
Object-Oriented Programming:
An Objective Sense of Style

K. Lieberherr, I. IIolland, A. Riel

161 Cullinane Hall, College of Computer Science

Northeastern University, 360 Huntington Ave., Boston MA 02115

Abstract

We introduce a simple, programming language in-
dependent rule (known in-house as the Law of
DcmeterTM) which encodes the ideas of encapsula-
tion and modularity in an easy to follow form for
the object-oriented programmer. You tend to get the
following related benefits when you follow the Law of
Demeter while minimizing simultaneously code du-
plication, the number of method arguments and the
number of methods per class: Easier software mainte-
nance, less coupling between your methods, better in-
formation hiding, narrower interfaces, methods which
are easier to reuse, and easier correct.ness proofs us-
ing structural induction. We discuss two important
interpretations of the Law (strong and weak) and we
prove that any object-oriented program can be trans-
formed to satisfy the Law. We express the Law in
several languages which support object-oriented pro-
gramming, including Flavors, Smalltalk-80, CLOS,
C++ and Eiffel.

Keywords: Object-oriented programming, pro-
gramming style, design style, software engineering
principles, software maintenance and reusability.

A short version of this paper appeared in IEEE Com-
puter, June 1988, Open Channel, page 79.

1 Introduction

For the past two years we have been using object-
oriented programming techniques in our research and
in our teaching at the undergraduate and graduate
levels. During this time we have asked ourselves many
stylistic questions such as,
Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for

Coniputing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

@ 1988 ACM 0-89791-284-5/88/0009/0323 $1.50

“When is an object-oriented program written in
good style?“, “Is there some formula or rule which one
can follow in order to write good object-oriented pro-
grams?“, “What metrics can we apply to an object-
oriented program to determine if it, is ‘good’?“, and
“What are the characteristics of good object-oriented
programs?‘.

In this paper we put forward a simple rule (now
known in-house as the Law of Demeter or the Law
of Good Style) which, we believe, answers these ques-
tions and helps to formalize the existing ideas that
can be found in the literature 171 [I’?] [3]. We claim
that our Law promotes maintainability and compre-
hensibility. To prove this in absolute terms would
require a large experiment. with a statistical evalu-
ation. As the field of object-oriented programming
is new, large object-oriented software developments
which are able to provide such data are rare. In-
deed, we hope to provide a guiding principle to help
such developments. We have examined our own code
(about fourteen thousand lines of Lisp/Flavors) and
are convinced of the Law’s benefits. The close rela-
tionships and implications between the Law and soft-
ware engineering principles such as coupling control,
information hiding and narrow interfaces are pointed
out below. These provide the support for our claim.

The Law of Demeter is named after the Demeter
system which provides a high-level interface to class-
based object-oriented systems. The most novel aspect
of the Demeter system is that we view a (parameter-
ized) class definition as a (parameterized) language
definition. This point of view allows us to provide a
large number of useful utilities (written in a specific
object-oriented language) which impressively simplify
the programming task. Examples of generated util-
ities are: application development plans, application
skeletons, parsers, pretty printers, type checkers, ob-
ject editors, LL(l) corrections [9] [ll]. The explana-
tions and examples presented in this paper are writ-

September 2MO. 1988 OOPSIA ‘88 Proceedings 323

ten in the notation of Demeter, a modified EBNF
notation which is described later in this paper.

One of the primary goals of the Demeter system is
to develop an environment which facilitates the evo-
lution of a class hierarchy. Such an environment‘must
provide tools for the easy updating of existing soft-
ware (i.e. the methods (operations) which are defined
on the class hierarchy). We are striving to produce an
environment which will allow software to be ‘grown’
in a continuous fashion rather than in sporadic jumps,
which undoubtably leads to major rewrites, This will
lead to the fast prototyping and updating system de-
velopment cycle which is common ‘in the Artificial
Intelligence community.

In order to achieve this flexibility we would like the
programs being written to be ‘well behaved’ or ‘well
formed’ in some sense. In other words we would like
the programs to follow a certain style which enables
them to be modified easily. This ease of modification
is one criterion which characterizes a good object-
oriented programming style.

This issue is not only relevant to the Deme-
ter world, but is one which should be adopted by
all programmers which use object-oriented program-
ming techniques. In addition, every object-oriented
programmer should know what is considered ‘good
object-oriented programming style’ in order to write
easily maintainable systems just as procedural pro-
grammers are aware of the top-down programming
paradigm, the 2hou shalt not use a goto” rule
and others [8]. The Law can be understood with-
out knowledge of Demeter, but the best formulation
which is compile-time enforceable for a large class of
object-oriented programs requires basic Demeter con-
cepts.

In addition, we believe that programs which obey
the Law will be more amenable to program verifi-
cation (along the lines of [S]) and parameterization
by example techniques. By the latter, we mean tech-
niques which will allow us to take an existing class hi-
erarchy and associated software and produce a more
general system by treating some classes as psrame-
ters.

We challenge object-oriented programmers to check
whether their programs follow our Law and where
they do not, to consider whether they should. We
welcome any comments and/or examples which re-
quire a contradiction to the Law of Demeter.

The examples in this paper are written in the nota-
tion of Demeter, therefore section two is dedicated to
a description of this notation. The sections which fol-
low will define the Law of Demeter both formally and
through examples, examining both practical and the-
oretical issues. We present a proof which states that

any object-oriented program’ written in bad style can
be transformed systematically into a structured pro-
gram obeying the Law of Demeter. The implication
of this proof is that the Law of Demeter does not re-
strict what a programmer can solve, it only restricts
the way he or she solves it.

2 Notation

The class hierarchy in Demeter is described using
three kinds of production rules. A collection of these
production rules is called a class dictionary.

1..

2.

3.

A consfruction production is used to build a class
from a .number of other classes and is of the
form C=<idl> SC1 . . . <id,> SC,,. Here C is de-
fined as being made up of n parts (called its in-
stance variable values), each part has an identi-
fier idi (called an instance variable name) and a
type SCi (called an instance variable type). This
means that for any instance (or member) of C the
identifier idi refers to a member of class SCi. We
use class and type as synonyms. The following
example describes a library class as consisting of
a reference section, a loan section, and a journal
section.

Library =
Creferenie> Reference-See
<loan> Loan-set
<journal> Journal-Sac.

The following naming convention is used : In-
stance variable names will begin with a lower
case letter and class names will begin with a cap
ital letter.

An alternation production allows us to express a
union type. A production of the form C : AIB.
states that a member of C is a member of clsss
A or class B’(exclusively). For example,

Book-Identifier :
ISB% I Library-of-Congress.

which expresses the notion that when we refer to
the identifier of a book we are actually referring
to its ISBN code or its Library of Congress code.

A repetition production is simply a variation of
the construction production where all the in-
stance variables have the same type and we do

1 The proof is phrased in Lisp/Flavors notation but can be
generalized to cover other syntax.

324 OOPSLA ‘88 Prommgs

not specify the number of instance variables in-
volved. The production C N {A) defines mm-
bers of C to be lists of zero or more instances of
A.

We partially define a reference section in the li-
brary class in the following class dictionary.

Reference-Books-Set =
<ref-books> List-of-Books
<ref -catalog> Cat alog.

List-of-Books - <Book).
Catalog - {Catalog-Entry).
Book =

<title> String
<author> String
<id> Book-identifier.

To express inheritance we use the notation
inherit with a construction production. For ex-
ample, every mathematics text book is a member of
the class Book (as defined above), but it has some
additional characteristics. We can express this by

Math-Text =
<math-cat> Hath-Category

inherit Book.
Math-Category :

Algebra I Calculus I Statistics.

An instance of Math-Text is also a member of Book
and will therefore contain the instance variables of
both.

Currently the Demeter system “sits on top of”
Old-Flavors and so the methods are written in the
Lisp/Old-Flavors notation.

Before we introduce the Law, two definitions are
appropriate:

l We call the set formed by taking the union of
the set of methods attached to a class C and the
set of methods attached to C’s super classes, the
signature of C.

l We define a set of classes associated with a given
class, called associated(C), If C is defined by an
alternation production (e.g. C : All?.) then the
set associated(C) is the union of the classes as-
sociated with the alternatives in the right-hand-
side of C’s production. If C is defined by a con-
struction or repetition production associated(C)
is C itself.

3 The Law of Demeter

For all classes C, and for all methods M at-

tached to C, all objects to which M sends a
message must be instances of classes associ-
ated with the following classes:

1, The argument classes of M (including C).

2. The instance variable classes of C.

(Objects created by M, or by functions or
methods which M calls, and objects in global
variables are considered as arguments of M.)

This Law has two primary purposes:

1. Simplifies modifications. It simplifies the updat-
ing of a program when the class dictionary is
changed.

2. Simplifies complexity of programming. It re-
stricts the number of types the programmer has
to be aware of when writing a method.

The Law of Demeter, when used in coordination
with three key constraints, enforces good program-
ming style. These constraints require minimizing
code duplication, minimizing the number of argu-
ments passed to methods and minimizing the number
of methods per class.

4 The Motivation and Expla-
nation

The motivation behind this Law is to ensure that the
software is as modular as possible. Any method writ-
ten to obey this Law will only know about the im-
mediate structure of the class to which it is attached.
The structure of the arguments and the sub-structure
of C are hidden from M. Therefore, should a change
to the structure of the class C be necessary we need
only to look at those methods attached to C and
its subclasses for possible conflicts. The Law effec-
tively reduces the occurrences of certain nested mes-
sage sendings (generic function calls) and simplifies
the methods. The Law prohibits the nesting of generic
accessor function calls, which return objects that are
not instance variable objects. It allows the nesting
of constructor function calls. An accessor function is
a function which returns an object which did exist
before the function is called. A constructor function
returns an object which did not exist before the func-
tion is called.

The Law of Demeter has many implications re-
garding widely known software engineering principles.
Our contribution is to condense many of the proven
principles of software design into a single statement

September 25-30,1988 OOPSIA ‘88 Proceedings 325

which can easily be used by the object-oriented pro-
grammer and which can be easily checked at compile-
time.

Some of the inter-related principles covered by the
Law are the following:

0 Coupling control.

It is a well-known principle of software design to
have minimal coupling between abstractions (e.g.
procedures, modules, methods) [3]. The coupling
can be along several links. An important link for
methods is the “uses” link (or call/return link)
which is established when one method calls an-
other method. The Law of Demeter effectively
reduces the methods we can call inside a given.
a method and therefore limits the coupling of
methods with respect to the “uses” relation. The
Law therefore facilitates reusability of methods
and the abstraction level of the software.

l Information hiding.

The Law of Demeter enforces one kind of infor-
mation hiding: structure hiding. In general, the
Law prevents a method from directly retrieving
a subpart of an object which lies deep in that ob-
ject’s “part-of” hierarchy. Instead, intermediate
methods must be used to traverse the “part-of”
hierarchy in controlled small steps [12], [3].

In some object-oriented systems, the user can
protect some of the instance variables or methods
of a class from outside access by making them
private. This important feature complements the
Law to increase modularity but is orthogonal to
it. Our Law promotes the idea that the instance
variables and methods which are public should
be used in a restricted way.

0 Information restriction.

Our work is related to the work by Parnas et
al. [15] [14] on the modular structure of complex
systems. To reduce the cost of software changes
in their operational flight program for the A-7E
aircraft, the use of modules that provide informa-
tion that is subject to change is restricted. We
take this point of view seriously in our object-
oriented programming and assume that any class
could change. Therefore we restrict the use of
message seendings (generic function calls) by the
Law of Demeter. Information restriction com-
plements information hiding. Instead of hiding
certain methods, we make them public but we
restrict their use.

Localization of information.2.

The importance of localizing information is
stressed in many software engineering texts. The
Law of Demeter focusses on localizing type infor-
mation When we study a method we only have to
be aware of types which are very closely related
to the class to which the method is attached. We
can effectively be ignorant (and independent) of
the rest of the system and as the old proverb
goes: “Ignorance is bliss”. This is an important
aspect which helps to reduce the complexity of
programming.

Prom another point of view related to localiza-
tion, the Law controls the visibility of message
names. In a given method we can only use mes-
sage names which are in the signatures of the
instance variable types and argument types.

Narrow interfaces.

The maintenance of narrow interfaces between
interacting entities is also important (see e.g.
112, page 3031). A method ihould have access
to only as much information as it needs to do
its job. ,If a method gets too much information,
it has to destructure this information (via many
nested sends) which the Law of Demeter discour-
ages. Therefore The Law promotes narrow inter-
faces between methods.

Structural induction.

The Law of Demeter is related to the fundamen-
tal thesis of Denotational Semantics. That is,
“The meaning of a phrase is a function of the
meanings of its immediate constituents”. This
goes back to Prege’s work on the principle of com-
positionality in his Begriffsschrift [S]. The main
motivation behind the compositionality principle
is that it facilitates structural induction proofs.

The Law is stated in terms of types and, as the
following pathological example shows, its formulation
does allow situations which violate the the principles
that it is to enforce. Consider the class dictionary

A = <first> B <second> C
<third> D <fourth> E.

B = <fifth> C <sixth> D.
D- +eventh> E.

and the method

(defmethod (A :bad-style)0
(send (send (send-self :first)

:sixth) :seventh))

lPeter Wegner pointed out this aaped of the JAW.

326 OOPSLA ‘68 Proceedings september z-30,1966

All of the types in the body of this method, B, D,

and E, are valid message receivers according to *the
Law. Yet the method looks two levels deep into the
structure of instance variable first, violating the ideals
of information-hiding and maintainability.

This problem can be removed by formulating the
Law in terms of objects.

For all classes C, and for all methods M at-
tached to C, all objects to which M sends a
message must be

l M’s argument objects, including the self
object or

l The instance variable objects of C.

(Objects. created by M, or by functions or
methods which M calls, and objects in global
variables are considered as arguments of M.)

By an argument object we mean an object passed
by an argument. By an instance variable object we
mean the object stored in an instance variable. From
a conceptual point of view this seems the most natural
way to state the Law. However, checking this Law at
compile-time is complicated since it would involve a
detailed analysis of aliases.

Consider

;A = <x> B.
(defmethod (A :alias) (t)

(rrnd self :aet.-x (send t :x)))

;T = Xx> B.
(defmethod (T :m2) (a)

(send (send a :x) :m3>)

Is this in good style? It depends on the context.
The following is o.k.

(send iA :alias iT) (send iT :m2 iA)

But (aend iT :m2 iA) by itself violates the Law.
So, to retain easy compile-time checking we require

the Law’s formulation in terms of types. We feel that
such pathalogical cases as the one above will not occur
often enough to cause problems.

5 Example

We expand the Library definition in the above exam-
ple into a nearly complete class dictionary.

Library =
<reference> Reference-Set

September 2530,1989

<loan> Loan-Set
<journal> Journal-Set .

Reference-Set =
<ref-book-sac> Books-Set
<archive> Archive.

Archive =
<arch-microfiche> Microfiche-Files
<arch-dots> Documents.

Microfiche-Files =
<micro-list> List-of-Hicrofiche
<micro-cat> Microfiche-Catalog.

Books-Set =
<books> List-of-Books
<book-catalog> Catalog.

List-of-Books - {Book).
Catalog - (Catalog-Entry).
Book =

<title> String <author> String
<id> Book-identifier.

Book-Ident if ier : ISBN I Library-of-Congress.

Suppose we wish to attach a method to the class
Library which will search its reference section for a
specific book.

(defmethod (Library :Ref-Search)
(book :type Book-Identifier)

(send reference :Ref-search book))

The class Library simply passes the message on to
class Reference-Sec.

(defmethod (Reference-Set :Ref-search)
(book :type Book-Identifier)

(or (send ref-book-sac :search book)
(**I (rend

(send archive :arch-microfiche)
:search book)

(**I (send
(send archive :arch-dots)

:search book)))

(defmethod (Hicrofiche-Files :search)
(book :type Book-Identifier)

. 1
(defmethod (Documents :search)

(book :type Book-Identifier)
. 1

(defmethod (Books-Set : search)
(book :type Book-Identifier)

. >

The Ref-search method attached to Reference-Set
passes the message on to its book, microfiche and

OOPSIA ‘88 Proceedings
327

document sections as explained below. This method
breaks the Law of Demeter. The first message marked
(**) sends the message “arch-microfiche” to “archive”
which returns an object of type “Microfiche-Files”.
The method next sends this returned object the
“search” message. However, “Microfiche-Files” is
not an instance variable or argument type of class
“Reference-See”. Since the structure of all the classes
are clearly defined by the class dictionary, we might
be tempted to accept the above methods as a reason-
able solution. Let us consider a change to the class
dictionary. Assume the library installs new technol-
ogy and replaces the microfiche and document sec-
tions of the archive with CD-Roms or Video-Discs,

Archive = <cd-rom-arch> CD-Rom-File.
CD-Rom-File =

<cd-c-aystsnu Computer-system
<discs> CD-Rom-Discs.

We now have to search all of the methods, including
the Ref-search method, for references to an archive
with microfiche files. It would be easier to contain
the modifications only to those methods which are at-
tached to class Archive. We accomplish this by rewrit-
ing the methods in good style.

(defmethod (Reference-See :Ref-Search)
(book :type Book-Identifier)

(or (send ref-book-set :rearch book)
(send archive :search book)))

(def method (Archive : search)
(book :typa Book-Identifier)

(or (send arch-microfiche :6earch)
(send arch-dots :ssarch)))

Notice how the coupling with respect to the “uses”
relation has been reduced. Reference-See was coupled
with Books&c, Archive, Microfiche-Files and Docu-
ments in the original version. Now it is coupled only
with Books&c and Archive.

For a discussion of the complexity of programming
point, consider the following example:

(defmethod (C :?I> ()
(send (sand a :ml) :m2))

where a is an instance variable of C and ml and m2
are user-defined methods (not instance variable ac-
cess methods). Let’s assume that ml does not re-
turn an object which is of an instance variable type
of C. Therefore the nested send expression is in bad
style. But this expression does not malce it easier nor
harder to modify the methods when the class dictio-
nary changes. However, it requires the programmer

to think about other types than the instance variable
types of C. The above method can be rewritten in
good style as

(defmethod (C :H) 0
(send self :m3 (send a :ml)>>

(defmethod (C :m3) (arg :type Argtype)
(send arg :m2))

Here the additional type is made explicit as an ar-
gument type. Sometimes it is possible to rewrite a
program of the above form without introducing addi-
tional arguments.

.“,

6 The Trade-off

Writing programs which follow the the Law of Deme-
ter decreases the occurrences of nested message send-
ing and decreases the complexity of the methods, but
it increases the number of methods. The latter is re-
lated to the problem outlined in [12] which is that
there can be too many operations in a type. In this
case the abstraction may be less comprehensible, and
implementation and maintenance are more difficult.
There might also be an increase in the number of ar-
guments passed to some methods.

One way of correcting this problem is to organize all
the methods associated with a particular functional
(or algorithmic) task into “Modula-2 like” module
structures as outlined in [ll]. So the functional ab-
straction is no longer a method but a module which
will hide the lower-level methods which caused the
original confusion.

‘7 The Interface

Suppose we want to send a message to a reference sec-
tion which is to return its book catalog. The method
definition might look like the following.

(def method (Rsf erence-Set : return-book-cat > (>
(send ref-book-set :book-catalog))

The above method appears to obey the Law of
Demeter, since we are sending an instance variable
type of Reference&c a message. However, on closer
inspection we see that the message being sent is the
name of an instance variable which is not a part of
Reference-Sec. This creates a situation in which the
above method is sensitive to changes within the struc-
ture of the Books&c class. This clearly violates the
spirit of the Law. The solution to this problem is to
rewrite the methods as follows.

88 OOPSL4 ‘88 Proceedings September 25-30,1988

(defmethod (Reference-Set :return-book-cat)
(send ref-book-set :return-book-cat))

l (defmethod (Books-Sex :retu.rn-book-cat) (1
(send-self :book-catalog))

The method marked with an asterisk at first sight
seems to be just a renaming of the instance variable
name at the cost of one more method look-up. This
is true but is better explained as the introduction
of an interface between the Reference&c object and
the Books&c object. This kind of interface has some
very real advantages when it comes around to future
updating of the software [17]. CLOS allows automatic
generation of such an interface. A full interface of this
sort would provide methods for accessing and setting
the instance variables and thus hiding all the imple-
mentation details. Should the class be modified at a
later stage these interface methods may be changed
in an upward compatible way. The approach can also
be taken when creating objects.

The Flavors ‘mechanism for creating new ob-
jects (make-instance) uses the class instance variable
names as keyword parameters in the make-instance
call. This implies that a change in the structure of
a class requires a search through the software for the
make-instance calls for this class. One way of avoid-
ing this is to use special “factory objects” (similar to
those found in Objective-C [2]). For each application
class, the interface has an associated “factory class”
with one instance and one method called “make”.
This method contains the only make-instance call
for the application class. The programmer can then
change the “make” methods should a change in ths
class-dictionary be necessary.

8 The Weak and Strong Law of
Demeter

The Law of Demeter shares many characteristics with
other man-made laws. One such characteristic is that
the Law is ambiguous and therefore open to inter-
pretation. Th e source of the ambiguity is the rule
which states that messages may only be sent to ob
jects which are instances of classes associated with in-
stance variable types of the class to which the method
is attached. When we use the term instance variables
do we mean the instance variables which make up the
class exclusively, or are inherited instance variables
also allowed. The question divides those who follow
the. Law of Demeter into two fundamental groups.
The first group follows the Weak Law of Demeter

while the second group adheres to the Strong Law of
Demeter. The two versions of the Law are *defined as
follows.

The Strong Law of Demeter: The Strong Law
of Demeter defines instance variables as being
ONLY the instance variables which make up a
given class. Inherited instance variable types
may not be passed messages.

The Weak Law of Demeter: The Weak Law
of Demeter defines instance variables as being
BOTH the instance variables which make up a
given class AND any instance variables inherited
from other classes.

Each version carries certain implications. When
the Strong Law of Demeter is adopted then it is guar-
anteed that any change to the underlying data struc-
ture will only affect methods attached to the changed
classes. All methods which are attached to unaltered
classes will not require modification. This allows the
user to easily detect code which may require updating
due to changes in the class hierarchy. Similarly, users
which adopt the Weak Law of Demeter will gain cer-
tain advantages in program maintenance. However,
these advantages are not as powerful as those gained
in adopting the Strong Law. In the event of a change
to the underlying data structure, the methods which
may need modification are those attached to the al-
tered classes OR any class which is inherited by an
altered class. While the Strong Law appears to have
a great advantage we will see that this advantage is
not entirely free. The code which is written under the
Strong Law tends to have extra methods for a given
solution. This can render the code less readable in
some cases.

The following example illustrates the issues
through a sample solution to the problem of weigh-
ing a basket of Fruit. In this problem a basket of
fruit is’defined as a basket and a collection of various
fruits. Each fruit has an attribute called weight which
is assumed to be a number representing the weight.
For simplicity we assume the basket doesn’t have a
weight. The underlying data structure is shown in
the following class dictionary.

FruitBasket = Basket Fruits.
Fruits - (Fruit 3.
Fruit : Apple I Orange I Plum

conunon <weight> Bumber.
Basket = . Apple = . Orange = . Plum = .

It is important to note that the .classes Apple, Or-
ange, and Plum all inherit from Fruit, and as a con-
sequence also inherit the instance variable weight. We

329

assume that the weight for each piece of fruit has been
stored in this inherited instance variable (possibly by
some other method). We now want to write a method
which will compute the prepared weight of a basket
of fruit. The prepared weight of a piece of fruit is
the weight of the fruit less the skin, core, and/or pit.
Each fruit has a different formula for computing the
prepared weight from the gross weight. In our ex-
ample we will assume that the prepared weights of
apples, oranges and plums are 85, 80, and 65 percent
of gross weight (respectively). If we assume the weak
interpretation of the Law then we get the following
code.

(defmethod (FruitBasket :compute-aeight) ()
(send Fruits :compute-weight.))

(defmethod (Fruits :compute-weight) (1
(loop for each-fruit in child sum

(send each-fruit :compute-weight>))

(defmethod (Apple :compute-weight) (1
(* weight 0.86))

(defmethod (Orange :compute-weight) 0
(* weight 0.80))

(defmethod (Plum :compute-weight) (1 ’
(* weight 0.85))

It is useful to note the use of the inherited instance
variable weight within the :compute-weight methods
attached to Apple, Orange, and Plum. This is in vi-
olation of the strong interpretation of the Law. The
solution to this problem which is within the strong
interpretation of the Law of Demeter would be as fol-
lows.

(defmethod (FruitBasket zcompute-weight) 0
(send Fruits :compute-weight))

(defmethod (Fruits :compute-weight) 0
(loop for each-fruit in child sum

(send each-fruit :COmpUte-Weight)))

(defmethod (Apple :compute-weight) (1
(send self :get-percent-weight 0.85))

(defmethod (Orange :compute-weight) 0
(send self :get-percent-weight 0.80))

(defmethod (Plum :compute-weight) (1
(send &elf :get-percent-weight 0.66))

(defmethod (Fruit :get-percent-weight)
(percent)

(* weight percent))

The latter solution requires one extra method
called :gct-percent-weight which is attached to Fruit.
This is to force the computation on the weight in-
stance variable into a method which is attached to
the Fruit class, This method is activated when either
an Apple, Orangc,or Plum object sendi itself the :gct-
percent-weight message since those classes do not have
this method name defined for them and they inherit
from Fruit.

The two programs defined above both seem to work
equally well. The advantage of the latter program will
show up as we modify the underlying data structure.
Let us assume that we will now expand our original
problem. Many years have passed since we wrote the
code and now mankind no longer finds itself earth
bound. He has the ability to take fruit, baskets to
any number of different planets around the galaxy.
Clearly the weight of an object can no longer be a
simple number which represents the weight of the ob-
ject on earth. Our notion of weight must include a
calculation based on two factors, mass and gravity.
Our underlying data structure will change to:

FruitBasket = Basket Fruits.
Fruit8 a i Fruit 3.
Fruit : Apple i Orange I Plum

common <weight> PlanetWeight.
Plane&Weight =

<mass> lumber <gravity> Number.
Basket = . Apple = . Orange = . Plum = .

The only modified class in this class dictionary is
Fruit. The Strong Law guarantees that only the meth-
ods attached to Fruit will need modifications. In this
example we need only change the :get-percent-weight

method.

(defmethod (FNit :get-perC8nt-weight)
(percent)

(send weight :get-percent-ueight percent))

(defmethod (PlanetUeight :get-percent-weight)
(percent)

(* (* mass gravity) percent))

The set of methods written under the Weak Law re
quire the modification of methods attached to Ap-

ple, Orange, and Plum. In this simple example these
changes are not extensive, but consider problems with
many alternatives (e.g. 100 different fruits) or a more
complicated class dictionary.

330 UOPSIA ‘88 Proceedings !iiepenlber25-30,1988

The Trellis/Owl system [16] provides the concept
of subtype-visibility which acts as a nice intermediate
between the strong and weak interpretations of the
Law. With the subtyp+visibility concept they can
fine-tune which operations (instance variables and
methods) should follow the weak Law and which the
strong Law. C++ [18] can achieve the same with
private and protected data members.

ml is an instance variable access method (i.e. it
is an explicit setting or retrieving of an instance
variable value). The nested application is in good
style by definition.

mf. is not an instance variable access method.
The violation is of the form:

(dsfmethod (C :lt) ()
..*

9 Conforming to the Law

Given a method which does not satisfy the Law, how
can we transform it so that it conforms to the Law?
We outline an algorithm for transforming any object-
oriented program into an equivalent program which
satisfies the Law. In other words, we show that we can
translate any object-oriented program into a “normal
form” which satisfies the weak Law.

(send (send self :ml) :m2)
. . . 1

We rewrite it in good style in the following form:

(defmethod (C :H> ()
. . .

We assume first that the only variables used in a
method are instance variables and arguments. We
exclude local variables. The violation of the Law will
happen in a nested method application.

(send self :I41 (send self :ml)>
l . . 1

(defmethod (C :!¶I> (arg :type Argtype)
(send arg :m2)>

(send . . . (sand
When we allow local variables in our methods, we

can use a similar transformation.
(send (send b :ml) :m2)

:m3) . ..)

Here b is an instance variable or an argument. If b
is not self we rewrite it as

(aend b :nl) . . .

(d;;;;;hod (B :nl) ()
. . .

(send (send (send self :ml) :a1121 :m3) . ..)

Let the type of the object returned frommethoci ml
be Al. We can rewrite the above method application
as

The transformations given above allow us to trans-
late a given program in bad style into good style.
There are two other, though less automatic, ways to
achieve this goal which may help in arriving at more
readable or intuitive code. These two techniques,
called Pushing and Popping also rsay help in mini-
mizing the number of arguments passed to methods
and occurrences of code duplication. With lifting we
lift a method up in the class hierarchy and with push-
ing we push it further down,

(send (send self %I) :m2-new)

(d&method (Al :m2-new) ()
(send . . . (sand (send self :m2) :m3) . ..)

The method m2-new has a nesting level which is
by 1 smaller than the nesting level of the original
nested method application. By repeatedly applying
the transformations given, we can transform all the
violations of the Law to the form

(send (send self :ml) :m2)

The above proof demonstrates that any object-
oriented program written in bad style can be rewrit-
ten in a form which follows the Law of Demeter. How-
ever, such programs may contain messages to inher-
ited instance variables, therefore violating the con-
straints of the Strong Law of Demeter which insists
that only direct (non-inherited) instance variables be
sent messages inside of a method. We present the fol-
lowing proof that any object-oriented program writ-
ten to obey the Weak Law of Demeter can be auto-
matically rewritten to obey the Strong Law of Deme-
ter. This proof together with the previous proof guar-
antees that any object-oriented program written in
poor style can be rewritten to obey the Strong Law
of Demeter .

This is a helpful reduction in the complexity of The difference between programs which follow the
studying the removal of bad style. Instead of having Weak Law and the Strong Law of Demeter is that
to consider all nested method applications, we have those following the Weak Law may contain message
to study only double nesting. We distinguish between sends to inherited instance variables. These may look
two cases. like:

OOPSU ‘88 Proceedings 331

(drrfmethod (SubtypeClass :sample) ()
(send price 8:xyz))

where price is an inherited instance variable from a
class called “InheritedClass” (from which Subtype-
Class inherits). All such message sends can be auto-
matically rewritten such that the offending message
is sent to self and delegated to the inherited class as
follows:

(defmethod (SubtypeClass :sample) ()
(send self ‘:price-xyz))

(defmethod (InheritedClass :price-xyz) (>
(send price ‘:xyz))

10 Compile Time Checking of
the Law

The Law of Demeter (the original version, not the
object version) can be checked at compile-time for
useful subsets of object-oriented languages. Check-
ing the Law is closely related to static type checking.
When a language supports static type checking, we
can enforce the Law. It is not necessary that the
user gives a type to all the variables. This checking
requires only that the class dictionary for’ the appli-
cation be available at compile-time and that all the
arguments and return ~&es of methods are typed by
the user.

In not strongly typed languages there are several
cases which cannot be checked at compile-time.

Class and/or Method Definitions at Run Time

This occurs in some languages such as
Lisp/Flavors and CLOS.

Passing a Message as an Argument

The following example demonstrates the passing
of a method as an argument to another method.
In the receiver method, the passed message is
sent to an object “0”.

(dsfmsthod (X :xyz) (m)
(send (send o in) ‘:m2)))

If we don’t know the argument types and the
result type of m we cannot check the Law at
compile-time.

Dynamic Message Name Calculation

The following example demonstrates a case
which cannot be tested at compile-time.

(rend
(rend o (concat ‘: some-string)) ‘:m)

.The string named “some-string” could be read
in at run time in which case there is no way of
knowing the signature of the message sent to “on.

11 Minimum Documentation

Since our primary goal is to produce guidelines for
the production of software which can be easily main-
tained we should also consider how the software
should be documented. The documentation of a
method should include, as a minimum, the produc-
tion which defines the class to which the method is
attached. This .production defines all the instance
variable types. In addition, a method documentation
should contain

the types for each of the arguments

the return types of methods and an indication
whether the methods return newly created in-
stances.

the types of objects created by the method (di-
rectly or indirectly)

This documentation gives the reader of the method
a list of types he or she has to know about for under-
standing the method and for following the Law.

12 Formulations of the Law

We give the formulation of the Law of Demeter
(“object” version) in a few object-oriented languages
Smalltalk- 141, CLOS [l], C++ [18], Eiffel [13].
Each formulation adapts the Law to the terminol-
ogy of the particular language. For explanation and
motivation see [lo].

Smalltalk-80: For all methods M, and for all
message expressions in M the receiver must be
one of the follawing objects:

l an argument object of M including objects
in pseudo variables ‘self” and %uper” or

l an instance variable object of the class to
which M is attached.

(Objects created by a method, or by methods
which it calls, and objects in global variables are
viewed as being passed by arguments.)

332 OOPSLA ‘88 Proceedings Sqtember2530,1988

CLOS: For all methods M, all function calls in-
side M must use only the following objects as
dynamic method selection arguments:

l M’s argument objects or

l a slot value of a dynamic method selection
argument class of M.

(Objects created by a method, or by functions
which it calls, and objects in global variables are
viewed as being passed by arguments. A dynamic
method selection argument is an argument which is
used for identifying the applicable methods at run-
time.)
Note: This version of the Law is currently un-
der debate by some CLOS developers and users.

C++: For all classes C, and for all member
functions M attached to C, all objects to which
M sends a message must be

l M’s ‘argument objects, including the ob-
ject pointed to by “this” or

l a data member object of class C.

(Objects created by a member function, or by func-
tions which it calls and objects in global variables are
viewed as being passed by arguments.)

EiRel: For all routines M, and for all calls of
routines inside M the entity object must be
on& of the following objects:

l an argument object of M or

l an attribute object of the class in which i
is defined.

(Objects created by a routine, or by rou-
tines which it calls, and objects in global vari-
ables are viewed as being passed by arguments,)

13 Conclusion

In this paper we have introduced a simple rule which
we believe helps the production of structured and
maintainable software. This rule, which we call the
“Law of Demeter”, encodes the ideas of data hiding
and encapsulation in an easy to follow form for the
object-oriented programmer. The Law can be easily
checked at compile-time for a large class of object-
oriented programs. The style of modular program-
ming encouraged by the Law leads naturally to the
construction of an interface between the application

September 25-!a,1988

software and’the implementation details of the class
and object hierarchies. It is this interface which, to-
gether with the Law, enables the programmer to re-
design the data structures and still leave most of the
existing software intact. We require this level of flex-
ibility in any scenario which exhibits a high rate of
modification. Effectively reducing the impact of local
changes to a software system can reduce many of the
headaches of software maintenance.

We have seen that there is a price to pay. The
greater the level of data hiding, the greater the penal-
ties are in terms of the number of methods, speed
of execution, number of arguments to methods and
sometimes readability of the code. These trade-offs
are clearly visible in the discussion of the weak and
strong versions of the Law. The strong version implies
greater data and information hiding at the cost of ex-
tra methods and method arguments. But in the long
term these,are not fatal penalities. Using “Modula-2
like” modules to collect related methods and defini-
tions together helps significantly in organizing the in-
creased number of smaller methods into maintainable
packets. This facility along with the. support of an
interactive CASE environment can erase some of the
penalties. The execution deficit can be removed by
preprocessor or compiler technologies like inline code
expansion or code optimization similar to the way tail
recursion optimization is done at the moment.

In the past year, over one hundred undergradu-
ate and graduate students scrutinized, challenged and
tested the Law of Demeter. YVe have applied the Law
in the ongoing development of the Demeter system
(now over fourteen thousand lines of Lisp/Flavors
code). Some very recent developments have also been
some of the more intricate, e.g. a generic parser ca-
pable of parsing any input with respect to any class
dictionary. The Law never prevented us from achiev-
ing our algorithmic goals (as guaranteed by the proof
above) however it was sometimes the case that the
methods had to be rewritten to comply with it. This
task was not difficult and the results were generally
more satisfying. In the context of the Demeter sys-
tem which is an energetically growing system the Law
is an invaluable asset. We will be using the Demeter
system itself to automate the porting of the system
to C++ and this task is made very much simpler
because of the uniform, modular structure of the ex-
isting code.

We are continuing our investigation of modular
object-oriented programming and we believe that the
Law and its consequences will lead to the future devel-
opment of “good” software. In addition, the Law al-
lows US to consider a normal form for object-oriented
programs which we hope will form a basis for the

OOPSLA ‘88 Proceedings 333

development of object-oriented program verification
techniques.

We are looking for companies who are interested
in benefitting from Demeter technology. It is an easy
“add-on” solution’ which allows you to continue to
work with your favorite object-oriented system. The
Demeter team can be reached electronically on CS
net: lieber@corwin.CCS.northesstern.EDU

Acknowledgements We would like to thank Gar-
Lin Lee for her feedback and contributions during the
development d the ideas in this paper. Thanks also
to Jing Na who, along with Gar-lin, tested the practi-
cality of using the Law during the production of some
of the Demeter system software. Mitch Wand pointed
out the relationship between the Law and the Princi-
ple of Compositionality. He was also instrumental in
initiating the investigation into the weak and strong
interpretations. Carl Woolf suggested that the object
version of the Law is the one to be followed concep-
tually. He provided the example we used to motivate
the object version.

Members of the CL?S community (Daniel Bobrow,
Richard Gabriel, Jim Kempf, Gregor Kiczales, Alan
Snyder, etc.) have participated in the debate and/or
formulation of the CLOS version of the Law.

References

PI

PI

PI

II

PI

PI

I’1

D. Bobrow, L. G. D. Michiel, R. P. Gabriel,
S. E. Keene, G. Kicsales, and D. A. Moon. Com-
mon Lisp Object System Specification. March
1988 1988. Draft submitted to X3J13.

B. J. Cox. Object-Oriented Programming, An
evolutionary approach. Addison Wesley, 1986.

D. W. Embley and S. Woodfield. Assessing the
quality of abstract data types written in Ada. In
International Conference on Software Engineer-
ing, pages 144-153, IEEE, Singapore, 1988.

A. Goldberg and D. Robson. SmaJJtuJk-80: The
Language and its linplementation. Addison Wes-
ley, 1983.

J. Heijenoort. From Frege to GodeJ. Harvard
University Press, 1967.

C. A. R. Hoare. Proof of correctness of data rep
resentations. Acta Infomatica, 1:271-281,1972.

T. Kaehler and D. Patterson. A Taste of
Smalltalk. Norton, 1986.

PI

PI

[lOI

[ill

WI

PI

t141

PI

WI

VI

P81

B. Kernighan and P. Plauger. The Elements of
Programming Style. McGraw-Hill, 1974.

K. Lieberherr. Object-oriented programming
with class dictionaries. Journal on Lisp and
Symbolic Computafion, l(2):pages unknown,
1988.

K. J. Lieberherr and I. Holland. Formulations of
the Law of Demeter. Technical Report Demeter-
2, Northeastern University, June 1988. 12 pages.

K. J. Lieberherr and A. J. Riel. Demeter: a
CASE study of software growth through parame-
terized classes. Journal on Object-Oriented Pro-
gramming, l(3):pages unknown, 1988. extended
version of paper with same title presented at the
10th International Conference on Software En-
gineering, Singapore, pages 254-264.

B. Liskov and J. Guttag. Abstraction and Spec-
ification in Program Development. The MIT
Electrical Engineering and Computer Scitnct
Seties, MIT Press, McGraw-Hill Book Company,
1986.

8. Meyer. Object-Oriented Software Construc-
tion. Ser;‘es in Computer Science, Prentice Hall
International, 1988.

D. L. Parnss, P. C. Clements, and D. M. Weiss.
Enhancing reusability with information hid-
ing. In P. Freeman, editor, Ilttiorial: Software
Reusability, pages 83-90, IEEE Press, 1986.

D. L. Parnas, P. C. Clements, and D. M. Weiss.
The modular structure of complex systems.
IEEE fiansactions on Software Engineering,
SE11(3):259-266,1985.

C. Schaffert, T. Cooper, B. Bullis, M. Kilian,
and C. Wilpolt. An introduction to Trellis/Owl.
In Objtct-Oriented Programming Systems, Lan-
guages and Applications Conference, pages g-is,
1986.

A. Snyder. Inheritance and the development of
encapsulated software systems. In B. Shriver
and P. Wegner, editors, Research Direciions in
Object-Oriented Programming, pages 147-164,
The MIT Press, 1987.

B. Stroustrup. The C++ Programming Lan-
guage. Addison Wesley, 1986.

334 OOPSLA ‘88 Proceedings ssptember2530,19B8

