
Object-oriented Programming
with PHP

This chapter introduces the readers to the basic features of object-oriented
programming with PHP and then provides an overview of the common design
patterns. Later, we will go over how error handling and exception handling are
performed in PHP. PHP has traditionally not been an object-oriented programming
(OOP) language until PHP 5 when the language was revamped for a great deal to
support the OOP features.

PHP in programming
PHP is a scripting language that is often used to build dynamic web applications.
PHP inherits its programming style from C and Java. PHP comes with powerful
libraries and strong community support, making it one of the favorite languages that
developers use for building web applications. We will be utilizing the PHP libraries
that were installed in Bonus chapter 1, Installation of PHP, MariaDB, and Apache to
execute our scripts. Let us look at the three ways in which PHP scripts can be executed:

•	 Via the PHP shell
•	 Via the command line
•	 Using a web server such as Apache

The PHP shell is commonly used as a playground to test small scripts, and the shell
can get tedious when working with bigger scripts. Executing files via command line
is the second option where the PHP scripts will live inside the files. As we will be
using object-oriented design to build our scripts, we will skip the first method and
use the second and third methods to execute our scripts.

Object-oriented Programming with PHP

[2]

Object-oriented programming
Object-oriented programming is a popular programming paradigm where concepts
are grouped into reusable objects that carry their own attributes and behaviors.
An attribute can be described as a variable that is in the object, which is used to
hold data pertaining to that object, while a behavior describes what an object can
do. Let us consider the example of a User object; a user will have a name, an age,
and an address, and these will be the attributes for a user. As the User object stores
the address, we could have a behavior to allow and facilitate address retrieval; the
behaviors are referred to as class methods. An object is a complex data structure that
can have one or more types of attributes and one or more types of behaviors. The
attributes and behaviors are defined in a class, and an object is an instance of a class.
Therefore, the instances carry the same attributes and behaviors of that class. Though
there could be multiple objects of the same class, the data stored in each object would
be stored in different memory locations.

OOP is not a new concept and has been around for a very long period. OOP
allows us to group our code based on behaviors and attributes and also allows us
to organize our code for better reusability. Basic object-oriented features such as
objects and classes were introduced into PHP 3 in 1998. In 2000, PHP 4 was released
with a better support for object-oriented features but the implementation of objects
was still an issue, as the object referencing was handled similar to value types. So a
whole object would be copied when an object had to be passed in as a parameter to
a function. As the object had to be copied, recreated, and stored several times, this
led to poor scalability for big applications, extra usage of memory, and unnecessary
overhead on the resources. PHP 5, which was shipped in 2004, arrived with a far
superior object model that was better at handling objects, thereby increasing the
performance and scalability of the web applications. Now that we have a basic idea
about OOP, let us dive into understanding classes and objects.

Sublime text is used as the text editor for this series. It is recommended
to use a text editor or IDE of your choice. A few popular IDEs are
Eclipse for PHP and the NetBeans IDE for PHP development.

Classes and objects
In our first example, let us define a class. For creating a class, we would at least need
one piece of information, the unique name for the class. In PHP, a class definition
begins with the keyword class, and the keyword is followed by the unique name of
the class. This is followed by a pair of curly braces and any class attributes and/or
methods are enclosed into these curly braces.

Bonus chapter 2

[3]

There are two rules for naming a class in PHP mentioned as follows:

•	 It should begin with a letter or an underscore
•	 It can only contain letters, numbers, or underscores

It is a good practice to have the name of the class as part of the filename (for example,
class.Students.php) or the actual filename itself (for example, Students.php). It is
also common to use camel case, which is a common practice for naming the classes,
class attributes, and class methods where multiple words are compounded into one,
and the first letter of each word is written in upper case. Consider the following code
snippet as an example showing a Students class:

<?php
 class Students
 {

 public function __construct()
 /**
 * Code to be executed
 *upon object instantiation
 */
 }
 }
?>

In this example, we are creating a Students class with a constructor using
the __construct keyword. A constructor is the first function that is triggered upon
the object instantiation. A constructor is commonly used for any bootstrapping
purposes such as importing configurations and/or performing setup operations.
The __construct() keyword is reserved by the PHP engine to identify the
constructors in a class. Therefore, a constructor cannot be declared outside a class.
The PHP engine treats a constructor like any other function; so, if a constructor is
declared more than once, we will receive an error. Now that we understand how to
create a class, let us continue with our Students class and add a few class attributes
and class methods. After adding the attributes and methods, let us instantiate an
object to access the attributes and methods. To instantiate an object, we will use
the new keyword. We would need at least two pieces of information for the object
instantiation; the first piece is the name of the object and the second is the name of
class for which an object is being instantiated. Consider the following code example:

<?php
 class Students
 {

Object-oriented Programming with PHP

[4]

 public $first_name;
 public $last_name;
 public $address;

 public function __construct($first_name
 , $last_name, $address){

 $this->first_name = $first_name;
 $this->last_name = $last_name;
 $this->address = $address;
 }

 public function greeting(){
 return "Hello ".$this->first_name."\n";
 }

 public function getAddress(){
 return $this->address."\n";
 }
 }

 $student = new Students("John", "Doe", "3225 Woodland Park
 St");
 echo $student->greeting();
 echo $student->getAddress();
?>

In this example, we have added three class attributes or properties to store the
first name, the last name, and the address of the student. We are initializing our
properties via the constructor and the value for our properties will be passed in
after the object instantiation. We have also added two class methods that would
print out a greeting and return the address of the student. We are using the $this
keyword to access our properties, and it can also be used to access the class methods
as it is a reference to the Students object. We are using the -> notation to access the
properties or the methods of a class. After defining the class, we are instantiating
an object of the Students class, and are calling the $student object. During the
instantiation, we are passing in the arguments that are expected by our constructor,
and these values are assigned to the properties. After the object instantiation, we are
invoking the class methods using our $student object.

Bonus chapter 2

[5]

The output for the previous code will be as follows:

Hello John
3225 Woodland Park St

Static properties and methods
It is not always necessary to instantiate an object to access the properties or methods
of a class. A class can also have static methods and properties that are bound to the
class, rather than the object. To access a static method or a static property, we will
use the scope resolution operator (::). To create a static property or static method,
we will append the static keyword ahead of the variable. A static property or
method will be commonly used to instantiate a database connection or a connection
to a remote service that can add significant overhead. For a method to be accessible,
the object of the class has to be created, during which a virtual method and member
table are created for that class. While accessing static methods, we can avoid this
overhead of creating a virtual method and member table for the class. Static methods
are commonly used for high-performance systems.

We have successfully built our first class, instantiated the class, accessed the class
methods, and discussed static methods and properties. During this process, we
have already come across one of the four principles of OOP, which is abstraction.
Abstraction is a concept about exposing the behavior and properties and hiding
the particular code that performs that behavior. In our previous example, we have
abstracted all the functionalities that a student object can have into the Students
class, and have accessed those functionalities by creating an object of that class.
The other three principles that we would look at are encapsulation, inheritance,
and polymorphism.

Encapsulation
With abstraction, we have seen how to hide the underlying implementation that
provides properties and methods. With encapsulation, let us see how we can expose
a specific set of methods and properties, while hiding or restricting access to another
set of properties and/or methods based on who is accessing this functionality. In our
last example, we have used the keyword public while declaring the properties to
define the access to those properties.

Object-oriented Programming with PHP

[6]

The access to the properties and methods in a class can be defined using public,
protected, or private keywords as shown in the following table:

Visibility Description Comment
public A public variable or a method can be

accessed by anybody who can access
the class.

All properties and methods
are public by default.

protected A protected variable or a method can only
be accessed by the class members and the
class members of a child class.

private A private variable or a method can only
be accessed by the internal class members.

Inheritance
Inheritance is commonly used when we want to create classes that would reuse the
properties and/or class methods that are similar to existing classes. It is common to
have this abstract high level functionality in a class that is referred to as the base or
the parent class and then group this functionality into multiple different subclasses or
child classes that would use properties or methods from that base class. In PHP, we
use the extends keyword to inherit the functionality of a base class. There are at least
two pieces of information that we would need for inheritance; the first is the parent
class or base class and the second is the child class or subclass. In PHP, a child class
can only have one parent class. Let's go over an example of inheritance where we
create an Animal class and then inherit the functionality from the Animal base class to
a Dog subclass. For this example, we will be housing these classes in different files, so
the Animal class will go into Animal.php and the Dog subclass will go into Dog.php.
Consider the following example where the Animal class will go into Animal.php:

<?php

class Animal{
 public $name;

 public function __construct($name){
 $this->name = $name;
 }

 public function greet(){
 return "Hello ".$this->name."\n";
 }
}

?>

Bonus chapter 2

[7]

Consider the following example where the Dog subclass will go into Dog.php:

<?php

require('Animal.php');

class Dog extends Animal{
 public function run(){
 return $this->name." likes to run \n";
 }
}

$dog = new Dog("scooby");
echo $dog->greet();
echo $dog->run();

?>

In this example, we have two classes: the first class is the Animal class that has a public
property $name and a public method greet. The value of $name can be set when an
object is created for the Animal class or for a subclass that extends the Animal class.
In the greet method, we are greeting the animal. In the Dog class, we begin by requiring
the file that contains the Animal class in order to inherit from that class.

The require keyword is used to insert the content of a PHP file
into another file and the PHP engine explicitly verifies that the
content has only been added once.

After requiring the Animal.php file, we are creating the Dog subclass and are using the
extends keyword to inherit the functionality of the Animal class. As dogs love to run,
let us add a run method into the Dog class. After we have defined the Dog class, we will
go forward and create an object of the Dog class and pass in a name to it. Though we
have not declared and defined a constructor for the Dog class or the greet method in
the Dog class, they would be available as we are inheriting the method from the Animal
base class and both the constructor and the greet method are public.

The output for the previous code snippets is as follows:

Hello scooby
scooby likes to run

Object-oriented Programming with PHP

[8]

Magic methods
Before we move onto polymorphism, let us go over a few magic methods that are
provided by PHP to perform operations such as property overloading, method
overloading, and representing an object as text. These magic methods are collections
of special methods that respond to an event. The magic methods follow a unique
naming convention where the name is prepended by two underscores ("__"); one of
the magic method that we have already worked with is the __construct() method
that is automatically fired upon object instantiation. A few other magic methods
that we would work with are __destruct(), __get(), __set(), __toString(), __
clone(), and __call().

It is recommended to refer to the official PHP documentation at
php.net to understand and read more about these and more
magic methods that are made available by PHP.

Constructors and destructors
We have already seen a couple of examples of how a constructor can be used to
bootstrap an object upon instantiation. Constructors are commonly used to initialize
properties and run any setup operations that are required to get the operations
started. A destructor is called when the object is about to be destroyed. A destructor
is used to perform clean-up operations such as destroying any open resource
connections to the database or destroying an open file handle that has been
created by the object. Consider the following example of ConsDesc.php:

<?php

 classConsDesc{
 /**
 * Constructor
 */
 public function __construct(){
 // initialize variables
 // log the time zone of the user
 // open database connections
 // open file handles
 }

 /**
 * Destructor
 */

php.net

Bonus chapter 2

[9]

 public function __destruct(){
 // close database connections
 // close file handles
 }
 }

?>

In this example, we are creating a class with a constructor and a destructor, and
mentioning the common functionalities that can be part of these magic methods.

In PHP, overloading refers to dynamic generation of a
property or a method that has not yet been declared or is
visible in the current scope.

Property overloading
Property overloading is performed when code attempts to access or set a missing
property. For example, let us add a $type property with protected visibility to
our Animal class. As the $type property is of a protected type, we will not be able
to set a value after object instantiation. However, the value of the $type property
should be available with read-only capabilities. To accomplish this task, we will use
the __get() magic method provided by PHP as shown in the following example in
Animal.php:

<?php

class Animal{
 public $name;
 protected $type;

 public function __construct($name){
 $this->name = $name;
 }

 public function greet(){
 return "Hello ".$this->name."\n";
 }
}

?>

Object-oriented Programming with PHP

[10]

The only change that has been made to the Animal class that we built in the last
section was to add the $type property with protected visibility. Now let us extend
the Animal class and set the type based on the type of animal that we are creating the
class for, as shown in the Dog.php file present in the code bundle:

<?php
require('Animal.php');

class Dog extends Animal{
 protected $type=__CLASS__;

 public function __get($property){
 if(property_exists($this, $property)){
 return $this->$property."\n";
 }
 else{
 return $property." does not exist \n";
 }
 }

 public function run(){
 return $this->name." likes to run \n";
 }

}

$dog = new Dog("scooby");
echo $dog->type;
echo $dog->greet();
echo $dog->run();

?>

In this example, we are extending the Animal class and setting the value of the $type
protected property using __CLASS__, which is a magic constant. Then we are using
the __get() magic method to return the value of $type. In our magic method,
we are using a conditional statement to verify that the requested property exists
within the scope of the current class. After checking to see if the property exists,
we are gracefully allowing the execution to either return the value of the property
on success, or display a message if the property does not exist.

The __CLASS__ keyword is a magic constant that returns the
name of the class it is in.

Bonus chapter 2

[11]

The output of the previous code snippets is as follows:

Dog
Hello scooby
scooby likes to run

We have looked at the __get() method that allows us to retrieve the value of
a property; now let us look at the __set() method that allows us to change the
value of a property. The setter magic method is commonly used to set values
into an overloaded property, and take two arguments, the first being the name of
the property and the second being the value to be assigned to that property. It is
important to note that a setter magic method can expose protected and private class
properties if the necessary checks are not performed. Let us build a User class that
would store its overloaded properties into a private class property and let us see
that the data can be populated via the setter method and retrieved via the getter
method in User.php as shown in the following example:

<?php

 class User{
 private $data = array();

 public function __set($key, $value){
 $this->data[$key] = $value;
 }

 public function __get($key){
 if(array_key_exists($key, $this->data)){
 return $this->data[$key];
 }
 }
 }

 $user = new User();
 $user->first_name = "John";
 $user->last_name = "Doe";
 echo $user->first_name.' '.$user->last_name."\n";
?>

In this example, we are building a User class with a private class property.
This private class property can store an array of dynamically declared properties;
this type of dynamic property declaration is done while dealing with schema-less
data architectures or architectures that support multiple schemas.

Object-oriented Programming with PHP

[12]

Here the __get() method is as important as the __set() method as if we try and
access the first name and last name properties for the $user object without defining
the __get() method, we would get an Undefined Property error.

The output of the previous code is as follows:

John Doe

Method overloading
PHP provides the __call() method to handle the concept of method overloading.
This magic method is fired when the code attempts to call for methods that are either
not accessible due to the scope or do not exist. This magic method can be either used
to provide minimal access to such inaccessible methods or could be used to print out
an error message gracefully. The __call() method takes two arguments, the first
argument is the name of that function and the second argument could either be
a single value or an array of values that have to be passed into that function.
Let us build a MyMath class with a __call() magic method in MyMath.php shown
as follows:

<?php
 classMyMath{
 public $a=0;
 public $b=0;

 public function __construct($a, $b){
 $this->a = $a;
 $this->b = $b;
 }

 public function add(){
 return $this->a + $this->b."\n";
 }

 public function __call($name, $arguments){
 return "A function with name: ".$name." does not
 exist\n";
 }
 }

 $math = new MyMath(5,6);
 echo $math->add();
 echo $math->subtract();

?>

Bonus chapter 2

[13]

In this example, we are working with a class that takes two values upon object
instantiation and returns the sum of those values when the add() method is called.
This class does not have a subtract method but, when the subtract method is
called by the object, the execution is gracefully passed into the __call() magic
method. In this example, we are returning an error statement that says that the
function does not exist. We could also use PHP's call_user_func_array() method
to invoke any other functions that could serve this purpose; this is another example
of code abstraction.

The output of the previous code is as follows:

11
A function with name: subtract does not exist

Representing an object as text
The last magic method that we will work with is the __toString() magic method,
which is invoked when an object is treated like a string. In this case, the code tries to
print out the object and at that point the PHP engine looks for an implementation of
the __toString() method. If we do not have the __toString() magic method and
if we print the object, we would receive a notice that would say that object could not
be converted to a string. We will be going over this method while working on the
factory design pattern.

Polymorphism
Polymorphism, as the name suggests, is a principle that allows different classes to
have common methods that have the same name and signature but provide different
functionality. It is a practice of sharing common programming functionality among
classes in a single project. Let us take the example of a cat, a dog, and a duck. All
of them are animals; cats and dogs belong to the family of mammals, while a duck
belongs to the family of birds. Though all of them are animals, when representing
them as objects, they share a few common features and those common features can
live in the Animal base class. Let us consider a common feature such as talking or
speaking, while a human can speak, a dog barks, a cat meows, and a duck quacks.
So if the common feature is communication, the way communication is implemented
among them is different. Let us use the concept of polymorphism to tackle this
example and represent it in objects and classes in Animal.php as shown in the
following example:

<?php

class Animal{

Object-oriented Programming with PHP

[14]

 public $name;
 protected $type;

 public function __construct($name){
 $this->name = $name;
 }

 public function greet(){
 return "Hello ".$this->name."\n";
 }

 public function run(){
 return $this->name." runs \n";
 }

 public function communicate(){
 return $this->name." says rrrrrr";
 }
}

?>

Consider the following example in the Dog.php file extending the Animal base class:

<?php
require('Animal.php');

class Dog extends Animal{
 protected $type=__CLASS__;

 public function __get($property){
 if(property_exists($this, $property)){
 return $this->$property."\n";
 }
 else{
 return $property." does not exist \n";
 }
 }

 public function run(){
 return $this->name." likes to run \n";
 }
 public function communicate(){
 return $this->name." says bow wow \n";
 }
}

Bonus chapter 2

[15]

$dog = new Dog("scooby");
echo $dog->type;
echo $dog->greet();
echo $dog->run();
echo $dog->communicate();

?>

Let us discuss this example before we look at our new Cat class. We have added the
run() and communicate() methods to our Animal base class and are overriding these
methods in the Dog subclass. My dog loves to run, so I am overriding the run method
in the base class as it is too generic; by overriding this method in my subclass, I am
making sure that my subclass functionality is implemented.

The output of the previous code snippet is as follows:

Dog
Hello scooby
scooby likes to run
scooby says bow wow

Upon execution, the name of the class is printed as our __get() magic method
is fired. Then the greet() method is executed, and the outputs of the two methods
that were overridden in the subclass are printed. Scooby really loves to run and is
quite a talker. Now let us look at the implementation of these methods in our Cat
class in Cat.php as shown in the following example:

<?php

require('Animal.php');

class Cat extends Animal{
 protected $type=__CLASS__;

 public function __get($property){
 if(property_exists($this, $property)){
 return $this->$property."\n";
 }
 else{
 return $property." does not exist \n";
 }
 }

 public function run(){
 return $this->name." hates to run \n";
 }

Object-oriented Programming with PHP

[16]

 public function communicate(){
 return $this->name." says meow \n";
 }
}

$cat = new Cat("cuddles");
echo $cat->type;
echo $cat->greet();
echo $cat->run();
echo $cat->communicate();

?>

Our Cat class is similar to the Dog class, except for the implementation of the run()
and communicate() method. We are using the greet() method from the Animal
base class. Let us execute this code and examine the output shown as follows:

Cat
Hello cuddles
cuddles hates to run
cuddles says meow

Upon execution, the name of the class is fired by our getter method and the greet()
method is fired next. After the greet() method, the overridden implementations of
the run() and communicate() method are fired. Unlike Scooby, Cuddles is very lazy
and hates to run.

Interfaces
In our previous example, we noticed that the run() method and the communicate()
method are not being used by the Animal class, but are only present in that class so
the subclasses can inherit those methods and override them. As we start building
bigger applications, we will be dealing with different types of data with different
types of functionality. Though the underlying functionality is different, the
high-level description and aim could still be the same, as in case of run and
communicate. So, using multiple names for the same functionality would lead
to confusion and inconsistency. To avoid this confusion, we can utilize the object
interfaces provided by PHP 5. Unlike a regular class, an object interface would only
specify the methods that the class must implement, but doesn't provide a specific
implementation for those methods, unlike the Animal class in the previous example.
All methods in an interface are public by default. Let us move the run() method
and the communicate()method into the interface as the Animal class is not the apt
location for those methods.

Bonus chapter 2

[17]

Creation of an interface would at least need two pieces of information, the first one
being a unique name of the interface and the second the signature of at least one
method. It is a common convention to prefix the names of interfaces with the letter
"I" in uppercase. The interface, like a class, will be stored in a separate file with the
same name as the interface. Let us build our first interface and see how we cascade the
changes into the rest of our files. To implement an interface, we use the implements
keyword followed by the name of the interface in IAnimal.php shown as follows:

<?php

 interfaceIAnimal{
 function run();
 function communicate();
 }

?>

Now that we have moved the run() method and the communicate() method into
our interface into our Animal class, which is implementing the interface, those
methods have to be implemented in Animal.php as shown in the following example:

<?php
require_once('IAnimal.php');

class Animal implements IAnimal{
 public $name;
 protected $type;

 public function __construct($name){
 $this->name = $name;
 }

 public function greet(){
 return "Hello ".$this->name."\n";
 }
 public function run(){
 return $this->name." likes to run \n";
 }

 public function communicate(){
 return $this->name." says bow wow \n";
 }

}

?>

Object-oriented Programming with PHP

[18]

Now let us extend the Animal class in the Dog class in Dog.php as shown in the
following example:

<?php
require('Animal.php');

class Dog extends Animal{
 protected $type=__CLASS__;

 public function __get($property){
 if(property_exists($this, $property)){
 return $this->$property."\n";
 }
 else{
 return $property." does not exist \n";
 }
 }

}

$dog = new Dog("scooby");
echo $dog->type;
echo $dog->greet();
echo $dog->run();
echo $dog->communicate();

?>

We begin by requiring the file that carries the interface; once the snippet is
ingested into our Dog.php file, the interface can be implemented by using the
implements keyword.

Abstract classes
One thing that we have noticed here is that we are not creating an object for the Animal
class, and are only using this class to house the definitions of common functionality
among animals. PHP 5 arrives with a concept of abstract classes. Abstract classes
cannot be instantiated and should only be used to provide functional direction and
behavior to the subclasses. To create an abstract class, add the keyword abstract
before the class keyword in Animal.php as shown in the following example:

<?php

abstract class Animal{
 public $name;

Bonus chapter 2

[19]

 protected $type;

 public function __construct($name){
 $this->name = $name;
 }

 public function greet(){
 return "Hello ".$this->name."\n";
 }
}

?>

The output would still remain the same as before but one thing that we have noticed
is that our code looks a lot cleaner, consistent, and scalable. If we add a new animal,
we would have to extend the Animal abstract class, implement the IAnimal interface,
and add any custom functionality that the new animal requires. Now that we are at a
good place with the OOP concepts, let us look at a few popular design patterns.

Design patterns
Design patterns are generalized solutions to common problems that have already
been solved by programmers. These patterns are reusable solutions that have been
built by software development teams and the community of software developers.
Design patterns are often agnostic to the programming languages as they focus on
the problem, rather than the implementation of the solution. The popular design
patterns that we will look at are the factory pattern and the singleton pattern.

The factory pattern
The factory pattern is one of the most commonly used design patterns. As the name
suggests, there will be a class that is dedicated just to the generation of objects.
Rather than directly creating an object, we will use the factory class to create objects
for a class. This is done in order to minimize the amount of changes that have to be
made across the project due to a change in the class for which the factory is being
used. Let us look at the following example in DesignPattern-Factory.php to
simplify this:

<?php
 class Car{
 private $make;
 private $model;

Object-oriented Programming with PHP

[20]

 public function __construct($make, $model){
 $this->make = $make;
 $this->model = $model;
 }

 public function __toString(){
 return "The make is ".$this->make." and the model is
".$this->model." \n";
 }
 }

 classCarFactory{
 public static function create($make, $model){
 return new Car($make, $model);
 }
 }
 $car = CarFactory::create("Audi", "Q5");
 echo $car;
?>

In this example, we begin by building the Car class that has $make and $model as
private properties. The values for these properties will be assigned upon the object's
instantiation. We are using the __toString() magic method to print out the make
and the model of the car object that is being built. After the Car class, we have the
CarFactory class that has the static function that creates and returns the Car object.

The output of the previous code is as follows:

The make is Audi and the model is Q5

The singleton pattern
The singleton pattern is commonly used while establishing a connection to the
database or while working with a remote service, as they can add significant
overhead that affect the operations of the application. In a singleton pattern, the
instantiation is restricted to a single instance, thereby avoiding overhead of multiple
instances. We will need at least three pieces of information to use the singleton
pattern: the first is a unique name for the class, the second piece would be a private
constructor that would free us from creating multiple objects, and the third being
a static method that would return the instance. Consider the following code in
DesignPattern-Singleton.php:

<?php
 class DB{

Bonus chapter 2

[21]

 private static $singleton;

 private function __construct(){}

 public static getInstance(){
 if(self::$singleton){
 self::$singleton = new DB();
 }

 return self::$singleton;
 }

 }

 $db = new DB::getInstance();
?>

In this example, we are using the singleton pattern to restrict object instantiation
by using a private constructor. We are using the static getInstance() method to
instantiate an object to the DB class. As this is a static method, it is bound to the class.

This is not a full-fledged example and this should only be used as
a high-level concept. We will be adding the connection parameters
to this class in Chapter 3, Advanced Programming with PHP, while
working with the MariaDB database.

Error handling
Error handling is a very important part of the software development life cycle. Errors
can be briefly divided into three categories:

•	 Syntax errors
•	 Runtime or external errors
•	 Logic errors

A syntax error could be caused due to a missing semicolon or a missing closing
brace. A runtime or an external error could be caused due to a missing file that has
been added to our script using require or require_once, a broken file handle, or a
broken database connection. At runtime, if the execution is expecting a specific set of
resources and if they are not provided, we would receive runtime errors.

Object-oriented Programming with PHP

[22]

Logic errors are caused due to wrong interpretations of requirements or just
faulty code. They are referred to as bugs, and are common part of the software
development life cycle. PHP is shipped with a built-in support for error handling,
and groups these errors into different severity levels. It is a common practice to log
the errors that are generated, and based on the severity of the error, it is also advised
to send notifications as required. PHP's core settings are located in the php.ini file
that is located in the server configurations folder, a constant name is assigned to each
of the severity levels. Let us look at the different levels of errors that are provided by
PHP as shown in the following table:

Constant Description
E_ERROR These are fatal runtime errors and the execution cannot be

recovered from these errors. Until the error is not fixed, this error
will not subside. For example, a script is expecting a connection to
a database that does not exist.

E_WARNING These are non-fatal runtime warnings that do not halt the
execution. For example, a file that has been included via include
or include_once does not exist.

E_PARSE These are fatal errors that occur when a script cannot be parsed
due to a syntax error. For example, the script is missing a
semicolon or an apostrophe.

E_NOTICE These are nonfatal notices that are encountered by the script.
E_DEPRECATED These are nonfatal notices that are provided by PHP to warn

about code that will not be available in future versions.
E_STRICT These are runtime notices that suggest changes that will ensure

the best interoperability and forward compatibility with future
versions of PHP.

E_ALL These are all errors and warnings supported by PHP.
E_CORE_ERROR These are fatal run-time errors that are generated in the PHP

core engine.
E_COMPILE_
ERROR

These are fatal compile-time errors generated by the PHP
core engine.

Bonus chapter 2

[23]

These are the common types of errors, warnings, and notices that we come across
while scripting with PHP. In order to display them during execution, we will have
to update the php.ini file as shown in the following table:

Setting Description Note
error_reporting This setting controls the types of

errors, warnings, and notices that
have been triggered.

E_ALL, ~E_DEPRECATED
and ~E_STRICT are the
recommended settings for
production.

display_errors This setting controls whether or
not to display errors to the screen.

The display_errors
setting should only be turned
on in the development
and testing environments.
This has to be turned off
for staging and production
environments.

log_errors This setting controls whether the
errors are logged or not.

It is recommended to
turn this setting on in all
environments.

report_memleaks This setting helps in tracking the
memory leaks in the application.

This setting will need E_
WARNING to be included in
error reporting.

html_errors This setting displays the error
with a better HTML format
making it easier to read.

It is recommended to
turn this setting on in all
environments.

PHP also contains the trigger_error() function that allows the user to fire a
custom error from a script. There are three levels of custom errors that can be
generated by using the trigger_error() function:

•	 E_USER_NOTICE

•	 E_USER_WARNING

•	 E_USER_ERROR

Object-oriented Programming with PHP

[24]

Consider the following code in Trigger_error.php:

<?php
 $value = 0;

 if($value>0){
 while($value < 10){
 echo $value;
 $value++;
 }
 }
 else{
 trigger_error("Value is not greater than 0");
 }

?>

In this example, we are initializing the $value variable to 0, and are checking to
see if the value is greater than zero. This condition will certainly fail, as this is an
example of a logic error. In our else block, we are using the trigger_error()
method to fire a PHP notice to indicate this logic error.

The output of the previous code is as follows:

PHP Notice: Value is not greater than 0 in
 /var/www/chapter4/Trigger_error.php on line 12

Let us look at an alternative for not printing out warnings, notices, and errors.
PHP provides the error suppression operator (@) to hide any warnings, errors, or
notices that will be printed out on the page. This is not a recommended practice and
should only be used to avoid printing them onto the page, as shown in the following
code in error_suppression.php:

<?php
include("fileDoesNotExist");

function add($a, $b){
 return $a+$b."\n";
}

echo add(5,4);
?>

Bonus chapter 2

[25]

When this script is executed, a PHP warning would be fired as the include function
cannot locate the file; however, as it is just a warning, the execution will continue and
the output will be the value returned by the add function.

The warning generated will be:

PHP Warning: include(fileDoesNotExist): failed to open stream: No
such file or directory in /var/www/chapter4/error_suppression.php on
line 3
PHP Warning: include(): Failed opening 'fileDoesNotExist' for
inclusion (include_path='.:/usr/share/php:/usr/share/pear') in /var/
www/chapter4/error_suppression.php on line 3

The output generated will be:

9

Now let us prepend the suppression operator to the include statement as shown in
the following code in error_suppression.php:

<?php

@include("fileDoesNotExist");

function add($a, $b){
 return $a+$b."\n";
}

echo add(5,4);

?>

After we have added the suppression operator, the script executes smoothly and the
warning is not fired onto the output shown as follows:

9

Object-oriented Programming with PHP

[26]

Summary
In this chapter, we have gone through the concepts of Object-oriented programming
such as classes and objects, abstraction, encapsulation, inheritance, magic methods,
polymorphism, interfaces, and abstract classes. We have also covered the basics of
design patterns and error handling.

In the next chapter, we will go over the new features that are part of PHP 5.4 and 5.5;
we will focus on another aspect of error handling, exception handling, and how PHP
5.5 has made exception handling better. Then we will continue to focus on avoiding
errors and exceptions by setting up unit tests for our code.

