
Object-Oriented
Programming in C

Anne Gatchell
16 November 2012

Points to Cover

● GTK+ - http://en.wikipedia.org/wiki/GTK%2B
● GObject http://en.wikipedia.org/wiki/GObject
● OOC Book
● why would you do this
● GObject ref manual http://developer.gnome.

org/gobject/stable/pr01.html
● disadvantages: optimization, look at x86

code
● C vs C++: arguments and compromise

Points to Explore

● Can we treat ANSI-C as an object-oriented
language?

● How could we do this?
● Why would we do this, instead of using

C++?
○ C/C++ wars

● Examples of OOC
● GTK+ and GObject
● Conclusions

Object-Oriented Programming

● A departure from Functional programming,
C's specialty

● First things first: A basic definition of object-
oriented programming:
○ Programming with a focus on entities that have data

and associated responsibilities
● In C++, we use a Class to define a template

for objects
○ The class contains information on what data the

object instance should contain and what tasks that
object will perform

● In C, we don't have Classes

Can we treat ANSI-C as an OO
Language?

● In C, we have some data types: int, char,
double, etc.

● These data types are certain types of values
● They are intimately tied to their

implementation (eg. char has 256 possible
values, double is hardly a mathematical real
number)

● But, we can also view data types as having
the same definition of Objects:
○ "A set of values plus operations to work with them" -

Schreiner

Can we treat ANSI-C as an OO
Language?

● So, we basically want to be able to create Abstract Data
Types:
○ They will be able to conceal their implementation details from the user,
○ which will aid the user in dividing and conquering their code to make it

more modular

● How can we implement this?
● With structs and void * pointers
● Basic Set implementation example from Axel-Tobias

Schreiner's Object-Oriented Programming in ANSI-C
book
○ To take a look at how we can achieve true abstraction in C

Set (1)
Let us implement a Set of elements with methods for add, find and drop. Each
method takes a set and an element, and returns the element added to, found
in, or removed from the list.
Notice the use of generic void * pointers. This means that the user of these
methods cannot possibly glean anything about the implementation of Set
Set.h:
#ifndef SET_H #define SET_H

extern const void * Set;

void * add (void * set, const void * element);

void * find (const void * set, const void * element); void * drop (void * set, const
void * element);

int contains (const void * set, const void * element);

#endif

Set (2)
We are using pointers to refer to sets, rather than Typedefs, so we need a way
to obtain a set and delete a set. These methods are declared in new.h.
new.h:
void * new (const void * type, ...);

void delete (void * item);

The new function accepts a type (ie. Set) and zero or more arguments for
initialization and returns a pointer to that abstract data type.
Now, we need an Object type, so that we have something to put in the Set!
Object.h:
extern const void * Object; /* new(Object); */

int differ (const void * a, const void * b);

Set(3)
Example application:
#include <stdio.h>

#include "new.h" #include "Object.h" #include "Set.h"

int main ()

{

void * s = new(Set);

void * a = add(s, new(Object)); void * b = add(s, new(Object)); void * c = new(Object);

if (contains(s, a) && contains(s, b))

puts("ok");

if (contains(s, c))

puts("contains?");

if (differ(a, add(s, a)))

puts("differ?");

if (contains(s, drop(s, a)))

puts("drop?");

delete(drop(s, b)); delete(drop(s, c));

return 0;

}

This application should
output "ok"

The implementation for this small program assumes that each object stores no
information and belongs to at most one set. We represent objects and sets as
integers that are indexes to a heap[] array. If an object is a member of the set,
then its array element contains the number of the set.
Since this example's purpose is to demonstrate the abstraction of the methods, we do not need to
have the objects hold data right now.
Set.c.
#if ! defined MANY || MANY < 1 #define MANY 10

#endif

static int heap [MANY];

void * new (const void * type, ...)

{

int * p; /* & heap[1..] */

for (p = heap + 1; p < heap + MANY; ++ p) if (! * p)

break;

assert(p < heap + MANY);

* p = MANY; return p;

}

Set(4)

Set (5)
We need to make sure that the item's number is within the bounds of the heap,
and then we can set it to 0.
Set.c cont.
void delete (void * _item)

{

int * item = _item;

if (item)

{ assert(item > heap && item < heap + MANY);

* item = 0;

}

}

Set (6)

Set.c cont.
void * add (void * _set, const void * _element)

{

int * set = _set;

const int * element = _element;

assert(set > heap && set < heap + MANY); //

assert(* set == MANY); //Make sure the set does not belong to another set

assert(element > heap && element < heap + MANY);

if (* element == MANY)

 * (int *) element = set — heap;

else

 assert(* element == set — heap);

return (void *) element;

}

Set (7)
Set.c cont.
void * find (const void * _set, const void * _element)

{

const int * set = _set;

const int * element = _element;

assert(set > heap && set < heap + MANY); assert(* set == MANY);

assert(element > heap && element < heap + MANY); assert(* element);

return * element == set — heap ? (void *) element : 0;

}

int contains (const void * _set, const void * _element) //Converts the result of find into a
Truth value

{

return find(_set, _element) != 0;

}

Set (8)
Set.c cont.
void * drop (void *_set, const void * _element)

 {

 int * element =find(_set, _element);

if (element)

* element = MANY;

return element;

}

int differ (const void * a, const void * b)

{

return a != b;

}

const void * Set;

const void * Object;

Phew!!

● The takeaway from all that C code for a simple set is
that we have something very much like a set in Python

● We can add, find, or delete any type of object from our
Set data type, without any worries about the
implementation beyond the question of, "Does this
behave like a mathematical set, and would a set meet
my needs?"

● The application code can only see the header file, in
which a descriptor pointer represents the data type, and
the operations take and return generic pointers

● Usually, the descriptor pointer would point to a constant
size_t to indicate the size of the data type

Other Methods

● Many have published or posted advice for people who
want to try object orient programming in C

● A key factor that will determine the complexity of the
implementation is whether or not the programmer wants
to be able to actually keep members private and totally
abstract

● Some may just want the organization of OO-Design, but
decide to just hold themselves to a contract that says
they will not deviate from the permissions that are
outlined in OO principles

StackOverflow Example (1)
One SO member Tronic posted this diagram of implementing
polymorphism with regular functions and vtables to contain the
functions for a given type

StackOverflow Example (2)
Continued. The diagram is pretty descriptive, but the whole structure is quite
elegant. The properties of structs lend themselves beautifully to polymorphism

HumanPlayer and
AIPlayer both derive
from the Player struct.
The AIPlayer uses all
fields from the Player
struct, and also adds
some. It can be cast to
a Player and treated as
such (only the Player
properties would be
exploitable) and then it
can be cast back to an
AIPlayer.

Embedded Systems Programmers

● Embedded Systems Programmers often need to use C
because that is either the only language that their
device supports/compiles, or because it would be far
easier and smaller to implement a C compiler than a
compiler for a higher level language

● See the following article that helps C programmers see
how to write C programs that are equivalent to their C++
counterparts

Why Would We Do This?

● Object-oriented C is a common question topic online
● The reasons for using C in an Object-Oriented method

can range from preference to necessity
● Embedded developers who are restricted to C many

desire to use object-oriented design methodologies
● To get a picture of why people might choose OO-C over

C++, we can look at some of the reasons people use C
over C++

● As Axel-Tobias Schreiner states in his book, it is a great
exercise to understand and appreciate how object-
oriented design works

● Or, as one StackExchange member commented on the
Tronic format, it is a great way to understand the inner
workings of other OO languages, like Java

Why choose C over C++?

● Writing low level or embedded code
● C++ compiler is not good at a particular optimization
● Application does not lend itself to being object-oriented
● Must meet industry guidelines; easier to prove and test

for in C
● C compiler is smaller and ubiquitous
● C is (often) faster
● Tools you are using are written in C (OpenGL, OpenCL,

etc)
●

Why choose C over C++?

Popular applications that use C:
● Linux
● Git
● GTK+

○ object-oriented C! more on this later

C vs. C++ War

● Reading arguments about the merits of C or
C++

● It gets very heated
● Interesting reading:

○ Linus Torvalds' rant about C http://thread.gmane.
org/gmane.comp.version-control.
git/57643/focus=57918

○ A response to said rant http://warp.povusers.
org/OpenLetters/ResponseToTorvalds.html

Finding peace between C and C++

● C has many advantages
● If one needs to use C for a system that lends

itself to object-oriented programming, OOC
is a great way to deal with that

● Rather than be dogmatic about whether C or
C++ is better, look at the strengths and
weaknesses of the languages and whether a
Functional Decomposition approach is
adequate or an Object-Oriented approach
would be better for your purposes

Practical Examples of OOC

● GTK+ (GIMP Toolkit) is a multi-platform
toolkit for creating GUIs

● It is built in C, and it is object oriented
● It uses GLib(and GObject)
● You can clone the GTK code using

○ git clone git://git.gnome.org/gtk+
● It is interesting the see the very organized

(and large) collection of object oriented
"class" in C

GObject (GLib Object System)

● If you want to write an OOC program, it may be worth
visiting <http://developer.gnome.
org/gobject/stable/index.html> and checking out the
GObject library

● It provides a generic type system that allows for
inheritance and memory management
○ Basically all the things that Axel-Tobias Schreiner's

implementation does

Conclusions

● Yes, you can use C in an object-oriented
fashion

● It is worth it?
○ That's a tougher question
○ Answer will vary with project
○ Using a library someone else has written (GObject,

Schreiner) makes it much easier to get the the meat
of the design

● If anything, it will make you a better C
programmer, and probably a better OO
programmer

● Try it on for size!

References
● Object-Oriented Programming with ANSI-C by Axel-Tobias Schreiner
● http://stackoverflow.com/questions/2181079/object-oriented-programming-

in-c?lq=1
● Stack Overflow: Why would anybody use C over C++? [closed] http:

//stackoverflow.com/questions/497786/why-would-anybody-use-c-over-c
● GTK+ Overview http://www.gtk.org/overview.php
● Stack Overflow: Object Oriented Programming in C http://stackoverflow.

com/questions/2181079/object-oriented-programming-in-c?lq=1
● GObject Reference manual http://developer.gnome.

org/gobject/stable/pr01.html
● Object Oriented Programming in C (for Embedded developers) http://www.

eventhelix.com/realtimemantra/basics/object_oriented_programming_in_c.
htm

● GTK+ Project http://www.gtk.org/download/index.php
● Some proof(?) that C is faster than C++ for equivalent programs http:

//unthought.net/c++/c_vs_c++.html

