
Automate all the things

David Glaser

Senior Technical Account Manager

1

Converting Bash
scripts to Playbooks

The Automation Journey often involves
converting scripts to Ansible Playbooks.

This is a perfect time to reexamine how these
scripts work and utilize Ansible idempotent
features.

2

3

Ansible includes shell, command, and script modules. These allow for

direct running of scripts on remote hosts. This presents problems:

▸ No idempotency checking

▸ Output is simply the script output

▸ Does not support check_mode

The Shortcut Trap

Why Convert?

4

▸ Converting will likely not be 1 for 1

▸ There may not be an ansible module for everything

▸ The ansible playbook will likely be longer than the bash script, but

easier to read

▸ The flow of the script may have to be reworked

What they don’t tell you

Conversion Misnomers

Ansible handles redundancy, idempotency, and

error checking when using supported modules

▸ One function per task*

▸ Linear flow through playbook

▸ Learning curve for formatting only**

5

* Some tasks perform multiple functions, but these are limited to permission changes to the working file, etc.
** Ok, there’s some syntax learning, but it’s a on module by module basis

Bash is a great scripting language, but all

redundancy, idempotency, and error checking

must be done manually

▸ Multiple functions in each task(line)

▸ Non-linear flow (functions) through script

▸ Learning curve for syntax and formatting

Features

Bash vs Ansible

We’ll focus on a method to follow to convert bash

scripts to Ansible Playbooks

▸ Temporary script file

▸ Examine script flow

▸ Converting conditionals

▸ Examine system commands and arguments

▸ Verify functionality

6

Converting Concepts

7

Much of the planning for conversion means moving code around. Using a

temporary file will assure that any changes can be tested or backed out.

Temporary script file

8

Bash has functions, but Ansible does not. It’s possible to include groups

of tasks using include and import modules however

▸ Look over the Script Flow, are functions used?

･ If so, are they used multiple times?

Examine Script Flow

Used Multiple Times

▸ These lines(tasks) will be in their own file and

included or imported into the main playbook

▸ Any variables that are ‘sent’ to the function

need to be registered in the playbook.

Used Once

Place the function in line in the script where it

is called

9

Examine Script Flow

10

Rewriting the script into a linear flow will make converting to a playbook

easier

▸ Once the flow is linear, start working on playbook(s)

▸ Define variables that are needed at the play level as much as possible

▸ Work on one task (or bash statement) at a time, converting it to an

Ansible task

▸ When writing blocks with conditions, make it falsifiable so you can

control when the block is run to test with

Writing the playbook

11

Bash if, for, and while statements are defined at the beginning of the

conditional. In ansible they are at the end. Use block: to group

conditionals together

▸ Variables are not quoted in conditionals

▸ Conditionals can be joined using and, or and ().

▸ Blocks can be nested which each level having its own conditionals

▸ Ansible does not have an if-else construct, so use two conditionals,

one for each test

Convert conditionals

12

Convert conditionals

13

▸ Identify Ansible modules that will accomplish each task

･ Note which modules are needed

･ Note which arguments are required for each

▸ If a module doesn’t exist in Ansible, is one available online (Galaxy,

Automation Hub), or possible to create?

･ If yes, include the containing collection in the playbook

directory or other location that is available

･ If no, default to shell or command to run the command

Examine System Commands and Arguments

14

Examine System Commands and Arguments

COMMAND ARGUMENTS

15

Test the Ansible Playbook after every task (or set of tasks) is added.

▸ This cuts down on testing at the end of the playbook

▸ Assists in verifying system is in proper order for next task

Verify Functionality

16

Q&A

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

17

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning support,

training, and consulting services make Red Hat a trusted

adviser to the Fortune 500.

Thank you

