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Converting Bash 
scripts to Playbooks



The Automation Journey often involves 
converting scripts to Ansible Playbooks.

This is a perfect time to reexamine how these 
scripts work and utilize Ansible idempotent 
features.
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Ansible includes shell, command, and script modules. These allow for 

direct running of scripts on remote hosts. This presents problems:

▸ No idempotency checking

▸ Output is simply the script output

▸ Does not support check_mode

The Shortcut Trap

Why Convert?
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▸ Converting will likely not be 1 for 1

▸ There may not be an ansible module for everything

▸ The ansible playbook will likely be longer than the bash script, but 

easier to read

▸ The flow of the script may have to be reworked

What they don’t tell you

Conversion Misnomers



Ansible handles redundancy, idempotency, and 

error checking when using supported modules

▸ One function per task*

▸ Linear flow through playbook

▸ Learning curve for formatting only**
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*  Some tasks perform multiple functions, but these are limited to permission changes to the working file, etc.
** Ok, there’s some syntax learning, but it’s a on module by module basis

Bash is a great scripting language, but all 

redundancy, idempotency, and error checking 

must be done manually

▸ Multiple functions in each task(line)

▸ Non-linear flow (functions) through script

▸ Learning curve for syntax and formatting

Features

Bash vs Ansible



We’ll focus on a method to follow to convert bash 

scripts to Ansible Playbooks

▸ Temporary script file

▸ Examine script flow

▸ Converting conditionals

▸ Examine system commands and arguments

▸ Verify functionality
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Converting Concepts
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Much of the planning for conversion means moving code around. Using a 

temporary file will assure that any changes can be tested or backed out. 

Temporary script file
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Bash has functions, but Ansible does not. It’s possible to include groups 

of tasks using include and import modules however

▸ Look over the Script Flow, are functions used?

･ If so, are they used multiple times?

Examine Script Flow

Used Multiple Times

▸ These lines(tasks) will be in their own file and 

included or imported into the main playbook

▸ Any variables that are ‘sent’ to the function 

need to be registered in the playbook.

Used Once

Place the function in line in the script where it 

is called
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Examine Script Flow
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Rewriting the script into a linear flow will make converting to a playbook 

easier

▸ Once the flow is linear, start working on playbook(s)

▸ Define variables that are needed at the play level as much as possible

▸ Work on one task (or bash statement) at a time, converting it to an 

Ansible task

▸ When writing blocks with conditions, make it falsifiable so you can 

control when the block is run to test with

Writing the playbook
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Bash if, for, and while statements are defined at the beginning of the 

conditional. In ansible they are at the end. Use block: to group 

conditionals together

▸ Variables are not quoted in conditionals

▸ Conditionals can be joined using and, or and (). 

▸ Blocks can be nested which each level having its own conditionals

▸ Ansible does not have an if-else construct, so use two conditionals, 

one for each test

Convert conditionals
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Convert conditionals
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▸ Identify Ansible modules that will accomplish each task

･ Note which modules are needed

･ Note which arguments are required for each

▸ If a module doesn’t exist in Ansible, is one available online (Galaxy, 

Automation Hub), or possible to create?

･ If yes, include the containing collection in the playbook 

directory or other location that is available

･ If no, default to shell or command to run the command

Examine System Commands and Arguments
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Examine System Commands and Arguments

COMMAND                                               ARGUMENTS
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Test the Ansible Playbook after every task (or set of tasks) is added. 

▸ This cuts down on testing at the end of the playbook

▸ Assists in verifying system is in proper order for next task

Verify Functionality
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Q&A



linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat
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Red Hat is the world’s leading provider of enterprise 

open source software solutions. Award-winning support, 

training, and consulting services make Red Hat a trusted 

adviser to the Fortune 500. 

Thank you


