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Abstract 
 
This article describes an introductory object-oriented finite 
element program for static and dynamic nonlinear 
applications. This work can be considered as an extension of 
the original FEM_Object environment dealing with linear 
elasticity [1] and nonlinearity [2]. Mainly the static aspects 
are discussed in this paper. Interested readers will find a 
detailed discussion of the object-oriented approach applied to 
finite element programming in [15-18] and also in [7-8] and 
references therein. Our ambition, in this paper, is limited to a 
presentation of an introductory object-oriented finite element 
package for nonlinear analysis. Our goal is to make a starting 
package available to newcomers to the object-oriented 
approach and to provide an answer to the large number of 
demands for such a program received in recent time. 
 
In the first part of the paper, a brief recall of the basics of 
finite element modeling applied to continuum mechanics is 
given. Von Misès plasticity including isotropic and kinematic 
hardening, which is used as model problem, is described. 
This first part also presents an overview of the main features 
of the object-oriented approach. In the second part of this 
paper, classes and associated tasks forming the kernel of the 
code are described in detail. A hierarchy of classes is 
proposed and discussed; it provides an immediate overview 
of the program's capabilities. Finally interactions between 
classes are explained and numerical examples illustrate the 
approach. 
 
 
1 Introduction 
 
1.1 The static boundary value problem 
 
 

 
 
 
The strong form of the problem can be stated as: find u  such 
that: 
 

0=+= iji,j fσ)L(u  on Ω                                           (1) 
with boundary conditions: 
 

ijji tnσ =   on Γ1                                          (2) 

ii uu =    on Γ2  and Γ = Γ1 + Γ2               (3) 
with the kinematic relation: 

( ) ( )k,ll,kk,lkl uuuε =+=
2
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                                                (4) 

 
and the incremental elastoplastic constitutive equation: 
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Figure 1: Problem statement 
 

Although the program supports dynamic analysis, this will be 
not discussed in detail herein. 
 

 
1.2 Von Misès plasticity 
 
Plasticity requires the definition of a yield function, a flow 
rule and a hardening law; the consistency condition 
completes the formulation. Von Misès yield function is 
adopted here. 
 
 
1.2.1 Von Misès criterion 
 
This criterion assumes that plastic yielding will occur when 
the second invariant J2 of the deviatoric stress tensor reaches 
a critical value, which is a material property. It is expressed 
by: 
 

( ) 02 =−= kJf σ                                                         (6) 
 
where: 
 

ijij ssJ
2
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2 =                                                                        (7) 



  

 
and s  is the deviatoric stress tensor. 
 
The criterion can be represented by a cylinder of radius R  in 
the three-dimensional stress space, with: 
 

kR 2=                                                                             (8) 
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Figure 2: Von Misès yield surface in principal stress space 
and in the deviatoric plane 

 
 
1.2.2 Flow rule 
 
Let: 
 

rεp ⋅= γdd              (9) 
 
where r  defines the plastic flow direction and γd  the flow 
amplitude. Assuming associative flow, we determine the unit 
flow direction vector ( )σr  as follows: 
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1.2.3 Hardening 
 
Hardening defines an evolution law of the yield surface in the 
stress space: 
 

( ) 0, =qσf                                                                       (11) 
 
where q  is a set of hardening parameters which can be scalar 
or tensorial. A distinction is made between: isotropic 
hardening: the yield surface grows in size but its center in the 
deviatoric plane remains fixed, kinematic hardening: the 
radius of the yield surface remains constant, but its center is 
translated in the deviatoric plane, and mixed isotropic-
kinematic hardening: combining the two previous ones. 
 
Introducing two new variables, the back-stress α  (for 
kinematic hardening) and the yield radius R  (for isotropic 
hardening), equation (11) can be written: 
 

( ) 0,, =−=−−= RRRf ξαsασ         (12) 
 

where s  is the deviatoric part of σ , and (6) can be easily 
retrieved. 

α R

( ) 0,, =Rf ασ
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Figure 3: Evolution of the yield surface 
 
If we consider a linear combination of kinematic and 
isotropic hardening, the evolution law (or hardening rule) for 
the set of hardening parameters ( )R,αq =  can be derived in 
the following way.  
 
First, we need to relate these parameters to the experimental 
uniaxial stress-strain curve. For that, we use two variables, 
namely the equivalent (or effective) stress eqσ  and the 

equivalent (or effective) plastic strain p
eqε [3]: 
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We verify that for the uniaxial test: 
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and due to incompressibility in the plastic range (which leads 

to ppp
113322 2

1 εεε −== ): 

 
pp

eq 11εε =              (16) 
 
In the case of linear hardening, the relation between these 
two variables can be expressed with the help of the plastic 
modulus 'H , as: 
 

p
eqeq dHd εσ '=                                                                (17) 

 
and we will assume in the sequel that 0'≥H . 
 
• Isotropic hardening 
 



  

The amplitude of the plastic strain increment is by definition 
given by the plastic multiplier γd . In the uniaxial case, we 
can therefore write: 

( ) γεεεεε ddddddd p
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For Von Misès criterion, equation (6) ( kJ =2 ) yields 
(with the use of equation (18)): 

γεσ dHdHdJddk p
eqeq '

3
2'

3
1

3
1

2 ====        (19) 

 
and with equation (8), we finally get the expression for the 
evolution of the yield radius: 
 

γdHdkdR '
3
22 ==                        (20) 

 
• Kinematic hardening 
 
If the radius of the yield surface remains constant, we can 
write it as: 
 

( )( )ijijijij ssJJd αα −−==
2
1;0 *

2
*
2             (21), (22) 

 
Equations (18), (21) and (22) yield: 
 

γεσ dHdHdJddd p
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and finally, the evolution of the back-stress writes: 
 

rα γdHd '
3
2

=                        (24) 

 
• Mixed hardening 
 
A straightforward combination of the two types  of hardening 
can be introduced wih a parameter β  such that 0=β  for 
kinematic hardening, 1=β  for isotropic hardening and: 
 

γβ dHdR '
3
2

=           (25) 

( ) rα γβ dHd '1
3
2

−=                (26) 

 
 
1.2.4 Consistency 
 
The actual amplitude of plastic flow results from the 
consistency condition which imposes: 
 

0=f&             (27) 
 
under plastic loading. This we write in vector notation as: 
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where the incremental elastoplastic constitutive equation (5) 
has been rewritten as: 
 

( )peleel εεDεDσ dddd −==          (29) 
 
We will see later (equations (45) and (68)) that equation (28) 
leads to the actual computation of  the plastic multiplier 

γd ; but for the case of a Von Misès criterion a more 
efficient numerical implementation can be formulated. 
 
 
1.3 The finite element method 
 
We consider here a displacement formulation of the 
elastoplastic matrix problem, which is stated as: 
 

( ) extFdN =                         (30) 
 
where ( )dN  is a nonlinear matrix function of the 

displacement vector d  and extF  is the vector of applied 
forces. The resulting linearized problem (see figure 4) then 
reads: 
 

( )i
1n

ext
1nT dNFdK ++ −=∆          (31) 

ddd i
1n

1i
1n ∆+= +

+
+                        (32) 

 
which must be solved for d∆  iteratively at each loading step 
( )1+n . TK  is the tangent stiffness, i  the iteration counter 

and ( )1+n  the current loading step. 
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Figure 4: Linearized problem 
 
 
1.4 Volumetric locking due to material 
incompressibility 
 
Von Misès plasticity induces incompressible behavior in the 
plastic range, which in turn can induce locking phenomena. 



  

Figure 5a illustrates a simple mesh discussed in [4] with three 
fixed nodes and one free node. Assume linear displacement 
constant pressure elements; incompressible (constant 
volume) deformation must take place. As a result of 
kinematic constraint node N is required to move horizontally 
in the lower triangular element, and required to move 
vertically as a result of the kinematic constraint in the upper 
triangular element; locking results, and obviously the 
reasoning can be extended to a n x n mesh (figure 5b). This 
kind of locking typically appears when using the full B 
matrix as described later. Different methods can be used in 
order to avoid this phenomenon [5]. Keeping in mind the 
incompressible behavior of Von Misès material, the B  
approach can be applied here. 
 

fixed
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fixedfixed

fixed

 
 
                     Figure 5a                 Figure 5b 

 
 
1.5 Why object-oriented programming? 
 
Object-oriented programming (see e.g. [6], [7], [8] and 
references therein) has proven in recent years to be one of the 
easiest, fastest and most efficient ways to program robust 
scientific software. The basic components of the finite 
element method, like the node, the element, the material, can 
easily be fitted into an objects world, with their own 
behavior, state and identity. We review here the key features 
of object-oriented programming: 
 
a) Robustness and modularity: encapsulation of data 
 
An object is a device capable of performing predefined 
actions, such as storing information (in its variables), 
executing tasks (through his methods), or accessing other 
objects (by sending messages). Variables describe the state of 
the object, while methods define its behavior. Objects hide 
their variables from other components of the application. For 
instance, class Element does not have direct access to its 
Young Modulus. The Young Modulus is stored in class 
Material. The object has to send a message, like 
myMaterial→giveYoungModulus() to access it. 
 
b) Inheritance and polymorphism: the hierarchy of classes 
 
Every object is an instance of a class. A class is an abstract 
data type which can be considered as the mold of the object. 
Classes are organised within a hierarchy (class-subclass), 
which allows a subclass (say, Truss2D) to inherit the methods 
and variables from its superclass (say, Element). 
Polymorphism expresses the fact that two different classes 
will react differently (in their own manner) to the same 
message. For instance, the message myElement→ 
giveBMatrix() will be interpreted differently by an object of 
the class Quad_U (defining quadrilateral elements) and an 
object of the class Truss2D (defining truss elements).  
 

The hierarchy of classes of a simple nonlinear finite element 
code, providing an overview of the entire software, is given 
in section 3. The fact that the code can be described in such a 
compact way can be very valuable, when extensions are 
considered. 
 
c) Non-anticipation and state encapsulation 
 
Non-anticipation expresses the fact that the content of a 
method should not rely on any assumption on the state of the 
variables. Strict obedience to non-anticipation will contribute 
significantly to code robustness. 
 
d) Efficiency 
 
As far as numerical performance is concerned, languages 
such as C++ have shown performances similar to Fortran. 
With respect to code development speed using object-
oriented techniques, the programmer can maximize 
reusability of the software and «program like he thinks», 
which leads to faster prototyping. 
 
 
2 Main tasks of the finite element 
program 
 
2.1 Element level (class Element) 
 
2.1.1 Forming the elementary stiffness 
 
The definition of the elemental stiffness matrix Ke writes: 
 

e
e

T dVBDBK ep
e ∫=                                                       (33) 

 
The following method of class Element illustrates how the 
element is forming its stiffness matrix. 
 
//------------------------------------------------------- 
FloatMatrix*  Element :: computeTangentStiffnessMatrix () 
//------------------------------------------------------- 
 
{ 
Material         *mat; 
GaussPoint *gp; 
FloatMatrix      *b,*db,*d; 
double           dV; 
int              i; 
if (stiffnessMatrix) { 

delete stiffnessMatrix; 
} 
stiffnessMatrix = new FloatMatrix(); 
mat    = this->giveMaterial();    
for (i=0; i<numberOfGaussPoints; i++) { 

gp = gaussPointArray[i];    
b  = this->ComputeBmatrixAt(gp); 
d  = mat->ComputeConstitutiveMatrix(gp,this); 
dV = this->computeVolumeAround(gp); 
db = d->Times(b); 
stiffnessMatrix->plusProduct(b,db,dV); 
delete d; delete db; delete b; 

} 
return stiffnessMatrix->symmetrized(); 
} 
 
This method shows that the construction of two matrices, 
namely epD  and B , contribute to build the stiffness matrix. 
Integration over the element is achieved with a loop over the 
Gauss points of the element. In sections 2.1.1.1 and 2.1.1.2, 
the construction of B  (or B ) matrix will be scrutinized. In 



  

section 2.1.1.3, the construction of constitutive matrix epD  
will be discussed. 
 
2.1.1.1 The B  matrix (class Quad_U) 
 
The B  matrix defines the kinematic relation between the 
strain vector ε  and the nodal displacements d : 
 

dBε =                         (34) 

)u(uε j,ii,jij +=
2
1                        (35) 

 
Considering a plane strain bilinear isoparametric quadrilateral 
element, this relation can be stated starting from the 
definition of ε , and approximating the displacement field u  
with the help of the nodal displacements d  and the 

interpolation functions aN : 
 

( ) ( ) a
a

a dξ,ηNξ,ηu ∑
=

=
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                       (36) 

 
The corresponding definition of the B  matrix can be written 
following [9], notice the 4x2 matrix size: 
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The partial derivatives of the interpolation functions are 
calculated using the inverse of the Jacobian matrix 1−J : 
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2.1.1.2 The B  matrix (class Quad_U_BBar) 
 
The B approach introduces a modification of the dilatational 
contribution to the standard B  matrix, dilB , which is 
underintegrated or averaged over the element.  
 
The strain relation then reads (see [4] for details): 
 

dBε =                                                                               (40) 

dildev BBB +=   and  dildev BBB −=                         (41) 

 
For plane strain B  results as: 
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This formulation has been shown to be appropriate for 
overcoming locking due to incompressibility in very general 
situations.  
 
 
2.1.1.3 Constitutive matrices (class Material and its 
subclasses) 
 
Different algorithms use different constitutive matrices. The 
elastic stiffness matrix based on the elastic constitutive 
matrix (section 2.1.1.3.1) is used for a constant stiffness 
algorithm, while the Newton-Raphson algorithm requires a 
tangent stiffness matrix (section 2.1.1.3.2) or even a 
consistent tangent stiffness matrix (section 2.1.1.3.3) in order 
to improve convergence. 
 
 
2.1.1.3.1 The elastic constitutive matrix elD  
 
Class ElasticMaterial forms its constitutive matrix in the 
following method: 
 
//-------------------------------------------------------- 
FloatMatrix* ElasticMaterial :: ComputeConstitutiveMatrix 
                           (GaussPoint* ip, Element* elem) 
//-------------------------------------------------------- 
 
{ 
return elem->giveConstitutiveMatrix()->GiveCopy(); 
}       

 
This method actually calls a method of class element (here, 
class Quad_U): 
 
//-------------------------------------------------- 
FloatMatrix*  Quad_U :: computeConstitutiveMatrix () 
//-------------------------------------------------- 
 
{ 
Material *mat = this -> giveMaterial() ;  
double   e,nu,ee;  
e     = mat -> give('E') ;  
nu    = mat -> give('n') ; 
ee    = e / ((1.+nu) * (1.-nu-nu)) ; 
constitutiveMatrix = new FloatMatrix(4,4) ;  
constitutiveMatrix->at(1,1) = (1.-nu) * ee ; 
constitutiveMatrix->at(1,2) =     nu  * ee ; 
constitutiveMatrix->at(2,1) =     nu  * ee ; 
constitutiveMatrix->at(2,2) = (1.-nu) * ee ; 
constitutiveMatrix->at(3,3) = e / (2.+nu+nu) ; 
constitutiveMatrix->at(1,4) =     nu  * ee ; 
constitutiveMatrix->at(2,4) =     nu  * ee ; 
constitutiveMatrix->at(4,1) =     nu  * ee ; 
constitutiveMatrix->at(4,2) =     nu  * ee ; 
constitutiveMatrix->at(4,4) = (1.-nu) * ee ; 
return constitutiveMatrix ;    
} 
 
 
2.1.1.3.2 The elasto-plastic tangent constitutive matrix epD  
 
Definition:  
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Consistency imposes 0=f& , with f  the yield function, 
which yields in vector notation: 
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Introducing the flow rule (equation (9)) into (44), one gets: 
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Introducing (45) into (9) and then into the constitutive 
equation (29) we get: 
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And finally: 
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2.1.1.3.3 Improving convergence: the consistent elasto-
plastic tangent constitutive matrix *epD  
 
Using the following algorithmic approximation of the plastic 
strain increment (with q  the plastic potential): 
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One gets: 
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Remark: here, dγγ =  as the return takes place in one step. 
Rearranging terms of (49): 
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And multiplying (50) by the compliance matrix 
1−

= elel DC on the left: 
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Finally, multiplying (51) by matrix *elD on the left, one 
gets: 
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And using the procedure described in the previous section for 
the tangent matrix epD , we get the consistent tangent 
operator *epD : 
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2.1.2 Forming the right-hand side 
 
The computation of the right-hand side (or internal forces) 
proceeds as follows: 
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where N  was defined earlier and 
.#

1

el

e=
A  denotes an assembly 

of elemental contributions. The following method of class 
Element is computing internal forces: 
 
//--------------------------------------------------- 
FloatArray*  Element :: ComputeInternalForces  

(FloatArray* dElem) 
//--------------------------------------------------- 
 
{ 
Material         *mat; 
GaussPoint   *gp; 
FloatMatrix      *b; 
FloatArray       *f; 
double           dV; 
int i; 
mat   = this->giveMaterial(); 
f     = new FloatArray(); 
for (i=0; i<numberOfGaussPoints; i++) { 
       gp    = gaussPointArray[i]; 
       b     = this->ComputeBmatrixAt(gp); 

mat -> ComputeStress(dElem,this,gp); 
       dV    = this->computeVolumeAround(gp); 
       f->plusProduct(b,gp->giveStressVector(),dV); 

delete b; 
} 
delete dElem; 
return f; 
} 
 
This method has the same structure as the one described in 
section 2.1.1, forming the stiffness matrix.  
 



  

The loop on Gauss points covers the whole element volume, 
and the method ComputeStress(dElem, this, gp) of class 
Material stores the stress state computed at the Gauss point. 
 2.1.2.1 Elastic case 
 
The following method of class ElasticMaterial computes the 
stress state at the given Gauss point for the given element: 
 
//-------------------------------------------------------- 
void  ElasticMaterial :: ComputeStress  

(FloatArray* dxacc, Element* elem, GaussPoint* gp) 
//-------------------------------------------------------- 
 
{   
FloatArray *sigma, *deltaEpsilon;  
deltaEpsilon = elem->computeStrainIncrement(gp,dxacc); 
sigma   = elem->giveConstitutiveMatrix() 

->Times(deltaEpsilon); 
sigma->add(gp->givePreviousStressVector()); 
delete deltaEpsilon;    
gp->letStressVectorBe(sigma);     
} 
 
 
2.1.2.2 Elasto-plastic case 
 
2.1.2.2.1 General form of the stress computation algorithm 
 
The following general stress-return algorithm can be 
formulated. 
 
Problem: given nσ  and acc

1n1n dBε ++ = dd , find 1nσ +  (for 
iteration i and step n+1) 
 
First, compute a trial stress state: 
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Check yielding for the trial stress state: 
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Else, impose global consistency via ( ) 0=+1nσf and define 
σd such that: 
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Figure 6: Stress increments 
 

with pσd  derived as follows: 
 

( ) ptrpel σσεεDσ ddddd +=−=                                (59) 
 

From consistency: 
 

( ) ( ) ( ) 0=+≅+=

+

+++
p

tr
1n

tr
1n

ptr
1n1n σ

σσ
σσσσ d

d

df
fdff          (60) 

 
Using the definition of pσd  given by (59) and the flow rule: 
 

rDσ elp dγ-d =                                  (61) 
 
Introducing (61) into (60), we get (in vector notations): 
 

( )
rD

σ

σ

el

tr
1n

T

d
df

fdγ +=                                        (62) 

 
A geometric interpretation of the stress return for Von Misès 
plasticity is described next. 
 
 
2.1.2.2.2 Radial return for elastic-perfectly plastic associated 
Von Misès plasticity (following [10]) 
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Figure 7: Radial return for Von Misès plasticity: three 
dimensional stress space view 

 
In the case of associated Von Misès plasticity, the return 
happens always in the deviatoric plane (corresponding to 
incompressible flow). Geometrical considerations in this 
plane lead to: 

tr
1ntr

1n
1n s

s
δσ +

+
++ +=

Rptr
n 1                                    (63) 

δσδσs
3
kkσp −=−=                                 (64) 

 
Where s  is the deviatoric stress tensor, p  is the mean or 
hydrostatic stress tensor and δ  is the unit tensor. Finally, the 
norm of the deviatoric trial stress is given by: 
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where the matrix A  is introduced to maintain compatibility 
between the vectorial and tensorial notations. 
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Figure 8: Radial return for Von Misès plasticity: deviatoric 
plane view 

 
The following method of class VonMisesMaterial computes 
the stress state, enforcing consistency if needed and stores it 
at the Gauss point level: 
 
//--------------------------------------------------------- 
void  VonMisesMaterial :: ComputeStress  

(FloatArray* dxacc, Element* elem, GaussPoint* gp) 
//--------------------------------------------------------- 
 
{ 
FloatArray *sigmaTrial, *deltaEpsilon;   
FloatMatrix *Del; 
Del = elem->giveConstitutiveMatrix()->GiveCopy(); 
deltaEpsilon = elem->computeStrainIncrement(gp,dxacc); 
sigmaTrial = Del->Times(deltaEpsilon);  
sigmaTrial->add(gp->givePreviousStressVector());  
double fSigTr = this->computeYieldFunctionFor(sigmaTrial); 
if (fSigTr > 0) {    
   double deltaGamma; 
   FloatArray *dFDSigma = this->computeDFDSigma  

  (sigmaTrial); 
   deltaGamma = fSigTr / (dFDSigma->transposedTimes 

  (Del->Times(dFDSigma))); 
  sigmaTrial->minus((Del->Times(dFDSigma)) 

   ->times(deltaGamma)); 
   gp->isPlastic();   
   gp->setDeltaGamma(deltaGamma);  
   delete dFDSigma;     
}     
gp->letStressVectorBe(sigmaTrial); 
delete Del; delete deltaEpsilon; 
} 
 

 
2.1.3 Introducing hardening 
 
2.1.3.1 Consistency condition 
 
We introduce a tensorial function ),( qσh  which defines the 
direction of the hardening parameters increments, by analogy 
with ),( qσr  giving the direction of the plastic strain 
increment: 
 

( )qσhq ,⋅= γdd                        (66) 

( )qσrεp ,⋅= γdd                        (67) 
 
Introducing (66)-(67) into the consistency condition (28), and 
using the constitutive equation (29), we finally get: 
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2.1.3.2 A linear combination of isotropic and kinematic 
strain hardening 
 
Following section 1.2.3, for the case of mixed hardening we 
write: 
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with 0'≥H ,  and 0'=H  implying perfect plasticity. 
Parameter β determines the proportion of isotropic and 
kinematic hardening or softening. 
 
 
2.1.3.3 The elasto-plastic tangent constitutive matrix for 
Von Misès plasticity with hardening 
 
The partial derivatives of ( )Rf ,,ασ  write: 
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Rewriting the consistency condition: 
 

( ) 0=⋅
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                     (73) 

 
and using (68) and (69), the elasto-plastic tangent operator 
can be written: 
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2.1.3.4 Radial return for Von Misès plasticity with 
hardening 
 
Similarly to the perfectly plastic case (see section 2.1.2.2.1), 
the following stress-return algorithm can be written. 
 
Given nσ , nα , nR  and 1nε +d , find 1nσ + , 1nα +  and 1+nR  
 
First, compute the trial stress state as: 
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1n εDσσσσ ++ +=+= dd                               (75) 

n
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1n ασξ −= ++                        (76) 
 
Check yielding for the trial stress state: 



  

 
( ) nn RRf ===≤ +++++ 1,,0 n1n

tr
1n1n

tr
1n αασσσif     (77) 

 
Else, impose global consistency via: 
 

( ) 0,, 1 =+++ nRf 1n1n ασ                        (78) 
 
with: 
 

ptr
1n1n σσσ d+= ++                                              (79) 

ααα tr
1n1n d+= ++                        (80) 

dRRR nn +=+1                              (81) 
 
Introducing (69)-(72) into (78)-(81), we get for dγ : 
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2.2 Global level 
 
2.2.1 Assembly and solution procedure (class 
NLSolver and its subclasses) 
 
The assembly of the different elements and nodes of the 
problem is managed by an instance of class Domain which 
embodies the problem to be solved. The domain solves the 
problem with the help of the nonlinear solver.   
 
 
2.2.1.1 Problem algorithm 
 
The global algorithm for solving a nonlinear problem is 
illustrated in figure 9. 
 

Initialisation: d0 = {0}   σ0 = {0}   ε0 = {0}
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Figure 9: Global nonlinear algorithm 
 

The Solve() method in class NLSolver is taken from [11]. 
The basic principle of this method is that the solver is an 
algebraic device whose only task is to solve an algebraic 
equation of type g(x) = 0. For that, the nonlinear solver needs 
an initial guess, a left-hand side (the Jacobian) and a right-
hand side (the residual). These ingredients are held by the 
domain and returned to the solver whenever he needs it. The 
method Solve() takes the following form: 
 
//------------------------------ 
FloatArray* NLSolver :: Solve () 
//------------------------------ 
 
{ 
Skyline      *jacobian; 
FloatArray   *x,*y,*dx, *dxacc; 
double       initialNorm, norm, tolerance, maxIterations; 
const double PRECISION=1.e-9; 
int          i,hasConverged=0; 
tolerance = this->give('t'); 
maxIterations = this->give('n'); 
x = this->domain->GiveInitialGuess(); 
dxacc = new FloatArray(this -> domain 

-> giveNumberOfFreeDofs()); 
for (i=1; i<=maxIterations; i++) { 

this->currentIteration = i; 
y = this->domain->ComputeRHSAt(dxacc)->minus(); 
jacobian = this->domain->ComputeJacobian(); 
this->linearSystem->setLHSTo(jacobian); 
this->linearSystem->setRHSTo(y); 
norm = y->giveNorm(); 
if (i == 1) initialNorm = norm;   
if (initialNorm = 0.) initialNorm = 1.; 
if (norm/initialNorm<tolerance||norm<PRECISION) { 

hasConverged = 1;    
linearSystem->updateYourself(); 
break;  

 } 
if (norm/initialNorm > 10) { 

hasConverged = 0;    
linearSystem->updateYourself(); 
break; 

 } 
this->linearSystem->solveYourself(); 
dx = this->linearSystem->giveSolutionArray();  
x->add(dx); 
dxacc->add(dx); 
linearSystem->updateYourself(); 

} 
this->numberOfIterations = i; 
this->convergenceStatus = hasConverged; 
delete dxacc; delete jacobian; delete y; 
return x; 
} 

 
 
2.2.2 How does the code work? 
 
Figure 10 illustrates the interactions between the main objects 
that compose the application. 
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Figure 10: Applicaton flow chart 
3 The class hierarchy 
 
3.1 Existing code description 
 
The class hierarchy of a finite element code that handles J2-
Plasticity is reviewed in this section. A brief description of 
each class is given. Particular attention is put on the most 
important classes (Element, GaussPoint, Material, Domain, 
NLSolver and their subclasses). The following notation rules 
are used in the class hierarchy (see Figure 11):  
 
▪ classes are ordered alphabetically 
▪ subclasses are indicated under their superclass with a right 
indent 
▪ the classes that had to be added to the initial linear 
FEM_Object package [1] in order to handle nonlinearity are 
written in bold font 
 
Dictionary 
Dof 
Domain 
FEMComponent 

Element 
PlaneStrain 

Quad_U  
Quad_U_BBar 
Triangle_U_Degen 

Truss2D 
Load 

BodyLoad 
DeadWeight 

BoundaryCondition 
InitialCondition 
NodalLoad 

LoadTimeFunction 
ConstantFunction 
PeakFunction 
PiecewiseLinFunction 

Material 
ElasticMaterial 
VonMisesMaterial 

VonMisesMaterial_H 
NLSolver 

ConstantStiffness 
ModNewtonRaphson 
NewtonRaphson 

Node 
TimeIntegrationScheme 

Newmark 
Static 

TimeStep 
FileReader 
FloatArray 

Column 
GaussPoint 
IntArray 
LHS 

Skyline 
LinearSystem 
List 
MathUtil 
Matrix 

FloatMatrix 
DiagonalMatrix 

PolynomialMatrix 
Pair 
Polynomial 

PolynomialXY 
 

Figure 11: The class hierarchy 
 
 

▪ Class Dictionary 
 
A dictionary is a collection with entries which have both a 
name and a value (class Pair).  
 
Dictionaries are typically used by degrees of freedom (class 
Dof) for storing their unknowns (like ‘d’) and by materials 
for storing their properties (like ‘E’ or ‘ν’). The main task of 
a dictionary is to store pairs and return the pair’s value 
corresponding to the pair’s key. 
 
▪ Class Dof 
 
A degree of freedom is an attribute of a node. Its role is to 
relieve the node from the following tasks: 
- managing the kinematic unknowns (like ‘d’) 
- equation numbering 
- checking the existence of an initial or boundary condition if 
any, and storing its number 
 
▪ Class Domain 
 
The domain can be considered as the “main” object that 
contains all the problems’ components; there is a single 
instance of Domain for each problem, and its principal tasks 
are: 
 
- receiving the messages from the user and initiating the 
corresponding operations 
- storing the components of the mesh: the list of nodes, 
elements, materials, loads, … 
- storing the non-linear solver type (class NLSolver) and the 
time-integration scheme 
- providing objects with access to the data file 
 



  

Class Domain
Inherits from : -

Tasks Attributes Methods

1) creation - Domain()
instanciateYourself()

2) management of the elementList giveElement(i)
problem’s components nodeList giveNode(i)

materialList giveMaterial(i)
loadList giveLoad(i)
loadTimeFunctionList giveLoadTimeFunction(i)
nlSolver giveNLSolver()
timeIntegrationScheme giveTimeIntegrationScheme()
numberOfElements giveNumberOfElements()
numberOfNodes giveNumberOfNodes()
numberOfFreeDofs giveNumberOfFreeDofs()

3) problem solving unknownArray giveUnknownArray()
solveYourself() 
formTheSystemAt(aStep) 
solveYourselfAt(aStep)
terminate(aStep)

4) interactions with the - giveInitialGuess()
nonlinear solver givePastUnknownArray()

computeRHSAt(a∆d)
computeInternalForces(a∆d)
computeLoadVectorAt(aStep)
computeJacobian()
computeTangentStiffnessMatrix()

5) input / output dataFileName giveDataFileName()
inputStream giveInputStream()
outputStream giveOutputStream()

readNumberOf(aComponent)  
 

Table 1: Class Domain description 
 
▪ Class FEMComponent 
 
This class, which is the superclass of classes Element, Load, 
LoadTimeFunction, Material, NLSolver, Node, 
TimeIntegrationScheme and TimeStep, regroups the 
attributes and methods which are common to all its 
subclasses (mainly access to the domain or to the input file). 
 
▪ Class Element 
 
Class Element regroups the attributes and the methods which 
are common to every element (which are instances of classes 
Quad_U, Quad_U_BBar or Truss2D). Its main tasks are: 
- calculating its mass matrix (for dynamics), its stiffness 
matrix and its load vector 
- giving its contributions to the left-hand side and the right-
hand side of the system (through the assembly operation 
performed by class Domain and described in section 2.2.1) 
- reading, storing and returning its data 
 

Class Element
Inherits from : FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, number giveNumber()
access to data domain …

Tasks Attributes Methods

1) creation - Element(aDomain, aNumber)
typed()
ofType(anElementType)
instanciateYourself()

2) attributes identification

          a) nodes nodeArray giveNode(i)
numberOfNodes

          b) material material giveMaterial()

          c) loads bodyLoadArray giveBodyLoadArray()

          d) Gauss points gaussPointArray -
numberOfGaussPoints

3) computation & assembly

          a) stiffness matrix stiffnessMatrix giveStiffnessMatrix()
constitutiveMatrix giveConstitutiveMatrix()

computeTangentStiffnessMatrix()
computeLHSAt(aStep)
computeStaticLHSAt(aStep)
computeNewmarkLHSAt(aStep)

          b) mass matrix massMatrix giveMassMatrix()

          c) load vector - computeLoadVectorAt(aStep)
computeBcLoadVectorAt(aStep)
computeVectorOfPrescribed(aStep)
computeRHSAt(aStep)
computeStaticRHSAt(aStep)
computeNewmarkRHSAt(aStep)

          d) internal forces - computeInternalForces(a∆d)
computeStrainIncrement(aGP, a∆d)

          e) assembly locationArray assembleYourselfAt(aStep)
assembleLHSAt(aStep)
assembleRHSAt(aStep)
giveLocationArray()

4) output - printOutputAt(aStep, aFile)

5) internal handling - computeNumberOfDofs()
updateYourself()
giveClassName()
printYourself()

 
Table 2: Class Element description 

 
▪ Class PlaneStrain 
 
This abstract class is the superclass of Quad_U. Its purpose is 
to give a generic superclass for other plane strain elements 
which would be later added in this environment (like the 
triangle for instance). 
 

Class PlaneStrain
Inherits from : Element, FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, number giveNumber()
access to data, domain ...
computation & assembly, ...
...

Tasks Attributes Methods

1) creation - PlaneStrain(aDomain, aNumber)

 
 

Table 3: Class PlaneStrain description 
 
▪ Class Quad_U 
 
This class implements a quadrilateral element. It inherits 
methods from its superclasses (PlaneStrain and Element) and 
adds its own behavior: 
 
- calculating matrices N (shape functions), B (strains) and D 
(elastic constitutive matrix) 
- numerical integration: calculating the position and the 
weight of the Gauss points, calculating the jacobian matrix 
 



  

Class Quad_U
Inherits from : PlaneStrain, Element, FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, number giveNumber()
access to data, domain …
computation & assembly, …
...

Tasks Attributes Methods

1) creation - Quad_U(aDomain, aNumber)

2) computation - computeNMatrixAt(aGP)
computeBMatrixAt(aGP)
computeCompactBMatrixAt(aXsiEtaPoint)
computeConstitutiveMatrix()

3) numerical integration jacobianMatrix giveJacobianMatrix()
computeGaussPoints()
computeVolumeAround(aGP)  

 
Table 4: Class Quad_U description 

 
▪ Class Quad_U_BBar 
 
The only specific task to this subclass of Quad_U is to 
compute its B matrix in a different way in order to overcome 
locking due to incompressiblility: a method returning the so-
called B-Bar matrix is implemented in this class. 
 

Class Quad_U_BBar
Inherits from : Quad_U, PlaneStrain, Element, FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, access to data, number giveNumber()
computation & assembly, domain …
numerical integration …
...

Tasks Attributes Methods

1) creation - Quad_U_BBar(aDomain, aNumber)

2) B-bar matrix handling - computeBMatrixAt(aGP)
giveBBarMatrix()
computeMeanBBar()
computeBBarAtCenter()  

 
Table 5: Class Quad_U_BBar description 

 
▪ Class Triangle_U_Degen 
 
This subclass of Quad_U implements a linear triangular 
element obtained by degeneration of the bilinear quad 
(coalescing the nodes 3 and 4 of the quad, see [9] for details). 
This element will fail for incompressible tests. 
 
▪ Class Truss2D 
 
This class implements a two-node planar truss element. It 
defines its own methods for the calculation of matrices N, B 
and D and manages also its Gauss points. Additionally, it has 
the following tasks: 
 
- characterizing its geometry (length and pitch) 
- rotating its contributions to the system from its local 
coordinate frame to the global coordinate frame 
 
▪ Class Load 
 
This superclass implements the various actions applied on 
elements, nodes and degrees of freedom. Its subclasses 
(BodyLoad, DeadWeight, BoundaryCondition, 
InitialCondition and NodalLoad) are described next. 
▪ Class BodyLoad 
 
Body load is self explanatory. 
 
▪ Class DeadWeight 

 
This load, which is a subclass of class BodyLoad, 
implements a gravity-like body force. It is usually associated 
with every element of the mesh. 
 
▪ Class BoundaryCondition 
 
A boundary condition is a constraint imposed on degrees of 
freedom. It defines the prescribed values of the unknown and 
is the attribute of one or more degrees of freedom (class Dof). 
 
▪ Class InitialCondition 
 
An initial condition defines the initial value of an unknown at 
the start of the analysis. This concept is used for initial-
boundary-value-problems. 
 
▪ Class NodalLoad 
 
A nodal load is a concentrated load which acts directly on the 
node. It is the attribute of one or more nodes. Its main task is 
to return the value of its components at a given time step. 
 
▪ Class LoadTimeFunction 
 
This superclass implements the functions that describe the 
evolution in time of a load. It is the attribute of one or more 
loads. Its task is to return its value at a given time step.  
 
Its subclasses (ConstantFunction, PeakFunction, and 
PiecewiseLinFunction) are described next. 
 
▪ Class ConstantFunction 
 
This class implements load functions which are constant in 
time. 
 
▪ Class PeakFunction 
 
This class implements a load function whose value is zero 
everywhere, except in one point. 
 
▪ Class PiecewiseLinFunction 
 
This class implements a piecewise linear function. 
 
▪ Class Material 
 
This superclass was created in order to regroup common 
tasks for its subclasses.  
 
Usually, a material is an attribute of many elements of the 
mesh. The constitutive information is stored in this class. 
 
▪ Class ElasticMaterial 
 
This class implements an elastic material. Its main task is to 
return its properties, e.g. Young modulus, Poisson ratio, … 



  

Class Material
Inherits from : FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, number giveNumber()
access to data domain …

Tasks Attributes Methods

1) creation - Material(aDomain, aNumber)
typed()
ofType(aMaterialType)

2) attributes identification propertyDictionnary give(aProperty)

3) internal handling - giveClassName()
giveKeyword()
printYourself()  

 
Table 6: Class Material description 

 
▪ Class VonMisesMaterial 
 
This class implements a plastic material of type Von Misès. 
This means that, apart from returning its properties like the 
ElasticMaterial class (including its Von Misès parameter k), 
it also performs two important tasks which have been 
described in section 2.1:  
 
- it computes the stress state of its elements (or, more 
precisely, of its elements’ Gauss points) through the stress 
return algorithm (see section 2.1.2.2) 
- it computes the constitutive matrix which can either be 
elastic (elastic material or constant stiffness algorithm), 
tangent or tangent-consistent for an improved convergence 
(see section 2.1.1.3) 
 

Class VonMisesMaterial
Inherits from : Material, FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, number giveNumber()
access to data, domain ...
attributes identification, propertyDictionary
...

Tasks Attributes Methods

1) creation - VonMisesMaterial(aDomain, aNumber)
instanciateYourself()

2) computation - computeStress(aGP, anElem, a∆d)
computeConstitutiveMatrix(aGP, anElem)
computeDFDSigma(aStressState)
computeYieldFunctionFor(aStressState)
computeStressLevelFor(aStressState)

3) internal handling - giveClassName()
printYourself()

 
 

Table 7: Class VonMisesMaterial description 
 

▪ Class VonMisesMaterial_H 
 
This subclass of VonMisesMaterial implements a plastic 
material of type Von Misès with a linear combination of 
kinematic and isotropic hardening (see sections 1.2.3 and 
2.1.3 for more details). 
 

Class VonMisesMaterial_H
Inherits from : VonMisesMaterial, Material, FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, number giveNumber()
access to data, domain ...
attributes identification, propertyDictionary
...

Tasks Attributes Methods

1) creation - VonMisesMaterial_H(aDomain, aNumber)
instanciateYourself()

2) computation - computeStress(aGP, anElem, a∆d)
computeConstitutiveMatrix(aGP, anElem)
computeKsi(aStressState, anα)
computeDFDSigma(aStressState, anα)
computeYieldFunctionFor(aStressSt., anα)
computeStressLevelFor(aStressState)

3) internal handling - giveClassName()
printYourself()

 
 

Table 8: Class VonMisesMaterial_H description 

▪ Class NLSolver 
 
This class, which is the superclass of classes 
ConstantStiffness, ModNewtonRaphson and 
NewtonRaphson, implements a nonlinear solver (see section 
2.2.1). Its main task is to solve the nonlinear problem at each 
iteration and each step. The convergence (or divergence) is 
also checked in this class. The type of left-hand side depends 
on the type of algorithm which is defined by the three 
following classes. 
 

Class NLSolver
Inherits from : FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, number giveNumber()
access to data domain …

Tasks Attributes Methods

1) creation - NLSolver(aDomain, aNumber)
typed()
ofType(aNLSolverType)

2) attributes identification propertyDictionnary give(aProperty)

3) computation linearSystem solve() 
maxIterations giveLinearSystem()
numberOfIterations giveNumberOfIterations()
currentIteration giveCurrentIteration()
tolerance giveConvergenceStatus()
convergenceStatus giveConsistentDep()
consistentDep

4) internal handling - updateYourself()
giveClassName()
giveKeyword()
printYourself()  

 
Table 9: Class NLSolver description 

 
▪ Class ConstantStiffness 
 
In this subclass of class NLSolver, the initial stiffness is kept 
through all the iterative process in order to form the left-hand 
side. 
 
▪ Class ModNewtonRaphson 
 
In this subclass of class NLSolver, the stiffness is updated 
each ns steps and ni iterations in order to form the left-hand 
side. 
 
▪ Class NewtonRaphson 
 
In this subclass of class NLSolver, the stiffness is updated at 
each iteration in order to form the left-hand side. 
 

Class NewtonRaphson
Inherits from : NLSolver, FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, number giveNumber()
access to data, domain …
computation, linearSystem
… ...

Tasks Attributes Methods

1) creation - NewtonRaphson(aDomain, aNumber)
instanciateYourself()

2) internal handling - giveClassName()
printYourself()  

 
Table 10: Class NewtonRaphson description 

 
▪ Class Node 
 
A node is the attribute of one or more elements. It has the 
following four tasks: 



  

- returning its coordinates 
- managing (creating and storing) its degrees of freedom 
(class Dof) 
- computing and assembling its nodal load vector (class 
NodalLoad) 
- updating its attributes at the end of each step 
 

Class Node
Inherits from : FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, number giveNumber()
access to data domain …

Tasks Attributes Methods

1) creation - Node(aDomain, aNumber)
instanciateYourself()

2) positioning in space coordinates getCoordinates()
giveCoordinate(i)

3) management of the dofArray giveDof(i)
degrees of freedom numberOfDofs giveNumberOfDofs()

4) management of the
nodal load vector:

          a) computation loadArray computeLoadVectorAt(aStep)
giveLoadArray()

          b) assembly locationArray assembleYourLoadsAt(aStep)
giveLocationArray()

5) output - printOutputAt(aStep, aFile)
printBinaryResults(aStep, aFile)

6) internal handling - updateYourself()
giveClassName()
printYourself()  

 
Table 11: Class Node description 

 
▪ Class TimeIntegrationScheme 
 
This class (and its subclasses Newmark and Static) define the 
time history of the problem. Its tasks are: 
 
- managing the time history of the problem (i.e. the time steps 
(class TimeStep)) 
- returning its coefficients (for instance β or γ) 
 
▪ Class Newmark 
 
This subclass of TimeIntegrationScheme implements a 
predictor-corrector method for dynamic analysis. 
 
▪ Class Static 
 
This subclass of TimeIntegrationScheme implements a 
scheme supporting the static analysis of a structure subjected 
to various loading cases. 
 
▪ Class TimeStep 
 
This class implements a time step in the time history of the 
problem.  
 
A time step is an attribute of a time integration scheme.   
 
The tasks of a time step is to return its current time t and time 
increment ∆t. 
 
▪ Class FileReader 
 
A file reader is an attribute of the domain. It provides non-
sequential access to the data file. 

▪ Class FloatArray 
 
This class implements an array of double-precision decimal 
numbers. Its tasks are: 
 
- storing and returning a coefficient, including index-
overflow checking 
- performing standard operations (addition, scalar 
multiplication, rotation, etc…) 
- expanding its size 
- assembling an elemental or nodal contribution, if the array 
is used as the right-hand side of the linear system 
 
Stresses and strains are instances of the FloatArray class. 
This means that additional operations (for instance 
computing invariants) have been added. 
 
▪ Class Column 
 
A column is an attribute of a skyline matrix. It stores the 
coefficients of a column. Its tasks are some among the ones 
defined in class FloatArray, although they are implemented 
differently. 
 
▪ Class GaussPoint 
 
A Gauss point is an attribute of an element. Its task is to 
regroup the data which are specific to the Gauss point: the 
coordinates and the weight of the point in numerical 
integration, the strains, the stresses. Nonlinear analysis 
induces some special tasks for the Gauss point. It has to store 
the stress and strain state at the current iteration, but also 
remember the last converged stress state. It also manages the 
amplitude of the stress return (∆γ), the state of the point 
(elastic or plastic), and the stress level. 
 

Class GaussPoint
Inherits from : -

Tasks Attributes Methods

1) creation number GaussPoint(aNumber, anElement, x, y, w)
element giveNumber()
coordinates giveCoordinates()
weight giveCoordinate(i)

giveWeight()

2) stresses / strains handling stressVector giveStressVector()
previousStressVector givePreviousStressVector()
strainVector giveStrainVector()

letStressVectorBe(aStressState)
letPreviousStressVectorBe(aStressState)
letStrainVectorBe(aStrainState)

3) stress return computation deltaGamma setDeltaGamma(aDeltaGamma)
plasticCode giveDeltaGamma()
stressLevel isPlastic()

givePlasticCode()
computeStressLevel()
giveStressLevel()

4) output - printOutput(aFile)
printBinaryResults(aFile)

5) internal handling - updateYourself()  
 

Table 12: Class GaussPoint description 
 

▪ Class IntArray 
 
This class implements an array of integers. 
 
▪ Class LHS 
 
This generic superclass was created in order to account for 
different types of left-hand sides (i.e. skyline, GMRES, 
BFGS, …) 



  

▪ Class Skyline 
 
A skyline is a symmetric matrix stored in a variable-band 
form. A skyline is used as the left-hand side of a linear 
system. Its tasks are: 
 
- setting up its own profile 
- assembling to itself an elemental contribution (for instance 
a stiffness matrix) 
- performing solving operations 
 
▪ Class LinearSystem 
 
The linear system is an attribute of class NLSolver. Its tasks: 
 
- initializing its left-hand side, right-hand side and solution 
array, and returning them upon request 
- solving itself 
 
▪ Class List 
 
A list is an array which coefficients are of type Element, 
Node, Load, … Its tasks are: 
 
-storing, deleting or returning an element of the list 
-expanding its own size, in order to accommodate more 
objects 
 
Typically, the domain stores the nodes, the elements, the 
loads of the problem in lists. 
 
▪ Class MathUtil 
 
This class was created in order to store mathematical utilities. 
 
▪ Class Matrix 
 
This class is the superclass of different types of matrices 
(classes FloatMatrix, DiagonalMatrix and 
PolynomialMatrix). It implements basic operations such as 
index-overflow checking. 
 
▪ Class FloatMatrix 
 
This class implements a rectangular matrix which 
coefficients are double-precision decimal numbers. The tasks 
assigned to such matrices are: 
 
- storing and returning a coefficient 
- performing standard operations: addition, inversion, 
lumping 
 
▪ Class DiagonalMatrix 
 
This class implements a matrix with non-zero coefficients on 
the diagonal. 
 
▪ Class PolynomialMatrix 
 
This class implements a matrix which coefficients are 
polynomials. Typically, jacobian matrices of plane strain 
elements are polynomial matrices. 
 

▪ Class Pair 
 
A pair is a key/value association. Pairs are used as entries of 
class Dictionary. 
 
▪ Class Polynomial 
 
Polynomial are used as coefficients of polynomial matrices, 
for instance P(X,Y). The task of a polynomial is to return its 
value at a given point. 
 
 
3.2 Object-oriented extendability 
 
The addition of a new component in the code (say a new 
element, for instance a three-node linear triangle) is made 
naturally in the class hierarchy: 
 
 . . . 

Element 
PlaneStrain 

Quad_U  
Quad_U_BBar 
Triangle_U_Degen 

Triangle_U 

 . . . 
 

The new class inherits the behavior of its superclasses and 
only a minimal number of methods have to be rewritten. The 
same concept applies to other components, like algorithms, 
formulations or materials. For instance, Drucker-Prager or 
Mohr-Coulomb materials could be inserted in the hierarchy 
as subclasses of class Material and inherit most methods from 
their superclass: 
 
 . . . 

Material 
ElasticMaterial 
VonMisesMaterial 

VonMisesMaterial_H 
  MohrCoulombMaterial 
  DruckerPragerMaterial 

 . . . 
 
 
4 Examples 
 
4.1 The footing problem 
 
Problem and geometry 
 
The problem of the bearing capacity of a superficial footing 
is described next. The geometry and characteristics of the 
problem are given in figure 12. 

q

γ = 0.0
E = 3000
ν = 0.4
k = 1.0

 
Figure 12: Geometry of the footing problem 

 
The load q on the footing is increased until failure occurs. 



  

Results 
 
The solution converges at q = 6 kN/m and fails to converge at 
7 kN/m, which, compared to the solution given by Terzaghi 
[12] qu = 5 kN/m, is satisfactory for a crude mesh. Figure 13 
illustrates the time history of the vertical displacement of a 
node at the interface between the footing and the soil. A clear 
divergence appears at time t = 7, illustrated by the failure 
mechanism (figure 14). 
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Figure 13: Time history 
 

 
 

Figure 14: Failure mechanism 
 
 
4.2 The thick cylinder test 
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Figure 15: Geometry for the thick cylinder test 
 
This experiment concerns a thick cylinder test, which has an 
analytical solution [13]. The internal and external radii of the 
cylinder are a = 1.0 and b = 2.0 m. Young's modulus E = 
21000 kN/m2 and Poisson's ratio  ν = 0.49999. Von-Misès 
criterion is used with a yield stress σy = 24 kN/m2 which 
corresponds to k = σy / √3 = 13.8564 kN/m2. The internal 
pressure p varies between 8 kN/m2 and 20 kN/m2, this value 
corresponding to the total plastification of the cylinder and its 
failure. A 640 elements mesh (figure 16) has been used for a 
plane strain analysis. 

 
Figure 16: Finite element mesh 

 
If we compare the evolution of the internal displacement in 
three cases: a) perfectly plastic material, b) H' = E / 3 = 7'000 
kN/m2, c) H' = 2E / 3 = 14'000 kN/m2, the results obtained 
with the code are in good agreement with the theoretical 
solutions given in [12] for a). As expected (figure 17), the 
yield radius develops more slowly as H' increases.  
 

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

5 7 9 11 13 15 17 19
Internal pressure p [kN/m2]

Yi
el

d 
ra

di
us

 c
 [m

]

Theory (H' = 0)

H' = 0

H' = 7'000

H' = 14'000

 
 

Figure 17: Evolution of the yield radius 
 
 

5 Conclusions 
 
An object-oriented finite element program for nonlinear 
structural and continuum analysis has been described in this 
paper using Von Misès plasticity as an illustration of 
constitutive theory. The usefulness of this object-oriented 
approach to solving nonlinear finite element problems has 
been demonstrated.  
 
Students and engineers in practice will find here an optimal 
starting package for finite element programming in C++ 
which can be downloaded at: 
 

http://www.zace.com/femobj_nl/femobj_nl.htm 
 
Extensions to other plastic models or different finite element 
formulations can be introduced in the code with little effort 
because of the strong modularity supplied by the object-
oriented approach. The interested reader will find in [14] a 
more detailed description of the code presented here. 
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