position of the 
indicated node can cause the contact status of that node (and hence 
the contact force) to change abruptly. In Fig. 4.8-21(b), the top 
target surface has a round corner, and the indicated node gradually 
comes into contact with the top target surface. Convergence is 
easier, because a very small change of the position of the indicated 
node results in only a very small change in the contact force. 
 In metal forming analysis, this situation in frequently 
encountered in the modeling of the blank holder. The modeling is 
easiest if the blank holder is modeled as a flat target surface. But 
convergence is easier if round corners are added to the blank holder 
wherever nodes on the blank are anticipated to contact the blank 
holder during drawing. 
 
 
 

This node
suddenly comes
into contact

This node
gradually comes
into contact

a) Poor modeling b) Good modeling

Fig. 4.8-21: Additional example of nodes suddenly coming into contact  
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5. Loads, boundary conditions and constraint 
equations 

 

5.1  Introduction 
 

The objective of this chapter is to present the various options 
available in Advanced Nonlinear Solution for the description of 
applied loads, boundary conditions, and constraint equations. 

 
 Table 5-1 lists the Case Control commands used for loading, 
boundary conditions, and initial conditions. 

 
 Note that the selected DLOAD set can be used for any time 
varying loads in both static and dynamic analysis. Similarly, the 
selected LOAD set can be used for defining constant loads in both 
static and dynamic analyses. 

 
 Table 5-2 lists the load, boundary condition and initial condition 
Bulk Data entries supported in Advanced Nonlinear Solution. 
 
 Table 5-3 lists the Bulk Data entries used for combining applied 
loads and/or enforced displacements in Advanced Nonlinear 
Solution. 
 

 Table 5-1: Case Control commands in Advanced Nonlinear Solution 
 

Case Control Command Comments 

DLOAD Select load set (time varying) 

LOAD Select load set (non-time varying) 

SPC 
Select single-point constraint set (including 
enforced displacement) 

MPC Select multipoint constraint set 

IC  
Select initial conditions set (displacements 
and velocities) 

TEMPERATURE Select initial and applied thermal load sets 

BOLTLD Select bolt preload set 

DTEMP Select time-dependent temperature set 
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Table 5-2: Bulk data entries for defining loads, boundary conditions and 
constraints 

 

Bulk Data Entry Comments 

FORCE, FORCE1, FORCE2 Concentrated force on nodes 

MOMENT, MOMENT1, 
MOMENT2 

Concentrated moment on nodes 

SPC1,2,4, SPC14, SPCADD4 Fixed or enforced degrees of freedom 
on nodes 

SPCD4 Enforced displacement on nodes 

PLOAD Uniform pressure on shell element or 
3-D solid face 

PLOAD1 Distributed load on beam element 
Concentrated force on beam nodes 

PLOAD2 Uniform pressure on shell element 

PLOAD4 Pressure or distributed load on shell or 
3-D solid face 

PLOADE1 Varying pressure on plane stress or 
plane strain 2-D solid element 

PLOADX1 Varying pressure on axisymmetric 2-D 
solid element 

TEMP Applied temperature on nodes 

TEMPD Applied default temperature 

DTEMP Time-dependent temperature loading 

GRAV Mass proportional inertial load 

RFORCE Centrifugal load 

RFORCE1 Centrifugal load with more than one 
load applied to the model 

MPC, MPCADD Define multipoint constraints  

TIC3 Initial displacement and velocity on 
nodes 

BOLTFOR Preload force on bolts 
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Table 5-2: (continued) 
 

Bulk Data Entry Comments 

TEMPBC Applied temperature on nodes in heat 
transfer analysis 

QHBDY, QBDY1 Uniform heat flux on boundary 
element 

QBDY2 Varying heat flux on boundary 
element 

QVOL Uniform volumetric heat addition 

CONV Free convection on boundary element 

RADBC Space radiation on boundary element 
 
 

Notes: 
 
1. SPC can also enforce displacement. 
2. If enforced displacements are always 0.0 they become a boundary  
    condition. 
3. Initial conditions are discussed in Section 10.1.  
4. Can also be used to fix or enforce temperature in a heat transfer analysis. 

 
 

 
 The LOAD entry is used for combining loads that are constant 
throughout the analysis while DLOAD is used for combining 
time-varying loads. The DLOAD entry references a load defined 
through a TLOAD1 entry. The TLOAD1 entry references the type 
of load (applied load or enforced displacement), as well as the table 
entry (TABLED1 or TABLED2) defining the time variation of the 
load.  
 
 Both LOAD and DLOAD can be used in static and dynamic 
analyses in Advanced Nonlinear Solution. 
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Table 5-3: Bulk data entries for applying loads and enforced 
displacements 

 

Bulk Data Entry Comments 

LOAD  
Defines a linear combination of 
constant loads 

DLOAD 
Defines a linear combination of time 
varying loads (by combining different 
TLOAD1 entries) 

TLOAD1 
Defines time varying loads and 
enforced motion 

TABLED1, TABLED2 
Defines the time functions used by the 
loads 

 
 
 

 A time function is defined as a series of points   , it f t  in 

which t is time and  if t  is the value of time function i at that time. 

Between two successive times, the program uses linear 
interpolation to determine the value of the time function. 
 
 Advanced Nonlinear Solution does not support subcases. If 
subcases are only used to change the applied load in a static 
analysis, then they can be equivalently defined in Advanced 
Nonlinear Solution as time-varying loads in a single case. 

 A typical time-varying load such as the enforced displacement 
shown in Fig 5.1-1 (on the y direction of node 100) will be applied 
as follows: 
 
DLOAD, 1, 1.0, 10.0, 5 
TLOAD1, 5, 3,, DISP, 7 
SPCD, 3, 100, 2, 1.0 
TABLED2, 7, 0.0, 
,0.0, 2.0, 2.0, 4.0, 4.0, 4.0, 5.0, 0.0,  
,7.0, -2.0, 8.0, 0.0, ENDT 
TSTEP, 1, 8, 1.0, 4 



Chapter 5: Loads, boundary conditions and constraint equations 
 

 
 
356 Advanced Nonlinear Solution  Theory and Modeling Guide 

8

Time functions:

Time 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

tR

0.0

40 40 40 0 -10 -20 0

Resulting load values for tR = 10f(t):

4

3

2

1

-1

-2

2 4 6 10

f(t)

t

20 30

Fig. 5.1-1: Typical time-varying load  

 Note that the TSTEP entry is used for both linear and nonlinear 
analyses. In this case, 8 steps of size 1.0 are selected with output 
every 4 steps. 
 Note that in Solution 701 with automatic time step selection, the 
above input will not result in 8 steps. Instead, the critical time step 
for the model will be used and output of results will be done as 
soon as the solution time exceeds 4.0 and 8.0. See Section 7.1 for 
details. 
 
 The LOAD case control command can point to a LOAD entry 
or to individual loads, and similarly the DLOAD case control 
command can point to a DLOAD entry or directly to a TLOAD1 
entry. The initial and applied temperature load sets must be 
selected by the TEMPERATURE case control command if needed. 
The active initial conditions must be selected by the IC case control 
command. 
 
 Boundary conditions can be grouped into two classes: essential 
and natural boundary conditions (see ref. KJB, Section 3.3.2). 
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Essential boundary conditions can be enforced displacements or 
rotations. Natural boundary conditions include all applied forces 
and moments. 
 
 Displacement boundary conditions include fixed nodal degrees 
of freedom, enforced displacements and constraint equations. 
 
 Force and moment boundary conditions include numerous types 
of applied loading available in Advanced Nonlinear Solution. 
 
 All displacement and force boundary conditions are referred to 
the displacement coordinate system at the node at which they act. 
 
 The externally applied load vector used in the governing 
equilibrium equations is established using contributions from the 
various applied loads. 

For concentrated loads, the contributions of these nodal loads 
are directly assembled into the externally applied load vector. 

For pressure loading, distributed loading, centrifugal loading 
and mass proportional loading, Advanced Nonlinear Solution first 
calculates the corresponding consistent nodal load vectors 
(consistent in the sense that the principle of virtual work is used) 
and then assembles these load vectors into the externally applied 
load vector. The evaluations of the consistent nodal load vectors for 
the various types of loading are described in the following sections. 
 
 Temperatures in Advanced Nonlinear Solution are used in 
conjunction with material models which include temperature 
effects. 

 
 The definition of the time variation of the externally applied 
load vector for the various time steps in the solution period depends 
on whether automatic step incrementation is used or not.   

 
Time variation of externally applied loads when automatic step 
incrementation is not used: Each applied load or enforced 
displacement is associated with a time function which defines the 
time variation of the load throughout the solution period. 
 

 In a static analysis in which time-dependent effects (such as 
creep or friction) are not included in the material models, time is 
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a "dummy" variable which is used, via the associated time 
function of each applied load, to define the load intensity at a 
step. Thus, the time step increment directly establishes the load 
increments. So, in the example shown in Fig. 5.1-2, the same 
solution is obtained regardless of the size of the time step 
increment. 
 

tR

tR tR

� �

� �

200 200

100 100

1 2 2t t4

2 steps 2 steps

Run 1: t = 1.0� Run 2: t = 2.0�

Note: identical results are obtained in Run 1 and Run 2

for a linear static analysis.

150 150

Fig. 5.1-2: Example of time varying loads  
 

 In a dynamic analysis or if time-dependent effects are 
included in the material models in a static analysis, time is used 
in a similar way to define the load intensity of an applied load at 
a step. However, in these cases, time is a "real" variable because 
the time step increment is employed in the actual integration of 
the equations of motion in a dynamic analysis, and in the 
integration of the element stresses in a creep analysis. Hence, in 
these cases the choice of the time step increment is no longer 
arbitrary. 
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Time variation of externally applied loads when automatic step 
incrementation is used: Two options are available: 

 
 Using the automatic-time-stepping (ATS) procedure (see 

Section 6.2.4), the loads are defined for all times Δt, 2Δt,... 
as for no automatic step incrementation.  In addition, when 
the algorithm subdivides a time (load) step, the load vector 
is established by linear interpolation of the load vectors at 
times t and t + Δt. 

 Using the load-displacement-control (LDC) procedure (see 
Section 6.2.6), the applied loads are not associated with any 
time function and the time variation of the loads cannot be 
specified by the user.  The contributions from all the loads 
are assembled into a constant load vector denoted as the 
reference load vector. During the response calculation, this 
reference load vector is scaled proportionally using a load 
multiplier (in general different from one step to the next) 
automatically computed by the program.  

 
 The activation of the various applied loads can be delayed using 
the X1 field in the TABLED2 entry. The arrival/delay time option 
does not apply, however, to centrifugal and mass-proportional 
loading, see Section 5.4. 

The specification of a nonzero arrival time corresponds to a 
shifting of the associated time function forward in time. If the time 
function is used by a force boundary condition, this corresponds to 
using a time function multiplier of zero for all times t smaller than 
the arrival time; see illustration given in Fig. 5.1-3. However, if the 
time function corresponds to a enforced displacement/rotation the 
associated degrees of freedom are assumed to be free prior to the 
arrival time (not having a zero prescribed value). 

The arrival time feature is used only if NXSTRAT TFSHIFT=1 
(the default).  If NXSTRAT TFSHIFT=0, any arrival time data 
specified by TABLED2 X1 is ignored. 
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Time functions:

4

3

2

1

-1

-2

-3

2 4 6 8 10
Arrival
time Load active

Solution period

Time at solution
start=0.0

f(t)

t

Input time function Time function shifted
by arrival time

Fig. 5.1-3: Example of the use of the arrival time option  
 

5.2  Concentrated loads 
 

 Concentrated loads are nodal point forces applied at the 
specified nodes using the FORCE, FORCE1, or FORCE2 entries. 
Concentrated moments are also applied to specific nodes using the 
MOMENT, MOMENT1, or MOMENT2 entries. Concentrated 
forces on beam nodes can also be applied using the PLOAD1 entry. 
 
 The direction in which a concentrated load acts depends on the 
displacement coordinate system assigned to the node.  

 
 Note that concentrated moments applied to shell nodes convert 
the shell nodes automatically to 6 degree of freedom nodes. This is 
done since the local V1 and V2 directions at shell nodes are 
unknown to the user, and hence cannot be used in defining 
moments. 

 
 When the FORCE1 or MOMENT1 entries are used in a large 
displacement analysis, they can be follower loads, meaning that the 
direction of the applied force or moment can be updated during the 
simulation based on the current coordinates of the G1 and G2 
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nodes. This however is only possible if either G1 or G2 is set to be 
the node of load application. 
  
 The direction of a follower load can be controlled using RBAR 
or RBE2 rigid elements (see Section 2.7). An example is given in 
Fig. 5.2-1. 
 
 

b) Configuration at time t

Note: t
k is the rotation at node k at time t.�

Thin cantilever

Rigid element

G1

Node of load

application

a) Configuration at time t=0

Rigid element

Follower force

at time t

t
k�

G2

Follower force

at t = 0

G2

G1

Fig. 5.2-1: Example of the use of a rigid element to
establish the follower load direction  
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5.3  Pressure and distributed loading 
 

 Some examples of pressure and distributed loading are shown in 
Fig. 5.3-1. 
 

a) Axisymmetric 2-D solid element

PLOADX1

PLOAD1

PLOAD, PLOAD4

PLOAD, PLOAD2, PLOAD4

b) 3-D solid element

�

�

�

�

�

�

�

c) Beam element d) Shell element

Fig. 5.3-1: Examples of distributed and pressure loading  
 
 Distributed loads can be applied to beam elements using the 
PLOAD1 entry. This entry can also be used to apply concentrated 
forces on beam nodes. 
 
 Pressure loads can be applied to shell elements using the 
PLOAD or PLOAD4 entries, and to shell 3-node and 4-node 
elements only (CTRIA3 and CQUAD4) using the PLOAD2 entry. 
 
 Pressure loads can be applied to axisymmetric 2-D solid 
elements using the PLOADX1 entry. Pressure loads are input as 
force per unit area. 
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 Pressure loads can be applied to plane stress or plane strain 2-D 
solid elements using the PLOADE1 entry. Pressure loads are input 
as force per unit area.  
 Deformation-dependent pressure loads that act onto the edges of 
plane stress elements do not take into account the change in 
element thickness due to in-plane deformations. For example, a 
plane stress element that undergoes uniaxial tension due to a 
deformation-dependent pressure load has internal stresses larger 
than the pressure load by the ratio (original thickness)/(current 
thickness). 

 
 Pressure loads can be applied to the faces of 3-D elements 
(HEXA, CPENTA, CTETRA, CPYRAM) using the PLOAD or 
PLOAD4 entries. 
 
 When applied through the PLOAD4 entry, the pressure can be 
normal to the face of the element, or along a specified direction. 
 
 For each pressure/distributed load surface specified, a consistent 
nodal load vector is calculated to represent the pressure/distributed 
loading.  

 
 In a large displacement analysis, the pressure/distributed 
loading can be specified as deformation dependent for all element 
types via the LOADOPT parameter in the NXSTRAT entry. In this 
case, the calculations of the consistent load vectors are based on the 
latest geometry and configuration of the loading surface. 
 
 In Solution 601, deformation dependent loading should only be 
used in a large displacement analysis. Equilibrium iterations (see 
Chapter 6) should in general be performed if deformation 
dependent loading is present. 
 
 The loading direction for distributed loads can be along the 
basic coordinate system or the element coordinate system. Loads 
along element coordinate systems can be deformation dependent in 
large displacement analysis. 
 
 For pressure loading on 2-D and 3-D solid elements, the 
consistent load vector consists of nodal forces acting on the 
translational degrees of freedom only. The calculation of this load 
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vector is given in ref. KJB, Section 4.2.1. The same effect occurs in 
shells since the nodal translations and rotations are interpolated 
independently. 
 
 The distributed loading on a beam element results in equivalent 
concentrated forces and moments acting at the beam nodes as 
shown in Fig. 5.3-2. The calculation of these consistent forces and 
moments also follows the equations in ref. KJB Section 4.2.1. 
 

� �

L

q1

q2

1 2

(a) Beam distributed loading

(b) Fixed-end forces/moments representation

� �

L

F =
L
20

(7q + 3q )2 2 1F =
L
20

(7q + 3q )1 1 2

M =
L

60
(3q + 2q )1

2
1 2 M =

L

60
(3q + 2q )2

2

2 1

Fig. 5.3-2: Representation of beam distributed loading  
 
 Displacements and stresses in the model are calculated by 
representing the actual distributed loading using the consistent load 
vector defined above. Hence, the calculated solution corresponds 
only to these equivalent concentrated nodal forces and moments, 
and may not correspond entirely to beam theory results taking 
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account of the distributed loading more accurately, see Fig. 5.3-3. 
In order to capture the applied moment more accurately, more 
beam elements are required between sections A and B.  

 

�� � �

a) Actual beam structure bending moment diagram

b) Finite element bending moment diagram

using 3 beam elements

A

A

MA

MA

MB

MB

B

B

Bending

moment

Bending

moment

Fig. 5.3-3: Beam element bending moments
when subjected to distributed loading  

 

5.4  Inertia loads ─ centrifugal and mass proportional 
loading 

 
 Centrifugal and mass proportional loading can be used to model 
the effect of body forces which arise from accelerations to which 
the structure is subjected. 
 
 Centrifugal loading is generated using the RFORCE and 
RFORCE1 entries, and mass proportional loading is generated 



Chapter 5: Loads, boundary conditions and constraint equations 
 

 
 
366 Advanced Nonlinear Solution  Theory and Modeling Guide 

using the GRAV entry. 
 
 The mass matrix used in the calculation of centrifugal and mass 
proportional loading can be lumped or consistent depending on the 
mass setting for the whole model. Note that the computational 
effort involved in the evaluation of a lumped mass matrix is, in 
general, much less than the effort for a consistent mass matrix. 
 
 Centrifugal and mass proportional loading can both be present 
in a static or dynamic analysis. In a dynamic analysis, the type of 
mass matrix employed in the load calculation and in the dynamic 
response calculation are the same. 
 
 When more than one centrifugal load is applied to part of the 
model, each load acts independently. This means that certain inertia 
forces due to the coupling of the velocities (e.g. gyroscopic forces) 
are not accounted for in the analysis. In certain problems, the 
coupling terms are significant. Therefore, in general, it is 
recommended to only apply one centrifugal load to any part of the 
model.  
 
 The angular velocities in centrifugal loading are not coupled 
with the nodal velocities in the dynamic response. This means that 
certain inertia forces due to the coupling of the velocities (e.g. 
gyroscopic forces) are not accounted for in dynamic analysis. It is 
recommended to only use centrifugal loading in static analysis. 
 
 When elements die (due to rupture), their contribution to the 
load vector is removed. Hence, the consistent load vector consists 
(at all times) only of the contributions from the elements currently 
alive. 
 
 Centrifugal and mass proportional loading cannot be applied 
with a delay/arrival time. The time function has to be shifted 
manually to create this effect. 
 
 Centrifugal or mass proportional forces at fixed nodes are taken 
into account in the calculation of reaction forces. 
 
 Centrifugal l loading is not supported for potential-based fluid 
elements. 
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 Centrifugal loads are only approximately computed for the large 
displacement beam element. This is because the centrifugal loads 
are calculated assuming that the beam is straight. The error in the 
solution is reduced as the beam element mesh is refined. 

 
Centrifugal loading 

 
 The consistent load vector for centrifugal loading is computed 
as follows (see Fig. 5.4-1): 

 

    
angular acceleration centripetal acceleration

][t t t t t t dV     R α r ω ω r
 

 (5.4-1) 

 

where  RACC ( )t f t α R  is the angular acceleration vector, 

  At f t ω R  is the angular velocity vector, tr  is the 

radial vector from the axis of rotation to the node, A is the scale 
factor of the angular velocity (in revolutions/unit time), RACC is 
the scale factor of the angular acceleration (in revolutions / unit 
time squared),  is the density,  f(t) is the time function, and R (no 
left superscript) is the rotation vector.  
 Note that the centrifugal force is directly proportional to the 
time function f(t).  
 
 

x
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z

= angular velocity vector

= angular acceleration vector
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Centrifugal loads
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t
�
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Fig. 5.4-1: Convention used for centrifugal loading  
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Note that the consistent load vector consists of nodal point 
forces applied to all the nodes of the finite element model.  But 
loads applied to fixed degrees of freedom do not have any effects in 
the solution.  

 
 When centrifugal loading is used in nonlinear analysis, 
additional nonlinear terms are added to the stiffness matrix and the 
load vector. These additional nonlinear contributions are described 
in the following. Let the equilibrium of the finite element system be 
calculated at time t + Δt, iteration i. Then 

 
   1 1( ) ( ) ( )i it t t t i t t i t t i t t        M U K U R F  (5.4-2) 

 

where M = mass matrix, K = stiffness matrix =  
0L NLK K , U  

= acceleration vector, U  = incremental displacement vector, R = 
external load vector, F = nodal point forces corresponding to 
stresses, (i) = iteration i, and t + Δt =  time t + Δt. 

The complete expression of the load contribution due to the 
angular velocity part of the centrifugal loading, including all 
nonlinear effects, is 

 

    ( ) 0 ( 1) ( )t t i t t i i dV       R ω ω r U U  

 (5.4-3) 

where 0r  = initial radial vector from the axis of rotation to the 

node and ω  = angular velocity vector. From the expression 
(5.4-3), it can be seen that a deformation-dependent load is present, 
given by 

     ( 1)it t t t i
NL dV     R ω ω U  

 
and that an additional nonlinear contribution 

1NLK  to the stiffness 

matrix is present, given by 
 

     1

1 ( ) ( )it t i i
NL dV    K U ω ω U  

 
Both of these effects are included in the program.  
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The complete expression of the angular acceleration load 
contribution, including all nonlinear effects, is 
 

     10i it t t t dV     R α r U  

 
In this case, a deformation-dependent load is present, given by 
 

    1i it t t t
NL dV    R α U  

 
However, Solution 601 does not include the nonlinear stiffness 
matrix contribution from the angular acceleration load. The 
stiffness matrix associated with this load is skew-symmetric due to 
the single cross-product term. 

 
 Nonlinear centrifugal loading can be used in static analysis and 
implicit dynamic analysis.  Nonlinear centrifugal loading cannot be 
used in explicit dynamics (Solution 701). 
 
 The correction to the stiffness matrix and the correction to the 
loading are made when deformation dependent loading is requested 
(LOADOPT parameter in the NXSTRAT entry). 
 
 More than one centrifugal load can be specified using the 
RFORCE1 entry.  
 
 In the RFORCE1 entry, the GROUPID field can be used to 
choose the elements onto which the centrifugal loads will be 
applied.  The GROUPID field selects a group of elements defined 
using the GROUP bulk entry.   

 
Mass-proportional loading 

 
 The consistent load vector for mass proportional loading in 
direction i is computed using the mass matrix of the entire finite 
element system and the specified accelerations (only in the 
translational degrees of freedom), as follows: 

 

 t t t
i i iaR M d  (5.4-4) 
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where id  is a direction vector with "1" in the portions of the 

translational degrees of freedom acting into the direction i and "0" 
in the other portions, and ai is the acceleration magnitude in the 
direction i. 
 In the calculation, the mass coupling term between active and 
deleted degrees of freedom is included. This mass coupling term 
can be clearly seen in the discussion of ground motion loads later in 
this section. 
 
 Mass proportional loading is commonly used to model gravity 

loading. For gravity loading, t
ia  is the acceleration vector due to 

gravity. For example, for the z coordinate in the vertical direction 
(increasing z corresponds to movement away from the ground), 

enter t
za g  , where g is the (positive) acceleration due to 

gravity. 
 
 Mass-proportional loads are frequently used to model ground 
motions. The basis for using mass-proportional loads in modeling 
ground motions is given briefly now. The equations of motion for 
linear dynamics, not including damping but including ground 
motions, are  

 

11 12 1 11 12 1 1

12 22 2 12 22 2 2
T T

         
          

         

M M x K K x R

M M x K K x R




 (5.4-5) 

 

where 1x  is the vector of nodal point displacements for nodes not 

attached to the ground and 2x  is the vector of nodal point 

displacements for nodes attached to the ground. 1R , 2R  are 
externally applied forces (for example, concentrated forces).  
 When the ground motions are the same at all nodes attached to 
the ground, 1 1 1i gix x u d , 1 1 1i gix x u d   , 2 2 2i gix x u d , 

2 2 2i gix x u d   , where 1u  is the vector of nodal point 

displacements relative to the ground for nodes not attached to the 
ground and 2u  is the vector of nodal point displacements relative 

to the ground for nodes attached to the ground. Clearly, 2 u 0 . 

Also 1id  is the direction vector for the nodes not attached to the 
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ground and 2id  is the direction vector for the nodes attached to the 

ground, with “1” in the portions of the translational degrees of 
freedom acting into the direction i  and “0” in the other portions.  
 The matrix equation of motion becomes 

 

1 111 12 11 12 11 1

2 212 22 12 22 2

i gi i gi

T T
i gi i gi

x x

x x

              
                                  

d dM M K K Ru u

d dM M K K R0 0




  (5.4-6)  

Now 111 12

212 22

i

T
i

    
    
    

dK K 0

dK K 0
 since the vector 1

2

i
i

i

 
  
 

d
d

d
 

corresponds to a rigid body motion. The matrix equation of motion 
becomes  

 

111 12 11 12 1 11 121 1

212 22 12 22 2 12 22

i gi

T T T
i gi

x

x

           
              

            

dM M K K R M Mu u

dM M K K R M M0 0




  (5.4-7)  
and therefore the system of equations solved is 

 

11 1 11 1 1 11 1 12 2i gi i gix x   M u K u R M d M d    (5.4-8)  

 
The mass coupling term between active and deleted degrees of 
freedom ( 12 2i gixM d  ) is included. 

 It is seen that the ground acceleration can be applied to the 
model as a mass-proportional load, provided that the resulting 
nodal point motions are interpreted as motions relative to the 
ground.  
 Please note: 

 

 To enter a positive ground acceleration gix , specify a 

negative mass-proportional load ia . 

 All single-point fixities are relative to the ground. In other 
words, fixing a node attaches it to the ground. 

 All enforced displacements are relative to the ground. 
 All single DOF scalar elements are attached to the ground. 
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Damping can be used. However, scalar dampers and single DOF 
damping scalar elements are attached to the ground. Mass-
proportional Rayleigh damping acts relative to the ground motion. 
 Although we have illustrated the procedure only for linear 
dynamics, the procedure is also valid in nonlinear dynamics. 
 

5.5  Enforced motion 
 

 Enforced displacements at specified degrees of freedom can be 
applied in Advanced Nonlinear Solution using the single point 
constraint entries (SPC, SPC1, or SPCADD) or the enforced 
motion (SPCD) entry. The applied displacement can be constant or 
described by a time function. 
 
 Enforced velocities and accelerations are not supported. 

 
 Nodal point translations and rotations can be enforced. The 
degree of freedom is in the direction of the displacement coordinate 
system assigned to the node. 
 
 A nodal point can be "fixed" by prescribing a zero displacement 
component for all degrees of freedom at this node. This is, 
however, different from imposing a permanent single-point 
constraint on the GRID entry because the enforced degrees of 
freedom are retained in the system matrices (i.e., equation numbers 
are assigned) whereas the degrees of freedom at which permanent 
GRID constraints are imposed are deleted from the system 
matrices. 

 
 Note that enforced displacements are not recommended on 
contactor surfaces (see Chapter 4). 
 
 Arrival time option: Delay or arrival times can be used for 
enforced displacements. In this case, the displacements are free 
before the arrival time. Once the arrival time is reached, the 
displacements are set to their enforced values. However, the 
enforced value can be interpreted as an absolute or total 
displacement or as a relative displacement based on the 
configuration at the arrival time.  
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 Relative enforced displacement option: Normally the specified 
enforced displacement is directly applied to the model, so that the 
enforced displacement at the node is equal to the specified enforced 
displacement.  However, there is a “relative enforced displacement 
option” that works as follows. When the relative enforced 
displacement option is active, then the enforced displacement at the 
node is calculated using the specified enforced displacement plus a 
preexisting displacement. The preexisting displacement is the 
displacement at the arrival time (if the arrival time is nonzero), or 
at the beginning of the current analysis (which might be a restart 
analysis). 
 The time function for the specified enforced displacement can 
be constant or time-dependent. 
 As a special case, the specified enforced displacement can be 
zero. Then the enforced displacement is equal to the preexisting 
displacement. This option is useful for “freezing” the motion of a 
node, so that before the arrival time, the node has no enforced 
displacement, and after the arrival time, the node has a enforced 
displacement equal to the displacement at the arrival time. 
 The relative enforced displacement option is controlled by the 
DISPOPT flag in the NXSTRAT entry.  DISPOPT=0 selects 
absolute enforced displacements (the default) and DISPOPT=1 
selects relative enforced displacements. 

 
 Enforced rotations can be applied to the rotational degrees of 
freedom of large displacement formulation structural elements 
(such as Hermitian beam elements), and also to the master 
rotational degrees of freedom of large displacement rigid links. The 
formula used is now discussed.  
 In large displacement analysis, the increment in enforced 

rotation is computed as t t t  θ θ θ , where t θ , t t θ  are the 
enforced rotations at times t , t t  . The components of the 
increment in enforced rotation are ( , , )x y z      θ . 

 Consider an incremental rotation with components 
( , , )x y z      θ  applied to the master node of a large 

displacement rigid link with end coordinates t
mx , t

sx . ("m" = 

master, "s" = slave). The vector connecting these coordinates is 
t t t

sm s m x x x . When this incremental rotation is applied to the 
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master node of the rigid link, the vector t
smx  changes to 

( )t t t
sm sm

  x Q θ x , where 2
sinsin 1 2( )

2
2






 
 

     
 
 

Q θ I S S  

and 

0

0

0

z y

z x

y x

 
 
 

  
    
   

S , 2 2 2
x y z         . The 

above formula can be found in ref KJB, p 580, exercise 6.56.  
 This formula gives the exact answer for the case when the 
incremental rotations are finite. Physically, the incremental 
rotations are interpreted as a vector, with the direction of the vector 
interpreted as the axis of rotation, and the magnitude of the vector 
interpreted as the amount of rotation about that axis.  
 The same formula is applied to the end-node triad of a beam 
element local node, and to the director vector of a shell element 
local node. 

 

5.6  Applied temperatures 
 

 In Advanced Nonlinear Solution, temperature can be prescribed 
in any structural analysis. In addition, in heat transfer and TMC 
analyses, temperature can be prescribed at certain parts of the 
model, and the program will solve for the complete temperature 
field.

 Temperature can be applied directly to a node using the TEMP 
entry or to the whole model using the TEMPD entry. Direct nodal 
values applied with TEMP override the default TEMPD value. This 
is applicable to structural analysis, and to initial conditions for a 
heat transfer analysis. 
 
 The TEMPERATURE case control command selects the initial 
or reference temperature field. 
 
 In heat transfer analysis, temperature boundary conditions are 
applied using the TEMPBC entry or the SPC entry. 
 



 5.6: Applied temperatures 
 

 
 
Advanced Nonlinear Solution  Theory and Modeling Guide 375 

 A time-dependent temperature load can be applied by using the 
DTEMP bulk entry and referencing it in a DTEMP case control. In 
previous versions, a time-dependent temperature load can be 
defined with the TLOAD1 entry, and referencing the TLOAD1 in 
the DLOAD case control. This is still supported for backwards 
compatibility but it is recommended to use DTEMP instead. Note 
that DTEMP cannot be used with TEMP(LOAD) or DLOAD for 
temperature loading.  

 
 It should also be noted that when using higher-order elements, 
the temperatures can be significantly different within the element 
than at the nodal points. For example, the temperature can be 
negative at points within an element, although the nodal point 
temperatures are all non-negative. This is illustrated in Fig. 5.6-1 
(see element 1). This observation can be important when 
performing an analysis with temperature-dependent material 
properties. 
 
 Applied temperature gradients cannot be specified on shell 
element nodes. 
 
 A node cannot be specified more than once in a temperature set. 
 
 Temperature loads cannot be specified with both TEMP(LOAD) 
and DLOAD case control commands.  Exception: if TEMPOPT=1 
in the NXSTRAT entry, then both TEMP(LOAD) and DLOAD are 
allowed. This option is provided for backwards compatibility with 
previous versions of NXN.  However, it is recommended to specify 
only TEMP(LOAD) for a constant temperature load or DTEMP for 
a time-dependent temperature load in a model. 
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Fig. 5.6-1: Interpolation of temperature boundary
conditions  

 
 

5.7  Bolt preload 
 

 Advanced Nonlinear Solution supports the preloading of bolt 
elements. The bolt preloads or forces are applied during extra 
solution steps performed at the very beginning of the analysis prior 
to the rest of the step-by-step solution. 
 
 The bolt preloads are applied via the BOLTFOR entry which 
should be used together with a BOLTLD case control command. 
 
 Bolt preload (and bolts in general) are only available in Solution 
601. 
 
 The BOLTSTP feature of the NXSTRAT entry allows the bolt 
preload to be applied over BOLTSTP solution steps (default is 



 5.6:  Applied temperatures 
 

 
 
Advanced Nonlinear Solution  Theory and Modeling Guide 377 

BOLTSTP=1.  
 
 See Section 10.7 for more details on the bolt feature. 
 

5.8  Constraint equations 
 

 Advanced Nonlinear Solution supports single-point  and 
multipoint constraints. The single-point constraints are defined 
using the SPC, SPC1, SPCADD entries. Permanent single-point 
constraints can also be defined using the GRID entry. This case, 
however, totally removes the associated degree of freedom from 
the solution. 
 

 Multipoint constraints are defined directly using the MPC and 
MPCADD entries. They can also be defined through R-type 
elements (see Section 2.7). 
 
 The following relationship holds for multipoint constraints: 
 

0j j
j

R u   


 Constraints can be enforced in two ways. The first approach 
(called regular constraints approach) is for the first degree of 
freedom in each constraint (u1) to be a dependent degree of 
freedom. The second approach (called general constraints 
approach) is to add a Lagrange multiplier to enforce each 
constraint, and hence keep all constraint degrees of freedom 
independent.  
 Parameter GENMPC in the NXSTRAT entry sets the approach 
used for all constraint equations.  GENMPC=0 selects regular 
constrants (the default) and GENMPC=1 selects general 
constraints. 
 
 Note that in the regular constraints approach, each constraint 
reduces the number of independent equations by one, while in the 
general constraints approach, each constraint adds one extra degree 
of freedom (the Lagrange multiplier). Hence, the regular 
constraints approach should be used whenever possible. In some 
cases, however, one cannot easily express a constraint in a way 
such that dependent degrees of freedom are not constrained to other 
dependent degrees of freedom.  
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 As a simple example, the constraints given by the equations 
below cannot be expressed as regular constraints: 
 

2 1 1

3 2 1 2

3 0 valid regular constraint

4 0 invalid regular constraint

This DOF is already dependent

z z x

z z z x

u u

u u u





   

    


 

 
in which the subscript gives the direction and the superscript gives 
the node number. These constraints can be expressed as general 
constraints. 
 However, the second constraint can be written as a regular 
constraint by manually applying the first constraint to obtain 
 

3 1 1 22 3 4 0z z x xu u       
 
 Mesh glueing (Section 5.9) internally creates general constraint 
equations that are enforced using Lagrange multipliers. All 
independent degrees of freedom associated with the glued mesh 
remain independent. 

 

 Regular constraints can be applied both in Solution 601 (in 
static and implicit dynamic analysis) and in Solution 701.  
 
 General constraints cannot be used in Solution 701. 

 Multipoint constraints are only approximately satisfied in an 
explicit analysis (Solution 701), since imposing the constraint 
exactly requires a non-diagonal mass matrix. 

 For R-type elements in large deformation the multipoint 
constraint can have variable coefficients that are updated based on 
the deformation of the structure. 
 

 Note that enforced displacements detailed in Section 5.5 are 
internally enforced using single-point constraints. 
 

 For an R-type element to produce multipoint constraints with 
changing coefficients that capture large deformations, the 
constraints must be between only 2 nodes. In addition, one of the 
nodes should possess all the independent degrees of freedom and 
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the other node should only possess dependent degrees of freedom. 
These large displacement multipoint constraints are internally 
called rigid links. 
 
 The following comments apply to regular constraints of in 
which the dependent degree of freedom is constrained to more than 
one independent degree of freedom. 

 
 If a consistent mass matrix is used and concentrated masses 

are applied to constrained nodes, then the off-diagonal 
terms are included in the global mass matrix. 

 Similarly, if concentrated dampers are applied to 
constrained nodes, then the off-diagonal terms are included 
in the global damping matrix.  

 

5.9  Mesh glueing 
 

 The mesh glueing feature is used to attach two surfaces (or lines 
in 2-D) together. These two surfaces usually involve different finite 
element meshes (see Fig. 5.9-1). The glueing procedure results in a 
smooth transition of displacements and tractions between the glued 
surfaces. Mesh glueing sets are defined in the BGSET entry, and 
the glued surfaces are defined via the BEDGE, BSURFS or 
BCPROPS entries. 

 
 This feature is useful for several applications: 
 

 When a fine mesh is desired in a certain region and coarser 
meshes are desired in other regions. 

 When different regions are meshed independently with 
unstructured free meshes.  

 When different regions are meshed with different element 
types (such as a tetrahedral mesh attached to a brick mesh).  
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Mesh glueing along dashed lines

Fig. 5.9-1: Examples requiring mesh glueing  
 

 The proper glueing constraint between the two surfaces can be 
expressed as 
 

  1 2( ) 0u u d


     (5.9-1) 

 
where u1 is the displacement of the first glued surface, u2 is the 
displacement of the second surface and λ is the Lagrange multiplier 
field imposing the constraint. 
 One of the glued surfaces is designated as the master and the 
other as the slave. The Lagrange multiplier field involves nodal 
degrees of freedom at the nodes of the slave surface, and the 
integration is also performed over the slave surface. Hence Eq. 
(5.9-1) becomes 
 

  ( ) 0
S

S M S Su u d


     (5.9-2) 

 
 The accurate integration of Eq. (5.9-2) is not trivial since the 
displacements uM and uS are generally interpolated over different 
domains. This integration is automatically performed by Advanced 
Nonlinear Solution. 
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 Mesh glueing is not available in Solution 701. 
 
 Glueing is superior to tied contact and should be used in its 
place whenever applicable. 
 
 Only 2-D solid elements can be used in the gluing of 2-D lines. 
The glued element side can have linear or quadratic displacement 
interpolation. Rod and beam elements are not supported. 
 
 Only 3-D solid elements can be used in the gluing of 3-D 
surfaces. The glued element faces can be triangles or quads, and 
they can have linear or quadratic displacement interpolation. Shell 
elements are not supported. 
 
 Nodes on glued surfaces (both master or slave) cannot have 
dependent translation degrees of freedom. Therefore, they cannot 
be slaves in multi-point constraints involving translations. 
 
 If one glue surface is smaller than the other, the smaller surface 
should preferably be the slave.  However, the glueing will also 
work if the smaller surface is the master.  The two glued surfaces 
can also be partially overlapping.  These cases are shown in Fig. 
5.9-2.  
 
 The two glued surfaces should ideally be smooth surfaces (no 
sharp corners). If corners exist it is better to create multiple glued 
meshes, as shown in Fig. 5.9-3. 
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Fig. 5.9-2: Examples of master and slave glue
surfaces

Master surface

Master surface

Slave surface

Slave surface

Glue surface 1

Glue surface 2

 
 
 
 

Four glue-meshes
(one for each side)

One glue-mesh

One glue-mesh Cross-over points

Fig. 5.9-3: Glueing non-smooth surfaces  
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 The Lagrange Multiplier field is modified at nodes where 
multiple glue meshes intersect. These nodes are called cross-over 
points. 

 
 If the two surfaces have different mesh densities, either one can 
be used as slave. However, it is recommended that the finer mesh 
surface be the slave surface.  Using the finer meshed surface as a 
slave will produce more equations, since the Lagrange multipliers 
degrees of freedom are on the nodes of the slave surface.  
 
 The master glue surface can be enlarged beyond its geometric 
bounds, so that the slave points that project slightly outside the 
master can still be considered glued. This is done via the EXTi 
parameter in the BGSET card. 
 
 If the independent parts of the model have rigid body motions 
(not considering the effect of glueing), the equation solver might 
stop due to zero pivots.  In this case, stiffness stabilization can be 
employed (see Section 10.6). 
 
 The mesh glue feature admits rigid body translations. Therefore, 
when the model is rigidly translated, no spurious stresses and 
strains are generated, and force equilibrium is satisfied between the 
glued surfaces. 
 
 The mesh glue feature only admits rigid body rotations when 
the two glued surfaces exactly coincide, that is, when the two glued 
surfaces are flat. Curved surfaces do not exactly coincide due to the 
discretization error, as illustrated in Fig. 5.9-4. 
 

 
Fig. 5.9-4: Glued surfaces do not exactly coincide when the 
                   surfaces are curved. 
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 As a result, if the glued surfaces are curved, moment 
equilibrium is not satisfied between the glued surfaces, spurious 
stresses and strains are generated when the model rotates, and 
rotational motions are resisted, just as if the glued surfaces are 
attached to a grounded rotational spring. The stiffer the glued 
surfaces, the stiffer the rotational spring. This effect is less severe 
when the coarser meshed surface is the slave surface of the glue 
mesh pair because in this case the surfaces are not as “tightly” 
glued (fewer glueing constraints are created), and hence the 
distortional motion imposed by the mesh glue is less severe. 
 Fig. 5.9-5 shows the stress results for a large displacement static 
analysis where a steel cylinder of radius 1mm is rotated by 10 
degrees by prescribing the rotation on the outside surface of the 
cylinder. Other than the prescribed rotation, the cylinder is 
completely free. We observe that the exact solution is obtained 
when there is no mesh glue and when the glued surfaces are flat, 
but spurious stresses are generated when the glued surfaces are 
curved, especially when the finer meshed surface is the slave 
surface in the mesh glue pair. 
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Fig. 5.9-5: Stress results when cylinder is rotated 10 degrees. 
 
 
 

5.10  Convection boundary condition 
 

 Convection boundary conditions take the following form 
 

  S S
eq h     

 
where h is the convection coefficient, e  is the external ambient 

temperature, and S  is the unknown body surface temperature. 
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 Convection boundary conditions are applied using surface 
elements generated using the CHBDYE  or CHBDYG entities 
which point to a CONV entry. This entry provides some of the 
necessary inputs and in turn points to a PCONV entry providing 
more input. The heat convection coefficient h is provided in the 
material definition entries. 

 
 The following types of convection boundary conditions are 
available: 

 
Line convection boundary conditions, used in conjunction with 
2-D planar elements and 2-D axisymmetric elements. 

 
Surface convection boundary conditions, used in conjunction 
with 3-D solid or shell elements. 

 
 The convection coefficient h can be either temperature-
dependent (through a MATT4 or MATT5 entry), or time-
dependent. This is achieved via the Control Node setting in the 
CONV entry. It cannot, however, be both temperature and time 
dependent. 

 
 The ambient temperature e  is obtained from node using 

parameter TA1 in the CONV entry. The temperature at node TA1 
must be prescribed, and can be time-varying. 
 
 The heat flux, qS, is converted to nodal heat fluxes by consistent 
integration over the convection boundary. See ref. KJB, Section 
7.2.3 for details. In this integration, the temperatures are 
interpolated from their nodal values, and if the heat transfer 
coefficient, h, is temperature dependent, it is calculated for each 
integration point based on its interpolated temperatures. 
 

5.11  Radiation boundary condition 
 

 Radiation boundary conditions take the following form 
 

   44S S
rq f e     
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where   is the Stefan-Boltzmann constant, f is a view factor or 
shape factor, e is the material emissivity, r  is the temperature of 

the radiative source (or sink) and S  is the unknown body surface 
temperature. Both temperatures are in the absolute scale. Note that 
in the above equation the absorptivity is assumed to be equal to the 
emissivity. 
 
 Radiation boundary conditions are applied using surface 
elements generated using the CHBYDE or CHBYDG entries which 
point to a RADBC entry. This entry provides some of the necessary 
inputs and in turn points to a RADM or RADMT entry providing 
the rest of the inputs. 
 
 The Stefan-Boltzmann constant () and the absolute 
temperature offset are set in PARAM entries (SIGMA and TABS 
parameters). Note that although   is a constant it must be input in 
the proper units. 

 
 The following types of radiation boundary conditions are 
available: 

 
Line radiation boundary conditions, used in conjunction with 
2-D planar elements and 2-D axisymmetric elements. 

 
Surface radiation boundary conditions, used in conjunction 
with 3-D solid or shell elements. 

 
 The emissivity coefficient e can also be temperature-dependent 
by using the RADMT entry. 

 
 The radiative source/sink temperature r  is specified in the 
NODAMB parameter in the RADBC entry. The temperature at this 
node NODAMB must be prescribed, and can be time-varying. 

 
 The view or shape factor f is input via the FAMB parameter in 
the RADBC entry. 
 
 Default values of some radiation settings are defined using the 
BDYOR entry. 
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 The heat flux, qS, is converted to nodal heat fluxes by consistent 
integration over the radiation boundary. See ref. KJB, Section 7.2.3 
for details. In this integration, the temperatures are interpolated 
from their nodal values, and if the emissivity, e, is temperature 
dependent, it is calculated for each integration point based on its 
interpolated temperatures. 

 

5.12  Boundary heat flux load 
 

 Applied boundary heat flux is specified by equation (8.1-3):  
 

 

2

S
n

S

k q
n





 

 

where Sq  is the surface heat flux input to the body across some 

part S2 of the body surface, nk  is the body thermal conductivity in 

direction n, the outward normal to the surface, and θ is the 
temperature. 
 
 Boundary heat flux loads are applied either directly to the nodes 
defining a face of an element using the QHBDY entry, or by 
pointing to existing surface elements (CHBDYi type) using the 
QBDY1 or QBDY2 entries. 
 
 The heat flux, qS, is converted to nodal heat fluxes by consistent 
integration over the boundary. See ref. KJB, Section 7.2.3 for 
details. 
 
 Note that any boundary of the domain which does not have 
either the heat flux or temperature specified will be assumed by 
virtue of the formulation to have  
 

 0Sq   
 

i.e., this part of the boundary is insulated, allowing no heat transfer 
across it. 
 

ref. KJB 
Section 7.2.1 
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5.13  Internal heat generation 
 

 This form of thermal loading results from the generation of heat 
within the domain, which is introduced into the governing equation 
system by the term qB of equation (8.1-1). 
 
 Internal heat generation is applied via the QVOL entry which 
provides a load multiplier to the heat generation parameter HGEN 
set in the MAT4 or MATT4 entries. 

 
 A negative heat generation term qB indicates a loss of heat 
within the body. 

 
 The heat generation term can be temperature-dependent by 
making the HGEN parameter temperature dependent using the 
MATT4 entry. 
 
 The heat flux generated per unit volume, qB, is converted to 
nodal heat fluxes by consistent integration over the element 
volume. See ref. KJB, Section 7.2.3 for details.  

 

ref. KJB 
Section 7.2.3 
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6. Static and implicit dynamic analysis 
 

This chapter presents the formulations and algorithms used to solve 
static and dynamic problems using Solution 601. This includes 
convergence checking and the available solvers. Most flags or 
constants that need to be input in this chapter are in the NXSTRAT 
bulk data entry. 
 Information about the progress of the solution is always output 
to the .f06 file. A shorter summarized output is provided in the .log 
file. 
 

6.1  Linear static analysis 
 

 In linear analysis using Solution 601, the finite element system 
equilibrium equations to be solved are

 
KU = R  

 
 A direct sparse solver, iterative multigrid solver or 3D iterative 
solver can be used to solve this system of equations, see Section 
6.5.

 The equation solvers assume that the system stiffness matrix is 
symmetric. 
 
 The equation solvers assume that the system stiffness matrix is 
positive definite. This requirement can be summarized as follows: 
The Rayleigh quotient  

 

  
T

T
 

K 


 
 

 
must be greater than zero for any displacement vector  . Since 

    is equal to twice the strain energy stored in the system (for 
T   ), this is equivalent to the requirement that the strain 

energy stored in the finite element system when subjected to any 
displacement vector   must be greater than zero. 
 

 
ref. KJB 

Sections 8.2.1, 
8.2.2 and 8.2.3 
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 Hence, the finite element system must be properly supported, so 
that the system cannot undergo any rigid body displacements or 
rotations.  

 
 It also follows that no part of the total finite element system 
must represent a mechanism, see ref. KJB, Fig. 8.7, p. 704, for such 
a case.  

 
 Nodal point degrees of freedom for which there is no stiffness 
must be restrained. A degree of freedom does not carry any 
stiffness if all of the elements connected to the nodal point do not 
carry stiffness into that degree of freedom. In this case the degree 
of freedom must be restrained using boundary conditions.  
 Note that nodal degrees of freedom which are not connected to 
any elements and are not used as dependent nodes in constraint 
equations are automatically deleted by the program.  

 
 The elements joining into a nodal point and contributing to the 
stiffness of the nodal point degrees of freedom must all be defined 
properly and in a physically correct manner.  For example, if there 
are program input errors that yield a zero or negative Young's 
modulus or an incorrect nodal point numbering for an element, the 
stiffness at a system degree of freedom may be zero or negative.  

 
 More details on the solvers available in Solution 601 are 
provided in Section 6.5.  

 

6.2  Nonlinear static analysis 
 

 In nonlinear static analysis the equilibrium equations to be 
solved are:  

 

 t t t t  R F 0  
 
where t+ΔtR is the vector of externally applied nodal loads at time 
(load) step t+Δt, and t+ΔtF is the force vector equivalent (in the 
virtual work sense) to the element stresses at time t+Δt. 
 
 The nonlinearity may come from the material properties, the 
kinematic assumptions, deformation dependent loading, the 
presence of contact, or the use of special features such as the 

 
ref. KJB 

Section 8.4 
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element birth/death feature. 
 

 The solution to the static equilibrium equations can be obtained 
in Solution 601 using 
 

 Full Newton iterations, with or without line searches 
 Automatic step incrementation (automatic-time-stepping 

and load-displacement-control methods)  
 

These methods are described in detail in the following sections and 
also in Sections 6.1 and 8.4 of ref. KJB. 
 
 The same equation solvers are used for both linear and 
nonlinear analysis. However, the automatic time stepping 
algorithms do not require the stiffness matrix to be positive 
definite, thus allowing for the solution of bifurcation problems. 
 
 A special case is reached when the element birth or death option 
is used for some elements.  In this case the equation solver allows 
that during the solution a degree of freedom may not carry any 
stiffness at a particular time, because the adjoining element(s) may 
not have been born yet (or may have died already). Note that the 
program does not check if any load is applied in that degree of 
freedom, and that the appropriate time functions should be used to 
generate/delete that load according to the element birth or death. 
 
 The stiffness stabilization feature can be used to treat some 
nonlinear static problems involving a non-positive definite stiffness 
matrix. See Section 10.6 for details. 

 
6.2.1  Solution of incremental nonlinear static equations 

 
Full Newton iterations: In the full Newton iteration method, the 
following algorithms are employed: 

 
Without line search 
 

 ( 1) ( ) ( 1)t t i i t t t t i      K U R F  (6.2-1a) 

 ( ) ( 1) ( )t t i t t i i    U U U  (6.2-1b) 


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 With line search 
 

 ( 1) ( ) ( 1)t t i i t t t t i      K U R F  (6.2-1c) 

 ( ) ( 1) ( ) ( )t t i t t i i i    U U U  (6.2-1d) 
 

where ( 1)t t i K  is the tangent stiffness matrix based on the 

solution calculated at the end of iteration (i - 1) at time t+Δt, t t R  

is the externally applied load vector at time t + Δt; ( 1)t t i F  is the 
consistent nodal force vector corresponding to the element stresses 

due to the displacement vector ( 1)t t i U ; ΔU(i) is the incremental 
displacement vector in iteration (i) and β(i) is an acceleration factor 
obtained from line search. Note that, since the full Newton iteration 
method is employed, a new stiffness matrix is always formed at the 
beginning of each new load step and in each iteration. 
 
 An upper bound for the incremental displacements in U can be 
set by the user (via the MAXDISP parameter in the NXSTRAT 
entry). If the largest increment displacement component exceeds 
the limiting value, the whole incremental displacement vector is 
scaled down to satisfy the upper bound. 
 This feature is useful for problems where one or more iterations 
can produce unrealistically large incremental displacements. This 
may happen, for example, if a load is applied to contacting bodies 
before contact is properly established, or in the first unloading steps 
after a material has undergone plastic deformation. 
 The default (MAXDISP=0.0) is  
 

 Dynamic analysis or analysis without contact: no limit on 
incremental displacements 

 Static analysis with contact:  maximum incremental 
displacement is 1% of the maximum model dimension.  

 
6.2.2  Line search 

 
 The line search feature is activated by setting LSEARCH=1 in 
NXSTRAT. In this case, the incremental displacements obtained 
from the solver are modified as follows 
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 ( ) ( 1) ( ) ( )t t i t t i i i    U U U  
 

where β is a scaling factor obtained from a line search in the 
direction ΔU(i) in order to reduce out-of-balance residuals, 
according to the following criterion 

 

 

( ) ( )

( ) ( 1)
STOL

Ti t t t t i

Ti t t t t i

 

  

    
   

U R F

U R F
  (6.2-2) 

 
where STOL is a user-input line search convergence tolerance (in 
NXSTRAT), and t+ΔtF(i) is calculated using the total displacement 
vector t+ΔtU(i). 
 The magnitude of β is also governed by the following bounds 

 
 LSLOWER LSUPPER   (6.2-3) 
 

where LSUPPER and LSLOWER are user-input parameters in 
NXSTRAT. 
 The incremental displacements are not modified (i.e., β = 1) if 
no suitable line search parameter satisfying Equations (6.2-2) and 
(6.2-3) is found within a reasonable number of line search 
iterations, or if the unbalanced energy falls below a certain user-
specified energy threshold ENLSTH. 

 
 Line search is off by default. It is useful for problems involving 
plasticity, as well as large displacement problems involving beams 
and shells. It is also helpful in many contact problems. In the case 
of contact problems, it is sometimes better to set LSUPPER to 1.0 
so that the line search only scales down displacements. 

 
 The effect of line search is more prominent when the current 
displacements are far from the converged solution. This usually 
happens in the first few iterations of a time step, or when a major 
change occurs in the model, due for example, to contact 
initiation/separation, or the onset of plasticity. 

  
 Note that line search increases the computational time for each 
iteration. Most of the extra time goes towards the evaluation of 
t+ΔtF(i) in Equation (6.2-2). However, for the types of problems 
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mentioned above the reduction in the number of iterations and the 
ability to use bigger time steps leads to an overall reduction in 
solution time. 
 

6.2.3  Low speed dynamics feature 
 
 A low speed dynamics option is available for static analysis 
(can only be used with ATS or TLA/TLA-S features). It is 
activated with ATSLOWS in the NXSTRAT entry. Low speed 
dynamics is a special technique developed to overcome 
convergence difficulties in collapse, post-collapse and certain 
contact problems. 

In essence, this feature includes dynamics effects in an 
otherwise static problem. Solution 601 solves 

 

 ( ) ( ) ( 1) ( ) ( 1)t t i t t i t t i i t t t t i           M U C U K U R F   (6.2.4) 
 

where M is the mass matrix and  is a mass scaling factor that can 
vary from 0.0 to 1.0 (default 1.0), to partially account for the 
dynamic inertia effect . The C matrix is evaluated using 
 

 C K  
 

where  is a user-specified parameter (default 10-4), and K  is the 
(initial) total stiffness matrix (corresponding to zero initial 
displacements). For more details on this dynamics equation refer to 
Section 6.4. The  and   parameters are set via the ATSMASS 
and ATSDAMP parameters in the NXSTRAT entry. 

 
 When low speed dynamics is used with ATS, the time step size 
will influence the results. It is recommended that the time step size 
be at least 105 . Or, it is recommended that the loads be held 
constant for a period of time of at least 10  so that the dynamic 
effects die out. 
 
 Notice that when C K , rigid body motions are not damped 
out.  In order to achieve damping of rigid-body motions, 

  C M K  must be used. 
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 Note that mass effects may not be needed in the low speed 
dynamic analysis. In this case, set the  parameter in Eq. (6.2-4) to 
zero, or, alternatively, set the material densities to zero. That way, 
only structural damping effects will be present in the otherwise 
static analysis. 
 
 The program outputs the damping and inertia force norms at 
every time step. The damping and inertia forces should be 
compared with the external forces in order to insure that they are 
not excessive. 
 

6.2.4  Automatic-Time-Stepping (ATS) method 
 

 The automatic-time-stepping (ATS) method controls the time 
step size in order to obtain a converged solution. It is activated with 
AUTO=1 in the NXSTRAT entry (which is the default). If there is 
no convergence with the user-specified time step, the program 
automatically subdivides the time step until it reaches convergence. 
In some cases, the time step size may be increased to accelerate the 
solution. 
 
 Parameter ATSDFAC in the NXSTRAT entry sets the division 
factor that Solution 601 uses to subdivide the time step when there 
is no convergence. Successive subdivisions can be performed, if 
necessary, provided that the time step size is not smaller than a 
minimum value. This minimum value is set as the original step size 
divided by a scaling factor provided by the user (ATSSUBD in 
NXSTRAT). 
 
 Note that the loads at any intermediate time instant created by 
the ATS method are recalculated based on the current value of the 
time functions. 
 
 The solution output is only furnished at the user-specified times, 
except when the solution is abandoned due to too many time step 
subdivisions without convergence. In this case, the solution output 
is also given for the last converged time instant. 
 
 There are three options for controlling the time step size once 
convergence is reached after ATS subdivisions. Any of these 
options can be selected, or Solution 601 can make the selection 
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automatically (ATSNEXT in NXSTRAT). 
 

1. Use the time increment that gave convergence  
In this case, the program continues to use the reduced 
(subdivided) time step size that gave convergence for the 
number of consecutive substeps specified by the NXSTRAT 
ATSNSUB parameter if ATSNSUB is greater than zero 
(default, ATSNSUB=0). Once this number of consecutive 
substeps is reached, or once the end of the user-specified time 
step is reached, the program might increase the time step size 
based on the iteration history, but the program ensures that the 
analysis always proceeds through all user-specified solution 
times. This option is the default in analyses without contact. 
 
2. Return to original time step size 
In this case, the program continues the analysis using the 
original user-provided time increment. This option is the default 
when contact is present. 

 
3. Proceed through user-defined time points 
In this case, the program sets the time step size such that the 
final time is that initially provided by the user. Hence, the 
analysis always proceeds through all user-specified time steps. 

 
The program automatically switches to option 3 if, when option 2 is 
specified, one of the following features is used: Bathe method of 
time integration or TMC coupling. 
 
 The ATS method can also increase the time step beyond the 
user-specified value if the iteration history shows that such an 
increase is useful. This is only possible in a static analysis without 
low-speed dynamics. The increase in time step cannot be larger 
than a user-specified factor (via ATSMXDT in NXSTRAT). Due to 
this increase, the analysis may be completed in fewer time steps 
than requested. This time step increase is only possible when the 
ATS subdivision is set to “Return to original time step size”. 
 
 Following is an example to illustrate the basic options of ATS 
subdivisions. Assume we are in load step 15 of a particular problem 
with initial time t = 15.0 and a time step of 1.0. The solution does 
not converge and the time step is set to 0.5 (assuming a time step 
division factor of 2.0). If that too does not converge, the time step 
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is set to 0.25. If that converges, the results are not yet saved. 
Another sub-step is performed for load step 15. The size of this 
step depends on which of the three options above is selected: 
 

 In option 1, the next sub-step will use a time step size of 
0.25. Two other sub-steps will be performed within load 
step 15 both of size 0.25 (assuming they all converge).  

 In option 2, the next sub-step will use a time step size of 
1.0. If this converges load step 16 starts with t = 16.25.  

 In option 3, the sub-step will use a time step size of 0.75. If 
this converges load step 16 starts with t = 16.0.  

 
 Note that while options 1 and 2 may result in outputted solution 
times that are different from those initially specified by the user, 
there are certain time values that are not skipped. These are the 
time values at the end of “time step blocks”. In this case, the time 
step size is reduced such that the solution time at the end of the 
block is satisfied. The program determines these time step blocks 
based on the time step pattern input by the user. The final solution 
time is always assumed to be an end of a time step block. 
 
 Option 2 is useful for contact because of the highly nonlinear 
response (sudden changes in stiffness) that occurs when a node 
comes into contact, or is released from contact, or even moves from 
one contact segment to another. A small step size may sometimes 
be needed only in the vicinity of this contact incident. Once contact 
is established/released the problem is “less nonlinear” and the 
original time step size can be used. 
 
 Whenever the ATS method is used, the program always checks 
if a time function point could be skipped for a time step used, and 
makes an appropriate adjustment to the magnitude of the time step 
if necessary.  Consider the time function shown in Fig. 6.2-1. 
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Fig. 6.2-1: Time function illustrating

ATS program checking

·
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With a time step equal to 0.2, assuming that convergence is 
obtained, the program will provide solutions for times t = 0.2 and t 
= 0.4.  If the time step of 0.2 is used again, then the maximum time 
function value at time t = 0.5 will be missed. Therefore, the 
program uses two substeps of value 0.1 to get to time t = 0.6. 
 

6.2.5  Total Load Application (TLA) method and Stabilized TLA (TLA-S) 
method 

 
 The Total Load Application method is useful for nonlinear static 
analysis problems where all applied loads do not require the user to 
explicitly specify the time step sequence. It is activated with 
AUTO=3 in the NXSTRAT entry. In this case, the user applies the 
full load value and Solution 601 automatically applies the load 
through a ramp time function, and increases or reduces the time 
step size depending on how well the solution converges. This 
method cannot be used in dynamic analysis. 
 The TLA method automatically activates the following features 
that are suitable for this type of uniform loading static problems: 
 

The first time step has a size of 1/50 of the total time. May 
be modified by TLANSTP in NXSTRAT. 

 Maximum number of equilibrium iterations is 30. May be 
modified by TLAMXIT in NXSTRAT.  

 Line search is used.  
 Limiting incremental displacements per iteration is set to 

5% of the largest model dimension. May be modified by 
TLAMXDF in NXSTRAT.  

 The maximum number of time step subdivisions is set to 
64.  
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 The time step cannot be increased more than 16 times its 
initial size.  

 
 The Stabilized TLA method (TLA-S) is identical to the regular 
TLA method with the addition of various stabilizing features to 
create a more stable system and aid convergence. The TLA-S 
method is activated with AUTO=4 in the NXSTRAT entry. The 
sources of stabilization are low speed dynamics which adds inertia 
and stiffness proportional damping (see Section 6.2.3), contact 
damping (see Section 4.6.5), and stiffness stabilization (see Section 
10.6). The amount of stiffness stabilization, low speed dynamics 
inertia and damping, and contact damping can be adjusted by the 
parameters TLASTBF, TLALSMF, TLAMSDF and TLACTDF in 
the NXSTRAT entry. Indicators are provided in the output file after 
each converged solution to show if the forces due to the various 
stabilization effects are excessive. 
 
The following solution indicators are printed: 
 

  external forces  
 
    EFI  R U   
 
  where R is an external load vector, and U is a displacement 

vector in a given step. 
 
 damping forces  
 
    DF DI  R U  
 
  where RD is a damping force vector. 
 
  bolt forces 
 
     BOLT BOLT BOLTI  R D  

 
  where RBOLT are bolt forces and DBOLT are bolt 

shortenings. 
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 inertia forces  
 
    I II  R U  
 
  where RI  are inertia forces. 
 
  contact damping forces  
 
    CD CDI  R U  

 
  where RCD are contact damping forces. 
 
 stiffness stabilization 
 

     SSTI   K U U    

 

  where K is the extracted stabilization part from the stiffness 
matrix. 

 
 drilling forces (applicable to shell elements only) 
 
    DR DRI  R U  
 
  where RDR are drilling forces. 
 

Note that during bolt iterations, all indicators are referenced against 
the bolt force indicator. For step-by-step solutions, external force 
indicators are used for references. 
 
 The TLA-S method can serve several purposes. If the 
stabilization indicators are all within reasonable bounds, typically 
less than 1% of the external force indicator, then the TLA-S 
solution may be reasonably accurate. However, even when the 
indicators are large, the TLA-S method provides a useful 
approximate solution that can frequently be used to detect 
modeling errors such as incorrect contact definition, applied load, 
or boundary conditions. 
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 The following features cannot be used with the TLA and TLA-S 
methods: 
 

All materials with creep effects 
All materials with viscosity effects  
The temperature-dependent multilinear plastic material 
Rigid target contact 

 
6.2.6  Load-Displacement-Control (LDC) method 

 
 The load-displacement-control (LDC) method (arc length 
method) can be used to solve for the nonlinear equilibrium path of 
a model until its collapse. If desired, the post-collapse response of 
the model can also be calculated. The main feature of the method is 
that the level of the externally applied loads is adjusted 
automatically by the program.  
 The LDC method can only be used in nonlinear static analysis 
in which there are no temperature or creep effects. The LDC 
method can be used in contact problems. 
 The formulations used in the LDC method used in Solution 601 
are described in ref. KJB Section 8.4.3 and the following reference: 

 
ref. Bathe, K.J. and Dvorkin, E.N., "On the Automatic 

Solution of Nonlinear Finite Element Equations," J. 
Computers and Structures, Vol. 17, No. 5-6, pp. 871-
879, 1983. 

 
 The LDC method is activated via the AUTO flag in the 
NXSTRAT entry. An enforced displacement on a user-specified 
degree of freedom is used to evaluate the initial load vector, and 
analysis continues until a specified displacement is reached at a 
certain node, or a critical point on the equilibrium path is reached. 
Variants of the LDC method are commonly referred to as arc-
length methods. 
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 The equations employed in the equilibrium iterations are 
 

 

 

 

( 1) ( ) ( 1) ( ) ( 1)

( ) ( 1) ( )

( ) ( ), 0

t t i i t t i i t t i

t t i t t i i

i if

 



     

  

    

  

  

K U R F

U U U

U

 (6.2-5) 

 
where 

 
( 1)t t i K   = tangent stiffness matrix at time t+Δt, end of 

iteration (i-1) 
R  = constant reference load vector 
( 1)t t i   = load scaling factor (used on R) at the end of 

iteration (i-1) at time t+Δt 
( )i  = increment in the load scaling factor in iteration 

(i) 
 

The quantities ( 1)t t i F  and ( )iU  are as defined for Eq. (6.2-1). 
Note that in Eq. (6.2-5), the equation f = 0 is used to constrain 

the length of the load step. The constant spherical arc length 
constraint method is usually used and the constant increment of 
external work method is used if the arc length method has 
difficulties to converge. 

The reference load vector R is evaluated from all the 
mechanical loads (except for the enforced displacement loads). 

 
 To start the LDC method, the load multiplier for the first step Δtλ 
(used to obtain the corresponding load vector Δtλ R) is calculated 
using a user-specified enforced displacement (LDCDISP) acting on 
a given degree of freedom (LDCDOF) on a specific node 
(LDCGRID). All parameters are in the NXSTRAT entry. The 
direction of the displacement is given by its sign. 
 The degree of freedom is relative to the displacement coordinate 
system specified by LDCGRID.  
 As shown in Fig. 6.2-2, the input for the initial enforced 
displacement (in particular whether it is positive or negative) is 
critical in establishing successive equilibrium positions using the 
LDC method. 
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b) Equilibrium paths

t*R

t�

0� specified positive

0� specified negative

0�
R

a) Model considered

X

Y

Reference load = R, actual load at time t = Rt*
Enforced displacement for first step = , displacement at time t =0 t� �

Fig. 6.2-2: Example of the dependence of solution
path on the displacement enforced in the first step for the
LDC method  

 
 
As an example, two entirely different solution paths will be 

obtained for the same model shown in Fig. 6.2-2 if initial 
displacements of different signs are enforced for the first solution 
step. 

 
 After the first step, the program automatically traces the 
nonlinear response by scaling the external load vector R 
proportionally, subject to the constraint of Eq. (6.2-5), so that at 
any discrete time t in iteration (i), the external load vector is tλ(i)R. 

The scaling of the reference load vector using tλ is analogous to 
the scaling of the applied loads R using a user predefined time 
function when the LDC method is not used (see Chapter 5). In the 
case of the LDC method, the scaling function is determined 
internally by the program instead of being user-specified. 
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 The converged displacement must satisfy the following relation: 
 

 
2 2

100 t U U  

 

where t t t U U U  is the incremental displacement vector for 
the current step, α is a displacement convergence input factor 

(LDCIMAX parameter in NXSTRAT), and t U is the 
displacement vector obtained in the first step. If the above 
inequality is not satisfied, an internal restart of the iteration for the 
current step is performed by the program. 

 
 The LDC solution terminates normally when any one of the 
following conditions is satisfied: 

 
 The maximum specified displacement is reached 

(LDCDMAX in NXSTRAT). 
 A critical point on the equilibrium path has been passed. If 

LDCCONT=1 in NXSTRAT is specified, this condition is 
skipped.  

 The number of converged solution steps is reached.  
 The maximum number of subdivisions (LDCSUBD in 

NXSTRAT) has been attempted using different strategies 
but each time the solution has failed to converge within the 
number of allowed iterations.  

 
6.2.7  Convergence criteria for equilibrium iterations 

 
 The following convergence criteria can be specified in Solution 
601 (via CONVCRI in NXSTRAT):  
 

 energy only,  
 energy and force/moment,  
 energy and translation/rotation, 
 force/moment only, and  
 translation/rotation only. 

 
 If contact is defined in an analysis, the contact force 
convergence criterion is always used in addition to the above 
criteria (see Chapter 4). 
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 The values of all convergence norms, whether used or not, are 
provided in the .f06 file. For more details on the .f06 output format 
see Section 6.2.9. 

 
LDC method not used 

 
 If the LDC method is not used, the convergence in equilibrium 
iterations is reached when the following inequalities are satisfied: 

 
Energy convergence criterion  
For all degrees of freedom: 
 

 

( ) ( 1)

(1)
ETOL

Ti t t t t i

T t t t

  



    
   

U R F

U R F
 (6.2-6) 

 
where ETOL is a user-specified energy convergence tolerance. 
 
Force and moment convergence criteria 
For the translational degrees of freedom: 
 

 

( 1)

2 RTOL
RNORM

t t t t i  


R F
 

 
For the rotational degrees of freedom: 
 

 

( 1)

2 RTOL
RMNORM

t t t t i  


R F
 

 
where RTOL is a user-specified force convergence tolerance, 
RNORM and RMNORM are user-specified reference force and 
moment norms. If left undefined the program automatically 
determines RNORM and RMNORM during execution. 
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Translation/rotation convergence criteria  
For the translational degrees of freedom: 
 

 

( )

2 DTOL
DNORM

i


U
 

 
For the rotational degrees of freedom: 
 

 

( )

2 DTOL
DMNORM

i


U
 

 
where DTOL is a user-specified force convergence tolerance, 
DNORM and DMNORM are user-specified reference 
displacement and rotation norms. If left undefined the program 
automatically determines DNORM and DMNORM during 
execution. 

 
Note that in each of these convergence criteria the residual norm 

is measured against a user-specified maximum residual value; for 
example, the force criterion could be interpreted as  

 
(norm of out-of-balance loads)  RTOL  RNORM 

 
where RTOL  RNORM is equal to the user-specified maximum 
allowed out-of-balance load. 

Note also that these convergence criteria are used in each 
subdivision of time or load step when the ATS method of 
automatic step incrementation is used. 

 
 If contact is present in the analysis the following additional 
criterion is always used in measuring convergence 
 

 
 

 
( 1) ( 2) ( ) ( 1)

2 2

( 2)

2

max ,
RCTOL

max ,RCONSM

i i i i
c c

i
c

  



 


R R λ λ

R
 

 

where ( 1)i
c
R  is the contact force vector at the end of iteration 
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 1i  , ( )iλ  is the Lagrange multiplier vector at the end of iteration 

 i , RCONSM is a reference contact force level used to prevent 

possible division by zero and RCTOL is a user-specified contact 
force convergence tolerance. 
 
 By default, the program uses the force vector at iteration 0 of 
each time step to calculate the values of RNORM and RMNORM. 
Similarly the displacement vector at iteration 0 is used to calculate 
default values of DNORM and DMNORM. You can also estimate 
RNORM, DNORM, etc. based on the size of applied forces and 
enforced displacements, and define RNORM, DNORM, etc. on the 
NXSTRAT entry. 
 
Non-convergence: Convergence might not occur when the 
maximum number of iterations is reached or when the solution is 
diverging. The maximum number of iterations is set by MAXITE 
in the NXSTRAT entry.  
 
 If the specified convergence criteria are not satisfied within the 
allowed number of iterations, but the solution is not diverging, the 
following can be attempted: 
 

 Check the model according to the guidelines in Section 
6.2.8. 

 Use a smaller time step.  
 Increase the number of allowable iterations.  
 Change the ATS parameters.  
 Change convergence tolerances. In most cases, looser 

tolerances help. However, in some problems, tighter 
tolerances help by not allowing approximate solutions that 
could potentially prevent convergence in future time steps.  

 Change line search. Some problems, such as those involving 
plasticity, perform better with line search.  

 Change contact settings. The optimal contact settings and 
features depend on the model. See Chapter 4 for more 
details.  

 
 Divergence of solution terminates the iteration process before 
the maximum number of iterations is reached. It is sometimes 
detected when the energy convergence ratio in Eq. (6.2-6) becomes 
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unacceptably large, or when the excessive displacements lead to 
distorted elements and negative Jacobians. In this case, the 
following can be attempted: 
 

 Check the model according to the guidelines in Section 
6.2.8.  

 Use a smaller time step.  
 Make sure there are sufficient constraints to remove rigid 

body modes from all components in the model. Presence of 
rigid body modes usually results in a large ratio of 
maximum to minimum pivot during factorization (with 
sparse solver).  

 
LDC method used 

 
 Convergence in the equilibrium iterations is reached when the 
following inequalities are satisfied: 
 

Energy convergence criterion: For all degrees of freedom 
 

 

( ) ( 1) ( 1)

(1) (1)
ETOL

Ti t t i t t i

T





       
   

U R F

U R
 

 
where ETOL is a user-specified energy convergence tolerance. 

 
Force and moment convergence criteria: For the translational 
degrees of freedom 

 

 

( 1) ( 1)

2 RTOL
RNORM

t t i t t i   


R F
 

For the rotational degrees of freedom 
 

 

( 1) ( 1)

2 RTOL
RMNORM

t t i t t i   


R F
 

 
where RTOL is a user-specified force convergence tolerance, 
RNORM and RMNORM are user-specified reference force and 
moment norms. If left undefined the program automatically 
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determines RNORM and RMNORM during execution. 
 

The translation/rotation convergence criteria, and the contact 
convergence criterion, are the same as when the LDC method is not 
used, see above. 

 
Non-convergence: If convergence has not been reached from an 
established equilibrium configuration after the maximum restart 
attempts, the program saves the required restart information and 
program execution is terminated. 
 The solution can be continued by performing a restart run. Note 
that in this case the LDC method must be used in the restart run. A 
different value for the initial displacement can be enforced at a 
different nodal point in the first step of the restart run. The enforced 
initial displacement then corresponds to a displacement increment 
from the last converged equilibrium position, that is, at the time of 
solution start for the restart analysis. 

 
6.2.8  Selection of incremental solution method 

 
 This section gives recommendations on which incremental 
solution method to use for a given analysis.  
 
 Every nonlinear analysis should be preceded by a linear 
analysis, if only to check that the model has been set up correctly. 
The linear analysis results will highlight many important factors 
such as the proper application of boundary conditions, deletion of 
all degrees of freedom without stiffness, the quality of the finite 
element mesh, etc. 

 
 If the use of a sufficient number of load steps and equilibrium 
iterations with tight convergence tolerances at each load step is 
considered to yield an accurate solution of the model, then the basic 
aim is to obtain a response prediction close to this accurate one at 
as small a solution cost as possible. 
 
 It is helpful to know if the model softens or hardens under 
increasing load. Structures can soften due to the spread of 
plasticity, and they can soften or harden due to geometric nonlinear 
effects. Contact usually leads to hardening. Fig. 6.2-3 shows some 
examples. 
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�
�

p

p

(a) Softening problem. Materially-nonlinear-only analysis,

elasto-plastic analysis of a cylinder

�

P

�

P

(b) Stiffening problem. Large displacement nonlinear elastic

analysis of a cantilever

�

P
P

�

(c) Softening/stiffening problem. Large displacement analysis of a

thin arch

Fig. 6.2-3: Different types of nonlinear analyses  
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 Displacement controlled loading generally converges faster than 
force controlled loading. For example, in the model shown in Fig. 
6.2-3(b), applying an increasing tip displacement to the beam will 
converge faster than an applied load P, and both will follow the 
same load displacement curve. For the model in Fig. 6.2-3(c) force 
control would fail past the local maximum on the load-
displacement curve. Displacement controlled loading (apply an 
increasing Δ) would work in this case. Note that this case is also 
suitable for the LDC method. 
 
 When the ATS method is used, together with a reasonable time 
step size, the ATS method will result in almost the same "iteration 
path" as when not using the method. Namely, no step subdividing 
will be performed if convergence is always directly reached at the 
user-specified load levels. 
 Hence, in general, it is most convenient to use a reasonable 
number of load steps together with the ATS method. 
 
 If the problem involves localized buckling, or sudden changes 
due to contact, or other discontinuities, consider using the low 
speed dynamic feature. Make sure that the selected structural 
damping is not excessive. 
 
 The LDC method is useful if collapse of the structure occurs 
during the (static) solution. However, the use of this algorithm can 
be very costly.  The LDC method is recommended if the user 
doesn’t want to specify the load increments for the solution period 
and computational costs are not of primary concern.  The LDC 
method allows also the calculation of the post-collapse response.  
Note, however, that the displacement solution at a specific load 
level cannot be obtained using the LDC method because the load 
increments are calculated by the program. 

 
 Note that usually it is quite adequate to employ the energy 
convergence tolerance only. The need to use one of the other 
convergence criteria arises when the energy convergence is not 
tight (small) enough. In addition, there exist special loading 
conditions under which the denominator of the inequality (6.2-6) in 
Section 6.2.7 becomes small and hence the inequality is difficult to 
satisfy. 
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6.2.9  Example 
 
This section presents a worked example that illustrates the 

nonlinear iteration and convergence concepts previously discussed. 
Fig. 6.2-4 shows the iteration history for a load step. The standard 
Newton method with line searches is used with the energy and 
force convergence criterion (ETOL=110-6, RTOL=0.01, 
RNORM=10.0, RMNORM =10.0). For contact RCTOL=110-3 
and the reference contact force RCONSM=0.01. For line search 
STOL=0.01. 

 
Row ITE=0: This row shows the result of the initial iteration 
called iteration 0. For this iteration, the program performs the 
following steps: 

 

Compute (0)t t t U U . 
 

Compute (0)t t F  and (0)t t K  using (0)t t U . 
 

Compute the out-of-balance force vector (0)t t t t R F . Only 
considering translational degrees of freedom, the norm of the 

out-of-balance force vector is (0)

2

t t t t  R F 2.32106 and 

the largest magnitude in the out-of-balance force vector is 
-2.32106 at the Z translational degree of freedom of node 740. 
Only considering rotational degrees of freedom, the norm of the 

out-of-balance force vector is (0)

2

t t t t  R F 3.2710-3 

and the largest magnitude in the out-of-balance force vector is 
-6.2210-4 at the Y rotational degree of freedom of node 319. 
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 Fig. 6.2-4: Example of iteration history printout 
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 I T E R A T I O N   T I M E   L O G

 SOLUTION TIME (SECONDS)   . . . . . . . . . . . . . . . . . . . =       5.13

 PERCENT OF TIME SPENT IN LINE SEARCHING . . . . . . . . . . . . . . =  54.00
 PERCENT OF TIME SPENT IN LOAD VECTOR/STIFFNESS MATRIX CALCULATION . =  39.57
 PERCENT OF TIME SPENT IN SOLUTION OF EQUATIONS  . . . . . . . . . . =   6.43
 

     6 EQUILIBRIUM ITERATIONS PERFORMED IN THIS TIME STEP TO REESTABLISH EQUILIBRIUM
  STIFFNESS REFORMED FOR EVERY ITERATION OF THIS STEP
  NUMBER OF SUBINCREMENTS IN THIS TIME STEP =    1  

 
Fig. 6.2-4: (continued) 

 
 

Compute (0)ΔU  using (0) (0) (0)t t t t t t   K ΔU R F . Only 
considering translational degrees of freedom, the norm of the 

incremental displacement vector is (0)

2
ΔU 4.7910-3 and 

the largest magnitude in the incremental displacement vector is 
–1.1410-3 at the Z displacement of node 159. Only considering 
rotational degrees of freedom, the norm of the incremental 

displacement vector is (0)

2
ΔU  7.4510-1 and the largest 

magnitude in the incremental displacement vector is 1.6410-1 
at the Y rotation of node 239. 

 

Compute the “out-of-balance energy” 

 (0) (0)T t t t t  ΔU R F  2.24103. 

 

Compute the norm of the change in contact forces 
CFORCE=4.74103, and the norm of the contact forces 
CFNORM=4.11103. 
 
Compute the energy convergence criterion 

(0) (0)

(0)

T t t t t

T t t t

 



    
   

U R F

U R F
 1.00 
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Compute the force and moment convergence criteria 
(0)

2

RNORM

t t t t 


R F
2.32105 and  

(0)

2

RMNORM

t t t t 


R F
3.2710-4. 

 

Compute the contact convergence criterion 

 
CFORCE

max(CFNORM,RCONSM)
 1.15100 

 

The energy convergence criterion is greater than ETOL, the force 
convergence criterion is greater than RTOL and the contact 
convergence criterion is greater than RCTOL. Therefore, 
convergence is not satisfied. 
 Note that the displacement and rotation norms are also 
substituted into the displacement convergence criterion, which 
results in 
 

(0)

2

DNORM




U
6.9210-2 and 

 
(0)

2

DMNORM




U
8.6310-1. 

 
Since DNORM and DMNORM are not provided by the user, they 
are automatically estimated by the program. The above 
displacement convergence values however are not used in 
determining convergence. 

 

Row ITE=1: This row shows the results of the first equilibrium 
iteration. In this iteration, the program performs the following 
steps: 

 

Compute (1) (0) (0)t t t t   U U U , (1)t t F  and the line 

search ratio 

(0) (1)

(0) (0)

T t t t t

T t t t t

 

 

   
   

U R F

U R F
. This ratio turns out to 
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be greater than STOL=0.01, so line search is performed for 3 
steps and ends up with a line search energy ratio of 5.9510-8 

which is less than STOL, corresponding to (1) 0.999  .  
 

Compute (1) (0) (1) (0)t t t t    U U U .  
 

Compute (1)t t F  using (1)t t U ,  and compute (1)t t K . 
 

Note that the stiffness matrix is updated since the standard 
Newton method is used. 
 

Compute the out-of-balance force vector (1)t t t t R F . Only 
considering translational degrees of freedom, the norm of the 

out-of-balance force vector is (1)

2

t t t t  R F  1.96104 

and the largest magnitude in the out-of-balance force vector is 
4.14103 at node 239 (X translation). Only considering 
rotational degrees of freedom, the norm of the out of balance 

force vector is (1)

2

t t t t  R F 9.93100 and the largest 

magnitude in the out-of-balance force vector is –2.37100 at 
node 39 (Y rotation). 
 

Compute (1)ΔU  using (1) (1) (1)t t t t t t   K ΔU R F . Only 
considering translational degrees of freedom, the norm of the 

incremental displacement vector is (1)

2
ΔU 6.1610-4 and 

the largest magnitude in the incremental displacement vector is 
1.5210-4 at node 239 (X translation). Only considering 
rotational degrees of freedom, the norm of the incremental 

displacement vector is (1)

2
ΔU 2.0310-1 and the largest 

magnitude in the incremental displacement vector is 6.7110-2 
at node 279 (Y rotation). 
 
Compute CFORCE=4.7410 3 and CFNORM=5.2610 3. 
 
Compute the “out-of-balance energy” 

 (1) (1)T t t t t  ΔU R F 3.95100. 
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Compute the energy convergence criterion 
(1) (1)

(1)

T t t t t

T t t t

 



    
   

U R F

U R F
1.7710-3. 

 

Compute the force and moment convergence criteria  
(1)

2

RNORM

t t t t 


R F
 1.96103 and  

(1)

2

RMNORM

t t t t 


R F
9.9310-1. 

 

Compute the contact convergence criterion 

 
CFORCE

max(CFNORM,RCONSM)
 9.0110-1 

 
The energy convergence criterion is greater than ETOL, the force 
convergence criterion is greater than RTOL, the moment 
convergence criterion is greater than RTOL, and the contact 
convergence criterion is greater than RCTOL. Therefore, 
convergence is not satisfied. 
 The displacement convergence criterion is also evaluated for 
informational purposes. 
 

Row ITE=2: This row shows the results from the second 
equilibrium iteration. This row is interpreted exactly as is row 
ITE=1. The line search factor in this case is 4.8410-1 obtained in 5 
line search iterations. 
 Again, none of the convergence criteria are satisfied. However, 
they are all getting smaller. 

 

Row ITE=3: This row shows the results from the third equilibrium 
iteration. This row is interpreted exactly as is row ITE=2.  
 Again, none of the convergence criteria are satisfied. 

 

Row ITE=4: This row shows the results from the fourth 
equilibrium iteration. In this case, the previous increment of 

displacement from the solver (3)U satisfies the line search energy 
tolerance STOL so no line search is performed.  
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(4) (3) (3)t t t t     U U U    
 
At the end of the that equilibrium iteration, the energy convergence 
criterion is  
 

(4) (4)

(4)

T t t t t

T t t t

 



    
   

U R F

U R F
1.1110-9 which is less than ETOL. 

The force convergence value is 1.77100 and the moment 
convergence value is 1.3510-3. The contact convergence value is 
6.8010-3. 
 Two of these four criteria (force and contact) are not satisfied, 
so convergence is not satisfied.  
 

Row ITE=5: The row shows the results for the fifth equilibrium 
iteration. Contact convergence criterion is now also satisfied 
leaving only force convergence unsatisfied. The solution continues. 
 
Row ITE=6: The row shows the results from the sixth equilibrium 
iteration. In this case, all convergence criteria are satisfied and 
convergence is reached. 

 

6.3  Linear dynamic analysis 
 

 Linear dynamic analysis in Solution 601 is performed by 
implicit integration using the Newmark method or the Bathe 
method. 

 
 The notation given below is used in the following sections in 
the descriptions of the equilibrium equations: 

 
M = constant mass matrix 
 C = constant damping matrix 
 K = constant stiffness matrix 

   ,t t tR R  = external load vector applied at time t, t+Δt 
 tF = nodal point force vector equivalent to the element 

stresses at time t 

,t t tU U   = vectors of nodal point accelerations at time t, t+Δt 

,t t tU U  = vectors of nodal point displacements at time t, t+Δt 
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     ,t t tU U   = vectors of nodal point velocities at time t, t+Δt 
U = vector of nodal point displacement increments from 

time t to time t+Δt, i.e., U = t+ΔtU - tU.  
 

 The governing equilibrium equations at time t+Δt are given by 
 

 t t t t t t t t     M U C U K U R   (6.3-1) 
 

 The procedures used in the time integration of the governing 
equations for dynamic analysis are summarized in ref. KJB, 
Chapter 9. 

 
 The time integration of the governing equations can use the 
Newmark method or the Bathe time integration method. The 
method can be selected using TINTEG in the NXSTRAT entry. 
The Newmark method is explained in ref. KJB, Section 9.2.4, and 
the Bathe method is explained in the following paper. 
 

ref.  K.J. Bathe, “Conserving Energy and Momentum in 
Nonlinear Dynamics: A Simple Implicit Time 
Integration Scheme” J. Computers and Structures, Vol. 
85, Issue 7-8, pp. 437-445. (2007) 

 
 In the Bathe method, the time increment Δt  is divided into two, 
the displacements, velocities, and accelerations are solved for at a 
time t + t, where  (0,1) using the standard Newmark method. 
The  parameter is always set to 2 –  2   0.5858 to keep the same 
effective stiffness matrix in the two substeps and to avoid 
recalculating that matrix and refactorization. In the second substep 
a 3-point Euler backward method is used to solve for the 
displacements, velocities and accelerations at time t + t using the 
results at time t and t + t .  
 Note that, for a given step size, the Bathe scheme is about twice 
as expensive as the Newmark method due to the extra solution step 
at time t + t. 
 
 The following assumptions are used in the Newmark method: 
 

  1t t t t t t t        U U U U     (6.3-2) 



 6.3: Linear dynamic analysis 
 

 
 
Advanced Nonlinear Solution  Theory and Modeling Guide 421 

 21

2
t t t t t t tt t              

U U U U U    (6.3-3) 

 
where  and   are the Newmark time integration parameters. 
 This transforms Eq. (6.3-1) to 
 

 ˆ ˆt t t t K U R  (6.3-4) 
 
where 
 

 0 1
ˆ a a  K K M C  (6.3-5) 

 

   0 2 3 1 4 5
ˆ t t t t t t t ta a a a a a      R R M U U U C U U U     

  (6.3-6) 
 
and where a0, a1, ... , a5 are integration constants for the Newmark 
method (see Ref. KJB, Section 9.2.4). 
 A similar procedure can be followed for the Bathe time 
integration scheme. 

 
 The trapezoidal rule (also called the constant-average-
acceleration method of Newmark) obtained by using δ = 0.5,         
α = 0.25 is recommended for linear dynamic analysis (when the 
Newmark method is used). 
 
 The trapezoidal rule has the following characteristics: 

 
 It is an implicit integration method, meaning that 

equilibrium of the system is considered at time t+Δt to 
obtain the solution at time t+Δt. 

 It is unconditionally stable. Hence, the time step size Δt is 
selected based on accuracy considerations only, see ref. 
KJB, Section 9.4.4.  

 
 The Newmark method is in general stable when the following 

constraints are satisfied: 20.5, 0.25( 0.5)     . 
 
 

ref. KJB 
Sections 9.2.4 

and 9.4.4 
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 Newmark parameters different from the trapezoidal rule can be 
specified using ALPHA and DELTA in the NXSTRAT entry. 
Other Newmark values can add some numerical damping for high 
frequencies which is useful for some models. 

 
 The Newmark method can be effective in wave propagation 
problems, but only if the finite element system has a narrow 
bandwidth.  In this case the use of higher-order elements with 
consistent mass idealization can be a good choice. 

 
 The Newmark method is usually more effective for structural 
vibration problems. In these analyses, the use of higher-order 
elements, just as in static analysis, and the use of a consistent mass 
discretization can be effective. 

 
 The time step increment (Δt) recommended for dynamic 
analysis with the Newmark method is given by 0.20co t    

where co  is the highest frequency of interest in the dynamic 

response. 
 
 Whether the mass and damping matrices are diagonal or banded 
(lumped or consistent discretization), the solution always requires 
that a coefficient matrix be assembled and factorized. 

 
6.3.1  Mass matrix 

 
 The mass matrix of the structure may be based on a lumped or 
consistent mass calculation. The type of mass matrix to use is 
selected with MASSTYP in the NXSTRAT entry. 
 
 The consistent mass matrix for each element ( )iM  is calculated 
using 
 

( ) ( ) ( ) ( )i i i T i dV M H H  

 

where ( )i  is the density, and ( )iH  is the displacement 
interpolation matrix specific to the element type. 
 
 The construction of the lumped mass matrix depends on the 
type of element used. Each of the elements in Chapter 2 detail how 
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its lumped mass matrix is calculated. For elements with 
translational degrees of freedom only, the total mass of the element 
is divided equally among its nodes. 

 
6.3.2  Damping 

 
 Damping can be added directly to the model through Rayleigh 
damping. Additional indirect damping results from the selected 
time integration parameters, plasticity and friction. 
 
 If Rayleigh damping is specified, the contributions of the 

following matrix  RayleighC  are added to the total system damping 

matrix C described in Section 6.3: 
 
 Rayleigh   C M K  

 
where M is the total system mass matrix which can be lumped or 
consistent, and K is the total system stiffness matrix.  and  are 
specified through the entry PARAM, ALPHA1, ALPHA2. 
 
 Note that RayleighC  is in general a consistent damping matrix 

( RayleighC  is diagonal if β is zero and a lumped mass matrix is 

used). 
 
 RayleighC  is constant throughout the solution and it is formed 

only once ─ before the step-by-step solution of the equilibrium 
equations. 

 
 See Ref. KJB, Section 9.3.3, for information about selecting the 
Rayleigh damping constants α, β. In the modal basis, the damping 
ratio can be written as 
 

 
2 2

i
i

i




   

 
where i  is the damping ratio for mode i . It is clear that α tends 

to damp lower modes and β tends to damp higher modes. 

ref. KJB 
Section 9.3.3 
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If α is not used, then a value of pT
 


 will overdamp all 

motions with periods smaller than pT . Hence motions with periods 

smaller than pT  can be suppressed by choosing pT
 


. This may 

be of interest when using damping to suppress numerical 
oscillations. 

The above comments apply only when the stiffness matrix does 
not change significantly during the analysis, however. 

 

6.4  Nonlinear dynamic analysis 
 

6.4.1  Step-by-step implicit time integration 
 

 Nonlinear dynamic analysis in Solution 601 is performed by 
direct implicit integration using the Newmark method or the Bathe 
time integration method, similar to linear dynamic analysis. 
 

 The use of Rayleigh damping  RayleighC  is the same as 

described in Section 6.3.2. In this case, the total mass matrix and 
the initial total stiffness matrix are used to evaluate the Rayleigh 
damping matrix. 
 
 The governing equations at time t t  are 

 

 ( ) ( ) ( ) ( 1)t t i t t i t t i t t t t i         M U C U K U R F   
  

where ( ) ( ) ( 1) ( ), ,t t i t t i t t i i     U U U U   are the approximations 
to the accelerations, velocities, and displacements obtained in 
iteration (i) respectively. 

The vector of nodal point forces t+ΔtF(i-1) is equivalent to the 
element stresses in the configuration corresponding to the 
displacements t+ΔtU(i-1). 

 
 The trapezoidal rule obtained by using δ = 0.5 and α = 0.25 is 
recommended if the Newmark method is used.  
 

ref. KJB 
Section 9.5 
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 In the Bathe method the time increment t is divided into two 
substeps. In the first substep, the displacements, velocities, 
accelerations are solved for at a time t + t, where , using 
the standard Newmark method. In the second substep, a 3-point 
Euler backward method is used to solve for the displacements, 
velocities, accelerations at time t + t, using the results at both time 
t and t + t. 
 For large deformation problems, the Newmark method can 
become unstable, while the Bathe scheme remains stable. While for 
a given time step size, the Bathe method uses two substeps, the 
extra solution time in nonlinear analysis can be much less than 
twice the time used with the Newmark method because of better 
convergence in the Newton-Raphson iterations. 
 
Some properties of the Bathe method are discussed in 

 
ref.  K. J. Bathe and G. Noh, “Insight into an Implicit Time 

Integration Scheme for Structural Dynamics”, 
Computers & Structures, Vol. 98-99, pp. 1-6, 2012. 

 
ref.  G. Noh, S. Ham and K.J. Bathe, “Performance of an 

Implicit Time Integration Scheme in the Analysis of 
Wave Propagations”, Computers & Structures, Vol. 123, 
pp. 93-105, 2013. 

 
 The dynamic equilibrium equations are solved using the same 
iterative procedures used in static analysis, including the ATS 
method and line search, see Sections 6.2.1 and 6.2.2 for more 
details. However, the LDC method cannot be used in dynamics. 
 
 The energy and force/moment convergence criteria used in 
nonlinear dynamic analysis are: 

 
Energy convergence criterion  
For all degrees of freedom: 
 

( ) ( 1) ( 1) ( 1)

(1) (0) (0)
ETOL

Ti t t t t i t t i t t i

T t t t t t t t

      

  

      
     

U R M U C U F

U R M U C U F

 

 
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Force and moment convergence criteria  
For the translational degrees of freedom: 
 

( 1) ( 1) ( 1)

2 RTOL
RNORM

t t t t i t t i t t i        


R M U C U F 
 

 
For the rotational degrees of freedom: 

 
( 1) ( 1) ( 1)

2 RTOL
RMNORM

t t t t i t t i t t i        


R M U C U F 
 

 
 

The other convergence criteria and the notation and considerations 
for the use of the convergence criteria are the same as in nonlinear 
static analysis; see Sections 6.2.7 and 6.2.8. 
 
 In dynamic analysis the solution is sensitive to the time step 
size. Using a large step leads to inaccurate time integration 
regardless of the tightness of the convergence tolerances. 
 

6.4.2  Global mass matrix  
 

The global mass matrix used in nonlinear dynamic analysis is the 
same as the global mass matrix used in linear dynamic analysis. 
 Unlike the global stiffness matrix, which is typically 
recalculated during each equilibrium iteration, the global mass 
matrix is recalculated only for the following case: 

 
Element birth-death: only the elements that are currently alive 
contribute to the global mass matrix. (This includes the case of 
elements that have ruptured; ruptured elements also do not 
contribute to the global mass matrix.) 

 
 In the following discussion, we consider an analysis without 
element birth-death. In this case, the global mass matrix is 
calculated only once, at the beginning of the analysis.  
 For continuum elements, in which the unknowns are the 
displacement degrees of freedom, the mass matrix does not change 
due to large deformations (ref KJB, p 542). Hence, in this case, it is 
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theoretically justified to not recalculate the global mass matrix. 
 However, it should be recognized that there are some situations 
in which, theoretically, the global mass matrix changes during the 
analysis. These situations are all associated with rotational degrees 
of freedom. 

 
Structural elements with rotational degrees of freedom, 
consistent mass matrix. The effect is most pronounced when the 
element cross-section or thickness is large, and is also most 
pronounced for the Hermitian beam element.  
 
Rigid elements and multi-point constraints with rotational 
degrees of freedom 

 
Typically the effect of neglecting the time-varying parts of the 
global mass matrix is small. However, for certain analyses in which 
there are large rotations, the effect can be significant. 
 

6.5  Solvers 
 

Three solvers are available in Solution 601. These are the direct 
sparse solver (default), the iterative multigrid solver and the 3D-
iterative solver. The SOLVER parameter in the NXSTRAT entry is 
used to select which solver to use. Details on parallel processing 
can be found in Section 10.9. 
 The spare solver is the only choice for heat transfer analysis. 

 
6.5.1  Direct sparse solver 

 
 The direct solution method in Solution 601 is a sparse matrix 
solver. A hybrid ordering scheme of the nested dissection and the 
minimum degree algorithms is used to greatly reduce the amount of 
storage required and the total number of operations performed in 
the solution of the equations.  
 
 The sparse matrix solver is invoked using SOLVER=0 in the 
NXSTRAT entry. 

 
 The sparse matrix solver is very reliable and robust and should  
generally be used for most problems in Solution 601. It is the 
default solver. 
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 The sparse solver memory is separate from that memory 
allocated by the rest of the program. It is also dynamically allocated 
by the solver as needed. The total memory allocated by the Nastran 
program for Solution 601 covers both the program’s memory and 
the solver’s memory. 

 
 The sparse solver can be used both in-core and out-of-core. It is 
more efficient to run an out-of-core sparse solver using real 
(physical) memory than it is to run an in-core sparse solver using 
virtual memory. Therefore, for large problems, we recommend 
increasing the memory size (via the Nastran command) until it fits 
the problem in-core, or it reaches approximately 85% of the real 
memory. 
 When a non-positive definite stiffness matrix (i.e. one with a 
zero or negative diagonal element) is encountered during solution, 
the program may stop or continue, according to the following rules: 

 
 If a diagonal element is exactly equal to 0.0, Solution 601 
stops unless 
 

-  The equation number corresponding to the zero diagonal 
element is only attached to inactive elements (elements 
that are dead due to rupture or the element birth/death 
feature). 

-  The user has requested that Solution 601 continue 
execution using the NPOSIT flag in the NXSTRAT entry. 

 
 If the value of a diagonal element is smaller than 10-12 but 
not equal to zero, or the value of a diagonal element is negative, 
Solution 601 stops unless one of the following options is used: 

 
-  Automatic load-displacement (LDC) 
-  Automatic time-stepping (ATS) 
-  Potential-based fluid elements 
-  Contact analysis 
-  The user has requested that Solution 601 continue 

execution using the NPOSIT flag in the NXSTRAT entry. 
 

 When Solution 601 stops, it prints informational messages for 
the zero or negative diagonal elements. 
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 When Solution 601 continues execution and the diagonal 
element is smaller than 10-12, Solution 601 assigns a very large 
number to the diagonal element, effectively attaching a very stiff 
spring to that degree of freedom. 
 
 Note that the stiffness matrix can be non-positive definite due to 
a modeling error, for example if the model is not sufficiently 
restrained in static analysis. In this case the results obtained can be 
misleading. 

 
6.5.2  Iterative multigrid solver 

 
 In the analysis of very large problems, the amount of storage 
required by a direct solution solver may be too large for the 
available computer resources. For such problems, the use of the 
iterative method of solution is necessary. 

 
 The multigrid solver available in Solution 601 is an algebraic 
solver, and can be used with all solution options of Solution 601.  
 
 The multigrid solver is invoked using SOLVER=1 in the 
NXSTRAT entry. 
 
 The multigrid solver is sensitive to the conditioning of the 
coefficient matrix. It generally performs better (requires fewer 
solver iterations) for well-conditioned problems. Ill-conditioned 
problems may require a large number of iterations or may not 
converge at all. The maximum number of iterations is set by 
ITEMAX in the NXSTRAT entry. 
 
 The conditioning sensitivity of the multigrid solver makes it 
more suited for bulky 3-D solid models compared to thin structural 
models where the membrane stiffness is much higher than the 
bending stiffness. It also makes it more efficient in dynamic 
analysis (compared to static), because of the stabilizing effect of 
the mass matrix (inertia effect) on the coefficient matrix. 

 Note that the multigrid solver cannot recognize that the stiffness 
matrix is singular. For such problems, the solver will iterate 
without converging. 
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 The multigrid solver is sometimes also less efficient for 
problems with 
 

 Displacement coordinate systems that vary significantly 
along the model 

 A large number of rigid elements or constraint equations 
 A large number of rod or beam elements 
Some contact problems.  

 
 In such cases, the 3D-iterative solver might be used, see Section 
6.5.3. 

 
 The main practical differences between the use of the direct 
solver and the multigrid solver are as follows: 

 
 The direct solver executes a predetermined number of 

operations after which the solution is obtained. It is less 
sensitive to the conditioning of the coefficient matrix.  

 The multigrid solver performs a predetermined number of 
operations per iteration, but the number of iterations is not 
known beforehand. The number of iterations depends on 
the condition number of the coefficient matrix. The higher 
the condition number, the more iterations are needed. The 
number of iterations required varies from a few hundred to 
a few thousand.  

 
 Regarding the convergence of the multigrid method, assume 
that the system of equations to be solved is Ax b , D is the 

diagonal vector of  A , N is the dimension of x, ( )kx  is the 
approximate solution at solver iteration k, and the residual vector is 

( ) ( )k k r b Ax . We can define: 
  

 

( ) ( )

2

( ) ( ) ( 1)

2

( ) ( )

2

( ) (1) ( ) (1)
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The multigrid method converges when one of the following criteria 
is reached: 
 

( )

( )

( ) ( 1)

EPSII and EPSB

EPSA EPSB and EPSB

EPSA and EPSB

max EPSII *0.1

, ,

, , ,

, ,

k

k

k k

RDA RDX

RDA RDR RDX

RDR RDX

x x 

 

  
 

 

 

 
where EPSIA, EPSIB, and EPSII are convergence tolerances set 

via the NXSTRAT entry. The defaults are 6EPSIA 10 , 
4EPSIB 10 , 8EPSII 10 . However, for nonlinear analysis 

with equilibrium iterations, looser tolerances can be used. 
 

6.5.3  3D-iterative solver 
 
 The 3D-iterative solver has been developed to efficiently solve 
large models (i.e. models with more than 500,000 equations) 
containing mainly higher order 3-D solid elements (e.g., 10-node 
CTETRA, 20-node CHEXA, etc.). 
 
 The 3D-iterative solver is invoked using SOLVER=2 in the 
NXSTRAT entry. 
 
 In addition to the higher order 3-D solid elements, the models 
can contain other elements available in the program (e.g., shells, 
rods, beams, rebars, etc.), including contact conditions. 
 
 The 3D-iterative solver is effective in linear or nonlinear static 
analysis and in nonlinear dynamic analysis.  For linear dynamic 
analysis, the sparse solver is usually more effective. 
 
 The 3D-iterative solver, like all iterative solvers, performs a 
number of iterations until convergence is reached. The maximum 
number of iterations is set by ITEMAX in the NXSTRAT entry. 
 
 In linear analysis, the 3D-iterative solver convergence 
tolerances affect the accuracy of the solution.  If the convergence 
tolerances are too loose, inaccurate results are obtained, and if the 



Chapter 6: Static and implicit dynamic analysis 
 

 
 
432 Advanced Nonlinear Solution  Theory and Modeling Guide 

tolerances are too tight, much computational effort is spent to 
obtain needless accuracy. 
 
 In nonlinear analysis, the 3D-iterative solver is use to solve the 
linearized equations in each Newton-Raphson equilibrium iteration. 
Hence, in this case, the 3D-iterative solver convergence tolerances 
only affect the convergence rate, not the accuracy of the solution.  
The accuracy of the solution is specified by the equilibrium 
iteration tolerances (see Section 6.2). 
 
 The benefits of the 3D-iterative solver are: 

 
 When the 3D-iterative solver is used, the solution time and 

memory requirements scale approximately linearly with 
the number of equations. When the sparse solver is used, 
the solution time and memory requirements scale 
approximately quadratically with the number of equations. 
Therefore the 3D-iterative solver allows the solution of 
very large problems. 

 The 3D-iterative solver is significantly more stable than 
the iterative multigrid solver; hence the 3D-iterative solver 
should always be used. 

 
 The limitations of the 3D-iterative solver are: 

 
 The 3D-iterative solver convergence tolerances must be 

appropriately set (see above). 
 The 3D-iterative solver does not scale well for shared 

memory parallel processing. However the sparse solver 
scales well to about 8 cores.  

 Nearly incompressible hyperelastic materials may slow 
down the convergence of the 3D-iterative solver. For these 
material models, the bulk modulus  should be restricted 
to a value corresponding to  = 0.49, instead of the default 
0.499  (see Eq. 3.7-13).  

 
 Convergence control in the 3D-iterative solver is as follows: 

Considering the linearized equation Ax b= , let ix  be its 

approximate solution at inner-iteration i  and ( )i ir b Ax= -  be its 

corresponding residual. The convergence in the iterative solver is 
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said obtained if any one of the following criteria is satisfied: 
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where  ( ),t t t i ix U U x U+DD = - =D  is the current solution 

increment in the Newton-Raphson iteration i, EPSIBbe =  of the 

NXSTRAT entry, and 6 -3min(10 , 10 )v bs e-= ⋅ .  
 

The equation residual (EQ) and the solution residual (VAR) are 
written to the .f06 file. 

 

6.6  Tracking solution progress 
 

 Important model parameters such as the memory used by the 
model, memory used by the solver, number of degrees of freedom, 
solution times, warning messages, and error messages are all 
provided in the .f06 file. 
 Detailed iteration by iteration convergence information is also 
written to the .f06 file as illustrated in the example of Section 6.2.9. 
 
 Additional iteration by iteration convergence information can be 
requested using NXSTRAT DIAGSOL=1 or NXSTRAT 
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DIAGSOL=2.  DIAGSOL=2 is especially useful in contact 
analysis.  This additional information is also written to the .f06 file. 
 
 The program outputs a more summarized time step information 
to the .log file. This outputs focuses on the time steps and the ATS 
history. 
 
 The program terminates when the final solution time is reached 
or when it cannot reach a converged solution. The user can also 
terminate the program during execution. This can be done 
gracefully by creating a runtime option file “tmpadvnlin.rto” with a 
line “STOP=1”. This forces the program to stop after cleaning up 
all temporary and results files. This method is more useful than 
“killing” the solution process if the results at the previously 
converged times steps are needed. 
 
 Several NXSTRAT solution parameters can be modified during 
execution via the runtime option file “tmpadvnlin.rto”. The 
NXSTRAT parameters that can be modified are MAXITE, DTOL, 
ETOL, RCTOL, RTOL, STOL, RCONSM, RNORM, RMNORM, 
DNORM, and DMNORM. Only one parameter can be specified in 
each line of the .rto file. 
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7. Explicit dynamic analysis 
 

This chapter presents the formulations and algorithms used to solve 
explicit dynamic problems using Solution 701 including time step 
calculation. Most flags or constants that need to be input in this 
chapter are in the NXSTRAT bulk data entry. The elements and 
material properties available for explicit analysis with Solution 701 
are listed in Table 2-3. 
 Information about the progress of the solution is always output 
to the .f06 file. A shorter summarized output is provided in the .log 
file. 
 
Tables 7.1 and 7.2 lists element types and options not available in 
Solution 701. 
 
Table 7.1: Element types not available in Solution 701 
 
Potential-based fluid elements 
Multilayered shell elements 
 
Table 7.2: Options not available in Solution 701 
 
Consistent mass matrix 
Consistent Rayleigh damping 
General constraints 
Mesh glueing 

 

7.1  Formulation 
 

The central difference method (CDM) is used for time integration 
in explicit analysis (see ref. KJB, Section 9.2.1). In this case, it is 
assumed that 
  

  2

1
2t t t t t t

t
   


U U U U  (7.1-1) 

 
and the velocity is calculated using 
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  1

2
t t t t t

t
   


U U U  (7.1-2) 

 
The governing equilibrium equation at time t is given by 

 

 t t t t  M U C U R F   (7.1-3) 
 

Substituting the relations for t U and t U in Eq. (7.1-1) and (7.1-2), 
respectively, into Eq. (7.1-3), we obtain 
 

2 2 2

1 1 2 1 1

2 2
t t t t t t t

t t t t t
                   

M C U R F M U M C U  

(7.1-4) 
 

from which we can solve for t t U . 
 
 The central difference method has the following characteristics:  

 
 It is an explicit integration method, meaning that 

equilibrium of the finite element system is considered at 
time t to obtain the solution at time t+Δt. 

 When the mass and damping matrices are diagonal, no 
coefficient matrix needs to be factorized, see ref. KJB, p. 
772. The use of the central difference method is only 
effective when this condition is satisfied. Therefore, only 
lumped mass can be used in Solution 701. Also damping 
can only be mass-proportional.  

 No degree of freedom should have zero mass. This will lead 
to a singularity in the calculation of displacements 
according to Eq. 7.1-4, and will also result in a zero stable 
time step.  

 The central difference method is conditionally stable. The 
time step size Δt is governed by the following criterion  

 

 Nmin
CR

T
t t   


 

 
where CRt  is the critical time step size, and TNmin is the 

smallest period in the finite element mesh. 

ref. KJB
Sections 9.2.1,

9.4 and 9.5.1
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 The central difference method is most effective when low-order 
elements are employed.  

 
 The time step in Solution 701 can be specified by the user, or 
calculated automatically (via the XSTEP parameter in NXSTRAT). 
When the user specifies the time, Solution 701 does not perform 
any stability checking. It is the user’s responsibility, in this case, to 
ensure that an appropriate stable time step is used. 

 
 When automatic time step calculation is selected, the TSTEP 
entry is only used to determine the number of nominal time steps 
and the frequency of output of results. The stable time step is used 
instead of the value in TSTEP (unless the value in TSTEP is 
smaller). 
 For example, if the following TSTEP entry is used 
 
TSTEP, 1, 12, 1.0, 4 

there will be 12 nominal steps each of size 1.0. If the stable time 
step is smaller than 1.0 it will be used instead and results will be 
saved as soon as the solution time exceeds 4.0, 8.0 and exactly at 
12.0 since it is the last step of the analysis. 

 
7.1.1  Mass matrix 

 
 The construction of the lumped mass matrix depends on the 
type of element used. Details are provided in the appropriate 
section in Chapter 2. 
 For elements with translational degrees of freedom only, the 
total mass of the element is divided equally among its nodes. For 
elements with rotational masses (beam and shell elements), the 
lumping procedure is element dependent. 
 Note that the lumping of rotational degrees of freedom is 
slightly different in implicit and explicit analysis. The rotational 
masses in explicit analysis are sometimes scaled up so that they do 
not affect the element’s critical time step. 

 
7.1.2  Damping 

 
 Damping can be added directly to the model through Rayleigh 
damping. Additional indirect damping results from plasticity, 
friction and rate dependent penalty contact. 
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 Only mass-proportional Rayleigh damping is available in 
explicit analysis. Hence, the damping matrix C in Eq. 6.3-1 is set 
to: 

 
 Rayleigh C M  

 
where M is the total lumped mass matrix. 

See Ref. KJB, Section 9.3.3, for information about selecting 
the Rayleigh damping constant α. 

 

7.2  Stability 
 

 The stable time step for a single degree of freedom with central 
difference time integration is 
 

 
2N

CR
N

T
t

 
    

 
The stable time step for a finite element assembly is 
 

 min

max max

2 2N
CR

N E

T
t t

  
       

 
where maxN  is the highest natural frequency of the system, which 

is bound by the highest natural frequency of all individual elements 
in a model maxE  (see Ref. KJB, Example 9.13, p. 815). 

 
 When automatic time step is selected, the time step size is 
determined according to the following relationship 

 

 min
max

2
E

E

t K t K


      (7.2-1) 

 
where K is a factor (set via the XDTFAC parameter in NXSTRAT) 
that scales the time step. 
 
 For most element types the critical time step can be expressed in 
terms of a characteristic length and a material wave speed 

ref. KJB 
Section 9.4.2 
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 E

L
t

c
   (7.2-2) 

 
where the definition of the length L and the wave speed c depend 
on the element and material type. For all elastic-plastic materials 
the elastic wave is used. This condition is used in Solution 701 
instead of actually evaluating the natural frequency in Eq. (7.2-1). 
 
 Note that the critical time step calculated for all elements is only 
an estimate . For some elements and material combinations it is 
exact, and for others it is slightly conservative. However,  it may 
not be small enough for excessively distorted elements (3-D solid 
and shells), and it will therefore need scaling using the K factor in 
Eq (7.2-1). 
 
 The time step also changes with deformation, due to the change 
in the geometry of the elements and the change in the wave speed 
through the element (resulting from a change in the material 
properties). 
 
Rod elements 
The critical time step for a 2-node rod element is 
 

 E

L
t

c
   

 
where L is the length of the element, and c is the wave speed 
through the element 
 

 
E

c


  

 
Beam elements 
The critical time step for the (Hermitian) beam element is 
 

 
2

12
/ 1E

L I
t

c AL
    
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where L is the length of the element, A is the element area, I is the 
largest moment of inertia, and c is the wave speed through the 
element 

 
E

c


  

 
Shell elements 
The critical time step for shell elements is 
 

 E

L
t

c
   

 
where L is a characteristic length of the element based on its area 
and the length of its sides, and c is the planar wave speed through 
the shell, which for linear isotropic elastic materials is 
 

 
2(1 )

E
c

 



 

 
The critical time step estimated here is only approximate, and may 
be too large for excessively distorted shell elements. 
 
3-D solid elements 
The critical time step for the 3-D solid elements is 
 

 E

L
t

c
   

 
where L is a characteristic length of the element, based on its 
volume and the area of its sides, and c is the wave speed through 
the element. For linear isotropic elastic materials c is given as 

 

 
(1 )

(1 )(1 2 )

E
c


  




 
 

 
The critical time step estimated here is only approximate, and may 
be too large for excessively distorted 3-D solid elements. 
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Spring elements 
The critical time step for a spring element is 
 

 1 2

1 2

2
2

( )E
N

M M
t

K M M
  


 

 
where M1 and M2 are the masses of the two spring nodes and K is 
its stiffness. Massless springs are not taken into account in the 
calculation of the stable time step. 

 
R-type elements 
These elements are perfectly rigid and therefore do not affect the 
stability of explicit analysis. 
 
Gap and bushing elements 
These elements use the same criterion as the spring element. 

 

7.3  Time step management 
 

 The stable time step size has a major influence on the total 
simulation time. Since this time step is determined based on the 
highest eigenvalue of the smallest element, a single small or 
excessively distorted element could considerably increase the 
solution time, even if this element is not relevant to the full model. 
 Note that the element having the smallest critical time step size 
is always provided in the output file. 
 
 Ideally, all elements should have similar critical time steps. If 
the material properties are uniform throughout the model this 
means that elements should approximately have the same lengths 
(see Eq. 7.2-2). 
 
 The evaluation of the critical time step for each element takes 
some computational time. Therefore, it does not need to be 
performed at every time step. The parameter XDTCAL in 
NXSTRAT determines how frequently the critical time step is 
reevaluated. 
 
 The time step size for explicit analysis can be unduly small for a 
realistic solution time. Three features are provided to deal with this 
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problem. 
 

 A global mass scaling variable can be applied to all elements in 
the model (the XMSCALE parameter in NXSTRAT). This scale 
factor is applied to the densities of all elements, except scalar 
elements where it is applied directly to their mass. 
 
 Mass scaling can also be applied to elements whose 
automatically calculated initial time step is below a certain value 
(XDTMIN1 parameter in NXSTRAT). A mass scale factor is then 
applied to these elements to make their time steps reach 
XDTMIN1. The mass scaling ratio is then held constant for the 
duration of the analysis. This option is not used when the time step 
size is user-specified. 
 
 Elements with automatically calculated time step smaller than a 
specified value (XDTMIN2 parameter in NXSTRAT) can be 
completely removed from the model. This parameter is useful for 
extremely small or distorted elements that do not affect the rest of 
the model. This option is not used when the time step size is user-
specified. 
 
 The three parameters explained above (XMSCALE, XDTMIN1 
and XDTMIN2) should all be used with great care to ensure that 
the accuracy of the analysis is not significantly compromised. 
 

7.4  Tracking solution progress 
 

 Important model parameters such as the memory used by the 
model, number of degrees of freedom, solution times, minimum 
stable time step, warning and error messages are all provided in the 
.f06 file. 

 The program outputs a more summarized time step information 
to the .log file. 
 
 The program terminates when the final solution time is reached 
or when it cannot reach a converged solution. The user can also 
terminate the program during execution. This can be done 
gracefully by creating a runtime option file “tmpadvnlin.rto” with a 
line “STOP=1”. This forces the program to stop after cleaning up 
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all temporary and results files. This method is more useful than 
“killing” the solution process if the results at the previously 
converged times steps are needed. 
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8. Heat transfer analysis (Solution 601 only) 
 

8.1  Formulation 
 

 For heat transfer in a body, we assume that the material of the 
body obeys Fourier's law of heat conduction, i.e., 

 

 q k
x


 


 

where  
 

q  = heat flux  (heat flow conducted per unit area) 
θ = temperature 
k = thermal conductivity (material property) 

 
 The law states that the heat flux is proportional to the 
temperature gradient, the constant of proportionality being the 
thermal conductivity, k, of the material. The minus sign indicates 
the physical fact that a positive heat flux along direction >x= is 
given by a drop in temperature   in that direction / 0x   . 

Consider a three-dimensional solid body as shown in Fig. 8.1-1. 
In the principal axis directions x, y, and z we have  

 

 ; ;x x y y z zq k q k q k
x y z

    
     

  
 

 
where xq , yq , zq  and , ,x y zk k k are the heat fluxes and 

conductivities in the principal axis directions. Equilibrium of heat 
flow in the interior of the body thus gives 

 

 B
x y zk k k q

x x y y z z

            
                  

 (8.1-1) 

 

where Bq  is the rate of heat generated per unit volume. 
 

ref. KJB 
Section 7.2.1 
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Fig. 8.1-1: Body subjected to heat transfer  
 

 At the boundaries of the body one of the following conditions 
must be satisfied: 

 
1

eS
   (8.1-2) 

 

 

2

S
n

S

k q
n





 (8.1-3) 

 

where e  is the external surface temperature (on surface S1), kn is 

the body thermal conductivity in the direction n of the outward 

normal to the surface, and Sq  is the heat flow input to the body 
across surface S2. This quantity may be constant or a function of 
temperature as in the case of convection and radiation boundary 
conditions. 

 
 The governing principle of virtual temperatures corresponding 
to the above equation can be found in Section 7.2.1 of ref. KJB. 
The incremental form of the equations is provided in Section 7.2.2, 
and the discretized finite element equations are provided in Section 
7.2.3. 
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 Note that any region of the boundary where no boundary 
conditions or loads are explicitly applied is assumed, by virtue of 
the formulation, to have 
 

0Sq   
 

This implies that the boundary is insulated, allowing no heat 
transfer across it. 

 
 Note that a time-dependent temperature distribution has not 
been considered in the above equations ─ i.e., steady-state 
conditions have been assumed. For transient problems the heat 
stored within the material is given by 

 

 Cq c   (8.1-4) 
 

where c is the material specific heat capacity and  is the density. 
Cq  can be interpreted as forming part of the heat generation term 
Bq , i.e.,  

 B Bq q c    (8.1-5) 
 

where Bq  does not include any heat capacity effect. 
 
 Note that all terms involving stored heat always involve the 
product c . Hence, it is an acceptable modeling technique to set  
to 1.0 and c to the heat capacity per unit volume (instead of the 
specific heat).

 

8.2  Loads, boundary conditions, and initial conditions 
 

 In heat transfer analysis loads and boundary conditions can be 
specified. More details on these loads and boundary conditions are 
provided in Chapter 5.  
 
 In all cases, the heat flux or heat generated is converted to nodal 
heat fluxes by consistent integration of the finite element load 
vector over the domain of the load application. See ref. KJB 
Section 7.2.3 for details. 
 

ref. KJB 
 Section 7.2.1 
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Temperature conditions: The temperature is prescribed on the 
boundary denoted by S1 in equation (8.1-2). 

 
Heat flow conditions:  The heat flow input is prescribed on the 
boundary denoted by S2 in equation (8.1-3). 

 
Convection boundary conditions:  The heat flow input is 
specified on the boundary denoted by S2 in (8.1-3) according to the 
following convection condition 

 

  S S
eq h     (8.2-1) 

 

with h being the convection coefficient (possibly temperature 

dependent), e  the ambient (external) temperature, and S  the 

body surface temperature. 
 

Radiation boundary conditions:  The heat flow input is specified 
on the boundary denoted by S2 in (8.1-3) according to the following 
radiation condition 

 

   44S S
rq f e     (8.2-2) 

 
where   is the Stefan-Boltzmann constant, f is a view factor or 
shape factor, e is the material emissivity, r  is the temperature of 

the radiative source (or sink) and S  is the unknown body surface 
temperature. Both temperatures are in the absolute scale. Note that 
in the above equation the absorptivity is assumed to be equal to the 
emissivity. 
 
Internal heat generation:  Internal heat is generated inside the 

body. This is introduced as the Bq  term in equation (8.1-1). 
 
Initial conditions:  For a transient analysis the temperature 
distribution at the start of the analysis must be specified. 
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8.3  Steady state analysis 
 

 For a steady-state problem there is no heat capacity effect, i.e., 

the time derivative term   does not appear in the governing 
equation system. See Section 7.2 of ref. KJB for more details. 
 
 Time becomes a dummy variable which is used to indicate 
different load levels in an incremental load analysis (just as in static 
structural analysis). 
 
 In linear thermal analysis, the finite element system of equations 
to be solved is 
 

  K̂θ = Q  (8.3-1)  
 

where K̂ is the effective conductance matrix and Q is the nodal 
heat flow vector from all thermal load sources. 
 
 In nonlinear thermal analysis, the finite element system of 
equations to be solved at iteration i of time step t + t is 
 

       1 1ˆ i i it t t t t t
I

     K θ Q Q  (8.3-2) 
 

where ( 1)ˆt t i K is the effective conductance matrix with 
contributions from thermal conduction, boundary convection and 

radiation, t t Q  is the nodal heat flow vector with contributions 
from all thermal load sources such as convection, radiation, 

boundary heat flux and internal heat generation and ( 1)t t i
I

 Q  is the 
internal heat flow vector corresponding to the element 
temperatures.  
 The temperatures are then updated as 
 

       1i i it t t t   θ θ θ  (8.3-3) 
 
These two equations correspond to the full Newton method without 
line search. 
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 In the full Newton method, the effective conductance matrix is 
updated every iteration, and in the modified Newton method, the 
conductance matrix is only updated every time step. The selection 
of the full or modified Newton method is controlled by the 
ITSCHEM parameter in the TMCPARA entry, with full Newton as 
the default. 
 
 If line search is used, Equation (8.3-3) is replaced by 
 

         1i i i it t t t    θ θ θ  (8.3-4) 
 
where a line search scaling factor is obtained from a line search in 

the direction of  iθ  in order to reduce out-of-balance residuals 
according to the following criterion 
 

  

   

   1
TOL

Ti it t t t
I

Ti it t t t
I

 

 

    
   

θ Q Q

θ Q Q
 

 
where TOL is a hard-coded tolerance equal to 5 x 10-3, and the 
magnitude of  is bounded as follows 
 

0.001< < 8.0 
 

 Line search is off by default, and it is activated via the 
LSEARCH parameter in the TMCPARA entry.  
 
 The size of the time step increment should be carefully selected 
in nonlinear heat transfer analysis. If a time step is too large the 
equilibrium iterations may not converge; on the other hand, too 
small a time step may result in many more increments being 
required to reach the desired load level than are necessary. 

 

8.4  Transient analysis 
 

 For a transient analysis, the effect of heat capacity is included in 

the governing equation system; thus the time derivative,  , term 
appears in the equations. 
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 In linear transient thermal analysis, the finite element system of 
equations to be solved is  
 

  ˆCθ Kθ = Q  
 
where C is the heat capacity matrix. 

 
 The heat matrix can be calculated as lumped or consistent (set 
via the HEATCAP flag in the TMCPARA entry). 
 
 In nonlinear transient thermal analysis, the finite element system 
of equations to be solved is 
 

           1 1 1ˆi i i i it t t t t t t t
I

        C θ K θ Q Q  
 
 Both full or modified Newton methods can be used, and line 
search can also be used, as explained in the previous section. 
 
 The time integration of the governing equations can be 
performed using one of three available time integration schemes: 
the Euler backward method, the trapezoidal rule, or the Bathe time 
integration method. The time integration scheme is controlled by 
the TINTEG parameter of the TMCPARA entry. All three methods 
are implicit. Explicit analysis is not supported for heat transfer 
problems. 
 

8.5  Choice of time step and mesh size 
 

 The choice of time step size Δt is important; if Δt is too large 
then the equilibrium iteration process may not converge for 
nonlinear problems. For transient problems, the accuracy will also 
be sacrificed with an excessively large time step. On the other 
hand, too small a time step may result in extra effort unnecessarily 
being made to reach a given accuracy. 

Therefore it is useful to provide some guidelines as to the choice 
of time step size Δt. We would like to use as large a time step as the 
accuracy/stability/convergence conditions allow. Thus the 
guidelines are phrased as upper limits on the time step size Δt, i.e. 

 
 maxt t    

ref. KJB 
Section 9.6.1 
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 Consider the governing differential equation for constant 
thermal conductivity and heat capacity in one dimension 
(extrapolation to higher dimension is possible) 

 

 
2

2
c k

t x

   


 
 

 
Non-dimensionalizing this equation, we use 

 

 0ˆ ˆ ˆ; ;
w

t x
t x

q L k L

 



    

 
where 0  is the initial temperature, τ a characteristic time, L a 

characteristic length, and qw a characteristic heat flux input. This 
yields the equation 

 

 
2

2 2

ˆ ˆ

ˆ ˆ
a

t L x

  


 
 

 

where 
k

a
c

  is the thermal diffusivity. We take the characteristic 

time to be 
 

 
2L

a
   

 

giving the dimensionless time t̂  and the dimensionless Fourier 
number F0 

 

 0 2

at
F

L
  

 
This number gives the ratio of the rate of heat transferred by 
conduction to the rate of heat stored in the medium. 

To obtain a time step value, a related parameter is introduced 
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 

 0 2

a t
F

x





 

 
where Δx is a measure of the element size. Thus, given an element 
size Δx and a value of 0F , a time step size can be determined. The 

recommended value of 0F


 given below comes from stability and 

accuracy considerations. However, since all available time 
integration schemes are implicit, accuracy becomes the primary 
consideration. 

 
 Setting  

 
 0 1F


  

 
or equivalently 

 
 2

x
t

a


   

 
gives reasonably accurate solutions (again, overall solution 
accuracy depends on the "mesh size" Δx). The minimum value of 

 2
x

a


 over all the elements of the mesh should be employed. The 

"element size" Δx is taken, for low or high-order elements, as the 
minimum distance between any two adjacent corner nodes of the 
element.  

 
 To provide guidelines for the choice of element size Δx, we 
consider the case of a semi-infinite solid initially at a uniform 
temperature, whose surface is subjected to heating (or cooling) by 
applying a constant temperature or constant heat-flux boundary 
condition.  

We define a "penetration depth", γ, which represents the 
distance into the solid at which 99.9% of the temperature change 
has occurred at a time t. For the above posed problem, which has 
an analytical solution, we have 

 

 4 at   
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where a is the thermal diffusivity. Thus the penetration zone of the 
domain must have a sufficient number of elements to model the 
spatial temperature variation, but beyond that zone larger elements 
can be used without loss of accuracy. 

Since the penetration zone increases with time, we define a time 
tmin which is the minimum >time of interest= of the problem. tmin 
may be the first time at which the temperature distribution over the 
domain is required, or the minimum time at which discrete 
temperature measurements are required. 

Given this time tmin we divide the penetration zone into a 
number of elements, e.g., for a one-dimensional model, such that 

 

 min

4
x at

N
   

 
Usually N = 10 gives an effective resolution of the penetration zone 
for a variety of boundary conditions and time integration schemes 
i.e., 

 

 min

2

5
x at   

 
 Note that for a given (large) tmin, the element size upper bound 
may be greater than the physical dimensions of the problem. In this 
case it is obvious that the element size must be significantly 
reduced. 

 
 Although consideration was given to one-dimensional problems 
only, the generalization of Δx to two- and three-dimensional 
problems has been shown to be valid. Hence the above element size 
can also be used for two- and three-dimensional problems.  
 
 In coupled TMC analysis the element size will frequently be 
governed by the structural model. The same will frequently also 
apply to the time step size (for iterative TMC coupling). 
 

8.6  Automatic time stepping method 
 

 The heat transfer automatic-time-stepping (ATS) method can be 
used to vary the time step size in order to obtain a converged 
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solution. It is set via the AUTO parameter in the TMCPARA entry. 
If there in no convergence with the user-specified time step, the 
program automatically subdivides the time step. 
 
 Further subdivision can be done until convergence is reached or 
the time step size becomes smaller than a minimum value. This 
minimum value is set as the original time step size divided by a 
scaling factor provided by the user (ATSSUBD in TMCPARA). 
 
 This automatic time stepping procedure is used in the solution 
of heat transfer analyses and one-way coupled TMC (thermo-
mechanically coupled) analyses. For iteratively coupled TMC 
analyses the structural ATS procedure of Section 6.2.4 is used 
instead. Note that the structural ATS procedure has many more 
features, and is better suited for nonlinear problems involving 
contact, geometric and material structural nonlinearities. 
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9. Coupled thermo-mechanical analysis (Solution 601 
only) 
 

 Advanced Nonlinear Solution can handle two forms of coupling 
between thermal (heat transfer) and structural analyses (COUP 
parameter in TMCPARA entry). 
 
 The first is one-way coupling, where the thermal solution 
affects the structural solution, but the structural solution does not 
affect the thermal solution. 
 
 The second is iterative coupling which is a two-way coupling 
where both the thermal and structural solutions are interdependent. 
 
 TMC coupling can involve any combination of static or implicit 
dynamic structural analysis, and steady state or transient heat 
transfer analysis. This feature is useful due to the potential for 
different physical time scales between the structural and heat 
transfer models.  
 The settings needed for each combination are listed below 
(TRANOPT parameter is in TMCPARA entry). 
 
Table 9.1: Settings for structural and heat transfer combinations 
 

Structural Heat transfer 
Settings 

SOL TRANOPT 

Static Steady 153 - 

Static Transient 159 1 

Dynamic Steady 159 2 

Dynamic Transient 159 0 (default) 

 
 Note that since the temperatures are interpolated in the same 
manner as the displacements, but the mechanical strains are 
obtained by differentiation of the displacements, it follows that the 
thermal strains (which are proportional to the temperatures) are in 
effect interpolated to a higher order than the mechanical strains. 
The consequence is that for coarse finite element idealizations, the 

ref. KJB 
Section 7.3 
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stress predictions show undesirable errors (e.g., nonzero stresses, 
when the stresses should be zero). These errors vanish as finer 
finite element idealizations are employed. 
 Fig. 9.1-1 summarizes the results of a simple analysis that 
illustrates these concepts.  
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One-dimensional heat flow in a rod

�

�

�

�

� �

�

�

�

� �

�

�

20	20	

100	100	

One thermal element model Two thermal element model
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Structural model Structural model

Fig. 9.1-1: Simple problem to schematically demonstrate solution
inaccuracies that can arise due to discretizations used in heat flow
and stress analyses  
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9.1  One-way coupling 
 

 In this case, the heat transfer and structural equations are solved 
separately, with the temperatures from the heat transfer passed back 
to the structural problem for calculation of thermal expansion and 
temperature-dependent material properties. 
 
 Currently, the time steps used in the structural and heat transfer 
equations are assumed to be the same, as set via the TSTEP entry. 
However, if ATS is present the time steps may differ during the 
solution. In this case, the heat transfer solution is always ahead of 
the structural one, and the structural solution uses temperature 
interpolated from the two closest heat transfer solutions. 

 

9.2  Iterative coupling 
 

 In iterative coupling, the thermal solution can affect the 
structural solution and the structural solution can affect the thermal 
solution. 
 

 The coupling from structural to thermal models includes the 
following effects: 

 
 Internal heat generation due to plastic deformations of the 

material 
 Heat transfer between contacting bodies 
 Surface heat generation due to friction on the contact 

surfaces.  
 

 At the beginning of each time step, the structural model is 
solved for the displacements using the current temperatures. Then 
the heat transfer model is solved for the temperatures using the 
current displacements. This cycle constitutes one TMC equilibrium 
iteration. TMC convergence is then assessed, and if it is not 
reached, then the structural and heat transfer models are solved 
again using the new current displacements and new current 
temperatures. This process is repeated until TMC convergence is 
reached. Note that within each TMC equilibrium iteration, the heat 
transfer and structural models each have their own internal iteration 
procedure and convergence criteria. 
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 The same TMC convergence parameter is used in the 
displacement and temperature convergence checks. 
 
 The temperature convergence is checked as follows: 
 

  

( ) ( 1)

2
( )

2

TOLL
t t i t t i

t t i
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 The displacement convergence is checked as follows: 
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where i denotes the TMC iteration. TOLL is set using the 
TMCTOL parameter in the TMCPARA entry. 
 
 In strongly coupled problems, a temperature relaxation factor 
can be used to help reach convergence. This is set via the TRELAX 
parameter in the TMCPARA entry and defaults to 1.0, which 
corresponds to no relaxation. The temperatures used in the 
structural analysis in the case of temperature relaxation at a TMC 
iteration k are based on the temperatures in the last heat transfer 
TMC iteration k-1 as well as the prior heat transfer TMC iteration 
k-2.  
 

 ( ) ( 2) ( 1)1k k k
structure heat heat        

 

where  is the temperature relaxation factor. 
 
 Note that decreasing the relaxation factor usually reduces the 
chances of an oscillating solution, but if decreased too much will 
also slow down convergence. 

 
Internal heat generation rate due to plastic deformations of the 
material:   The internal heat generation rate per unit volume due to 
plastic deformations Mq  is computed as 

 

 : p
Mq  D  (9.1) 
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where   is the Cauchy stress tensor and pD  is the plastic velocity 
strain tensor. The overbar denotes Acorresponding to the 
intermediate configuration@.    is a parameter, 0 1  , to 
account for the fraction of plastic work that gets converted to 
internal heat. It is set via the HGENPL parameter in the 
TMCPARA entry. 

This feature is only available for 2-D solid, 3-D solid and shell 
elements. 

 
Internal heat generation rate due to inelastic deformations of 
rubber-like materials:  When there are viscoelastic or Mullins 
effects included in rubber-like materials, these effects can cause 
heat generation, see Sections 3.7.7 and 3.7.8. 

 
Heat transfer between contacting bodies:  Contact heat transfer 
is governed by an equation similar to that used for convection 
boundary conditions: the heat flux entering contacting body I is  
 

  ˆIJ J I
cq h     (9.2) 

 

where ĥ  is the contact heat transfer coefficient (set via the 

TMCHHAT parameter in the BCTPARA entry) and I  and J  
are the surface temperatures of the contacting bodies.  

 In the limit as ĥ  approaches infinity, the temperatures of the 

contacting bodies become equal to each other. With ĥ  large, 
equation (9.2) can be considered a penalty method approximation 

to the equation I J  . 
 
Surface heat generation rate due to friction:  The frictional 
contact heat generation rate at a contactor node G is computed as 
 

 IJ
Gq  τ U  (9.3) 

 

where τ  is the frictional contact force and U  is the relative 
velocity between the contacting bodies at the point of contact. 

The heat rate going to the contactor body is IJ
c Gf q  and the heat 

rate going to the target body is IJ
t Gf q , where cf  and tf  are the 
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fractions of generated heat reaching the contactor and target 
surfaces, respectively. These user input parameters are set via the 
TMCFC and TMCFT parameters in the BCTPARA entry. The 
following relations must hold:  

 
 0 1, 0 1, 0 1c t c tf f f f        

 
The contactor heat rate is applied to the contactor node. The target 
heat rate is distributed among the target segment nodes.  
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10. Additional capabilities 
 

10.1  Initial conditions 
 

10.1.1  Initial displacements and velocities 
 

 Initial displacements and velocities at nodes can be specified 
using the TIC entry together with the IC case control command.  
 

 Any initial displacements or velocities specified in a restart run 
are ignored, except when restarting from a static to a dynamic 
analysis; in this case, initial velocities are taken into account. 
 
 Initial rotations should only be applied in small displacement 
analysis. 
 
 The initial rotations at a node are interpreted differently 
depending upon the elements attached to the node: 
 

 Element without rotational dofs: rotations are ignored. 
 Linear or MNO element with rotational dofs: initial 

rotations are used in the calculation of the initial force 
vector (but not used thereafter). 

 Large displacement element with rotational dofs: initial 
rotations are ignored. 

 Small displacement R-type element that is internally 
represented as a constraint equation or rigid link: the initial 
position of the slave node is determined by the initial 
rotation of the master node. 

 Large displacement R-type element that is internally 
represented as a rigid link: the initial position of the slave 
node is determined by the initial rotation of the master node, 
as if the rigid link is a small displacement rigid link. This 
will cause the length of the rigid link to be incorrect if the 
initial rotation is large. 

 

10.1.2  Initial temperatures 
 

 Initial temperatures, for both structural and heat transfer 
analyses, are specified via the TEMPERATURE (INITIAL) case 
control command. The actual temperature values are specified via 
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the TEMPD and TEMP entries. 
 
 For transient heat transfer analysis (SOL 601,159) the initial 
temperatures can also be specified using the IC case control 
command. In this case, it takes precedence over the 
TEMPERATURE (INITIAL) command. 
 
 The thermal strains are always assumed to be zero initially, see 
Section 3.1.6.  

 

10.2  Restart 
 

 Restart is a useful feature in Advanced Nonlinear Solution. It 
can be used when the user wishes to continue an analysis beyond 
its previous end point, or change the analysis type, loads or 
boundary conditions or tolerances. A restart analysis is selected by 
setting MODEX = 1 in the NXSTRAT entry. Recovering results 
from a restart file without continuing the analysis can also be done 
setting MODEX = 2. 
 

 All relevant solution data needed for a restart run are saved in a 
file (with extension .res) in case they are needed in a restart 
analysis.  
 

 Note that multiple restart data can be appended to the restart 
file. This enables the restart analysis to be based on a solution step 
different from the last converged solution. Saving multiple time 
step solutions to a restart file can be expensive, however, as it leads 
to a large restart file size. The frequency of data writing to a restart 
file is set via the IRINT flag in the NXSTRAT entry. 

 The restart time is set via the TSTART parameter in the 
NXSTRAT entry. If no restart time is provided in the restart run 
(achieved by setting the restart time to 0.0), the program uses the 
data for the latest restart time on the .res file. 
 
 Note that once the second analysis starts, it will overwrite the 
.res file with new data. Therefore, if the user wishes to redo the 
second run, then the .res file must be copied again from the first 
model.  
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 The geometry, and most element data, cannot be changed in a 
restart analysis. However, the following changes are allowed: 
 

 Type of analysis can change. Static to dynamic and dynamic 
to static restarts are allowed. 

 Solution type can be changed. Solution 601 (static or 
dynamic) to Solution 701 restarts are allowed and vice-
versa. In this case, features not available in either solution 
type cannot be used.  

 Solution control variables can change. The flags, constants 
and tolerances for the iteration method, convergence, time 
integrations, automatic time stepping  and load-
displacement-control can be changed.  

 Externally applied loads and enforced displacements can be 
changed.  

 The material constants can be changed. However, note that 
in a restart run the same material model (with the same 
number of stress-strain points and the same number of 
temperature points, if applicable) must be used for each 
element as in the preceding run.  

 Boundary conditions can be changed.  
 Constraint equations and rigid elements can be changed.  
 Contact settings can be changed. This includes most contact 

set, contact pair and contact surface parameters. See section 
4.6.4 for restrictions.  

 Rayleigh damping coefficients can be changed.  
 Time increment and number of solution steps can be 

modified.  
 Time functions describing the load variations can be 

changed. 
  It is not allowed to have no birth-death in the first run, then 

birth-death in the restart run. If there is no birth-death in the 
first run, give a large value for TDEATH for the element 
groups that have birth-death in the restart run. 

 
 Note that some default settings are different between Solution 
601 and Solution 701. Some of these have to be manually set by the 
user to enable restarts. The most common such settings are:  

 
 Incompatible modes default on in Solution 601 and off in 

Solution 701 
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 Default large strain formulation (ULH in Solution 601 and 
ULJ in Solution 701)  

 
 When restarting from static to dynamic analysis (both implicit 
and explicit dynamics), the initial velocities and accelerations are 
assumed to be zero. However, if an initial velocity is prescribed in 
the restart run, it will be used instead. When restarting from one 
dynamic analysis to another, initial velocities and accelerations are 
transferred from the first to the second run. 
 
 A results recovery mode is available by setting MODEX =2 in 
the NXSTRAT entry. In this case, the program reads the restart file 
and recovers the results at the final restart time available in the 
restart file. Results at a specific time can also be recovered by 
setting the TSTART parameter in NXSTRAT to the desired time. 
 

10.3  Element birth and death feature 
 

 The element birth and death option is available for modeling 
processes during which material is added to and/or removed from 
the structure (set via the EBDSET case control and bulk data 
commands). Such processes, for example, are encountered in the 
construction of a structure (structural members are added in 
succession), the repair of a structure (structural components are 
removed and new ones are added)  or during the excavation of 
geological materials (a tunnel is excavated). If the element birth 
and death option is used, the corresponding elements become 
automatically nonlinear. Fig. 10.3-1 illustrates two analyses that 
require the element birth and death options. 
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 The main features of element birth and death are as follows: 
 

If the element birth option is used, the element is added to 
the total system of finite elements at the time of birth and all 
times thereafter.  

If the element death option is used, the element is taken out 
of the total system of finite elements at times equal to and 



Chapter 10: Additional capabilities 
 

 
 
466 Advanced Nonlinear Solution  Theory and Modeling Guide 

larger than the time of death.  
If both element birth and death options are used, the 

element is added to the total system of finite elements at the 
time of birth and remains active until the time of death. The 
time of death must be greater than the time of birth. The 
element is taken out of the total system of finite elements at 
all times equal to and larger than the time of death.  

 

 Once an element is born, the element mass matrix, stiffness 
matrix and force vector are added to the mass matrix, stiffness 
matrix and force vector of the total element assemblage (until the 
death time, if any). Similarly, once an element dies, the element 
mass matrix, stiffness matrix and force vector are removed from 
the total assembled mass matrix, stiffness matrix and force vectors 
for all solution times equal to or larger than the time of death of the 
element. 
 
 The element birth/death option applies to any mass effect, i.e., 
gravity loading, centrifugal loading and inertia forces.  The mass 
matrix, therefore, does not remain constant throughout the solution. 
 
 Note also that the damping matrix is not modified when 
elements die or when they are born. Therefore, Rayleigh damping 
should not be used. For example, if a pipe break is simulated by 
setting the death time for certain elements in an implicit dynamic 
analysis, then, if Rayleigh damping is used, the pipe might not 
separate. 
 
 When the element birth/death option is used, the tangent 
stiffness matrix may at some solution times contain zero rows and 
corresponding columns. The equation solver disregards any zero 
diagonal element in the tangent stiffness matrix if no elements are 
attached to the associated degrees of freedom.  
 
 Advanced Nonlinear Solution enables the user to set an element 
death decay time parameter (DTDELAY in NXSTRAT) which 
causes the gradual reduction of the element stiffness matrix to zero 
over a finite time rather than instantly. The reduction starts at the 
death time and progresses linearly with time until the decay time 
has passed. The element therefore totally vanishes at a time equal 
to the sum of the death time and the death decay time. This option 
is useful for mitigating the discontinuity that the structure may 
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experience due to the death of some of its elements. 
 
 The birth/death feature is available for contact sets. 
 
 The birth/death feature is not available for mesh glued surfaces. 
 
 The birth/death feature is not available for the potential-based 
fluid elements. 
 
 To provide the appropriate concentrated and element loading 
that takes into account the element birth/death option, time 
functions on the loading need to be used that correspond to the 
element birth and death times.  
 
 The time at which an element becomes active or inactive is 
specified by the parameters TBIRTH and TDEATH respectively 
(in the EBDSET entry). 
 
Birth option active  
 
In the discussion of element birth, it is useful to refer to the 
“preborn” time.  The program determines the preborn time to be the 
solution time that just precedes the user-input time of element birth.  
We will discuss the selection of the preborn time in more detail 
below. 
 Now we describe how the element displacements at the preborn 
time are used in the element strain calculations.  Recall that the 
current element coordinates, original element coordinates and 
displacements are related by 
 

0t t t t  x x u  
 
and that the element strains are calculated using the displacements 
and original coordinates, using, for example in geometrically linear 
analysis, 
 

0

t t
t t


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


u
e

x
 

 
with similar calculations in geometrically nonlinear analysis. 
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For an element that is born, these relationships are modified as 
follows: 
 

   0t t pb t t pb    x x u u u  

 
 0

t t pb

t t

pb




 


 

u u
e

x u
 

 

in which pbu  are the displacements at the preborn time.  The 

quantity 0 pbx u  are the coordinates at the preborn time and the 

quantity t t pb u u  are the displacements relative to the 
coordinates at the preborn time. 
 From the above, we observe that if the current displacements are 
the same as the preborn displacements, the element strains are zero.  
And, if there are no thermal or initial strains in the element, the 
element stresses are also zero.  
 Now we discuss in detail how the program determines the 
preborn time. 
 Fig. 10.3-2(a) shows the activity of an element for which the 
birth option is active.  Note that if TBIRTH  is input for the range 
shown (where TBIRTH t    and TBIRTH<t t    , then 
the preborn time for the element is t  and the element is first active 
at time t t  .  Here   is a program-calculated tolerance, typically 

/1000t .  The results obtained are independent of the exact 
position of TBIRTH  within the range of solution times t   to 
t t    .   
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Fig. 10.3-2: Use of element birth and death option

	

	

 
 
 
 Two special cases are noteworthy: 
 

TBIRTH  just slightly greater than t  , for example 
/100t t  .  In this case, the preborn time is t , which is close 

to TBIRTH.  Because TBIRTH is close to t , the preborn time is 
essentially selected by the choice of TBIRTH, and the element 
can be thought of as being born “strain-free”.  The element is 
first active at time t t  .  If the element displacements remain 
unchanged between times t  and t t  , the element remains 
strain-free.  See also the example given below. 

 
TBIRTH  = t t  .  In this case, the preborn time is t  (and 
not t t  ).  The element is first active at time t t  , however 
the element need not be strain-free at time t t  .   
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 Regarding the mass matrix, when the element is born, the mass 
matrix for the element is computed using the original coordinates 

of the element 0 x , and not the coordinates at the preborn time 
0 pbx u . 
 
Death option active 
 
Fig.10.3-2(b) shows the activity of an element for which the death 
option is active.  Note that if TDEATH  is input for the range 
shown (where TDEATH t    and TDEATH<t t    , the 
element is first inactive at time t t  . 
 
Birth then death option active 
 
This is a direct combination of the birth and death options.  Initially 
some elements are inactive.  At a particular solution time 
determined by the time of birth TBIRTH, the elements become 
active and remain so until a subsequent solution time determined 
by the time of death TDEATH, where TDEATH > TBIRTH. 
 
Example of the element birth option: Consider the materially 
linear rod element model shown in Fig. 10.3-3(a) in which the time 
of birth for element 2 is slightly larger than t , e.g. 
TBIRTH /100t t   .  Element 2 is unborn at time t , as shown 
in Fig. 10.3-3(b). 

At the beginning of the solution for time t t  , the program 
determines that element 2 is active for time t t  , and that the 
preborn time pbt   is equal to the solution time t .  The program 

stores pb tu u .  In the subsequent equilibrium iterations, the 

element relative displacement is t t pb t t tu u u u    , the 

element initial length is 0 0pb t tL u L u L     and the element 

strain is 
0

t t pb
t t

pb

u u
e

L u


 




.  This procedure is physically identical 

to adding an element of length tL  to the assemblage at time 
t t  .  Note that the stiffness of element 2 is based on the length 
tL . 
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If the external force t t tR R  , then element 2 is stress-free, as 
the system was in equilibrium at time t  without any forces from 
element 2 (Fig 10.3-3(c)). 

If the external force t t tR R  , then element 2 is not stress-
free, and the force in element 2 is determined based on its 
deformation with respect to its preborn state (the solution at time 
t ), as shown above (Fig 13.3-3(d)). 

Hence, the total increment in displacement from time t  to time 
t t   determines the force in element 2.  Identically, the same 
solution would be obtained using any value for TBIRTH which 
satisfies the relation TBIRTH t    and TBIRTH<t t    . 
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10.4  Element death due to rupture 
 

 For the materials and elements listed in Table 10.4-1, element 
death is automatically activated when rupture is detected at any  
integration point of the element. The element is then considered 
"dead" for the remainder of the analysis, and, in essence, removed 
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from the model (mass and stiffness contributions). 
 
 When elements die, contactor segments connected to these 
elements are also removed from the model. 
 
 Dead elements may be gradually removed from the model in 
order to avoid sudden changes in stiffness and acceleration. This 
feature is activated by setting a non-zero DTDELAY time in the 
NXSTRAT entry. 

 
Table 10.4-1:  Elements and material models that include "death upon rupture" 
 
 Rod1 2-D 

solid
3-D 
solid

Beam Shell 

Plastic-multilinear    -  

Thermo-elastic-plastic, plastic-
creep, thermal plastic-creep 

 
 

 
 

 
 


- 

 

 

Plastic-cyclic      

 
1) The rupture option is not applicable to a rod element with a gap. 
 

 
 

10.5  Reactions calculation 
 

 Output of the reaction forces and moments is governed by the 
SPCFORCES case control command. 

 
 Note that loads applied to fixed degrees of freedom do not 
contribute to the displacement and stress solutions. However, these 
loads are accounted for in the reaction calculations.  
 
 Reaction forces and moments at a node are computed using the 
consistent force vectors (calculated from the element internal 
stresses) of elements attached to the node. Hence, a check on the 
balance of the support reactions and the applied loads often 
provides a good measure on the accuracy of the solution (in terms 
of satisfying equilibrium in a nonlinear analysis). 
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 Reaction calculations in dynamic analysis with consistent mass 
matrix take into account the mass coupling to the deleted degrees 
of freedom. The reactions exactly equilibrate the applied forces in 
all cases. 
 
 If Rayleigh damping is used, then the damping contribution to 
deleted degrees of freedom is taken into account for implicit time 
integration. 
 

10.6  Stiffness stabilization (Solution 601 only) 
 

 During the solution of equations in static analysis, zero pivots 
may arise, for example in the following cases:  

 
Unsupported body: If the forces acting on the body are not in 
equilibrium, one or more rigid body motions of the body are 
activated and no solution can be expected. Even if the forces acting 
on the body are in equilibrium, so that no rigid body motion is in 
fact activated, zero pivots are present corresponding to the rigid 
body modes. 
 
Contact analysis, in which one or more of the individual parts of 
the model (not considering contact) contain rigid body motions. 
When the parts are not in contact, then there is nothing to prevent 
the rigid body motions. (This includes tied contact.) 
 
Mesh glueing, when one or more of the individual parts of the 
model (not considering glueing) contain rigid body motions. 
 
General constraints, when one or more of the individual parts of 
the model (not considering the general constraints) contain rigid 
body motions. 
 
These zero pivots will stop the solution, unless the zero pivots are 
prevented from occuring. 
 
 Stiffness stabilization is used to prevent the equation solver 
from encountering zero pivots. Stiffness stabilization is available 
for static analysis, with or without low-speed dynamics. (In 
dynamic analysis, these zero pivots are not present due to the mass 
matrix, so stiffness stabilization is not available for dynamic 
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analysis.) 
 
 Parts of the model with rigid body motions can alternatively be 
treated by adding weak springs at various locations in the model. 
The advantages of using stiffness stabilization, instead of using 
weak springs, are: 

 
 Determining the number, location and stiffness of the 

springs requires a lot of user intervention.  
 There may be no suitable locations for the springs.  
 The stiffness of each spring has to be entered as an absolute 

value (with dimensions of force/length) while the stiffness 
stabilization factor is dimensionless (see below).  

 The springs generate internal forces which affect the final 
solution while stiffness stabilization does not affect the 
internal forces. It is sometimes hard to assess how much the 
springs affect the final solution.  

 
 Stiffness stabilization modifies the diagonal stiffness terms 
(except for those belonging to contact equations) as follows: 

 
(1 )ii STAB ii K K  

 
where STAB  is a dimensionless stabilization factor. The right-hand 
side load vector is not modified. 
 
 There are three stiffness stabilization options available, which 
are selected using the MSTAB and MSFAC parameters in the 
NXSTRAT entry: 
 
 MSTAB=0 (no stabilization) 
 MSTAB=1 (stabilization, with STAB = MSFAC) 
 MSTAB=2 (stabilization is activated if needed) 
 
The defaults are MSTAB=0, MSFAC=1E-10. 
 
 When MSTAB=2, the use of stabilization is determined based 
on the ratio of the factorized maximum and minimum diagonals of 
the stiffness matrix. This determination is made for every 
equilibrium iteration in nonlinear analysis. When stabilization is 
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used, stabilization is applied to all degrees of freedom using the 
value STAB  (as if MSTAB=1).  
 
 In linear analysis, stabilization should be used with caution, 
since the right-hand-side load vector is not modified. The solution 
can therefore be affected by stiffness stabilization.  
 It is recommended to try the analysis first without stabilization. 
If the equation solver encounters zero pivots, then try one of the 
following methods: 
 

 Use stabilization with the smallest possible value of STAB  
for which the equation solver gives a solution, or  

 Use stabilization, and change the analysis to a nonlinear 
analysis, for example specify element birth-death in one of 
the elements; or specify a nonlinear material, with material 
constants chosen so that the material response is linear (for 
example, an elastic-plastic material with a very high yield 
stress).  

 
 In nonlinear analysis, since the right-hand-side load vector is 
not modified, the final converged solution is the same as without 
stabilization (assuming that the tolerances are tight enough). 
However, the rate of convergence can be worsened due to the 
stiffness stabilization, so that more equilibrium iterations are 
required.  
 
 Stiffness stabilization is only useful for the sparse and 3D-
iterative solvers. The iterative multigrid solver does not fully 
factorize the stiffness matrix and hence cannot properly trigger the 
automatic stabilization. 
 

10.7  Bolt feature (Solution 601 only)  
 

Overview 
 
 The bolt option is a modeling feature which uses elements with 
a specific bolt-type loading. The bolt-type loading is bolt-
tensioning, i.e., the axial force in the bolt is specified. The 
deformations of the rest of the structure are considered. For 
example, if a single bolt is loaded with a user-specified bolt 
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tension, then, after the bolt loading is applied, the axial force of the 
bolt has the given value, and the axial force acts upon the rest of 
the structure, causing structural deformations. 
 
 Different modeling techniques with varying complexity can be 
used to model a bolt. Three such techniques are shown in Fig.  
10.7-1, in increasing level of complexity.  
 

Contact all around if needed

Fig 10.7-1: Different bolt modeling techniques

(a) Bolt modeled with beam elements (b) Beam elements used for bolt shank

(c) Bolt modeled with 3-D solid elements

Contact at top and bottomNo contact needed

Constraints Shell elements or rigid surface

3D solid elements

One or more beam elements One or more beam elements
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 Any number of bolts can be included in the model. The bolts are 
all loaded simultaneously.  
 
 The bolt type loading is applied during special 'bolt loading" 
iterations. During the bolt loading iterations, time is frozen and the 
bolt parameters are automatically iteratively adjusted as described 
below. After the bolt loading iterations have converged, then the 
time steps proceed as usual.  
 The bolt loading is performed at the beginning of the analysis, 
i.e. at time zero. 
 
 The bolt feature can be used only in static and implicit dynamic 
analysis (Solution 601).  
 
 A bolt iteration consists of the same process as is normally used 
for static analysis, namely the solution of the equilibrium equations 
as discussed in Section 6.2. In each iteration all elements, including 
bolt elements, contribute to the global force vector, and the 
increment in displacements, including the displacements of the bolt 
element nodes, is obtained. 
 The remainder of the structure (that is all of the rest of the 
model, including bolts not being loaded) behaves exactly as usual. 
For example, plasticity can occur. Therefore, it is possible that the 
bolt iterations might not converge. In this case, the bolt loading can 
be divided into sub-steps, so that the change in bolt loads is smaller 
during each sub-step. 
 

10.7.1  Beam-bolt element 
 

 The beam-bolt element is implemented as an elastic Hermitian 
beam element with a modified axial force - length relationship. The 
formulation used for the beam-bolt elements can either be small 
displacements or large displacements. Any cross-section available 
for the beam element can be used. However, the material model 
must be linear elastic. 
  
 The axial force - length relationship of the beam-bolt element is 

 

 

( )t
b bF k L L F  

   

(10.7-1) 

 
where F  is the bolt axial force, k  is the bolt axial stiffness 
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/ bEA L , tL  is the bolt current length, bL  is the bolt adjusted 

length (defined below) and bF  is the bolt force corresponding to 

bL . (Thermal effects are ignored in this discussion.) The bolt 

adjusted length is defined as 0
b bL L  , where 0L  is the bolt 

original length and b  is the bolt shortening.  

 Using 0t tL L    where 0L  is the bolt initial length and t  
is the bolt axial displacement gives 

 

 

( )t
b bF k F    

   

(10.7-2) 

 
Initially (before the first bolt-loading is applied), bF  and b  are 

zero, which means that tF k   and the element behaves exactly 
like a usual beam element. 
 
 We now discuss the details of the bolt iterations for beam-bolt 
elements. For simplicity, in this discussion, we show only a single 
bolt element.  
 
 The process of bolt tensioning is shown in Fig. 10.7-2. During 
the bolt iterations, the axial stiffness of the bolt element is set very 

small (to 1f k , where 6
1 10f 

 

), and the axial force in the bolt 

element is replaced by the user-specified axial force bF . The bolt 

shortening b  is determined from the condition t
b     in 

which t  is determined from the displacements of the bolt element 
nodes. The bolt iterations continue until equilibrium is satisfied and 
also the condition 
 

     
( ) ( 1)

( 1) ( )
0.01

max ,

ite ite
b b

ite ite
b b





 


 
 

 
is satisfied. At this point, the bolt axial stiffness is restored to its 

normal value. Since 0t
b    , the bolt axial force F  computed 

from (10.7-2) equals the user-specified axial force bF .  
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Rest of structure

Fig. 10.7-2: Bolt force loading

(a) Before bolt iterations

Bolt element

Specified bolt force Fb

Adjusted bolt length = Lb

(b) During bolt iterations

Axial bolt force
= specified Fb

Current bolt length = Lb

(c) After bolt iterations

 
 
 

 For all other iterations, in which the bolt is not being adjusted, 
the bolt axial force - length relationship is given by (10.7-1), where 

bF  and b  are in general non-zero and are held constant. 

 
 In the beam-bolt element, no additional global equations are 
used to include the additional bolt variables b  and bF . 

 
10.7.2  3D-bolt 

 
 A set of 3-D solid elements can be combined into a bolt (called 
a 3D-bolt). The elements can use any formulation (small or large 
displacements, small or large strains), any material model and any 
number of nodes per element. The mixed u/p formulation or the 
incompatible modes formulation can also be used.  
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 The geometry of the bolt is also arbitrary. The element sides and 
faces can be straight or curved. 
 The basic ideas used in the 3D-bolt are shown in Fig 10.7-3. 
This figure shows a very simple bolt model of four elements, with 
the ends of the bolt fixed. For simplicity, it is assumed that the 
Poisson's ratio is zero, so that the cross-section of the bolt doesn't 
change during the deformations. 
 Fig. 10.7-3(a) shows the 3D-bolt along with its bolt plane. This 
bolt plane is an additional input for the 3D-bolt. As seen, the bolt 
plane determines the bolt direction and the bolt split faces. (For 
more information about the bolt plane, see Section 10.7.5.) 
 Fig 10.7-3(b) shows an incompatible displacement, called the 
bolt displacement, applied to the nodes on the bolt split faces. 
Because the bolt model is fixed at its ends, the elements must 
increase in length, and, to satisfy equilibrium, the elements must all 
be under uniform tension. The nodal point forces acting at the 
nodes on the bolt split faces are combined into a single bolt force. 
 Fig 10.7-3(c) shows the 3D-bolt after deformations, as 
visualized during postprocessing. The elements appear to be 
different lengths because the bolt displacement is not included in 
the plot. However, the strains are the same in all elements. 
 In this example, it is clear that the bolt force is determined by 
the bolt displacement, and that the bolt force increases as the bolt 
displacement increases. 
 
 Fig 10.7-4 shows the same problem, but with one end of the bolt 
free. Now when the bolt displacement is applied, the elements on 
the free end move stress-free, and the resulting plot is shown in Fig 
10.7-4(c). This example justifies the use of the term "bolt 
displacement". 
 When the bolt end is free, it is clear that the bolt force is zero 
for any value of the bolt displacement. 
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Fig. 10.7-3: 3D-bolt, fixed ends

(a) 3D-bolt with bolt plane

Bolt plane

Bolt direction
(normal to
bolt plane)

Bolt split faces

(b) Bolt displacement and consistent
nodal point forces

Bolt
displacement

Consistent
nodal point

forces

(c) 3D-bolt, as visualized
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Fig. 10.7-4: 3D-bolt, free end

(a) Before deformations

(b) After deformations

Bolt
displacement

(c) As visualized

 
 
 In the general case, a 3D-bolt has two additional quantities: the 
bolt displacement (denoted bv ) and the bolt force (denoted bF ). 

These quantities are used in the global solution of equations as 
follows: 
 
1) Bolt force specified: 
 

  
b b bv R F

     
           

u R FK KUB

KBU KBB
 (10.7-3) 

 
where K  is the usual global stiffness matrix, R  is the usual 
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external loads vector, F  is the usual internal loads vector, u  is 
the usual increment in displacements, KBU, KUB, KBB  are 

coupling matrices, and bR  is the specified bolt force. During the 

equilibrium iterations, both u  and bv  are obtained, and at 

equilibrium, b bF R . Thus the value of bv  that results in the 

specified bR  is obtained by this procedure. 

 In addition to the usual convergence criteria, the convergence 
criterion 
 

    
 

<0.0l
max ,

b b

b b

R F

R F


 

 
is used. 
 
2) Usual equilibrium iterations in which the bolt is not being 
adjusted: 
 

  
0bv

     
        

uK KUB R F

KBU KBB
 (10.7-4) 

 
where   is very large. The last row of this system of equation 
results in 0bv  , so the global equilibrium equation reduces to 

the usual case. 
 
 When there are several 3D-bolts, then each bolt contributes an 
additional equation to the global system of equations. There is no 
limit to the number of 3D-bolts that can be present in the model. 
 

10.7.3  Usage of bolt loadings 
 
 The bolt force is defined using the BOLTFOR entry. The bolt 
preload set must be selected via the BOLTLD case control 
command. 
 
 Bolt force iterations can be performed in one step (default) or in 
a number of “bolt steps” (set via the BOLTSTP parameter in 
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NXSTRAT). This feature should be used if the bolt conditions are 
too severe to converge in one step. 
 
 During bolt loading in implicit dynamic analysis, the program 
temporarily switches to static analysis (unless the low-speed 
dynamics option is employed).  Bolt iterations that are performed 
before the first time step are always static or low-speed dynamic, 
never truly dynamic, so as to not introduce any dynamic effects 
during bolt tightening such as ringing. Note that in practice bolt 
tightening is typically a quasi-static process. 
 
 If the ATS method is used, it is also applied to the bolt loading 
procedure. 
 
 Bolt loading can be used along with both one-way or fully 
coupled TMC solutions. 
 
 Damping can be applied to the model during the bolt iterations 
before the first time step using the NXSTRAT BOLTDAMP entry. 
This can be useful to stabilize any rigid-body motions that may be 
present before contact is established. It is possible to apply 
damping only during the bolt iterations, not to the time stepping, 
such that the solution at the end of the time step is free of any 
damping. 
 The default is BOLTDAMP=0 (no bolt damping). 
 
 In static analysis, a static analysis is performed during the bolt 
iterations if BOLTDAMP = 0. If BOLTDAMP > 0, a low-speed 
dynamic analysis is performed during the bolt iterations before the 
first time step with the specified bolt damping factor and an inertia 
factor = 1, and with the Newmark time integration method. 
  
 In low-speed dynamic analysis, a low-speed dynamic analysis is 
performed during the bolt iterations with the same settings as 
during the time steps if BOLTDAMP = 0. If BOLTDAMP > 0, the 
bolt damping factor overrides the low-speed dynamics damping 
factor during the bolt iterations.  
 
 In dynamic analysis, a static analysis is performed during the 
bolt iterations before the first time step if BOLTDAMP = 0. If 
BOLTDAMP > 0, a low-speed dynamic analysis is performed 
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during the bolt iterations before the first time step with the 
specified bolt damping factor and an inertia factor = 1, and with the 
same time integration method as for the dynamic analysis during 
the time steps. Hence, in dynamic analysis, bolt damping is often 
required to remove rigid body modes during the bolt iterations 
before the first time step. 
 
 Table 10.7-1 shows the behavior of bolt damping. 
 
 
 
Table 10.7-1: Behavior of bolt damping 
 

 BOLTDAMP = 0 BOLTDAMP > 0 
True dynamics without 
ATS: 
Solution 601,129 
NXSTRAT AUTO=0 

Bolt iterations use 
static analysis 
without low-speed 
dynamics and 
without ATS. 

Bolt iterations use low-speed 
dynamics with the user-specified 
time integration method and the 
specified bolt damping factor, 
with ATS forced on. 

True dynamics with ATS: 
Solution 601,129 
NXSTRAT AUTO=1 
 

Bolt iterations use 
static analysis 
without low-speed 
dynamics, but with 
ATS. 

Bolt iterations use low-speed 
dynamics with the user-specified 
time integration method and the 
specified bolt damping factor, 
with ATS. 

Statics without ATS and 
without low-speed 
dynamics: 
Solution 601,106 
NXSTRAT AUTO=0, 
ATSLOWS=0 

Bolt iterations use 
static analysis 
without low-speed 
dynamics and 
without ATS. 

Bolt iterations use low-speed 
dynamics with the Newmark 
method and the specified bolt 
damping factor, with ATS forced 
on. 

Statics with ATS and 
without low-speed 
dynamics: 
Solution 601,106 
NXSTRAT AUTO=1, 
ATSLOWS=0 

Bolt iterations use 
static analysis 
without low-speed 
dynamics and with 
ATS. 

Bolt iterations use low-speed 
dynamics with the Newmark 
method and the specified bolt 
damping factor, with ATS. 

Statics with ATS and low-
speed dynamics (ATS is 
always on for low-speed 
dynamics).  
Solution 601,106 
NXSTRAT ATSLOWS=1 

Bolt iterations use 
low-speed dynamics 
with the same 
settings as during 
the time steps, and 
with ATS. 

Bolt iterations use low-speed 
dynamics with the same time 
integeration method as during the 
time steps, but with the specified 
bolt damping factor, with ATS. 
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10.7.4  Usage of beam-bolts 
 
 The beam elements that make up the bolt are selected using the 
BOLT entry with ETYPE=1. All of the elements must have the 
same PID. 
 
 If more than one element has the same PID, it is assumed that 
the elements are all connected sequentially and all have the same 
length, as shown in Fig. 10.7-5.  
 

Fig. 10.7-5: Modeling of a bolt using
several beam elements.

Beam elements

All elements in the group
are equally spaced

 
 

10.7.5  Usage of 3D-bolts 
 
 The 3-D solid elements that make up the bolt are selected using 
the BOLT entry with ETYPE=3. All of the elements must have the 
same PID. 
 
 The 3D-bolt also uses a bolt plane as part of its definition. The 
bolt plane gives the bolt direction and the approximate location of 
the bolt split faces. The bolt direction is used to determine the 
direction of the bolt displacement and the direction of the bolt 
force. The bolt plane is used to determine the bolt split faces. Note 
that the bolt split faces do not necessarily coincide with the bolt 
plane. Rather, the program determines the bolt split faces to lie 
"near" the bolt plane. 
 
 It is necessary for the bolt plane to intersect the elements, in 
such a way that the bolt direction is aligned with the bolt, and the 
entire bolt force is transmitted across the bolt plane. Fig 10.7-6 
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shows some examples of incorrect and correct definitions. 
 

Fig. 10.7-6: Examples of bolt plane definition

a) Incorrect definition, bolt direction
is not aligned with bolt

b) Incorrect definition, bolt plane
does not intersect 3D-bolt

c) Incorrect definition, entire bolt
force is not transmitted across
bolt plane

d) One possible correct definition

Bolt plane

 
 
 The bolt-plane is defined using the IDIR parameter of the 
BOLT entry: 
 

 IDIR=1,2,3: the bolt plane normal is aligned with the x, y or 
z directions of the coordinate system referenced by CSID.  

 IDIR=blank (default): the program automatically 
determines the bolt plane as follows (Fig 10.7-7). First the 
centroid and moments of inertia of the 3D-bolt are obtained 
(assuming unit density). Then the bolt direction is obtained 
as the direction of the minimum principal moment of 
inertia, and the bolt plane passes through the centroid.  
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 The inertial properties are determined using numerical 
integration within the finite element mesh. Because the 
mesh itself is used, the inertial properties might not exactly 
match the properties corresponding to the underlying 
geometry. For this reason, if the direction of minimum 
principal moment of inertia is within 1 degree of a global 
coordinate direction, the global coordinate direction is used 
instead.  
 This algorithm gives a reasonable choice for the bolt 
plane in many cases.  

 
 The program outputs the bolt direction and bolt cross-sectional 
area for each bolt during data file generation. This information can 
be used to confirm that the bolt plane is defined correctly. 
 
 When the bolt force is specified for a system in which one end 
of the bolt is free (for example, the system shown in Fig 10.7-4), 
the global system of equations (10.7-3) is singular. This is 
physically correct as there is no non-zero bolt force that can satisfy 
equilibrium. 
 In this case, stiffness stabilization can be used to prevent 
numerical difficulties. 
 
 

Fig. 10.7-7: Automatic determination of bolt-plane

Direction of minimum
principal moment of inertia

Centroid

Bolt direction

Automatically determined
bolt plane
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 During large displacement analysis, the bolt direction can 
change during the solution process. The program computes the 
updated bolt direction using three nodes on the bolt split faces; as 
these three nodes move, the bolt direction is correspondingly 
updated. 
 
 It is recommended that the meshing of the 3D-bolts be 
compatible, in the sense that all of the adjacent internal element 
faces must match. 
 The reason for this recommendation is that the compatibility of 
the mesh is assumed when determining the bolt split faces.  If the 
mesh is incompatible, the bolt split faces might not be determined 
correctly. 
 Three different cases are shown in Fig 10.7-8.  In the first case 
(Fig 10.7-8a), the mesh is incompatible, and there is an unmatched 
node on one of the adjacent element faces.  If this mesh was used in 
a 3D-bolt group, Solution 601 would not be able to determine the 
bolt split faces.  
 In the second case (Fig. 10.7-8b), the mesh is, strictly speaking, 
incompatible; however Solution 601 recognizes that two triangular 
faces can match an adjacent quadrilateral face, so Solution 601 
considers the mesh to be compatible.  The second case occurs often 
in practice.  
 In the third case (Fig 10.7-8c), the mesh is totally compatible. 
 
 It is possible that meshes in which some faces are compatible 
and other faces are incompatible might cause Solution 601 to 
determine the bolt split faces incorrectly.  However Solution 601 
checks the bolt split faces for correctness: any node on a bolt split 
face must be attached to elements on both sides of the bolt plane, 
and any node attached to elements on both sides of the bolt plane 
must be on a bolt split face.  Solution 601 gives an error message if 
these checks are not passed. 
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 Fig. 10.7-8: Incompatible and compatible meshing for 3D-bolt

(b): Incompatible meshing, internal element faces do not match, but
each quadrilateral face is matched by two triangular faces,
mesh is acceptable

(a): Incompatible meshing, internal element faces do not match,
some nodes on internal element faces are not matched,
mesh should not be used

(c): Compatible meshing, internal element faces match, mesh is acceptable

Adjacent elements separated
for clarity, adjacent faces shaded
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10.7.6  Modeling issues 
 
 One modeling pitfall is illustrated in Fig. 10.7-9. The figure 
shows a bolt with contact conditions. It is intended that, after the 
bolt force is specified, the bolt be in contact with the rigid target. 
However, this model will not work as intended, for the following 
reason. During the bolt force iterations, the bolt provides no 
stiffness between the top and bottom of the bolt (points A and B in 
the figure). And since the bolt is not initially in contact with the 
target, the contact also does not provide stiffness. Therefore, in the 
first equilibrium iteration, point A moves downwards as a rigid 
body under the prescribed bolt force, and this motion is very large 
since there is no stiffness. The remaining equilibrium iterations will 
probably not converge. 
 To prevent this effect from occurring, make sure that the contact 
is established before beginning bolt force iterations. For example, 
set up the model so that there is a very small overlap between the 
contacting parts. 
 

 Fig. 10.7-9: Bolts and contact example

(b): 3D-bolt(a): Beam-bolt

Contact
conditionsA

B

Bolt-
plane

A

B

 
 

 
 

10.8  Direct matrix input (Solution 601 only) 
 

 Advanced Nonlinear Solution supports direct matrix input using 
the K2GG, B2GG, M2GG case control commands and the DMIG 
bulk data entry. 
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10.9  Parallel processing 
 

 Solution 601 supports parallel processing on all supported 
platforms, for the in-core and out-of-core sparse solvers. 
 
 Solution 701 also supports parallel processing on all supported 
platforms. 

 
 Parallelized assembly of the global system matrices is supported 
on all platforms. 
 
 To benefit from parallel element assembly, groups of elements 
with the same property ids must be divided into subgroups. The 
number of subgroups should be equal to or greater than the number 
of processors (preferably a multiple of the number of processors). 
This is set via the NSUBGRP parameter in NXSTRAT. 

 

10.10  Usage of memory and disk storage 
 

Solution 601 
Depending on the size of the problem and the memory allocated to 
Solution 601, it can perform the solution either in-core (entirely 
within real or virtual memory) or out-of-core (reading from and 
writing to disk files). Whenever possible the solution is performed 
in-core. 
 
 The program memory usage is divided into two parts: 
 

 memory usage not considering the equation solver 
 memory usage of the equation solver 
 

Each of these parts can be performed in-core or out-of-core, as 
described below. 

 
 Memory usage not considering the equation solver: There are 
two options: 
 

 The global system matrices and element information are all 
stored in-core (IOPTIM=3) . 

 The global system matrices are stored in-core, and the 
element information is stored out-of-core (IOPTIM=2).  
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 The program automatically chooses the appropriate option 
based on the size of the problem and the available memory. The 
chosen option is reported in the .f06 file as the value of 
IOPTIM. 

 
 Memory usage of the equation solver 
 

 Sparse solver and 3D-iterative solver: Each of these solvers 
can either run in-core or out-of-core. The program chooses 
whether the solver runs in-core or out-of-core, based on the 
size of the problem and the available memory.  

 Iterative multigrid solver. The solver always runs in-core. 
The out-of-core solution procedure would take an 
unreasonably long time in most cases.  

 
Solution 701 
Solution 701 can only run in-core. Enough memory must be 
provided.
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Additional reading 
 

This section lists some references related to Solution 601 and 701. 
 
Books 
K.J. Bathe, Finite Element Procedures, 2nd ed., Cambridge, MA, 
Klaus-Jürgen Bathe, 2014. 
 
D. Chapelle and K.J. Bathe, The Finite Element Analysis of Shells - 
Fundamentals, Springer, 2nd ed, 2011. 
 
M.L. Bucalem and K.J. Bathe, The Mechanics of Solids and 
Structures - Hierarchical Modeling and the Finite Element 
Solution, Springer, 2011. 
 
Web 
Additional references, including downloadable papers, can be 
found at the MIT web site of Prof. K. J. Bathe: 
 
http://meche.mit.edu/people/faculty/kjb@mit.edu 
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2-D conduction elements 
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2-D solid elements, 15, 77 
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formulations, 84 
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incompatible modes, 83 
mass matrices, 87 
material models, 84 
numerical integration, 85 
plane strain, 78 
plane stress, 78 
recommendations for use, 88 

2nd Piola-Kirchhoff stresses, 147 
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3-D conduction elements 
numerical integration, 97 

3-D solid elements, 15, 88 
formulation, 95 
heat transfer, 97 
incompatible modes, 93 
mass matrices, 97 
material models, 95 
numerical integration, 96 
recommendations, 98 

3D-bolt, 480 
3D-iterative solver, 431 
3D-shell elements, 70 
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5 degrees of freedom node, 56 
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6 degrees of freedom node, 58 
6-DOF spring elements, 15, 99 

A 

Accumulated effective plastic strain, 
174, 192 

Applied temperatures, 374 
Arc length method, 403 
Arrival time, 359 
Arruda-Boyce material model, 223 
ATS method, 396, 412 

low speed dynamics, 395 
Automatic step incrementation, 392 

B 

Bathe method, 425 
Bathe time integration, 420 
Beam elements, 15, 24 

coefficient of thermal expansion, 37 
cross-sections, 28 
elastic, 36 
forces/moments, 26 
geometric properties, 27 
heat transfer, 42 
large displacement formulation, 32 
large displacment, 32 
local coordinate system, 25 
mass matrices, 34 
modeling hints, 45 
nonlinear elasto-plastic, 37 
numerical integration, 38 
off-centered, 45 
pin flag option, 42 
stiffness matrix, 36 
warping effects, 38 

Beam-bolt, 478 
Bernoulli-Euler beam theory, 29 
Bolt feature, 476 
Bolt loadings, 484 
Bolt option, 476 
Bolt preloads, 376 
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Boundary conditions 
convection, 385, 447 
displacement, 357 
essential, 357 
force, 357 
heat flows, 447 
heat flux load, 388 
moment, 357 
natural, 357 
radiation, 386, 447 
temperatures, 447 

Bushing elements, 15, 138 
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Cauchy stresses, 147 
Central difference method, 435 
Centrifugal loads, 365, 367 
Composite shell elements, 63 
Concentrated loads, 360 
Concentrated mass elements, 15, 137 
Consistent contact surface stiffness, 

298 
Constraint equations, 377 
Constraint-function method, 282 
Contact analysis features, 303 
Contact birth/death, 298 
Contact compliance, 303 
Contact damping, 306, 320 
Contact detection, 304 
Contact oscillations, suppressing, 305 
Contact pairs, 273 
Contact set properties, 289 
Contact surface compliance, 295 
Contact surface depth, 291 
Contact surface extension, 295 
Contact surface offsets, 289 
Contact surfaces, 271 

consistent contact stiffness, 298 
constraint-function method, 282 
contact birth/death, 298 
contact surface compliance, 295 

contact surface depth, 291 
contact surface extension, 295 
contactor and target selection, 307 
continuous normals, 290 
convergence, 316 
double-sided contact, 278 
friction delay, 299 
frictional heat generation, 302 
gap override, 293 
initial penetration, 291 
kinematic constraint method, 286 
modeling hints, 309 
new representation, 277 
old representation, 277 
penalty method, 287 
rigid target method, 285, 321 
segment method, 285 
single-sided contact, 278 
small displacement contact, 280 
three-dimensional, 273 
tied contact, 279 
two-dimensional, 273 

Convection boundary condition, 385 
Convergence criteria, 405 

contact, 407 
energy, 406, 409, 425 
force and moment, 406, 409, 426 
translation and rotation, 407 

Coupled thermo-mechanical analysis, 
455 
iterative coupling, 457 
one-way coupling, 457 

Creep laws, 212 
exponential, 213 
power, 212 

Creep strains, 212 
O.R.N.L. rules for cyclic loading 

conditions, 213 
strain hardening, 213 



Index 
 

 
 
498 Advanced Nonlinear Solution  Theory and Modeling Guide 

D 

Damper elements, 15, 99 
Damping, 423, 437 
Deformation gradient tensor 

elastic, 151 
inelastic, 151 
total, 148 

Deformation-dependent distributed 
loads, 363 

Deformation-dependent pressure 
loads, 363 

Direct matrix input, 492 
Director vectors, 49 
Displacement-based finite elements, 

81, 91 
Distributed loads, 362 

beam, 364 
deformation dependent, 363 

DMIG, 492 
Dynamic analysis, 419, 424 
Dynamic contact/impact, 303 

E 

Effective plastic strain, 173 
Elastic-creep material models, 202 
Elastic-isotropic material model, 157, 

158 
Elastic-orthotropic material model, 

157, 159 
2-D solid elements, 161 
3-D solid elements, 159 
shell elements, 160 

Elasto-plastic material model, 169 
Element birth/death, 392, 464 
Element death due to rupture, 472 
Element locking, 69 
Elements 

2-D solid, 15, 77, 78 
3-D solid, 15, 88 
3D-shell, 70 

6-DOF spring, 15, 99 
beam, 15, 24 
bushing, 15, 138 
concentrated mass, 15, 137 
dampers, 15, 99 
gap, 15, 136 
line, 15, 22 
masses, 15, 99 
potential-based fluid, 115 
RBE3, 111 
rigid, 15, 104 
rod, 15, 22 
R-type, 15, 104 
scalar, 15, 99 
shell, 15, 46 
solid, 15, 88 
springs, 15, 99 
surface, 15, 77 

Enforced displacements, 372 
relative enforced displacement 

option, 373 
Enforced motion, 372 
Enforced rotations, 373 
Engineering strains, 146 
Engineering stresses, 147 
Equilibrium iterations 

full Newton method, 392 
Explicit dynamic analysis, 435 
Explicit time integration 

stable time step, 438 
time step size, 437 

Exponential creep law, 213 

F 

Five degrees of freedom node, 56 
Formulations for 

2-D solid elements, 84 
3-D solid elements, 95 
rod elements, 23 
shell elements, 55 

Fourier number, 451 
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Fourier's law, 444 
Free surface modeling, 115 
Friction 

basic models, 300 
pre-defined models, 300 

Full Newton iterations, 392 
line searches, 393 

G 

Gap elements, 15, 136 
Gap override, 293 
Gasket material model, 251 

modeling issues, 257 
user input, 252 

Global mass matrix, 426 
Global mass scaling, 442 
Green-Lagrange strains, 146 

H 

Heat flux boundary load, 388 
Heat transfer analysis, 444 

automatic time-stepping, 453 
Heat transfer materials, 269 
Hencky strains, 146 
Hermitian beam elements, 24 
Holzapfel model for finite strain 

viscoelasticity, 237 
Hyperelastic material models, 217 

Mullins effect, 246 
thermal strain effect, 235 
viscoelastic effects, 237 

Hyperfoam material model, 225 
selection of material constants, 226 

I 

Implicit time integration, 419 
Bathe method, 420 
Newmark method, 420 
trapezoidal rule, 421, 424 

Improperly supported bodies, 318 

Inelastic deformations, 151 
Inertia loads, 365 
Initial conditions, 447, 461 
Internal heat generation, 389, 447 
Isotropic hardening, 169, 180 
Iterative multigrid solver, 429 
Iterative thermo-mechanical coupling 

heat transfer between contacting 
bodies, 459 

internal heat generation, 458, 459 
surface heat generation due to 

frictional contact, 459 

J 

Jaumann strains, 146 

K 

Kinematic constraint method, 286 
Kinematic hardening, 169, 180 

back stress temperature correction, 
211 

Kirchhoff stresses, 147 

L 

Large displacement formulation, 23, 
55, 157, 200 

Large displacement/large strain 
formulation, 84, 95, 144, 171, 180, 
203, 217 

Large displacement/large strain 
kinematics, 266 

Large displacement/small strain 
formulation, 84, 95, 143, 171, 180, 
203 

Large displacement/small strain 
kinematics, 266 

Large strain analysis 
ULH formulation, 148 
ULJ formulation, 152 

LDC method, 402, 412 
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Limiting maximum incremental 
displacement, 321 

Line elements, 15, 22 
Line search, 393 
Linear dynamic analysis, 419 
Linear formulation, 55, 85, 95, 157 
Linear static analysis, 390 
Load-displacement-control method, 

402 
Loading 

centrifugal, 365, 367 
concentrated, 360 
distributed, 362 
inertia, 365 
mass-proportional, 365, 369 
pressure, 362 

Logarithmic strains, 146 
Low speed dynamics, 395 

M 

Mass elements, 15, 99 
Mass matrices for 

2-D elements, 87 
3-D elements, 97 
shell elements, 66 

Mass matrix, 422, 437 
Mass scaling, 442 
Mass-proportional loads, 365, 369 

potential-based fluid elements, 123 
Material models, 139 

Arruda-Boyce, 223 
elastic-creep, 202 
elastic-isotropic, 157, 158 
elastic-orthotropic, 157, 159 
elasto-plastic, 169 
gasket, 251 
hyperelastic, 217 
hyperfoam, 225 
Mooney-Rivlin, 219 
nonlinear elastic, 162, 167 
Ogden, 222 

orthotropic conductivity, 270 
plastic-bilinear, 169 
plastic-creep, 202 
plastic-cyclic material, 180 
plastic-multilinear, 169 
Shape Memory Alloy, 258 
SMA, 258 
Sussman-Bathe, 227 
temperature-dependent elastic, 200 
thermal elasto-plastic, 202 
thermal isotropic, 200 
thermal orthotropic, 200 
viscoelastic, 266 

Material models for 
2-D solid elements, 84 
3-D solid elements, 95 
rod elements, 23 
shell elements, 55 

Materially-nonlinear-only 
formulation, 55, 85, 96, 197, 200, 
203, 266 

Matrices for 
beam elements, 34 

Maximum incremental displacements, 
393 

Memory allocation, 428 
in-core solution, 493 
out-of-core solution, 493 

Mesh glueing, 379 
MITC, 48 
Mixed Interpolation of Tensorial 

Components, 48 
Mixed-interpolated finite elements, 

81, 92 
Mixed-interpolation formulation, 172, 

198, 220 
Modeling of gaps, 168 
Mooney-Rivlin material model, 219 

selection of material constants, 221 
Mullins effect, 246 
Multilayer shell elements, 63 
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Multipoint constraints, 377 
general constraints, 377 
regular constraints, 377 

N 

Newmark method of time integration, 
420 

Nominal strains, 147 
Nonconvergence, 408, 410 
Nonlinear dynamic analysis, 424 
Nonlinear elastic material model, 162, 

167 
Nonlinear static analysis, 391 

selection of incremental solution 
method, 410 

Non-positive definite stiffness matrix, 
428 

Numerical integration for 
2-D solid elements, 85 
3-D solid elements, 96 
beam elements, 38 
rod elements, 23 
shell elements, 65 

O 

O.R.N.L. rules for cyclic loading 
conditions, 213 

Ogden material model, 222 
selection of material constants, 223 

Orthotropic conductivity material 
model, 270 

P 

Parallel processing, 493 
Penalty method, 287 
Penetration depth, 452 
Pin flag option, 42 
Plastic strains, 207 
Plastic-bilinear material model, 169 
Plastic-creep material models, 202 

Plastic-cyclic material model, 180 
Plastic-multilinear material model, 

169 
Positive definite stiffness matrix, 390 
Post-collapse response, 402, 412 
Potential-based fluid elements, 115 

3-D, 115 
axisymmetric, 115 
free surfaces, 115 
mass-proportional loads, 123 
planar, 115 
pressure loads, 123 

Power creep law, 212 
Pre-defined friction models, 300 
Pressure loads, 362 

deformation-dependent, 363 
potential-based fluid elements, 123 

R 

Radiation boundary condition, 386 
Rayleigh damping, 423, 438 
RBE3 elements, 111 
Reactions, 473 
Recommendations for use of 

shell elements, 69 
Restart, 462 
Restart with contact, 306 
Rigid elements, 15, 104 
Rigid target contact algorithm, 321 
Rigid target method, 285, 321 
Rod elements, 15, 22 

formulations, 23 
heat transfer, 24 
mass matrices, 23 
material models, 23 
numerical integration, 23 

R-type elements, 15, 104 
Rupture conditions, 178, 198 
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S 

Scalar elements, 15, 99 
Segment method, 285 
Shape Memory Alloy, 258 
shell elements 

numerical integration, 65 
Shell elements, 15, 46 

3D, 70 
4-node, 69 
basic assumptions in, 48 
composite, 63 
director vectors, 49 
formulations, 55 
heat transfer, 67 
incompatible modes, 47 
locking, 69 
mass matrices, 66 
material models, 55 
multilayer, 63 
nodal point degrees of freedom, 55 
shear deformations, 54 
thick, 69 
thin, 69 

Six degrees of freedom node, 58 
SMA material model, 258 
Small displacement contact feature, 

280 
Small displacement formulation, 23, 

157, 200 
Small displacement/small strain 

formulation, 55, 84, 95, 143, 171, 
180, 203 

Small displacement/small strain 
kinematics, 266 

Solid elements, 15, 88 
Solvers, 427 

3D-iterative solver, 431 
iterative multigrid solver, 429 
sparse solver, 427 

Sparse solver, 427 
in-core, 428 

memory allocation, 428 
out-of-core, 428 

Specific heat matrix, 450 
Spring elements, 15, 99 
Stabilized TLA method, 400 
Steady state analysis, 448 
Stiffness stabilization, 319, 392, 474 
Strain hardening, 213 
Strain measures, 145 

engineering strains, 146 
Green-Lagrange strains, 146 
Hencky strains, 146 
Jaumann strains, 146 
logarithmic strains, 146 
stretches, 146 

Stress measures, 147 
2nd Piola-Kirchhoff stress, 147 
Cauchy stress, 147 
engineering stress, 147 
Kirchhoff stress, 147 

Stretch tensor 
left, 150 

Stretches, 144, 146 
Structural vibration, 422 
Superelastic effect, 258 
Suppressing contact oscillations, 305 
Surface elements, 15, 77 
Sussman-Bathe material model, 227 

data input considerations, 234 
Symmetric contact pairs, 275 

T 

Temperature-dependent elastic 
material models, 200 

Thermal elasto-plastic material 
models, 202 

Thermal isotropic material model, 200 
Thermal orthotropic material model, 

200 
Thermal strains, 154, 207 
Tied contact, 279 
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Time functions, 355, 357 
Time step management, 441 
TL formulation, 85, 96, 197, 200, 203, 

217, 266 
TLA method, 399 
TLA-S method, 400 
Total Load Application method, 399 
Transient analysis, 449 

choice of mesh size, 450 
choice of time step size, 450 

Trapezoidal rule, 421, 424 
True strains, 147 

U 

UL formulation, 200, 203 
ULH formulation, 96, 148, 171, 197, 

203, 266 
ULJ formulation, 152, 171, 197 

V 

Viscoelastic effects, 237 
Viscoelastic material model, 266 

W 

Wave propagation, 422 
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