
Object Oriented Analysis & Design
Lecture # 3

Department of Computer Science and Technology
University of Bedfordshire

Written by David Goodwin,

based on the book Applying UML and Patterns (3rd ed.)
by C. Larman (2005).

Modelling and Simulation, 2012



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Outline

Introduction to Object Orientation

Objects

Class
Attributes
Operations
Associations
Aggregation
Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Introduction to
Object Orientation



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Object Orientation

I Knowing and object-oriented language (such as Java) is
a necessary but insufficient step to create object
systems.

I UML is just a diagramming tool; it’s full use isn’t
realised without object oriented design.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

OOA/D

I Object-oriented analysis (OOA):
I process of analysing a task (also known as a problem

domain)
I finding and describing objects
I typical:

I set of use cases
I one or more class diagrams
I a number of interaction diagrams

I Object-oriented design (OOD):
I defining software objects and how they collaborate to

fulfill the requirements.
I constraints to conceptual model produced in

object-oriented analysis
I Concepts in the analysis model are mapped onto

implementation classes and interfaces resulting in a
model of the solution domain.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Objects



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Definition of an object

I Object:

I Objects directly relate to real-world ‘entities’.
I An object has identity, state & behaviour.

I Identity: the property of an object that distinguishes it
from other objects

I State: describes the data stored in the object
I Behaviour: describes the methods in the object’s

interface by which the object can be used

I The state of an object is one of the possible conditions
in which an object may exist.

I The state of an object is represented by the values of its
properties (attributes).



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Definition of an object

I Real-world objects share three characteristics:
I Identity:

I Dog
I Bicycle

I State:
I Dogs have state (name, color, breed, hungry)
I Bicycles also have state (current gear, current pedal

cadence, current speed)

I Behaviour:
I Dogs have behaviour (barking, fetching, wagging tail)
I Bicycles also have behaviour (changing gear, changing

pedal cadence, applying brakes)



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Identifying & using objects’ states

I “What possible states can this object be in?”

I “What possible behaviour can this object perform?”

I Some objects will contain other objects.
I By attributing state (current speed, current pedal

cadence, and current gear) and providing methods for
changing that state, the object remains in control of
how the outside world is allowed to use it.

I if the bicycle only has 6 gears, a method to change
gears could reject any value that is less than 1 or
greater than 6.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Advantages of using objects

I Bundling code into individual software objects provides
a number of benefits, including:

I Modularity:
I The source code for an object can be written and

maintained independently of the source code for other
objects.

I Information-hiding:
I By interacting only with an object’s methods, the

details of its internal implementation remain hidden
from the outside world.

I Code re-use:
I If an object already exists, you can use that object in

your program.

I Pluggability and debugging ease:
I If a particular object turns out to be problematic, you

can simply remove it from your application and plug in
a different object as its replacement.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Class



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

What is a Class?

I Many individual objects can be of the same kind:
I There may be thousands of other bicycles in existence,

all of the same make and model.
I Each bicycle was built from the same set of blueprints

and therefore contains the same components.

I In object-oriented terms, we say that your bicycle is an
instance of the class of objects known as bicycles.

I A class is the blueprint from which individual objects
are created.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Class example in Java

I The fields cadence, speed,
and gear represent the
object’s state, and the
methods (changeCadence,
changeGear, speedUp etc.)
define its interaction.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Class example in Java

I Not a complete
application; it’s just
the blueprint for
bicycles that might be
used in an application.
The responsibility of
creating and using new
Bicycle objects belongs
to some other class in
your application.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Class notation

Name appears in the top
division of the class box

Attribute appears in the middle
division of the class box

Operation appears in the bottom
division of the class box



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

What is an attribute?

I An element of data that helps to describe an object.

I Attribute types may be restricted by a programming
language.

I A class that includes many attributes may be
decomposed into other classes.

I Complex attribute lists in a class may be defined
elsewhere.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

What is an operation?

I It helps to specify the behaviour of a class (object).

I Can use the syntax of a programming language.
I Specify the visibility of each operation:

I public (+);
I private (-);
I protected (#).

I Consider the responsibilities of each class:
I Responsibilities often imply more than one operation.
I A method is the implementation of an operation.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Class Associations

I Classes (objects) must interact with each other so that
a piece of software can do something.

I How do classes/objects therefore interact?

I How are associations modelled?



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Class Associations

I An association represents a family of links.

I Binary associations (with two ends) are normally
represented as a line.

I An association can be named, and the ends of an
association can be adorned with role names, ownership
indicators, multiplicity, visibility, and other properties.

I There are four different types of association:
I bi-directional, uni-directional, Aggregation (includes

Composition aggregation) and Reflexive.

I Bi-directional and uni-directional associations are the
most common ones.

I For instance, a flight class is associated with a plane
class bi-directionally. Association represents the static
relationship shared among the objects of two classes.
Example: “department offers courses”, is an association
relation



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Aggregation

I Whole/Part relationship.

I ‘Smaller’ classes are parts of ‘larger’ classes.

I Objects belonging to an aggregate can belong to more
than one class.

I Each class that makes up an aggregation relationship is
a class in its own right.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Aggregation

I Aggregation is a variant of the “has a” or association
relationship; aggregation is more specific than
association.

I It is an association that represents a part-whole or
part-of relationship.

I As a type of association, an aggregation can be named
and have the same adornments that an association can.

I However, an aggregation may not involve more than
two classes.

I Aggregation can occur when a class is a collection or
container of other classes, but where the contained
classes do not have a strong life cycle dependency on
the container-essentially,

I if the container is destroyed, its contents are not.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Aggregation Notation



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Composition

I A stronger form of aggregation.

I Objects may only be part of one composite at a time.

I The composite object has sole responsibility for the
creation and destruction of all of its parts.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Composition

I Composition is a stronger variant of the “owns a” or
association relationship; composition is more specific
than aggregation.

I Composition usually has a strong life cycle dependency
between instances of the container class and instances
of the contained class(es):

I If the container is destroyed, normally every instance
that it contains is destroyed as well.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Composition Notation



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Aggregation vs. Composition

I When attempting to represent real-world whole-part
relationships,

I e.g., an engine is a part of a car, the composition
relationship is most appropriate.

I However, when representing a software or database
relationship,

I e.g., car model engine ENG01 is part of a car model
CM01, an aggregation relationship is best, as the
engine, ENG01 may be also part of a different car
model.

I The whole of a composition must have a multiplicity of
0..1 or 1, indicating that a part must belong to only one
whole; the part may have any multiplicity.

I For example, consider University and Department
classes. A department belongs to only one university, so
University has multiplicity 1 in the relationship. A
university can (and will likely) have multiple
departments, so Department has multiplicity 1..*.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Inheritance



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Inheritance (Generalisation)

I Inheritance is a code reuse mechanism to build new
objects out of old ones.

I Inheritance defines a relationship among classes where
one or more classes share the behaviour and/or
attributes of another class.

I For example, a class called ink-jet printer inherits all the
behaviour and attributes of the class computer printer.

I Inheritance also enables ‘polymorphism’.

I The relationship superclass and subclass is used.

I Each subclass is a specialised version of its superclass.

I Within UML, generalisation is the preferred term.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Inheritance (Generalisation)

I Different kinds of objects often have a certain amount
in common with each other.

I Mountain bikes, road bikes, and tandem bikes, for
example, all share the characteristics of bicycles (current
speed, current pedal cadence, current gear).

I Additional features that make them different: tandem
bicycles have two seats and two sets of handlebars; road
bikes have drop handlebars; some mountain bikes have
an additional chain ring, giving them a lower gear ratio.

I Object-oriented programming allows classes to inherit
commonly used state and behavior from other classes.

I In this example, Bicycle now becomes the superclass of
MountainBike, RoadBike, and TandemBike.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Generalisation Notation



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Dependency



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Dependency

I Weaker form of relationship which indicates that one
class depends on another.

I One class depends on another if the latter is a
parameter variable or local variable of a method of the
former.

I This is different from an association, where an attribute
of the former is an instance of the latter.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Multiplicity



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Multiplicity

I The association relationship indicates that (at least) one
of the two related classes makes reference to the other.

I The UML representation of an association is a line with
an optional arrowhead indicating the role of the
object(s) in the relationship, and an optional notation
at each end indicating the multiplicity of instances of
that entity (the number of objects that participate in
the association).

I 0..1 No instances, or one instance (optional)
I 1 Exactly one instance
I 0..* or * Zero or more instances
I 1..* One or more instances (at least one)



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Polymorphism



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Polymorphism

I Polymorphism means having many forms.

I Invokes many different kinds of behaviour.

I It requires an inheritance hierarchy to be present.

I Each class in an inheritance hierarchy is dependent
upon other classes, and are therefore not classes in their
own right.

I objects of various types define a common interface of
operations for users

I the “+” operator which allows similar or polymorphic
treatment of numbers (addition), strings
(concatenation), and lists (attachment).



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Encapsulation



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Encapsulation

I Encapsulation is the process of hiding the
implementation details of an object.

I The only access to manipulate the object data is
through its interface.

I It protects an object’s internal state from being
corrupted by other objects.

I Also, other objects are protected from changes in the
object implementation.

I Encapsulation allows objects to be viewed as ‘black
boxes’.

I Communication is achieved through an ‘interface’.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Interface



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Interface

I Object’s interface with the outside world;
I the buttons on the front of your television set, for

example, are the interface between you and the electrical
wiring on the other side of its plastic casing. You press
the “power” button to turn the television on and off.

I In its most common form, an interface is a group of
related methods with empty bodies.

I Implementing an interface allows a class to become
more formal about the behaviour.

I Interfaces form a contract between the class and the
outside world.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Package



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Package

I A package is a namespace that organises a set of
related classes and interfaces.

I Conceptually you can think of packages as being similar
to different folders on your computer.

I You might keep HTML pages in one folder, images in
another, and scripts or applications in yet another.

I Because software can be composed of hundreds or
thousands of individual classes, it makes sense to keep
things organised by placing related classes and
interfaces into packages.



Object
Oriented
Analysis &

Design

Introduction to
Object
Orientation

Objects

Class

Attributes

Operations

Associations

Aggregation

Composition

Inheritance

Dependency

Multiplicity

Polymorphism

Encapsulation

Interface

Package

Packages in Java

I The Java platform provides an enormous class library (a
set of packages) suitable for use in your own
applications. This library is known as the “Application
Programming Interface”, or “API”.

I a String object contains state and behavior for character
strings;

I a File object allows a programmer to easily create,
delete, inspect, compare, or modify a file on the
filesystem;

I a Socket object allows for the creation and use of
network sockets;

I various GUI objects control buttons and checkboxes and
anything else related to graphical user interfaces.

I There are literally thousands of classes to choose from.
This allows you, the programmer, to focus on the
design of your particular application, rather than the
infrastructure required to make it work.


	Introduction to Object Orientation
	Objects
	Class
	Attributes
	Operations
	Associations
	Aggregation
	Composition

	Inheritance
	Dependency
	Multiplicity
	Polymorphism
	Encapsulation
	Interface
	Package

