

ADVANCES IN ENGINEERING SOFTWARE 32, 8, 611-628(2001)

Object-Oriented Nonlinear Finite
Element Programming: a Primer

Stéphane Commend, Thomas Zimmermann

Laboratory of Structural and Continuum Mechanics (LSC)
Swiss Federal Institute of Technology, 1015 Lausanne,

Switzerland

Abstract

This article describes an introductory object-oriented finite
element program for static and dynamic nonlinear
applications. This work can be considered as an extension of
the original FEM_Object environment dealing with linear
elasticity [1] and nonlinearity [2]. Mainly the static aspects
are discussed in this paper. Interested readers will find a
detailed discussion of the object-oriented approach applied to
finite element programming in [15-18] and also in [7-8] and
references therein. Our ambition, in this paper, is limited to a
presentation of an introductory object-oriented finite element
package for nonlinear analysis. Our goal is to make a starting
package available to newcomers to the object-oriented
approach and to provide an answer to the large number of
demands for such a program received in recent time.

In the first part of the paper, a brief recall of the basics of
finite element modeling applied to continuum mechanics is
given. Von Misès plasticity including isotropic and kinematic
hardening, which is used as model problem, is described.
This first part also presents an overview of the main features
of the object-oriented approach. In the second part of this
paper, classes and associated tasks forming the kernel of the
code are described in detail. A hierarchy of classes is
proposed and discussed; it provides an immediate overview
of the program's capabilities. Finally interactions between
classes are explained and numerical examples illustrate the
approach.

1 Introduction

1.1 The static boundary value problem

The strong form of the problem can be stated as: find u such
that:

0=+= iji,j fσ)L(u on Ω (1)
with boundary conditions:

ijji tnσ = on Γ1 (2)

ii uu = on Γ2 and Γ = Γ1 + Γ2 (3)
with the kinematic relation:

() ()k,ll,kk,lkl uuuε =+=
2
1

 (4)

and the incremental elastoplastic constitutive equation:

kl
ep
ijklij dDd εσ = (5)

Ω

Γ2

Γ1

L(u) = 0

Figure 1: Problem statement

Although the program supports dynamic analysis, this will be
not discussed in detail herein.

1.2 Von Misès plasticity

Plasticity requires the definition of a yield function, a flow
rule and a hardening law; the consistency condition
completes the formulation. Von Misès yield function is
adopted here.

1.2.1 Von Misès criterion

This criterion assumes that plastic yielding will occur when
the second invariant J2 of the deviatoric stress tensor reaches
a critical value, which is a material property. It is expressed
by:

() 02 =−= kJf σ (6)

where:

ijij ssJ
2
1

2 = (7)

and s is the deviatoric stress tensor.

The criterion can be represented by a cylinder of radius R in
the three-dimensional stress space, with:

kR 2= (8)

σ1

σ2 σ3

σ1

σ2

σ3 R

Figure 2: Von Misès yield surface in principal stress space
and in the deviatoric plane

1.2.2 Flow rule

Let:

rεp ⋅= γdd (9)

where r defines the plastic flow direction and γd the flow
amplitude. Assuming associative flow, we determine the unit
flow direction vector ()σr as follows:

() () ijs
J

d
df
d
df

22
1

===

σ

σσnσr (10)

1.2.3 Hardening

Hardening defines an evolution law of the yield surface in the
stress space:

() 0, =qσf (11)

where q is a set of hardening parameters which can be scalar
or tensorial. A distinction is made between: isotropic
hardening: the yield surface grows in size but its center in the
deviatoric plane remains fixed, kinematic hardening: the
radius of the yield surface remains constant, but its center is
translated in the deviatoric plane, and mixed isotropic-
kinematic hardening: combining the two previous ones.

Introducing two new variables, the back-stress α (for
kinematic hardening) and the yield radius R (for isotropic
hardening), equation (11) can be written:

() 0,, =−=−−= RRRf ξαsασ (12)

where s is the deviatoric part of σ , and (6) can be easily
retrieved.

α R

() 0,, =Rf ασ

0=initialf

Figure 3: Evolution of the yield surface

If we consider a linear combination of kinematic and
isotropic hardening, the evolution law (or hardening rule) for
the set of hardening parameters ()R,αq = can be derived in
the following way.

First, we need to relate these parameters to the experimental
uniaxial stress-strain curve. For that, we use two variables,
namely the equivalent (or effective) stress eqσ and the

equivalent (or effective) plastic strain p
eqε [3]:

2

5.0

3
2
3 Jss ijijeq =






=σ (13)

5.0

3
2







= p

ij
p

ij
p

eq εεε (14)

We verify that for the uniaxial test:

11
2
112 3

133 σσσ === Jeq (15)

and due to incompressibility in the plastic range (which leads

to ppp
113322 2

1 εεε −==):

pp

eq 11εε = (16)

In the case of linear hardening, the relation between these
two variables can be expressed with the help of the plastic
modulus 'H , as:

p
eqeq dHd εσ '= (17)

and we will assume in the sequel that 0'≥H .

• Isotropic hardening

The amplitude of the plastic strain increment is by definition
given by the plastic multiplier γd . In the uniaxial case, we
can therefore write:

() γεεεεε ddddddd p
eq ===


















+






+=

2
3

2
3

2
1

2
1

11

5.02

11

2

11
2

11
pε

 (18)

For Von Misès criterion, equation (6) (kJ =2) yields
(with the use of equation (18)):

γεσ dHdHdJddk p
eqeq '

3
2'

3
1

3
1

2 ==== (19)

and with equation (8), we finally get the expression for the
evolution of the yield radius:

γdHdkdR '
3
22 == (20)

• Kinematic hardening

If the radius of the yield surface remains constant, we can
write it as:

()()ijijijij ssJJd αα −−==
2
1;0 *

2
*
2 (21), (22)

Equations (18), (21) and (22) yield:

γεσ dHdHdJddd p
eqeq '

3
2'

3
2

3
122 2 ===== sα (23)

and finally, the evolution of the back-stress writes:

rα γdHd '
3
2

= (24)

• Mixed hardening

A straightforward combination of the two types of hardening
can be introduced wih a parameter β such that 0=β for
kinematic hardening, 1=β for isotropic hardening and:

γβ dHdR '
3
2

= (25)

() rα γβ dHd '1
3
2

−= (26)

1.2.4 Consistency

The actual amplitude of plastic flow results from the
consistency condition which imposes:

0=f& (27)

under plastic loading. This we write in vector notation as:

() 0=
∂
∂

+−
∂
∂

=
∂
∂

+
∂
∂

= q
q

εεD
q

q
q

σ
σ

pel dfddfdfdff
TTTT

& (28)

where the incremental elastoplastic constitutive equation (5)
has been rewritten as:

()peleel εεDεDσ dddd −== (29)

We will see later (equations (45) and (68)) that equation (28)
leads to the actual computation of the plastic multiplier

γd ; but for the case of a Von Misès criterion a more
efficient numerical implementation can be formulated.

1.3 The finite element method

We consider here a displacement formulation of the
elastoplastic matrix problem, which is stated as:

() extFdN = (30)

where ()dN is a nonlinear matrix function of the

displacement vector d and extF is the vector of applied
forces. The resulting linearized problem (see figure 4) then
reads:

()i
1n

ext
1nT dNFdK ++ −=∆ (31)

ddd i
1n

1i
1n ∆+= +

+
+ (32)

which must be solved for d∆ iteratively at each loading step
()1+n . TK is the tangent stiffness, i the iteration counter

and ()1+n the current loading step.

K3n+1

Fext,n

Fext,n+1

K1n+1

K2n+1

F2int,n+1

F3int,n+1

F4int,n+1

F5int,n+1=Fext,n+1

F

d

dn=d
1
n+1 d2n+1 d3n+1 d4n+1 d5n+1=dn+1∆d1n+1 ∆d2n+1

∆F1n+1

F1int,n+1

∆d3n+1 ∆d4n+1

∆F2n+1

∆F3n+1

∆Fext

N(d)

Figure 4: Linearized problem

1.4 Volumetric locking due to material
incompressibility

Von Misès plasticity induces incompressible behavior in the
plastic range, which in turn can induce locking phenomena.

Figure 5a illustrates a simple mesh discussed in [4] with three
fixed nodes and one free node. Assume linear displacement
constant pressure elements; incompressible (constant
volume) deformation must take place. As a result of
kinematic constraint node N is required to move horizontally
in the lower triangular element, and required to move
vertically as a result of the kinematic constraint in the upper
triangular element; locking results, and obviously the
reasoning can be extended to a n x n mesh (figure 5b). This
kind of locking typically appears when using the full B
matrix as described later. Different methods can be used in
order to avoid this phenomenon [5]. Keeping in mind the
incompressible behavior of Von Misès material, the B
approach can be applied here.

fixed
N

fixedfixed

fixed

 Figure 5a Figure 5b

1.5 Why object-oriented programming?

Object-oriented programming (see e.g. [6], [7], [8] and
references therein) has proven in recent years to be one of the
easiest, fastest and most efficient ways to program robust
scientific software. The basic components of the finite
element method, like the node, the element, the material, can
easily be fitted into an objects world, with their own
behavior, state and identity. We review here the key features
of object-oriented programming:

a) Robustness and modularity: encapsulation of data

An object is a device capable of performing predefined
actions, such as storing information (in its variables),
executing tasks (through his methods), or accessing other
objects (by sending messages). Variables describe the state of
the object, while methods define its behavior. Objects hide
their variables from other components of the application. For
instance, class Element does not have direct access to its
Young Modulus. The Young Modulus is stored in class
Material. The object has to send a message, like
myMaterial→giveYoungModulus() to access it.

b) Inheritance and polymorphism: the hierarchy of classes

Every object is an instance of a class. A class is an abstract
data type which can be considered as the mold of the object.
Classes are organised within a hierarchy (class-subclass),
which allows a subclass (say, Truss2D) to inherit the methods
and variables from its superclass (say, Element).
Polymorphism expresses the fact that two different classes
will react differently (in their own manner) to the same
message. For instance, the message myElement→
giveBMatrix() will be interpreted differently by an object of
the class Quad_U (defining quadrilateral elements) and an
object of the class Truss2D (defining truss elements).

The hierarchy of classes of a simple nonlinear finite element
code, providing an overview of the entire software, is given
in section 3. The fact that the code can be described in such a
compact way can be very valuable, when extensions are
considered.

c) Non-anticipation and state encapsulation

Non-anticipation expresses the fact that the content of a
method should not rely on any assumption on the state of the
variables. Strict obedience to non-anticipation will contribute
significantly to code robustness.

d) Efficiency

As far as numerical performance is concerned, languages
such as C++ have shown performances similar to Fortran.
With respect to code development speed using object-
oriented techniques, the programmer can maximize
reusability of the software and «program like he thinks»,
which leads to faster prototyping.

2 Main tasks of the finite element
program

2.1 Element level (class Element)

2.1.1 Forming the elementary stiffness

The definition of the elemental stiffness matrix Ke writes:

e
e

T dVBDBK ep
e ∫= (33)

The following method of class Element illustrates how the
element is forming its stiffness matrix.

//---
FloatMatrix* Element :: computeTangentStiffnessMatrix ()
//---

{
Material *mat;
GaussPoint *gp;
FloatMatrix *b,*db,*d;
double dV;
int i;
if (stiffnessMatrix) {

delete stiffnessMatrix;
}
stiffnessMatrix = new FloatMatrix();
mat = this->giveMaterial();
for (i=0; i<numberOfGaussPoints; i++) {

gp = gaussPointArray[i];
b = this->ComputeBmatrixAt(gp);
d = mat->ComputeConstitutiveMatrix(gp,this);
dV = this->computeVolumeAround(gp);
db = d->Times(b);
stiffnessMatrix->plusProduct(b,db,dV);
delete d; delete db; delete b;

}
return stiffnessMatrix->symmetrized();
}

This method shows that the construction of two matrices,
namely epD and B , contribute to build the stiffness matrix.
Integration over the element is achieved with a loop over the
Gauss points of the element. In sections 2.1.1.1 and 2.1.1.2,
the construction of B (or B) matrix will be scrutinized. In

section 2.1.1.3, the construction of constitutive matrix epD
will be discussed.

2.1.1.1 The B matrix (class Quad_U)

The B matrix defines the kinematic relation between the
strain vector ε and the nodal displacements d :

dBε = (34)

)u(uε j,ii,jij +=
2
1 (35)

Considering a plane strain bilinear isoparametric quadrilateral
element, this relation can be stated starting from the
definition of ε , and approximating the displacement field u
with the help of the nodal displacements d and the

interpolation functions aN :

() () a
a

a dξ,ηNξ,ηu ∑
=

=
4

1

 (36)

The corresponding definition of the B matrix can be written
following [9], notice the 4x2 matrix size:

[]



























∂
∂

∂
∂

∂
∂

∂
∂

==

00

0

0

12

2

1

x
N

x
N

x
N

x
N

with
ii

i

i

i4321 BBBBBB
 (37)

The partial derivatives of the interpolation functions are
calculated using the inverse of the Jacobian matrix 1−J :



















∂
∂

∂
∂

−

∂
∂

−
∂
∂









∂

∂
∂

∂
=








∂

∂
∂

∂

ξ
x

ξ
y

η
x

η
y

jη
N

ξ
N

y
N

x
N aaaa 1 (38)

ξ
y

η
x

η
y

ξ
xj

∂
∂

∂
∂

−
∂
∂

∂
∂

= (39)

2.1.1.2 The B matrix (class Quad_U_BBar)

The B approach introduces a modification of the dilatational
contribution to the standard B matrix, dilB , which is
underintegrated or averaged over the element.

The strain relation then reads (see [4] for details):

dBε = (40)

dildev BBB += and dildev BBB −= (41)

For plane strain B results as:

3
22

6

3
11

4

64
12

6
2

4

64
1

x
iN

x
iN

B

x
iN

x
iN

B

with

BB
x

iN

x
iN

B
x

iN
B

BB
x

iN

∂

∂
−

∂

∂

=

∂

∂
−

∂

∂

=

∂

∂

∂

∂

+
∂

∂

+
∂

∂



























 (42)

This formulation has been shown to be appropriate for
overcoming locking due to incompressibility in very general
situations.

2.1.1.3 Constitutive matrices (class Material and its
subclasses)

Different algorithms use different constitutive matrices. The
elastic stiffness matrix based on the elastic constitutive
matrix (section 2.1.1.3.1) is used for a constant stiffness
algorithm, while the Newton-Raphson algorithm requires a
tangent stiffness matrix (section 2.1.1.3.2) or even a
consistent tangent stiffness matrix (section 2.1.1.3.3) in order
to improve convergence.

2.1.1.3.1 The elastic constitutive matrix elD

Class ElasticMaterial forms its constitutive matrix in the
following method:

//--
FloatMatrix* ElasticMaterial :: ComputeConstitutiveMatrix
 (GaussPoint* ip, Element* elem)
//--

{
return elem->giveConstitutiveMatrix()->GiveCopy();
}

This method actually calls a method of class element (here,
class Quad_U):

//--
FloatMatrix* Quad_U :: computeConstitutiveMatrix ()
//--

{
Material *mat = this -> giveMaterial() ;
double e,nu,ee;
e = mat -> give('E') ;
nu = mat -> give('n') ;
ee = e / ((1.+nu) * (1.-nu-nu)) ;
constitutiveMatrix = new FloatMatrix(4,4) ;
constitutiveMatrix->at(1,1) = (1.-nu) * ee ;
constitutiveMatrix->at(1,2) = nu * ee ;
constitutiveMatrix->at(2,1) = nu * ee ;
constitutiveMatrix->at(2,2) = (1.-nu) * ee ;
constitutiveMatrix->at(3,3) = e / (2.+nu+nu) ;
constitutiveMatrix->at(1,4) = nu * ee ;
constitutiveMatrix->at(2,4) = nu * ee ;
constitutiveMatrix->at(4,1) = nu * ee ;
constitutiveMatrix->at(4,2) = nu * ee ;
constitutiveMatrix->at(4,4) = (1.-nu) * ee ;
return constitutiveMatrix ;
}

2.1.1.3.2 The elasto-plastic tangent constitutive matrix epD

Definition:

ε
σDep

d
d

= (43)

Consistency imposes 0=f& , with f the yield function,
which yields in vector notation:

0=−= pelel εD
σ

εD
σ

σ
σ

d
d
dfd

d
dfd

d
df TTT

 (44)

Introducing the flow rule (equation (9)) into (44), one gets:

rD
σ

εD
σ

el

el

T

T

d
df

d
d
df

dγ = (45)

Introducing (45) into (9) and then into the constitutive
equation (29) we get:

r
rD

σ

εD
σDεDσ

el

el

elel
T

T

d
df

d
d
df

dd −= (46)

And finally:

()
ε

rD
σ

σ
DrD

DεDσ
el

elel

elep d

d
df

d
df

dd T

T




























−== (47)

2.1.1.3.3 Improving convergence: the consistent elasto-
plastic tangent constitutive matrix *epD

Using the following algorithmic approximation of the plastic
strain increment (with q the plastic potential):

σ
σσ

rrεp d
d

qdγ
d
dqdγdγdγd 2

2

+=⋅+⋅= (48)

One gets:









−−= σ

σσ
εDσ el d

d
qdγ

d
dqdγdd 2

2

 (49)

Remark: here, dγγ = as the return takes place in one step.
Rearranging terms of (49):







 −=








+

σ
εDσ

σ
DI elel

d
dqdγdd

d
qddγ 2

2

 (50)

And multiplying (50) by the compliance matrix
1−

= elel DC on the left:

1

2

2

−

↑

−=







+

*el

el

D

σ
εσ

σ
C

d
dqdγdd

d
qddγ

 (51)

Finally, multiplying (51) by matrix *elD on the left, one
gets:







 −=

σ
εDσ *el

d
dqdγdd (52)

And using the procedure described in the previous section for
the tangent matrix epD , we get the consistent tangent
operator *epD :

ε

σ
* D

σ

σ
* D

σ
* D

* Dσ
el

 elel

el d

d

dqT

d

df

T

d

df

d

dq

d




































−= (53)

2.1.2 Forming the right-hand side

The computation of the right-hand side (or internal forces)
proceeds as follows:

() e
e

T
el

e
dV∫ +=+ == i

1n
i

1n
int σBAdNF

.#

1
 (54)

where N was defined earlier and
.#

1

el

e=
A denotes an assembly

of elemental contributions. The following method of class
Element is computing internal forces:

//---
FloatArray* Element :: ComputeInternalForces

(FloatArray* dElem)
//---

{
Material *mat;
GaussPoint *gp;
FloatMatrix *b;
FloatArray *f;
double dV;
int i;
mat = this->giveMaterial();
f = new FloatArray();
for (i=0; i<numberOfGaussPoints; i++) {
 gp = gaussPointArray[i];
 b = this->ComputeBmatrixAt(gp);

mat -> ComputeStress(dElem,this,gp);
 dV = this->computeVolumeAround(gp);
 f->plusProduct(b,gp->giveStressVector(),dV);

delete b;
}
delete dElem;
return f;
}

This method has the same structure as the one described in
section 2.1.1, forming the stiffness matrix.

The loop on Gauss points covers the whole element volume,
and the method ComputeStress(dElem, this, gp) of class
Material stores the stress state computed at the Gauss point.
 2.1.2.1 Elastic case

The following method of class ElasticMaterial computes the
stress state at the given Gauss point for the given element:

//--
void ElasticMaterial :: ComputeStress

(FloatArray* dxacc, Element* elem, GaussPoint* gp)
//--

{
FloatArray *sigma, *deltaEpsilon;
deltaEpsilon = elem->computeStrainIncrement(gp,dxacc);
sigma = elem->giveConstitutiveMatrix()

->Times(deltaEpsilon);
sigma->add(gp->givePreviousStressVector());
delete deltaEpsilon;
gp->letStressVectorBe(sigma);
}

2.1.2.2 Elasto-plastic case

2.1.2.2.1 General form of the stress computation algorithm

The following general stress-return algorithm can be
formulated.

Problem: given nσ and acc

1n1n dBε ++ = dd , find 1nσ + (for
iteration i and step n+1)

First, compute a trial stress state:

1n
el

n
tr

n
tr

1n εDσσσσ ++ +=+= dd (55)

δσs tr
1n

tr
1n

tr
np 1+++ −= (56)

Check yielding for the trial stress state:

() tr
1n1n

tr
1n σσσ +++ =≤0fif (57)

Else, impose global consistency via () 0=+1nσf and define
σd such that:

ptr

1n1n σσσ d+= ++ (58)

() 0σf =
1nσ +

tr
1nσ +

nσ

trdσ

dσ

pdσ

Figure 6: Stress increments

with pσd derived as follows:

() ptrpel σσεεDσ ddddd +=−= (59)

From consistency:

() () () 0=+≅+=

+

+++
p

tr
1n

tr
1n

ptr
1n1n σ

σσ
σσσσ d

d

df
fdff (60)

Using the definition of pσd given by (59) and the flow rule:

rDσ elp dγ-d = (61)

Introducing (61) into (60), we get (in vector notations):

()
rD

σ

σ

el

tr
1n

T

d
df

fdγ += (62)

A geometric interpretation of the stress return for Von Misès
plasticity is described next.

2.1.2.2.2 Radial return for elastic-perfectly plastic associated
Von Misès plasticity (following [10])

nσ

tr
1n

p
+

tr
1n

σ
+

1nσ + k2R =

tr
1n

s
+

Figure 7: Radial return for Von Misès plasticity: three
dimensional stress space view

In the case of associated Von Misès plasticity, the return
happens always in the deviatoric plane (corresponding to
incompressible flow). Geometrical considerations in this
plane lead to:

tr
1ntr

1n
1n s

s
δσ +

+
++ +=

Rptr
n 1 (63)

δσδσs
3
kkσp −=−= (64)

Where s is the deviatoric stress tensor, p is the mean or
hydrostatic stress tensor and δ is the unit tensor. Finally, the
norm of the deviatoric trial stress is given by:



















== +++

1000
0200
0010
0001

; AAsss tr
1n

tr
1n

tr
1n

T
 (65)

where the matrix A is introduced to maintain compatibility
between the vectorial and tensorial notations.

tr
1n

s
+

tr
1n

σ
+

1nσ +

k2R =tr
1np +

Figure 8: Radial return for Von Misès plasticity: deviatoric
plane view

The following method of class VonMisesMaterial computes
the stress state, enforcing consistency if needed and stores it
at the Gauss point level:

//---
void VonMisesMaterial :: ComputeStress

(FloatArray* dxacc, Element* elem, GaussPoint* gp)
//---

{
FloatArray *sigmaTrial, *deltaEpsilon;
FloatMatrix *Del;
Del = elem->giveConstitutiveMatrix()->GiveCopy();
deltaEpsilon = elem->computeStrainIncrement(gp,dxacc);
sigmaTrial = Del->Times(deltaEpsilon);
sigmaTrial->add(gp->givePreviousStressVector());
double fSigTr = this->computeYieldFunctionFor(sigmaTrial);
if (fSigTr > 0) {
 double deltaGamma;
 FloatArray *dFDSigma = this->computeDFDSigma

 (sigmaTrial);
 deltaGamma = fSigTr / (dFDSigma->transposedTimes

 (Del->Times(dFDSigma)));
 sigmaTrial->minus((Del->Times(dFDSigma))

 ->times(deltaGamma));
 gp->isPlastic();
 gp->setDeltaGamma(deltaGamma);
 delete dFDSigma;
}
gp->letStressVectorBe(sigmaTrial);
delete Del; delete deltaEpsilon;
}

2.1.3 Introducing hardening

2.1.3.1 Consistency condition

We introduce a tensorial function),(qσh which defines the
direction of the hardening parameters increments, by analogy
with),(qσr giving the direction of the plastic strain
increment:

()qσhq ,⋅= γdd (66)

()qσrεp ,⋅= γdd (67)

Introducing (66)-(67) into the consistency condition (28), and
using the constitutive equation (29), we finally get:

h
q

rD
σ

εD
σ

el

el

TT

T

ff

df

d

∂
∂

−
∂
∂

∂
∂

=γ (68)

2.1.3.2 A linear combination of isotropic and kinematic
strain hardening

Following section 1.2.3, for the case of mixed hardening we
write:

()
() 
















−
=⋅=








=

r
qσh

α
q

'1
3
2

'
3
2

,
H

H
dd

d
dR

d
β

β
γγ (69)

with 0'≥H , and 0'=H implying perfect plasticity.
Parameter β determines the proportion of isotropic and
kinematic hardening or softening.

2.1.3.3 The elasto-plastic tangent constitutive matrix for
Von Misès plasticity with hardening

The partial derivatives of ()Rf ,,ασ write:

1;; −=
∂

∂
−=−=

∂

∂
==

∂

∂

R

fff
n

ξ

ξ

α
n

ξ

ξ

σ
 (70), (71), (72)

Rewriting the consistency condition:

() 0=⋅
∂
∂

+⋅−
∂
∂ h

q
rεD

σ
el γγ dfddf TT

 (73)

and using (68) and (69), the elasto-plastic tangent operator
can be written:

()()
'

3
2 HT

T

+
−=

rDn

nDrDDD
el

elel
elep (74)

2.1.3.4 Radial return for Von Misès plasticity with
hardening

Similarly to the perfectly plastic case (see section 2.1.2.2.1),
the following stress-return algorithm can be written.

Given nσ , nα , nR and 1nε +d , find 1nσ + , 1nα + and 1+nR

First, compute the trial stress state as:

1n
el

n
tr

n
tr

1n εDσσσσ ++ +=+= dd (75)

n
tr

1n
tr

1n ασξ −= ++ (76)

Check yielding for the trial stress state:

() nn RRf ===≤ +++++ 1,,0 n1n

tr
1n1n

tr
1n αασσσif (77)

Else, impose global consistency via:

() 0,, 1 =+++ nRf 1n1n ασ (78)

with:

ptr
1n1n σσσ d+= ++ (79)

ααα tr
1n1n d+= ++ (80)

dRRR nn +=+1 (81)

Introducing (69)-(72) into (78)-(81), we get for dγ :

()
'

3
2
,, 1

H

Rfdγ
T

n

+
= +++

rDn

ασ
el

1n
tr

1n (82)

2.2 Global level

2.2.1 Assembly and solution procedure (class
NLSolver and its subclasses)

The assembly of the different elements and nodes of the
problem is managed by an instance of class Domain which
embodies the problem to be solved. The domain solves the
problem with the help of the nonlinear solver.

2.2.1.1 Problem algorithm

The global algorithm for solving a nonlinear problem is
illustrated in figure 9.

Initialisation: d0 = {0} σ0 = {0} ε0 = {0}

n+1 = 1, 2, 3, ..., NSTEP

Notation: di
n+1 = diter

step

Loop on steps

Compute external forces fext,n+1
dΓtNdΩbNf 1n

Γ

T
1n

Ω

T
1next, +++ ∫∫ +=

i = 1, 2, 3, ..., MAXITER

Loop on iterations
Initial guess: d1

n+1 = dn
Accumulated displacement: ∆dacc,1

n+1 = 0
NITER is unknown, governed
by a convergence criterion

Compute internal forces fi
int,n+1

Test residual: || fext,n+1 - fi
int,n+1 || < TOL

Compute tangential stiffness matrix Ki
T,n+1

Solve Ki
T,n+1 ∆d = ∆f = fext,n+1 - fi

int,n+1

Compute σi+1
n+1

dΩσBf 1n
i

Ω

T
1nint,

i
++ ∫=

YES

NO

di+1
n+1 = di

n+1 + ∆d
∆dacc,i+1

n+1 = ∆dacc,i
n+1 + ∆d

Through stress-return algorithm

BdΩDBK 1n
iep,

Ω

T
1nT,

i
++ ∫=

Figure 9: Global nonlinear algorithm

The Solve() method in class NLSolver is taken from [11].
The basic principle of this method is that the solver is an
algebraic device whose only task is to solve an algebraic
equation of type g(x) = 0. For that, the nonlinear solver needs
an initial guess, a left-hand side (the Jacobian) and a right-
hand side (the residual). These ingredients are held by the
domain and returned to the solver whenever he needs it. The
method Solve() takes the following form:

//------------------------------
FloatArray* NLSolver :: Solve ()
//------------------------------

{
Skyline *jacobian;
FloatArray *x,*y,*dx, *dxacc;
double initialNorm, norm, tolerance, maxIterations;
const double PRECISION=1.e-9;
int i,hasConverged=0;
tolerance = this->give('t');
maxIterations = this->give('n');
x = this->domain->GiveInitialGuess();
dxacc = new FloatArray(this -> domain

-> giveNumberOfFreeDofs());
for (i=1; i<=maxIterations; i++) {

this->currentIteration = i;
y = this->domain->ComputeRHSAt(dxacc)->minus();
jacobian = this->domain->ComputeJacobian();
this->linearSystem->setLHSTo(jacobian);
this->linearSystem->setRHSTo(y);
norm = y->giveNorm();
if (i == 1) initialNorm = norm;
if (initialNorm = 0.) initialNorm = 1.;
if (norm/initialNorm<tolerance||norm<PRECISION) {

hasConverged = 1;
linearSystem->updateYourself();
break;

 }
if (norm/initialNorm > 10) {

hasConverged = 0;
linearSystem->updateYourself();
break;

 }
this->linearSystem->solveYourself();
dx = this->linearSystem->giveSolutionArray();
x->add(dx);
dxacc->add(dx);
linearSystem->updateYourself();

}
this->numberOfIterations = i;
this->convergenceStatus = hasConverged;
delete dxacc; delete jacobian; delete y;
return x;
}

2.2.2 How does the code work?

Figure 10 illustrates the interactions between the main objects
that compose the application.

f ext f int KT
el

∆f KT
GLO

KT
GLO ∆f∆d =

B

Del

Dep

Dep*

σ

σ
∫

elΩ

elT dΩBDB

∫
elΩ

elT dΩσB

f ext

D
om

ain

N
LSolver

LinearSystem

N
ode(s)

Elem
ent(s)

M
aterial

G
P

 Domain.SolveYourself

ASSEMBLYASSEMBLY

∆f < ε NOYES
n++

FLOW CHART

SolveStep(n+1)

d += ∆d
i++

Figure 10: Applicaton flow chart
3 The class hierarchy

3.1 Existing code description

The class hierarchy of a finite element code that handles J2-
Plasticity is reviewed in this section. A brief description of
each class is given. Particular attention is put on the most
important classes (Element, GaussPoint, Material, Domain,
NLSolver and their subclasses). The following notation rules
are used in the class hierarchy (see Figure 11):

▪ classes are ordered alphabetically
▪ subclasses are indicated under their superclass with a right
indent
▪ the classes that had to be added to the initial linear
FEM_Object package [1] in order to handle nonlinearity are
written in bold font

Dictionary
Dof
Domain
FEMComponent

Element
PlaneStrain

Quad_U
Quad_U_BBar
Triangle_U_Degen

Truss2D
Load

BodyLoad
DeadWeight

BoundaryCondition
InitialCondition
NodalLoad

LoadTimeFunction
ConstantFunction
PeakFunction
PiecewiseLinFunction

Material
ElasticMaterial
VonMisesMaterial

VonMisesMaterial_H
NLSolver

ConstantStiffness
ModNewtonRaphson
NewtonRaphson

Node
TimeIntegrationScheme

Newmark
Static

TimeStep
FileReader
FloatArray

Column
GaussPoint
IntArray
LHS

Skyline
LinearSystem
List
MathUtil
Matrix

FloatMatrix
DiagonalMatrix

PolynomialMatrix
Pair
Polynomial

PolynomialXY

Figure 11: The class hierarchy

▪ Class Dictionary

A dictionary is a collection with entries which have both a
name and a value (class Pair).

Dictionaries are typically used by degrees of freedom (class
Dof) for storing their unknowns (like ‘d’) and by materials
for storing their properties (like ‘E’ or ‘ν’). The main task of
a dictionary is to store pairs and return the pair’s value
corresponding to the pair’s key.

▪ Class Dof

A degree of freedom is an attribute of a node. Its role is to
relieve the node from the following tasks:
- managing the kinematic unknowns (like ‘d’)
- equation numbering
- checking the existence of an initial or boundary condition if
any, and storing its number

▪ Class Domain

The domain can be considered as the “main” object that
contains all the problems’ components; there is a single
instance of Domain for each problem, and its principal tasks
are:

- receiving the messages from the user and initiating the
corresponding operations
- storing the components of the mesh: the list of nodes,
elements, materials, loads, …
- storing the non-linear solver type (class NLSolver) and the
time-integration scheme
- providing objects with access to the data file

Class Domain
Inherits from : -

Tasks Attributes Methods

1) creation - Domain()
instanciateYourself()

2) management of the elementList giveElement(i)
problem’s components nodeList giveNode(i)

materialList giveMaterial(i)
loadList giveLoad(i)
loadTimeFunctionList giveLoadTimeFunction(i)
nlSolver giveNLSolver()
timeIntegrationScheme giveTimeIntegrationScheme()
numberOfElements giveNumberOfElements()
numberOfNodes giveNumberOfNodes()
numberOfFreeDofs giveNumberOfFreeDofs()

3) problem solving unknownArray giveUnknownArray()
solveYourself()
formTheSystemAt(aStep)
solveYourselfAt(aStep)
terminate(aStep)

4) interactions with the - giveInitialGuess()
nonlinear solver givePastUnknownArray()

computeRHSAt(a∆d)
computeInternalForces(a∆d)
computeLoadVectorAt(aStep)
computeJacobian()
computeTangentStiffnessMatrix()

5) input / output dataFileName giveDataFileName()
inputStream giveInputStream()
outputStream giveOutputStream()

readNumberOf(aComponent)

Table 1: Class Domain description

▪ Class FEMComponent

This class, which is the superclass of classes Element, Load,
LoadTimeFunction, Material, NLSolver, Node,
TimeIntegrationScheme and TimeStep, regroups the
attributes and methods which are common to all its
subclasses (mainly access to the domain or to the input file).

▪ Class Element

Class Element regroups the attributes and the methods which
are common to every element (which are instances of classes
Quad_U, Quad_U_BBar or Truss2D). Its main tasks are:
- calculating its mass matrix (for dynamics), its stiffness
matrix and its load vector
- giving its contributions to the left-hand side and the right-
hand side of the system (through the assembly operation
performed by class Domain and described in section 2.2.1)
- reading, storing and returning its data

Class Element
Inherits from : FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, number giveNumber()
access to data domain …

Tasks Attributes Methods

1) creation - Element(aDomain, aNumber)
typed()
ofType(anElementType)
instanciateYourself()

2) attributes identification

 a) nodes nodeArray giveNode(i)
numberOfNodes

 b) material material giveMaterial()

 c) loads bodyLoadArray giveBodyLoadArray()

 d) Gauss points gaussPointArray -
numberOfGaussPoints

3) computation & assembly

 a) stiffness matrix stiffnessMatrix giveStiffnessMatrix()
constitutiveMatrix giveConstitutiveMatrix()

computeTangentStiffnessMatrix()
computeLHSAt(aStep)
computeStaticLHSAt(aStep)
computeNewmarkLHSAt(aStep)

 b) mass matrix massMatrix giveMassMatrix()

 c) load vector - computeLoadVectorAt(aStep)
computeBcLoadVectorAt(aStep)
computeVectorOfPrescribed(aStep)
computeRHSAt(aStep)
computeStaticRHSAt(aStep)
computeNewmarkRHSAt(aStep)

 d) internal forces - computeInternalForces(a∆d)
computeStrainIncrement(aGP, a∆d)

 e) assembly locationArray assembleYourselfAt(aStep)
assembleLHSAt(aStep)
assembleRHSAt(aStep)
giveLocationArray()

4) output - printOutputAt(aStep, aFile)

5) internal handling - computeNumberOfDofs()
updateYourself()
giveClassName()
printYourself()

Table 2: Class Element description

▪ Class PlaneStrain

This abstract class is the superclass of Quad_U. Its purpose is
to give a generic superclass for other plane strain elements
which would be later added in this environment (like the
triangle for instance).

Class PlaneStrain
Inherits from : Element, FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, number giveNumber()
access to data, domain ...
computation & assembly, ...
...

Tasks Attributes Methods

1) creation - PlaneStrain(aDomain, aNumber)

Table 3: Class PlaneStrain description

▪ Class Quad_U

This class implements a quadrilateral element. It inherits
methods from its superclasses (PlaneStrain and Element) and
adds its own behavior:

- calculating matrices N (shape functions), B (strains) and D
(elastic constitutive matrix)
- numerical integration: calculating the position and the
weight of the Gauss points, calculating the jacobian matrix

Class Quad_U
Inherits from : PlaneStrain, Element, FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, number giveNumber()
access to data, domain …
computation & assembly, …
...

Tasks Attributes Methods

1) creation - Quad_U(aDomain, aNumber)

2) computation - computeNMatrixAt(aGP)
computeBMatrixAt(aGP)
computeCompactBMatrixAt(aXsiEtaPoint)
computeConstitutiveMatrix()

3) numerical integration jacobianMatrix giveJacobianMatrix()
computeGaussPoints()
computeVolumeAround(aGP)

Table 4: Class Quad_U description

▪ Class Quad_U_BBar

The only specific task to this subclass of Quad_U is to
compute its B matrix in a different way in order to overcome
locking due to incompressiblility: a method returning the so-
called B-Bar matrix is implemented in this class.

Class Quad_U_BBar
Inherits from : Quad_U, PlaneStrain, Element, FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, access to data, number giveNumber()
computation & assembly, domain …
numerical integration …
...

Tasks Attributes Methods

1) creation - Quad_U_BBar(aDomain, aNumber)

2) B-bar matrix handling - computeBMatrixAt(aGP)
giveBBarMatrix()
computeMeanBBar()
computeBBarAtCenter()

Table 5: Class Quad_U_BBar description

▪ Class Triangle_U_Degen

This subclass of Quad_U implements a linear triangular
element obtained by degeneration of the bilinear quad
(coalescing the nodes 3 and 4 of the quad, see [9] for details).
This element will fail for incompressible tests.

▪ Class Truss2D

This class implements a two-node planar truss element. It
defines its own methods for the calculation of matrices N, B
and D and manages also its Gauss points. Additionally, it has
the following tasks:

- characterizing its geometry (length and pitch)
- rotating its contributions to the system from its local
coordinate frame to the global coordinate frame

▪ Class Load

This superclass implements the various actions applied on
elements, nodes and degrees of freedom. Its subclasses
(BodyLoad, DeadWeight, BoundaryCondition,
InitialCondition and NodalLoad) are described next.
▪ Class BodyLoad

Body load is self explanatory.

▪ Class DeadWeight

This load, which is a subclass of class BodyLoad,
implements a gravity-like body force. It is usually associated
with every element of the mesh.

▪ Class BoundaryCondition

A boundary condition is a constraint imposed on degrees of
freedom. It defines the prescribed values of the unknown and
is the attribute of one or more degrees of freedom (class Dof).

▪ Class InitialCondition

An initial condition defines the initial value of an unknown at
the start of the analysis. This concept is used for initial-
boundary-value-problems.

▪ Class NodalLoad

A nodal load is a concentrated load which acts directly on the
node. It is the attribute of one or more nodes. Its main task is
to return the value of its components at a given time step.

▪ Class LoadTimeFunction

This superclass implements the functions that describe the
evolution in time of a load. It is the attribute of one or more
loads. Its task is to return its value at a given time step.

Its subclasses (ConstantFunction, PeakFunction, and
PiecewiseLinFunction) are described next.

▪ Class ConstantFunction

This class implements load functions which are constant in
time.

▪ Class PeakFunction

This class implements a load function whose value is zero
everywhere, except in one point.

▪ Class PiecewiseLinFunction

This class implements a piecewise linear function.

▪ Class Material

This superclass was created in order to regroup common
tasks for its subclasses.

Usually, a material is an attribute of many elements of the
mesh. The constitutive information is stored in this class.

▪ Class ElasticMaterial

This class implements an elastic material. Its main task is to
return its properties, e.g. Young modulus, Poisson ratio, …

Class Material
Inherits from : FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, number giveNumber()
access to data domain …

Tasks Attributes Methods

1) creation - Material(aDomain, aNumber)
typed()
ofType(aMaterialType)

2) attributes identification propertyDictionnary give(aProperty)

3) internal handling - giveClassName()
giveKeyword()
printYourself()

Table 6: Class Material description

▪ Class VonMisesMaterial

This class implements a plastic material of type Von Misès.
This means that, apart from returning its properties like the
ElasticMaterial class (including its Von Misès parameter k),
it also performs two important tasks which have been
described in section 2.1:

- it computes the stress state of its elements (or, more
precisely, of its elements’ Gauss points) through the stress
return algorithm (see section 2.1.2.2)
- it computes the constitutive matrix which can either be
elastic (elastic material or constant stiffness algorithm),
tangent or tangent-consistent for an improved convergence
(see section 2.1.1.3)

Class VonMisesMaterial
Inherits from : Material, FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, number giveNumber()
access to data, domain ...
attributes identification, propertyDictionary
...

Tasks Attributes Methods

1) creation - VonMisesMaterial(aDomain, aNumber)
instanciateYourself()

2) computation - computeStress(aGP, anElem, a∆d)
computeConstitutiveMatrix(aGP, anElem)
computeDFDSigma(aStressState)
computeYieldFunctionFor(aStressState)
computeStressLevelFor(aStressState)

3) internal handling - giveClassName()
printYourself()

Table 7: Class VonMisesMaterial description

▪ Class VonMisesMaterial_H

This subclass of VonMisesMaterial implements a plastic
material of type Von Misès with a linear combination of
kinematic and isotropic hardening (see sections 1.2.3 and
2.1.3 for more details).

Class VonMisesMaterial_H
Inherits from : VonMisesMaterial, Material, FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, number giveNumber()
access to data, domain ...
attributes identification, propertyDictionary
...

Tasks Attributes Methods

1) creation - VonMisesMaterial_H(aDomain, aNumber)
instanciateYourself()

2) computation - computeStress(aGP, anElem, a∆d)
computeConstitutiveMatrix(aGP, anElem)
computeKsi(aStressState, anα)
computeDFDSigma(aStressState, anα)
computeYieldFunctionFor(aStressSt., anα)
computeStressLevelFor(aStressState)

3) internal handling - giveClassName()
printYourself()

Table 8: Class VonMisesMaterial_H description

▪ Class NLSolver

This class, which is the superclass of classes
ConstantStiffness, ModNewtonRaphson and
NewtonRaphson, implements a nonlinear solver (see section
2.2.1). Its main task is to solve the nonlinear problem at each
iteration and each step. The convergence (or divergence) is
also checked in this class. The type of left-hand side depends
on the type of algorithm which is defined by the three
following classes.

Class NLSolver
Inherits from : FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, number giveNumber()
access to data domain …

Tasks Attributes Methods

1) creation - NLSolver(aDomain, aNumber)
typed()
ofType(aNLSolverType)

2) attributes identification propertyDictionnary give(aProperty)

3) computation linearSystem solve()
maxIterations giveLinearSystem()
numberOfIterations giveNumberOfIterations()
currentIteration giveCurrentIteration()
tolerance giveConvergenceStatus()
convergenceStatus giveConsistentDep()
consistentDep

4) internal handling - updateYourself()
giveClassName()
giveKeyword()
printYourself()

Table 9: Class NLSolver description

▪ Class ConstantStiffness

In this subclass of class NLSolver, the initial stiffness is kept
through all the iterative process in order to form the left-hand
side.

▪ Class ModNewtonRaphson

In this subclass of class NLSolver, the stiffness is updated
each ns steps and ni iterations in order to form the left-hand
side.

▪ Class NewtonRaphson

In this subclass of class NLSolver, the stiffness is updated at
each iteration in order to form the left-hand side.

Class NewtonRaphson
Inherits from : NLSolver, FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, number giveNumber()
access to data, domain …
computation, linearSystem
… ...

Tasks Attributes Methods

1) creation - NewtonRaphson(aDomain, aNumber)
instanciateYourself()

2) internal handling - giveClassName()
printYourself()

Table 10: Class NewtonRaphson description

▪ Class Node

A node is the attribute of one or more elements. It has the
following four tasks:

- returning its coordinates
- managing (creating and storing) its degrees of freedom
(class Dof)
- computing and assembling its nodal load vector (class
NodalLoad)
- updating its attributes at the end of each step

Class Node
Inherits from : FEMComponent

Inherited Tasks Inherited Attributes Inherited Methods

creation, number giveNumber()
access to data domain …

Tasks Attributes Methods

1) creation - Node(aDomain, aNumber)
instanciateYourself()

2) positioning in space coordinates getCoordinates()
giveCoordinate(i)

3) management of the dofArray giveDof(i)
degrees of freedom numberOfDofs giveNumberOfDofs()

4) management of the
nodal load vector:

 a) computation loadArray computeLoadVectorAt(aStep)
giveLoadArray()

 b) assembly locationArray assembleYourLoadsAt(aStep)
giveLocationArray()

5) output - printOutputAt(aStep, aFile)
printBinaryResults(aStep, aFile)

6) internal handling - updateYourself()
giveClassName()
printYourself()

Table 11: Class Node description

▪ Class TimeIntegrationScheme

This class (and its subclasses Newmark and Static) define the
time history of the problem. Its tasks are:

- managing the time history of the problem (i.e. the time steps
(class TimeStep))
- returning its coefficients (for instance β or γ)

▪ Class Newmark

This subclass of TimeIntegrationScheme implements a
predictor-corrector method for dynamic analysis.

▪ Class Static

This subclass of TimeIntegrationScheme implements a
scheme supporting the static analysis of a structure subjected
to various loading cases.

▪ Class TimeStep

This class implements a time step in the time history of the
problem.

A time step is an attribute of a time integration scheme.

The tasks of a time step is to return its current time t and time
increment ∆t.

▪ Class FileReader

A file reader is an attribute of the domain. It provides non-
sequential access to the data file.

▪ Class FloatArray

This class implements an array of double-precision decimal
numbers. Its tasks are:

- storing and returning a coefficient, including index-
overflow checking
- performing standard operations (addition, scalar
multiplication, rotation, etc…)
- expanding its size
- assembling an elemental or nodal contribution, if the array
is used as the right-hand side of the linear system

Stresses and strains are instances of the FloatArray class.
This means that additional operations (for instance
computing invariants) have been added.

▪ Class Column

A column is an attribute of a skyline matrix. It stores the
coefficients of a column. Its tasks are some among the ones
defined in class FloatArray, although they are implemented
differently.

▪ Class GaussPoint

A Gauss point is an attribute of an element. Its task is to
regroup the data which are specific to the Gauss point: the
coordinates and the weight of the point in numerical
integration, the strains, the stresses. Nonlinear analysis
induces some special tasks for the Gauss point. It has to store
the stress and strain state at the current iteration, but also
remember the last converged stress state. It also manages the
amplitude of the stress return (∆γ), the state of the point
(elastic or plastic), and the stress level.

Class GaussPoint
Inherits from : -

Tasks Attributes Methods

1) creation number GaussPoint(aNumber, anElement, x, y, w)
element giveNumber()
coordinates giveCoordinates()
weight giveCoordinate(i)

giveWeight()

2) stresses / strains handling stressVector giveStressVector()
previousStressVector givePreviousStressVector()
strainVector giveStrainVector()

letStressVectorBe(aStressState)
letPreviousStressVectorBe(aStressState)
letStrainVectorBe(aStrainState)

3) stress return computation deltaGamma setDeltaGamma(aDeltaGamma)
plasticCode giveDeltaGamma()
stressLevel isPlastic()

givePlasticCode()
computeStressLevel()
giveStressLevel()

4) output - printOutput(aFile)
printBinaryResults(aFile)

5) internal handling - updateYourself()

Table 12: Class GaussPoint description

▪ Class IntArray

This class implements an array of integers.

▪ Class LHS

This generic superclass was created in order to account for
different types of left-hand sides (i.e. skyline, GMRES,
BFGS, …)

▪ Class Skyline

A skyline is a symmetric matrix stored in a variable-band
form. A skyline is used as the left-hand side of a linear
system. Its tasks are:

- setting up its own profile
- assembling to itself an elemental contribution (for instance
a stiffness matrix)
- performing solving operations

▪ Class LinearSystem

The linear system is an attribute of class NLSolver. Its tasks:

- initializing its left-hand side, right-hand side and solution
array, and returning them upon request
- solving itself

▪ Class List

A list is an array which coefficients are of type Element,
Node, Load, … Its tasks are:

-storing, deleting or returning an element of the list
-expanding its own size, in order to accommodate more
objects

Typically, the domain stores the nodes, the elements, the
loads of the problem in lists.

▪ Class MathUtil

This class was created in order to store mathematical utilities.

▪ Class Matrix

This class is the superclass of different types of matrices
(classes FloatMatrix, DiagonalMatrix and
PolynomialMatrix). It implements basic operations such as
index-overflow checking.

▪ Class FloatMatrix

This class implements a rectangular matrix which
coefficients are double-precision decimal numbers. The tasks
assigned to such matrices are:

- storing and returning a coefficient
- performing standard operations: addition, inversion,
lumping

▪ Class DiagonalMatrix

This class implements a matrix with non-zero coefficients on
the diagonal.

▪ Class PolynomialMatrix

This class implements a matrix which coefficients are
polynomials. Typically, jacobian matrices of plane strain
elements are polynomial matrices.

▪ Class Pair

A pair is a key/value association. Pairs are used as entries of
class Dictionary.

▪ Class Polynomial

Polynomial are used as coefficients of polynomial matrices,
for instance P(X,Y). The task of a polynomial is to return its
value at a given point.

3.2 Object-oriented extendability

The addition of a new component in the code (say a new
element, for instance a three-node linear triangle) is made
naturally in the class hierarchy:

 . . .

Element
PlaneStrain

Quad_U
Quad_U_BBar
Triangle_U_Degen

Triangle_U

 . . .

The new class inherits the behavior of its superclasses and
only a minimal number of methods have to be rewritten. The
same concept applies to other components, like algorithms,
formulations or materials. For instance, Drucker-Prager or
Mohr-Coulomb materials could be inserted in the hierarchy
as subclasses of class Material and inherit most methods from
their superclass:

 . . .

Material
ElasticMaterial
VonMisesMaterial

VonMisesMaterial_H
 MohrCoulombMaterial
 DruckerPragerMaterial

 . . .

4 Examples

4.1 The footing problem

Problem and geometry

The problem of the bearing capacity of a superficial footing
is described next. The geometry and characteristics of the
problem are given in figure 12.

q

γ = 0.0
E = 3000
ν = 0.4
k = 1.0

Figure 12: Geometry of the footing problem

The load q on the footing is increased until failure occurs.

Results

The solution converges at q = 6 kN/m and fails to converge at
7 kN/m, which, compared to the solution given by Terzaghi
[12] qu = 5 kN/m, is satisfactory for a crude mesh. Figure 13
illustrates the time history of the vertical displacement of a
node at the interface between the footing and the soil. A clear
divergence appears at time t = 7, illustrated by the failure
mechanism (figure 14).

ZSOIL v.4.1 PROJECT : foot_vm_fo_bbar DATE :
t-re f.=0. t = 7. DISPLACEMENT-Y(Y1) [TIME]

0.9 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9 5.4 5.9 6.4 6.9 7.4

0.9 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9 5.4 5.9 6.4 6.9 7.4

-0.4

-0.375

-0.35

-0.325

-0.3

-0.275

-0.25

-0.225

-0.2

-0.175

-0.15

-0.125

-0.1

-0.075

-0.05

-0.025

0.

0.025

1:Y1

MIN.VALUE
-3.5e-001
FOR X :
7.
AT POINT
2

MAX.VALUE
-9.0e-004
FOR X :
1.
AT POINT
2

Figure 13: Time history

Figure 14: Failure mechanism

4.2 The thick cylinder test

a

c

b

p

Figure 15: Geometry for the thick cylinder test

This experiment concerns a thick cylinder test, which has an
analytical solution [13]. The internal and external radii of the
cylinder are a = 1.0 and b = 2.0 m. Young's modulus E =
21000 kN/m2 and Poisson's ratio ν = 0.49999. Von-Misès
criterion is used with a yield stress σy = 24 kN/m2 which
corresponds to k = σy / √3 = 13.8564 kN/m2. The internal
pressure p varies between 8 kN/m2 and 20 kN/m2, this value
corresponding to the total plastification of the cylinder and its
failure. A 640 elements mesh (figure 16) has been used for a
plane strain analysis.

Figure 16: Finite element mesh

If we compare the evolution of the internal displacement in
three cases: a) perfectly plastic material, b) H' = E / 3 = 7'000
kN/m2, c) H' = 2E / 3 = 14'000 kN/m2, the results obtained
with the code are in good agreement with the theoretical
solutions given in [12] for a). As expected (figure 17), the
yield radius develops more slowly as H' increases.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

5 7 9 11 13 15 17 19
Internal pressure p [kN/m2]

Yi
el

d
ra

di
us

 c
 [m

]

Theory (H' = 0)

H' = 0

H' = 7'000

H' = 14'000

Figure 17: Evolution of the yield radius

5 Conclusions

An object-oriented finite element program for nonlinear
structural and continuum analysis has been described in this
paper using Von Misès plasticity as an illustration of
constitutive theory. The usefulness of this object-oriented
approach to solving nonlinear finite element problems has
been demonstrated.

Students and engineers in practice will find here an optimal
starting package for finite element programming in C++
which can be downloaded at:

http://www.zace.com/femobj_nl/femobj_nl.htm

Extensions to other plastic models or different finite element
formulations can be introduced in the code with little effort
because of the strong modularity supplied by the object-
oriented approach. The interested reader will find in [14] a
more detailed description of the code presented here.

Acknowledgements

We acknowledge the financial support of the Swiss National
Science Foundation under grant no 2100-49404.96 and of the

-0.6 -0.4 -0.2 0. 0.2 0.4 0.6 0.8 1. 1.2 1.4 1.6 1.8 2. 2.2 2.4 2.6

Z_SOIL v.5.15 PROJECT : tc4_fo DATE : 1999-02-02 h. 14:34:23
t = 1. FE MESH

1

"Fonds du 15ème congrès des Grands Barrages", for the first
author.

References

[1] Y. Dubois-Pélerin, Th. Zimmermann - "Object-oriented
finite element programming: Theory and C++
implementation for FEM_Object C++ 001", Elmepress
International, 1993
[2] Ph. Menétrey, Th. Zimmermann - "Object-oriented
nonlinear finite element analysis: application to J2 plasticity",
Computers & Structures (49), pp. 767-777, 1993
[3] W. Chen - "Plasticity in reinforced concrete", McGraw-
Hill, 1982
[4] T.J.R. Hughes - "Generalization of selective integration
procedures to anisotropic and nonlinear media", International
Journal for Numerical Methods in Engineering (15), pp.
1413-1418, 1980
[5] Th. Zimmermann, A. Truty, S. Commend - "A
comparison of finite element enhancements for
incompressible and dilatant behavior of geomaterials",
CIMASI Conference Proceedings, 1998
[6] Th. Zimmermann, Y. Dubois-Pélerin, P. Bomme -
"Object-oriented finite element programming: I Governing
principles", Computer Methods in Applied Mechanics and
Engineering (98), 1992
[7] Y. Dubois-Pélerin, Th. Zimmermann, P. Bomme -
"Object-oriented finite element programming: II A prototype
program in Smalltalk", Computer Methods in Applied
Mechanics and Engineering (98), 1992
[8] Y. Dubois-Pélerin, Th. Zimmermann - "Object-oriented
finite element programming: III An efficient implementation
in C++", Computer Methods in Applied Mechanics and
Engineering (108), 1993
[9] T.J.R. Hughes - "The finite element method", Prentice-
Hall, 1987
[10] T.J.R. Hughes, T. Belytschko - "Nonlinear Finite
Element Analysis", Course Notes, Paris, 1997
[11] Y. Dubois-Pélerin, P. Pegon - "Object-oriented
programming in nonlinear finite element analysis",
Computers & Structures (67), pp. 225-241, 1998
[12] K. Terzaghi - "Mécanique théorique des sols", Dunod,
Paris, 1951
[13] R. Hill - "The mathematical theory of plasticity", Oxford
University Press, 1950
[14] S. Commend - "An object-oriented approach to
nonlinear finite element programming", LSC Internal Report
98/7, 1998
[15] D.R. Rehak, J.W. Baugh Jr. - "Alternative programming
techniques for finite element program development",
Proceedings IABSE Colloquium on Expert Systems in Civil
Engineering, Bergamo, Italy, 1989
[16] B.W.R. Forde, R.B. Foschi, S.F. Steimer - "Object-
oriented finite element analysis", Computers & Structures
(34), pp. 355-374, 1990
[17] G.R. Miller - "An object-oriented approach to structural
analysis and design"", Computers & Structures (40), pp. 75-
82, 1991
[18] R.I. Mackie - "Object-oriented programming of the finite
element method", International Journal for Numerical
Methods in Engineering (35), pp. 425-436, 1992.

