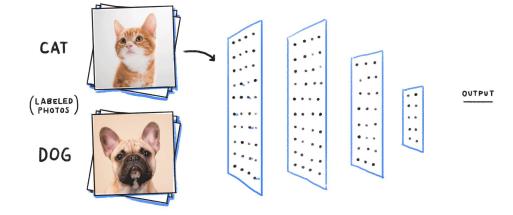
Object Detection

JunYoung Gwak

Motivation

Image classification

- Input: Image
- Output: object class



Motivation

Limitation of classification

- Multiple classes
- Location

i.e.

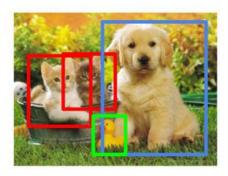
Object classification assumes

- Single class of object
- Occupies majority of the input image

Classification

CAT

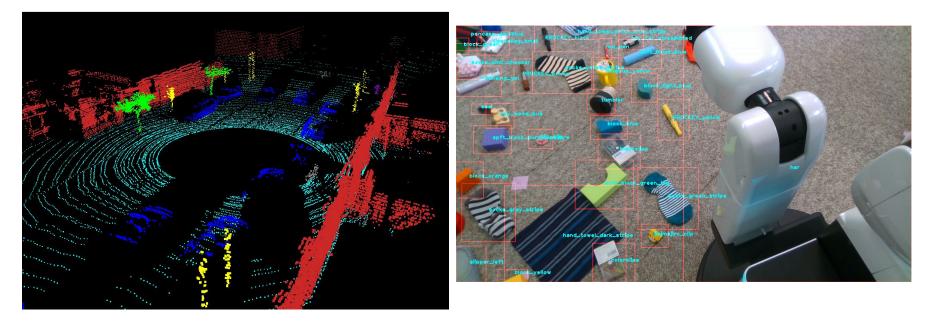
Object Detection



CAT, DOG, DUCK

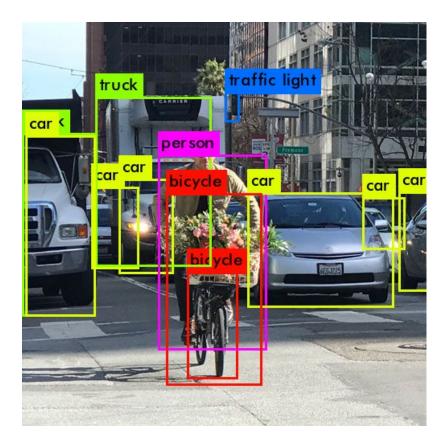
Motivation

We need high-level understanding of the complex world



Object Detection

- Input: Image
- Output: multiple instances of
 - object location (bounding box)
 - object class

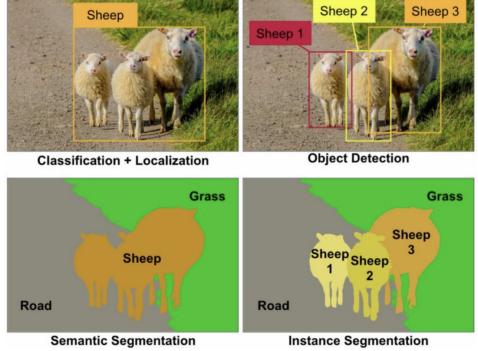


Object Detection

- Input: Image
- Output: multiple **instances** of
 - object location (bounding box)
 - object class

Instance:

 Distinguishes individual objects, in contrast to considering them as a same single semantic class

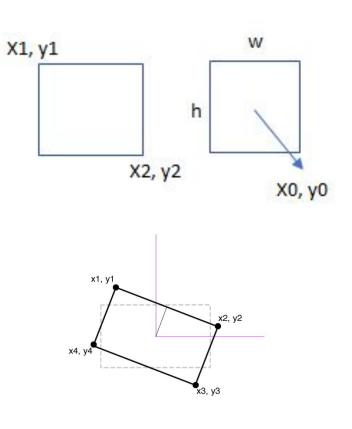


Object Detection

- Input: Image
- Output: multiple instances of
 - object location (bounding box)
 - object class

Bounding box:

- Rigid box that confines the instance
- Multiple possible parameterizations
 - (width, height, center x, center y)
 - o (x1, y1, x2, y2)
 - \circ (x1, y1, x2, y2, rotation)



Object Detection

- Input: Image
- Output: multiple instances of
 - object location (bounding box)
 - object class

Object class:

- Semantic class of the instance
 - Similar to object classification task, by predicting a vector of scores

People that say that AI will take over the world:

My own Al:



- Multiple important works around 2014-2017 which built the basis of modern object detection architecture
 - R-CNN
 - Fast R-CNN
 - Faster R-CNN
 - o SSD
 - YOLO (v2, v3)
 - FPN
 - Fully convolutional
 - o ...

	YOLO								YOLOv2
batch norm?		\checkmark							
hi-res classifier?			\checkmark						
convolutional?				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
anchor boxes?				\checkmark	\checkmark				
new network?					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
dimension priors?						\checkmark	\checkmark	\checkmark	\checkmark
location prediction?						\checkmark	\checkmark	\checkmark	\checkmark
passthrough?							\checkmark	\checkmark	\checkmark
multi-scale?								\checkmark	\checkmark
hi-res detector?									\checkmark
VOC2007 mAP	63.4	65.8	69.5	69.2	69.6	74.4	75.4	76.8	78.6

Let's dissect the modern (2017) object detection architecture!

⇒ Detectron

Stage 1

- For every output pixel (given by backbone networks)
 - For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence
- Suppress overlapping predictions using non-maximum suppression

- For every region proposals
 - Predict bounding box offsets
 - Predict its semantic class

Stage 1

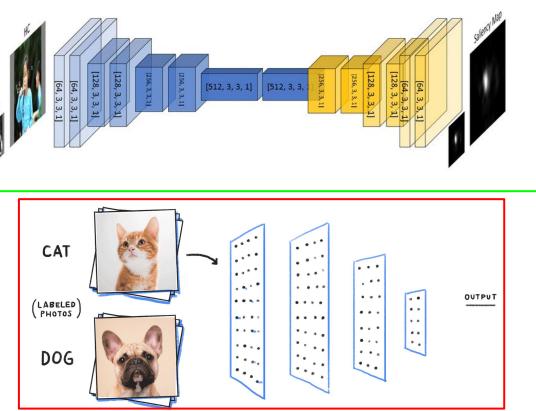
- For every output pixel (given by backbone networks)
 - For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence
- Suppress overlapping predictions using non-maximum suppression

- For every region proposals
 - Predict bounding box offsets
 - Predict its semantic class

Fully Convolutional

Every pixel makes prediction!

 In contrast to previous works in image classification

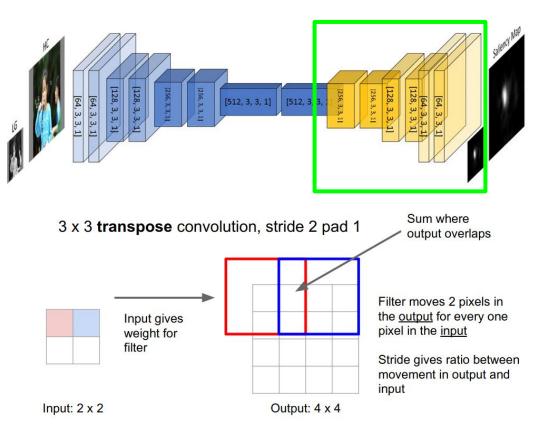


Fully Convolutional

Every pixel makes prediction!

Key notions

• Conv Transpose / unpooling operation: Recover the resolution of the input image

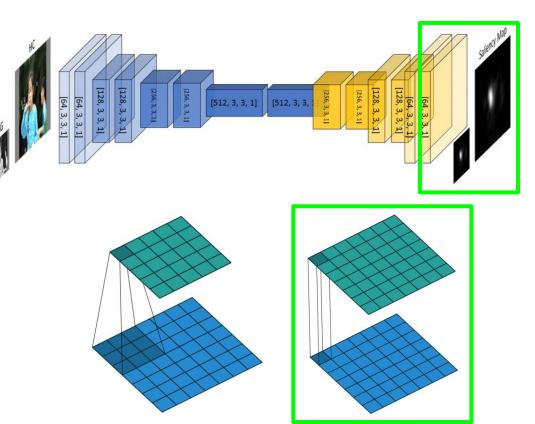


Fully Convolutional

Every pixel makes prediction!

Key notions

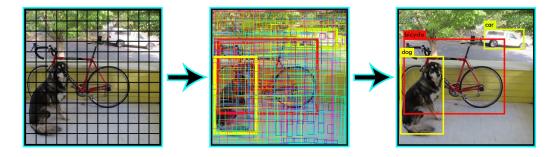
- Conv Transpose / unpooling operation
- **1x1 convolution** pixel-wise fully connected layers

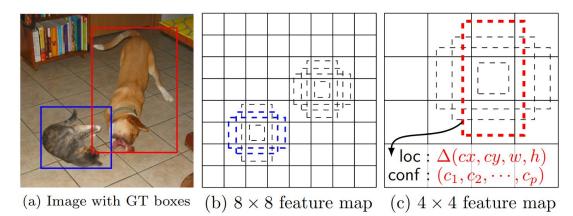


Fully Convolutional

Every pixel makes prediction!

⇒ Every pixel predicts bounding boxes that are centered at its location





Stage 1

- For every output pixel (given by backbone networks)
 - For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence
- Suppress overlapping predictions using non-maximum suppression

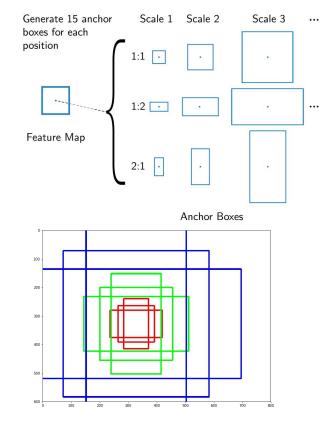
- For every region proposals
 - Predict bounding box offsets
 - Predict its semantic class

Anchor boxes

Neural network prefers **discrete** prediction over continuous regression!

⇒ Preselect **templates** of bounding boxes to alleviate regression problem

⇒ Let neural network classify the anchor box and small refinement of it



Stage 1

- For every output pixel
 - \circ For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence
- Suppress overlapping predictions using non-maximum suppression

- For every region proposals
 - Predict bounding box offsets
 - Predict its semantic class

Bounding box refinement

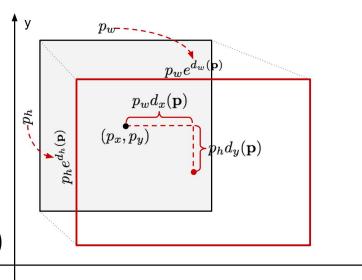
Given

- Anchor box size (p_w, p_h)
- Output pixel center location (p_x, p_y)

Predict bounding box refinement toward b

- Log-scaled scale relative ratio $d_w = \log(b_w/p_w), d_h = \log(b_h/p_h)$
- Relative center offset

$$d_x = (b_x - p_x)/p_w, d_y = (b_y - p_y)/p_h$$



Stage 1

- For every output pixel
 - For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence
- Suppress overlapping predictions using non-maximum suppression

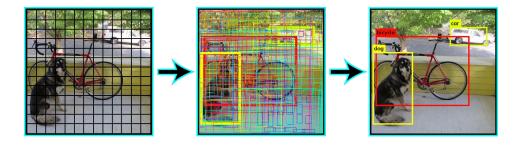
- For every region proposals
 - Predict bounding box offsets
 - Predict its semantic class

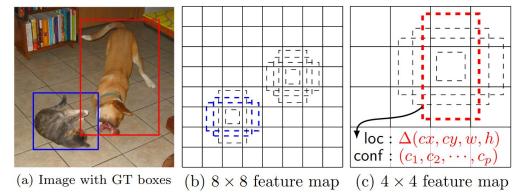
Bounding box classification

For each predicted bounding box,

- Predict **confidence** of the box ex) binary cross-entropy loss
- (Optional, if 1-stage network) Predict **semantic class** of the instance

ex) categorical cross-entropy loss





Stage 1

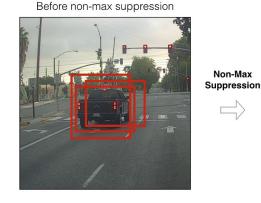
- For every output pixel
 - \circ For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence
- Suppress overlapping predictions using non-maximum suppression

- For every region proposals
 - Predict bounding box offsets
 - Predict its semantic class

Non-maximum suppression

The resulting prediction contains multiple predictions of same instance. Heuristics to remove redundant detections

- For all predictions, in descending order of the prediction confidence
 - If the current prediction heavily overlaps 0 with any of the final predictions:
 - Discard it
 - Else \bigcirc
 - Add it to the final prediction



After non-max suppression

Stage 1

- For every output pixel
 - \circ For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence
- Suppress overlapping predictions using non-maximum suppression

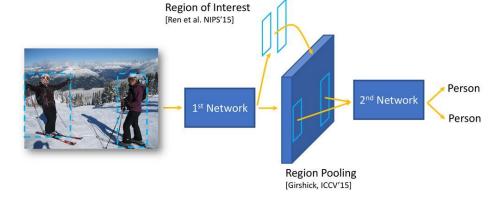
- For every region proposals
 - Predict bounding box offsets
 - Predict its semantic class
- Suppress overlapping predictions using non-maximum suppression

Two-stage networks

Second network to **refine** the prediction by the first network

Pro

- Better predictions
 - Better localization
 - Better precision



Con

- Non-standard operation (not favorable for embedded system)
- Slower

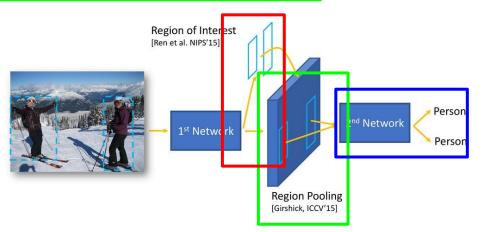
Stage 1

- For every output pixel
 - \circ For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence
- Suppress overlapping predictions using non-maximum suppression

- For every region proposals
 - Predict bounding box offsets
 - Predict its semantic class
- Suppress overlapping predictions using non-maximum suppression

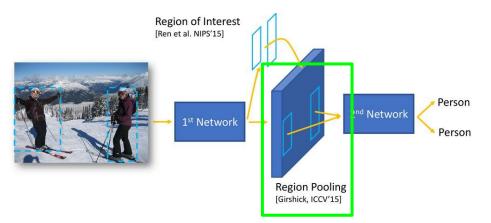
For every region proposal from the fist stage

- Extract fixed-size feature corresponding to the region proposal Using the extracted features,
 - Predict bounding box offsets
 - Predict its semantic class

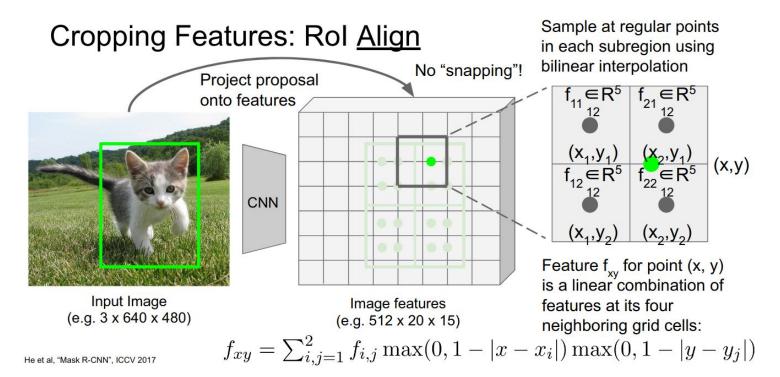


For every region proposal from the fist stage

- Extract fixed-size feature corresponding to the region proposal Using the extracted features,
 - Predict bounding box offsets
 - Predict its semantic class



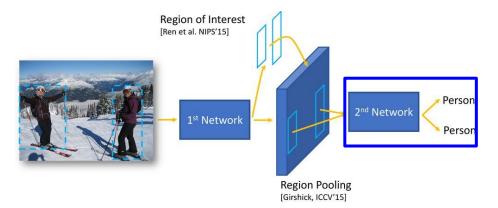
ROI Align: For every region proposal from the fist stage, extract fixed-size feature



29

For every region proposal from the fist stage

- Extract fixed-size feature corresponding to the region proposal Using the extracted features,
 - Predict bounding box offsets
 - Predict its semantic class



Bounding box refinement

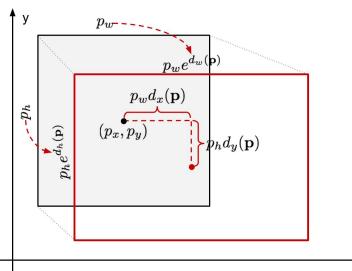
Given

- Region Proposal box size (p_w, p_h)
- Output pixel center location (p_x, p_y)

Predict bounding box refinement toward b

- Log-scaled scale relative ratio $d_w = \log(b_w/p_w), d_h = \log(b_h/p_h)$
- Relative center offset

$$d_x = (b_x - p_x)/p_w, d_y = (b_y - p_y)/p_h$$



Stage 1

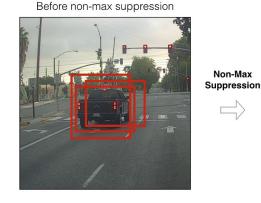
- For every output pixel
 - \circ For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence
- Suppress overlapping predictions using non-maximum suppression

- For every region proposals
 - Predict bounding box offsets
 - Predict its semantic class
- Suppress overlapping predictions using non-maximum suppression

Non-maximum suppression

The resulting prediction contains multiple predictions of same instance. Heuristics to remove redundant detections

- For all predictions, in descending order of the prediction confidence
 - If the current prediction heavily overlaps 0 with any of the final predictions:
 - Discard it
 - Else \bigcirc
 - Add it to the final prediction



After non-max suppression

Stage 1

- For every output pixel
 - \circ For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence
- Suppress overlapping predictions using non-maximum suppression

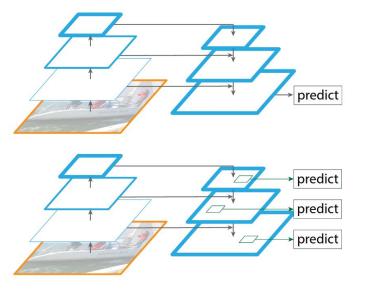
- For every region proposals (features from corresponding layer of pyramid)
 - Predict bounding box offsets
 - Predict its semantic class
- Suppress overlapping predictions using non-maximum suppression

Feature Pyramid Networks

Key observation:

Deeper layers of the network has larger receptive fields

⇒ For ROIAlign, extract features for larger bounding boxes from deeper layers of network



 $k = \lfloor k_0 + \log_2(\sqrt{wh}/224) \rfloor$

Stage 1

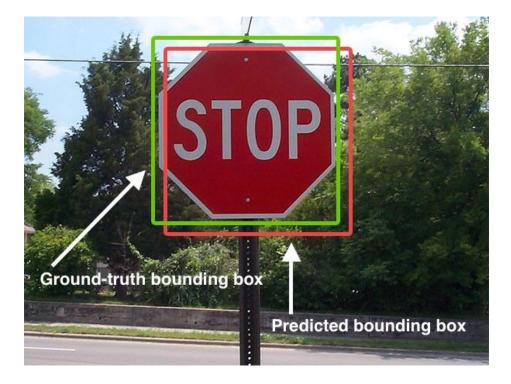
- For every output pixel
 - \circ For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence
- Suppress overlapping predictions using non-maximum suppression

- For every region proposals (features from corresponding layer of pyramid)
 - Predict bounding box offsets
 - Predict its semantic class
- Suppress overlapping predictions using non-maximum suppression

Given:

Single ground-truth bounding box Single prediction bounding box

Output: How well are we doing?

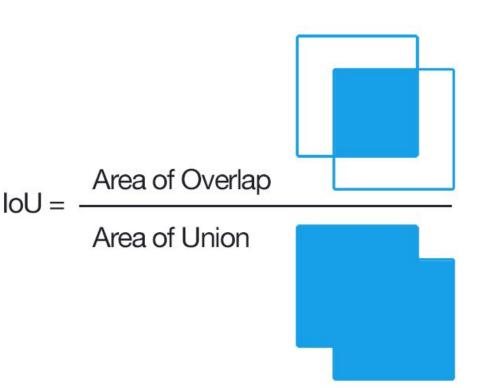


Given:

Single ground-truth bounding box Single prediction bounding box

Output: How well are we doing?

Intersection over Union (IoU)



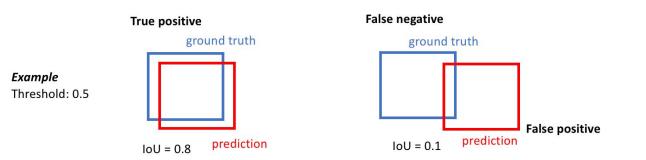
Given:

Multiple ground-truth bounding box Multiple prediction bounding box

Output: How well are we doing?

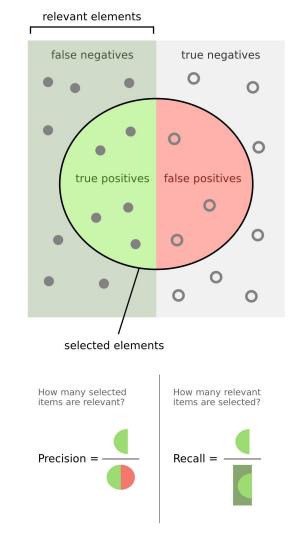
Match: if all of the conditions are true

- IoU is between ground-truth and prediction box is above certain threshold
- Their semantic classes are the same
- Only consider 1-to-1 matching.



- **True positive (TP)**: For ground-truth, if there exists a matching prediction
- False negative (FN): For ground-truth, if there is no matching prediction
- False positive (FP): For prediction, if there exists no matching groundruth

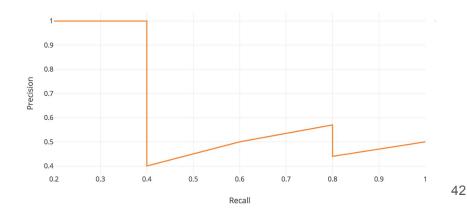
- **Precision**: TP / (TP + FP)
- **Recall**: TP / (TP + FN)



Average Precision (AP)

- Go through every prediction in descending order of the prediction confidence
- Calculate and plot Precision / Recall at every step
- Area below the Precision/Recall plot (integral of precisions) is Average Precision (AP)

Rank	Correct?	Precision	Recall
1	True	1.0	0.2
2	True	1.0	0.4
3	False	0.67	0.4
4	False	0.5	0.4
5	False	0.4	0.4
6	True	0.5	0.6
7	True	0.57	0.8
8	False	0.5	0.8
9	False	0.44	0.8
10	True	0.5	1.0



- To make AP more stable to the score ordering, we sometimes take max precision to the right of the AP plot
- We alter the match IoU threshold and take average of them to compute mAP
 - Average of (AP evaluated at matching IoU threshold 0.5, 0.55, 0.6, ..., 0.95)

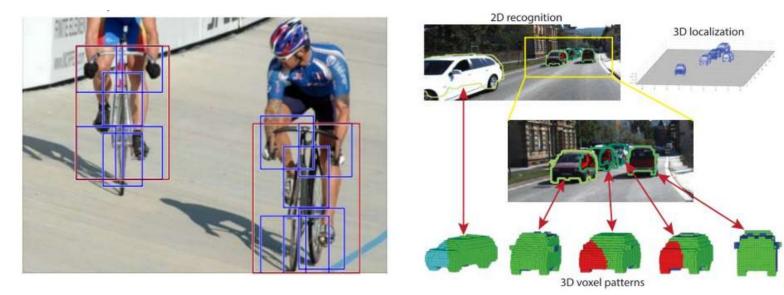


Extensions of 2D Object Detection

- 3D Object Detection
- Instance Segmentation
- Mesh R-CNN
- ... and more

3D Object Detection

- 2D bounding boxes are not sufficient
 - Lack of 3D pose, Occlusion information, and 3D location



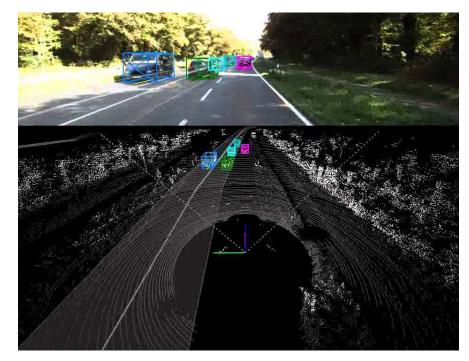
3D Object Detection

Input

- 2D image and/or
- 3D point clouds

Output

 3D bounding box (center location: x, y, z bounding box size: w, h, l rotation around gravity axis: θ)



The overall pipeline is not too different from that of 2D

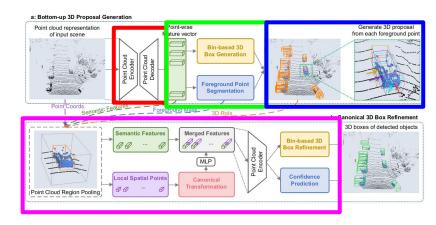
3D Object Detection

Stage 1

- For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence

(Optional, if two-stage networks) Stage 2

- For every region proposals
 - Predict bounding box offsets
 - Predict its semantic class



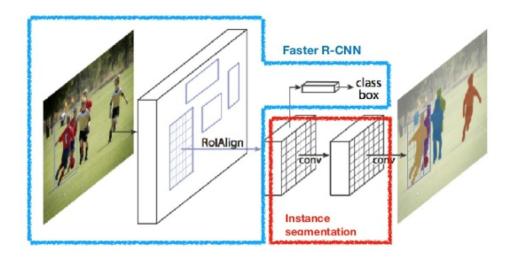
For example, Point R-CNN

Instance Segmentation

Mask R-CNN

Stage 3

• For every detected instance, predict instance mask

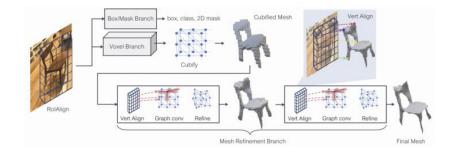


Mesh R-CNN

Mesh R-CNN

Stage 3

• For every detected instance, predict 3D voxels and meshes



Conclusion

Stage 1

- For every output pixel
 - \circ For every anchor boxes
 - Predict bounding box offsets
 - Predict anchor confidence
- Suppress overlapping predictions using non-maximum suppression

(Optional, if two-stage networks) Stage 2

- For every region proposals (features from corresponding layer of pyramid)
 - Predict bounding box offsets
 - Predict its semantic class
- Suppress overlapping predictions using non-maximum suppression