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Abstract

This paper describes the requirements, design, and prototype testing

of the Flex-Section and Hinge Seals for the Laminar Flow Supersonic Wind

Tunnel Primary Injector. The supersonic atmospheric Primary Injector

operates between Mach 1.8 and Mach 2.2 with mass-flow rates of 62 to 128

lbm/s providing the necessary pressure reduction to operate the tunnel in

the desired Reynolds number (Re) range.

Introduction

Research in supersonic flow has been reawakened with the recent

interest in the commercial supersonic transports such as the High Speed

Civil Transport (HSCT). Creating low-disturbance, laminar flow at

supersonic speeds inside a wind tunnel has been elusive. The Laminar

Flow Supersonic Wind Tunnel (LFSWT) at NASA-Ames Research Center will

support supersonic laminar flow control research using a radically new

design approach. Most wind tunnels, regardless of speed have either a

blow-down or recirculating configuration. Blow-down tunnels are normally

limited by the supply volume of compressed air. Recirculating supersonic

wind tunnels are usually pressurized and require heat exchangers to

remove the adiabatic-compression-temperature rise during each circuit. In

addition, temporal and spatial turbulence is also a problem.

The LFSWT at NASA-Ames Research Center is a radical departure

from existing wind tunnel designs. The LFSWT is a continuously operating,

quiet flow, supersonic wind tunnel utilizing a nonspecific centrifugal

compressor, settling chamber, nozzle, test section, two atmospheric air

injectors, and the Center's existing 207 bar (3000 psi) air system (Figure

1). Most supersonic wind tunnels operate at higher than atmospheric
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pressure and all are "noisy" or high disturbance wind tunnels. Quiet

supersonic wind tunnels are defined as tunnels with pressure fluctuations

of 0.05% or less in the test core. 1 Wind tunnels are described by the size of

the test section. The LFSWT is 20.32 cm (8 in.) high by 40.64 cm (16 in)

wide. Mass-flow rates for the test section range up to 9.52 kg/s (20

Ibm/s) with speeds ranging from Mach 1.6 to Mach 2.5. Reynolds numbers

(Re) will range from one million to five million. To achieve the low end of

the desired Re, the tunnel stagnation or total pressure (Po) must be below

the minimum exit pressure (PE) at the throat. The stagnation pressure is

the pressure created by bringing the flow to rest isentropically. This

means the LFSWT must operate with a compression ratio uniquely less

than unity (Po/PE down to 0.6251 with Re=l million per foot at Po = 0.34

bar (5 psia)). 1 To achieve a lower stagnation pressure than the capability

of the compressor, two supersonic air injectors were utilized down stream

of the test section. Taking advantage of extremely high mass-flow

capability of the compressor (much higher than the 20 lbm/s required

from the test section), two full-scale, supersonic ambient air injectors,

Primary and Secondary, are used in the LFSWT. Supersonic air injectors

create jets of low pressure, high energy air downstream of the test section.

Air injectors are designed in pairs, opposite of one another. The low

pressure created downstream reduces the Reynolds number and test

section exit pressure into the desired range. Thus, by using two air

injectors, the tunnel operates at lower pressure than the downstream

indraft air compressor is capable of achieving. The first injector has a

variable mass-flow and mach number. The second injector has a fixed

geometry, a constant mass-flow of 95.2 kg/s (200 Ibm/s), and an exit of

Mach 2.0.

This paper will address the unique design requirements, full scale

prototype development, and consequent design solutions for the Primary

Injector (Figure 2).

The Primary injector is composed of two pairs of four moving component

sub-assemblies; the Slider Assembly, the Flex-Section, the Contoured

Throat Plate, and the Hinge Plate. The Contoured Throat Plate is actuated
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by two sets of ball screws. One set of hand-operated ball screws controls

the injector nozzle throat and the other set actuates the nozzle exit. Each

ball screw set can be moved independently of the other. Moving the

throat ball screw set varies the mass-flow rate through the nozzle. Moving

the nozzle exit ball-screw set varies the exit velocity. The system was

designed to be infinitely adjustable and to be repeatable within the design

criteria described below. Infinite adjustment required that only one end

of the mechanism assembly be fixed. The exit end of the Hinge Plate is

attached to the tunnel side walls via an 88,960 N (20,000 lbf) radial

capacity hinge. As the Contoured Throat Plate is positioned from

maximum mass-flow rate and Mach number to the minimum mass-flow

rate and Mach number, the Hinge Plate oscillates through + 20 °. The Flex-

Section is fixed to both the Contour Throat Plate and the Slider Assembly.

The Slider Assembly allows only longitudinal motion and has a low

pressure, sliding seal. When changing the nozzle and exit positions of the

Primary Injector, the Contour Throat Plate moves longitudinally and

rotates simultaneously. The Flex-Section and Slider Assembly combine to

form a flexible, continuous duct through out all design parameters.

Overall Design Parameters

Speeds in the Primary Injector nozzle range from Mach 1.8 to Mach

2.2 while the injected mass-flow range changes from 30.46 kg/s to 60.92

kg/s (64 lbm/s to 128 Ibm/s). Inside the injector and mixing region, the

flow is unstable and, consequently, structural vibrations are high. Nozzle

and exit geometries must be repeatable to within 0.136 mm (0.005 in). To

insure accurate and repeatable measurements of the throat and exit

geometries, optical encoders coupled to eight (four each side) zero-

backlash ball screws are used for positioning. External pressure loads

range from 0.136 bar (2 psia) at the two inlets to 0.92 bar (13.5 psia) in

the mixing region. Due to the low internal pressure, all hinge and flex

joints and sliding plates must be leak-tight and maintenance free in all

positions. Slight leaks perpendicular to the flow will severely decrease

injector performance. Pressure loads created during operation deflect the

50.8 mm (2 in.) thick Side-Walls so that moving the Contour Throat Plate is
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not possible. The structure required for throat and exit adjustment during
operation was not feasible.

Sealing Requirements

To seal the sides of the Slider Assembly, Flex-Section, Contour Throat

Section and Hinge Plate a continuous, longitudinal, 1/4 nominal, buna-N O-

ring was used on each side. A simple sliding motion study determined that

the O-ring would not fail by twisting longitudinally inside the O-ring gland

during repositioning (Figure 3).

Design/Prototype Development

Development and prototype testing concentrated on the Flex-Section

and the Hinge Joints. The Flex-Section is between the Slider Assembly and

the Contour Throat Plate. The hinge joints are between the Contour Throat

Plate and the Hinge Plate and between the Hinge Plate and Bridge Plate.

Flex-Section Development

The Flex-Section Prototype was made from 0.81 mm (0.032 in) thick

C1095 spring steel and a medium viscosity, adjustable durometer

polyurethane (Figure 4). The urethane was cast to the spring steel to form

a O-ring gland for the longitudinal O-ring seal. Speeds in the Flex-Section

begin at Mach 0.3 and terminate at Mach 0.8 just before critical flow in the

Contour Throat Plate. Bend testing of the prototype far beyond the

operating range of motion yielded no problems. Two changes were made

to the final design. First, the O-ring gland was moved downward until the

bottom of the O-ring gland was formed by the spring steel. Urethane

formed the other two sides. For the second modification, a 6.3 mm (0.25

in.) layer of polyurethane was bonded to the back side of the spring steel

to dampen and lowered the spring steel's natural frequency (Figure 5).
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Hinge Seal Development

Two zero-leak hinge joints are required. Each hinge joint must seal

across the axis of hinge motion and seal longitudinally, using the linear O-

ring seal. The range of motion for the hinge is + 20 ° past center.

Three hinge concepts were tested and two failed. As with many

great ideas, the translation from the concept/design phase to the testing

phase was not always satisfactory.

Hinge Concept No. 1

The initial series of three prototypes only used the polyurethane

rubber to form the flexible hinge section (Figure 6). (This idea is similar to

the living hinges on plastic cases). If this concept had worked an O-ring

gland for the longitudinal O-ring would have been cast into the hinge. Two

of the prototypes had a triangular hinge joint design. The angle was

determined by the maximum combined stress from the shear and tensile

properties of the polyurethane material. Spacing between the metal parts

was varied to determine the joint shear strength versus bending

resistance. The third prototype had two straight joints perpendicular to

the flow surface.

Test Results

Bending tests were performed using the Material Test System MTS 810

and Graphtec X Y Recorder. Force verses deflection graphs were plotted.

The joint deflection was limited to 20 degrees. The first and second

prototypes delaminated around the tip of the radiused triangle.

Delamination and tears in the material were caused by strain over too little

material. The third prototypes did not fail visibly, however the material

continued to relax with sustained loading. Internally, the molecular bonds

were breaking and would eventually fail, similar to an old rubber band.

Shear tests on the joints were not performed.
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Hinge Concept No 2.

The second series of prototypes was a combination of two ideas. A

mechanical hinge on the top of the joint would eliminate the shear and

some tensile loading from the polyurethane hinge seal. Since seal strength,

other than pressure loading, was not important, three more hinge

prototypes were fabricated with 60 durometer (softer) polyurethane

instead of the 80 durometer polyurethane used in the first series (Figure

7). Installing the hinge on the top of the joint forced the seal to stretch

outside the neutral axis of the seal. The trapezoidal seal shape was defined

by a line from the center point of hinge action to the sealing edge.

Calculations based on the allowable strain for the polyurethane determined

the joint angle. To reduce the tensile forces required to open the hinge and

compression forces required to close the hinge, two composite hinge seals

were fabricated. The third seal was solid polyurethane. The Contoured

Throat Plate and Hinge Plate material was changed from A-36 steel to

6061-T6 aluminum to reduce part machining time. The first prototype

contained trapezoidal foam cores, each 3 inches long. Between the soft

foam cores, a solid 12.7 mm (0.5 in.) rib of urethane material remained.

The trapezoidal foam cores were smaller than the joint and surrounded by

a 9.5 mm (0.375 in) thick urethane layer. The ribs helped restrain the thin

seal membrane from folding into the air flow when the hinge joint was

closed. The foam also helped reduce the actuation forces during operation.

The second prototype contained seven, 9.5 mm (0.375 in.) diameter, 30

durometer, closed cell, neoprene cords strung laterally along the joint in a

trapezoidal formation. Again the softer material reduced the actuation

forces and stress on the joint during fabrication. The last prototype was

solid, 60 durometer polyurethane. Each sample was oven cured to full

strength before testing.

Test Results

The most promising design, the trapezoidal foam core prototype was tested

first. Again the MTS 810 and graphic recorder test apparatus was used

and the same parameters of force versus deflection were plotted. The
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prototype delaminated along the outer flow side. However, the foam core

concept seemed to restrain the flow-side membrane from popping out into

the air flow when the joint was compressed during closing. The second,

neoprene cored prototype did not delaminate. Actuation forces were not
excessive. However it was the second prototype that called to our

attention another design flaw. Because of the off-center hinge point, the

strain in the bottom fibers was the highest. This caused the bottom

corners of the seal to draw inward, away from the longitudinal O-ring seal

on the side walls. This effect was created by a volumetric, (Poisson's)
contraction due to the strain in the bottom fibers. The third, solid

prototype failed at both the joint and in the middle of the seal. In all three
cases, the stresses and strains were well within the manufacturer's

recommendations. If the polyurethane hinge seal was to be used, the
maximum strain had to be no more than 25 percent of the strains we
tested.

More Design Concepts

Three more design concepts were considered. In each we tried to

overcome the limitations of the material and meet the design criteria of

20 ° in each direction. The design concepts became more and more

complicated requiring more prototype testing.

Final Design

The final design was a radical departure from the previously described

hinge seals. Prototype testing of the Flex Plate inspired a similar design

approach for the hinge seals (Figure 8). Two U-shaped pieces of stainless

steel sheet with cast O-ring glands provided the sealing around both

hinges. The hinge design was mechanically limited by the amount of

travel in the downward position. The upward rotation was not directly

limited, however, the seal sheet could only withstand so much rotation

without permanent deformation. The sheet thickness was a compromise

between buckling strength and bending stress. To eliminate the large

bending stresses, the sheets were rolled to the average bend radius, thus

dividing the required deflection. This modification did, however,
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complicate the mold required to cast the polyurethane O-ring gland onto
the sheet. To confirm the seal design and the influence of the

polyurethane on buckling strength, a Patran/Nastran computer analysis

was performed. The bucking strength was only increased by 2 psi with
the polyurethane added.

Conclusion

The final design of the key sealing areas in the Primary Injector

included three flexible composite seals. Each seal had an O-ring gland cast

into each side to provide longitudinal sealing of moving parts. All parts

are in fabrication at this time. The first test will be an F-16XL Aircraft

wing in support of the Supersonic Laminar Flow Control (SLFC) studies.

Lessons Learned

1) Keep the design simple.

2) If you have a novel solution to a unique problem, test it first.

3) Simple models can be made to test and confirm ideas.

4) If your solution doesn't work the first time, don't take it too

seriously. ( Don't give up!!)

5) Keep the project in perspective.
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