
1 | P a g e

cs304

Object oriented programming

FAQs

What is Abstraction?

Answer: The importance of abstraction is derived from its

ability to hide irrelevant details and from the use of names to

reference objects. Abstraction is essential in the

construction of programs. It places the emphasis on what an

object is or does rather than how it is represented or how it

works. Thus, it is the primary means of managing complexity in

large programs.

Question: What is a Class Diagram?

Answer: A class diagrams are widely used to describe the

types of objects in a system and their relationships. Class

diagrams model class structure and contents using design

elements such as classes, packages and objects.

Question: What is Method Overriding?

2 | P a g e

Answer: Method overriding is a language feature that allows

a subclass to override a specific implementation of a method

that is already provided by one of its super-classes. A

subclass can give its own definition of methods but need to

have the same signature as the method in its super-class. This

means that when overriding a method, the subclass's method

has to have the same name and parameter list as the super-

class's overridden method.

Question: What is Operator Overloading?

Answer: The operator overloading is a specific case of

polymorphisms in which some or all of operators like +, - or ==

are treated as polymorphic (multi) functions and as such have

different behaviors depending on the types of its arguments.

Question: What is Method Overloading?

Answer: The method overloading is the ability to define

several methods (in same class) all with the same name but

different on the basis of i) number of parameters ii) types of

parameters.

Question: What are Polymorphisms?

3 | P a g e

Answer: Polymorphism is a generic term that means 'many

shapes'. More precisely Polymorphism means the ability to

request that the same operations be performed by a wide

range of different types of things.

Question: What is Inheritance?

Answer: Ability of a new class to be created, from an

existing class by extending it, is called inheritance.

Question: What is a base class?

Answer: When inheritance is used to create a new class from

another, the new class is called the subclass or derived class,

and the class from which it was derived is called the base

class.

Question: What is a concrete class?

Answer: A concrete class is one that can be used to directly

create, or instantiate objects, unlike an abstract base class

which can only be used as a base class for other classes which

eventually lead to concrete classes

4 | P a g e

Question: What are data members?

Answer: Objects are miniature programs, consisting of both

code and data. The code consists of a series of member

functions. The data items are called data members.

What is a constructor?

Answer: Objects are complete, miniature programs and, like

any good programs, have well defined initialization and

termination phases. They have special routines (i.e. member

functions) to look after this. The initialization routine is called

the constructor, and C++ ensures that every object is properly

initialized by calling its constructor. The designer of the

object can have more than one constructor, a situation called

overloading and then the compiler will select between them

depending on exactly what arguments are passed to the

constructor function. However, there must always be a

default constructor, to be used when no information is

supplied.

Question: What is a destructor?

Answer: The termination routine is called the destructor, and

C++ will provide a default if none is supplied. If, during the

5 | P a g e

lifetime of the object, it uses heap memory then the designer

of the object must provide a destructor function to release

such memory to avoid a memory leak.

Question: What is global variable?

Answer: Global variables can be accessed throughout a

program. Another way to put this is to say they have global

scope.

Question: What is local variable?

Answer: Local variables can only be accessed within the

function, or more specifically the compound statement in

which they are declared. Another way to put this is to say

they have local scope.

Question: What is a null pointer?

Answer: A null pointer is a pointer that is currently pointing

to nothing. Often pointers are set to zero to make them null

pointers or tested against zero to see if they are null or not.

Question: What is a pointer?

Answer: A pointer is a variable that holds the address of

another variable or object.

Question: What is meant by protected?

6 | P a g e

Answer: The protected keyword in the class statement

means that the following members of the class are not

available to users of the objects of the class, but can be used

by any subclass that inherits from it, and consequently forms

part of its implementation.

Question: What is OOP?

Answer: The object-oriented programming is commonly known

as OOP. Most of the languages are developed using OOP

concept. Object-oriented programming (OOP) is a

programming concept that uses "objects" to develop a system.

An object hides the implementation details and exposes only

the functionalities and parameters it requires to its client.

Here also an object shares the same concept as that of a bike.

While driving a motor bike, we are unaware of its

implementation details such as how it is developed, internal

working of gears etc.? We know only the functions or actions

it can perform.

Question: What are the various elements of OOP?

Answer: Various elements of OOP are: Object Class Method

Encapsulation Information Hiding Inheritance Polymorphism

Question: What are the characteristics of Object-

Oriented programming language?

7 | P a g e

Answer: Some key features of the Object Oriented

programming are: Emphasis on data rather than procedure

Programs are divided into entities known as objects Data

Structures are designed such that they characterize objects

Functions that operate on data of an object are tied together

in data structures Data is hidden and cannot be accessed by

external functions Objects communicate with each other

through functions New data and functions can be easily added

whenever necessary Follows bottom up design in program des.

What are the basic Concepts used in the Object-Oriented

Programming language?

Answer: Object Class Data Abstraction and Encapsulation

Polymorphism Inheritance Message passing Dynamic binding

Question: What Is an Object? (Object-Oriented

Technology)

8 | P a g e

Answer: There are many definitions of an object, such as

found in [Booch 91, p77]: "An object has state, behavior, and

identity; the structure and behavior of similar objects are

defined in their common class; the terms instance and object

are interchangeable". This is a "classical languages" definition,

as defined in [Coplien 92, p280], where "classes play a central

role in the object model", since they do not in

prototyping/delegation languages. "The term object was first

formally applied in the Simula language, and objects typically

existed in Simula programs to simulate some aspect of reality"

[Booch 91, p77]. Other definitions referenced by Booch

include Smith and Tockey: "an object represents an individual,

identifiable item, unit, or entity, either real or abstract, with

a well-defined role in the problem domain." and [Cox 91]:

"anything with a crisply defined boundary" (in context, this is

"outside the computer domain". A more conventional definition

appears on pg 54). Booch goes on to describe these definitions

in depth. [Martin 92, p 241] defines: "An "object" is anything

to which a concept applies", and "A concept is an idea or notion

we share that applies to certain objects in our awareness".

[Rumbaugh 91] defines: "We define an object as a concept,

abstraction or thing with crisp boundaries and meaning for the

problem at hand." [Shlaer 88, p 14] defines: "An object is an

abstraction of a set of real-world things such that:

Question: What Is Object Encapsulation (Or Protection)?

9 | P a g e

Answer: [Booch 91, p. 45] defines: "Encapsulation is the

process of hiding all of the details of an object that do not

contribute to its essential characteristics." [Coad 91, 1.1.2]

defines: "Encapsulation (Information Hiding). A principle, used

when developing an overall program structure, that each

component of a program should encapsulate or hide a single

design decision... The interface to each module is defined in

such a way as to reveal as little as possible about its inner

workings. [Oxford, 1986]" Some languages permit arbitrary

access to objects and allow methods to be defined outside of

a class as in conventional programming. Simula and Object

Pascal provide no protection for objects, meaning instance

variables may be accessed wherever visible. CLOS and Ada

allow methods to be defined outside of a class, providing

functions and procedures. While both CLOS and Ada have

packages for encapsulation, CLOS's are optional while Ada's

methodology clearly specifies class-like encapsulation (Adts).

However most object-oriented languages provide a well-

defined interface to their objects thru classes. C++ has a very

general encapsulation/protection mechanism with public,

private and protected members. Public members (member data

and member functions) may be accessed from anywhere. A

Stack's Push and Pop methods will be public. Private members

are only accessible from within a class. A Stack's

representation, such as a list or array, will usually be private.

10 | P a g e

Protected members are accessible from within a class and also

from within subclasses (also called derived classes). A Stack's

representation could be declared protected allowing subclass

access. C++ also allows a class to specify friends (other

(sub)classes and functions), that can access all members (its

representation). Eiffel 3.0 allows exporting access to specific

classes.

Question: What Is A Class?

Answer: A class is a general term denoting classification and

also has a new meaning in object-oriented methods. Within

the OO context, a class is a specification of structure

(instance variables), behavior (methods), and inheritance

(parents, or recursive structure and behavior) for objects. As

pointed out above, classes can also specify access permissions

for clients and derived classes, visibility and member lookup

resolution. This is a feature-based or intentional definition,

emphasizing a class as a descriptor/constructor of objects (as

opposed to a collection of objects, as with the more classical

extensional view, which may begin the analysis process).

Original Aristotle a classification defines a "class" as a

generalization of objects: [Booch 91, p93] "a group, set, or

kind marked by common attributes or a common attribute; a

group division, distinction, or rating based on quality, degree

of competence, or condition".

11 | P a g e

Question: What Is A Meta-Class?

Answer: Meta-Class is a class' class. If a class is an object,

then that object must have a class (in classical OO anyway).

Compilers provide an easy way to picture Meta-Classes.

Classes must be implemented in some way; perhaps with

dictionaries for methods, instances, and parents and methods

to perform all the work of being a class. This can be declared

in a class named "Meta-Class". The Meta-Class can also

provide services to application programs, such as returning a

set of all methods, instances or parents for review (or even

modification). [Booch 91, p 119] provides another example in

Smalltalk with timers. In Smalltalk, the situation is more

complex

Question: What Is Inheritance?

Answer: Inheritance provides a natural classification for

kinds of objects and allows for the commonality of objects to

be explicitly taken advantage of in modeling and constructing

object systems. Natural means we use concepts, classification,

and generalization to understand and deal with the

complexities of the real world. See the example below using

computers. Inheritance is a relationship between classes

where one class is the parent base/superclass/ancestor/etc.)

class of another. Inheritance provides programming by

extension (as opposed to programming by reinvention [LaLonde

12 | P a g e

90]) and can be used as an is-a-kind-of (or is-a) relationship or

for differential programming. Inheritance can also double for

assignment

Question: What Is the Difference Between Object-Based

and Object-Oriented?

Answer: Object-Based Programming usually refers to objects

without inheritance [Cardelli 85] and hence without

polymorphism, as in '83 Ada and Modula-2. These languages

support abstract data types (Adts) and not classes, which

provide inheritance and polymorphism. Ada95 and Modula-3;

however, support both inheritance and polymorphism and are

object-oriented. [Cardelli 85, p481] state "that a language is

object-oriented if and only if it satisfies the following

requirements: - It supports objects that are data

abstractions with an interface of named operations and a

hidden local state. - Objects have an associated type. - Types

may inherit attributes from supertypes. object-oriented =

data abstractions + object types + type inheritance These

definitions are also found in [Booch 91, Ch2 and Wegner 87].

[Coad 91] provides another model: Object-Oriented = Classes

and Objects + Inheritance + Communication with messages.

13 | P a g e

Lecture 01 complete concept:

To understand OOP, you must first understand what

programming was like before OOP.

Back then, the basic definition of programming was this : a

program is a sequence of logical instructions followed by the

computer. And that's it. All well and good, but let's face it,

it's hardly inspiring. Until now, that is. It's been hiding in the

background for quite some time now, but OOP has finally

taken off. In an OO programming language, the emphasis is

placed far more on the data, or the 'objects' used and how

the programmer manipulates them. Before OOP, numbers were

simply an address in memory; a sequence of bytes that meant

nothing. Now, however, through OOP they have become far

more than that. The program is now a solution to whatever

problem it is you have, but now it is done in the terms of the

objects that define that problem, and using functions that

work with those objects

A Historical Interlude

Hundreds of years ago, in Britain (specifically England), there

was civil unrest. People were angry - the poor people to be

more specific. They noticed that some people were richer

than them, they did not like it. What to do about this

problem? How to keep the people happy? Religion had already

gone some of the way, but even the promise of eternal utopia

14 | P a g e

if the poor behaved themselves in life didn't seem to work.

Capitalism already had sunk its powerful jaws into the world,

and a new idea was needed to keep the masses happy. That

idea became known as 'class'. The basis was that if everyone

understood their place and role in society, they would feel

secure and happy, and would not challenge the authority. It

worked. There was the upper class (who were rich), the middle

class (who were not so rich), and the poor sods class (who

could barely afford to live). Quite unfair, but nevertheless it

became reality. What has this got to do with C++ you ask?

Well in C++, all Object Orientation comes in the form of

classes. But enough of that; we're programmers, not social

scientists.

Data types

Up to this point in your use of C++, you've used only the basic

types of variables : int, float, bool, double, and so forth.

These are called simple data types. However, they are very

linear in what we can 'model' with them. Let's take an

example. Let's say we wanted to represent a real life object,

say a house. Obviously, we would have to examine the various

attributes of a house : the number of rooms it has, its street

number and whether or not it has a garden (okay, so there are

more attributes, but I won't go into them now). In C++, we

could show the house like this:

int number, rooms;

bool garden;

15 | P a g e

And it would work fine for this particular example. But

suppose we wanted many houses? Suppose we wanted to make

the program more complicated than this? Suppose we wanted

to define our own data type to represent the house. C++ allows

us to do this through the use of classes.

History of oop?

The basis for OOP started in the early 1960s. A breakthrough

involving instances and objects was achieved at MIT with the

PDP-1, and the first programming language to use objects was

Simula 67. It was designed for the purpose of creating

simulations, and was developed by Kristen Nygaard and Ole-

Johan Dahl in Norway.

Who invented OOP?

Alan Kay

Alan Kay invented OOP and coined the term.

What was the first OOP language?

SIMULA 67 was formally standardized on the first meeting

of the SIMULA Standards Group (SSG) in February 1968.

Simula was influential in the development of Smalltalk and

later object-oriented programming languages.

When OOP concept did first came into picture?

When OOP concept did first came into picture?

Explanation: OOP first came into picture in 1970's by Alan

16 | P a g e

and his team. Later it was used by some programming

languages and got implemented successfully, SmallTalk

was firstlanguage to use pure OOP and followed all rules

strictl

Why was OOP developed?

It was created for making simulation programs, in which what

came to be called objects were the most important

information representation. Smalltalk (1972 to 1980) is

another early example, and the one with which much of the

theory of OOP was developed.

Four principles of OOP are encapsulation,data abstraction,

data hiding and inheritance.

Encapsulation: In technical terms, it means wrapping up of

data and code in to a single unit(i.e Class) and also protecting

the data from outside world.

There is also another term related with encapsulation is data

hiding. Data hiding means hiding the data from world. Data can

not be accessed directly.

Data Abstraction: Abstraction means hiding unessential

details from user. And providing only essential information.

Inheritance: Inheriting the properties of super class in

subclass. Basically subclass is more specialized one and it

provides re usability.

In layman terms: For eg Mobile phone which we use everyday.

Everything is wrapped inside the body of the phone. No one

17 | P a g e

can access the functionality of mobile directly. To access the

stuff you need object(here object is mobile)

you can’t make a call without having mobile. Now what is data

hiding?

Data hiding means giving access to mobile in control manner.

In technical terms: we use getter and setter methods. But in

our mobile: Password and pattern lock are the ways of

providing data hiding. One who knows the password, only can

access your phone(This is called data hiding)

Data hiding basically provides you security. Your phone is

locked. Even if you are not having your phone nearby . you

know that it is protected.

Data Abstraction: suppose you wanna make a call to your mom.

What you need?

Just valid number!

To make a call, you never need to know the background details

how calling is being done. (Like connecting to network

whichever your mom is using either airtel or idea etc)

So What data abstraction gives? it provides easiness to us.

Inheritance: Suppose you are using android phone version

suppose lollypop. So basically lollypop version has inherited all

functionality of previous versions i.e kitkat

with some new functionalities.

18 | P a g e

So, Lollypop version basically is specialized version of Kitkat.

There is another principle also: Polymorphism

It means having same name but different functionality. In

technical terms, function overloading, function overriding etc

Now let see how polymorphism is implemented in your mobile.

Every mobile has inbuilt camera. But still there are another

apps which let us take photos like Retrica.

Retrica which has different functionality but does the same

work(clicking photos).

So, what is OOPS (Object Oriented Programming)???

Object-oriented Programming (OOP) is a programming

paradigm based on the concept of "objects", which may

contain data, in the form of fields, often known as attributes;

and code, in the form of procedures, often known as methods.

Here are the four principles of OOPS are : pillers of oop

19 | P a g e

• Abstraction: Abstraction means using simple things to

represents complexity. Abstraction can be understood

by an example of the TV, where we have a simple button

to switch it on and without being bothered by its

internal working power and circuity we can start with a

button.

• Inheritance: When an object acquires all the

properties and behavior of a parent object. A car is a

four-wheeler vehicle so assume that we have a class

Four Wheeler and a subclass of it named Car.

• Polymorphism: Polymorphism means one name and many

forms and it works on parent and child relationship. A

task is performed in different ways. For example: to

convince the customer differently.

• Encapsulation: Encapsulation is the technique used to

implement abstraction in object-oriented programming.

Encapsulation is used for access restriction to class

20 | P a g e

members and methods. An example of encapsulation is

the class of java.util.Hashtable.

https://www.youtube.com/channel/UCbIedEXkM13ynuI1sNAI

1cA

• Abstraction: Abstraction refers to showing only the

essential features of the application and hiding the

details. In C++/Java, classes provide methods to the

outside world to access & use the data variables, but

the variables are hidden from direct access. This can

be done access specifiers. For example: phone call, we

don't know the internal processing.

Abstraction = Encapsulation + Data Hiding

Inheritance: Inheritance is a way to reuse code. The class

which is inherited from, is called the base class, and the class

which inherits the code from the base class is called a derived

class. A derived class can use all the functions which are

defined in the base class, making the code reusable.

https://www.youtube.com/channel/UCbIedEXkM13ynuI1sNAI1cA
https://www.youtube.com/channel/UCbIedEXkM13ynuI1sNAI1cA

21 | P a g e

• Encapsulation: It can also be said data binding.

Encapsulation is all about binding the data variables and

functions together in class.

• Polymorphism: It is a feature, which lets us create

functions with same name but different arguments,

which will perform differently. That is function with

same name, functioning in different way. Or, it also

allows us to redefine a function to provide its new

definition.

22 | P a g e

Hope this short yet crispy explanation help you to clear your

OOPS concepts…

“some of from”

The four Pillars of OOP are in Grady Booch’s original book on

the topic,. Object Oriented Analysis and Design. They are:

Abstraction - Ability to represent complex software systems

as a domain model of classes and objects, abstracting out the

details of real world object models through the attributes

(e.g. color, size, shape) and methods (actions) of these classes

(e.g. read(), write(), playSound())

Encapsulation - Providing different levels of scope on how

classes, methods, and attributes can be accessed and only

allowing access on a need-to-know basis. Generally, oop uses

private, public and protected keywords to implement

encapsulation on attributes, methods and classes. For

example, a private method in a class could only be accessed by

the class and a public method could be accessed any other

class.

Inheritance -. The ability for classes to be generalized in the

base class and specialized in sublasses of the base class. A

subclass can inherit the attributes and methods of a base

class and a subclass can specialize with it's own additional

attributes and methods.

Polymorphism - The ability for multiple objects of the same

base class, but different subclasses to override a method of

23 | P a g e

the base class and perform different operations on that same

method. For example, say I had a base class called animal and

subclasses: cheetah, deer, and sloth. The base class had a

method called CalculateTopSpeed. I could override that

method in all 3 subclasses and each subclass would return a

different answer. I could have a collection of animal objects.

The animal collection could consist of 3 objects: a cheetah, a

sloth and a deer object. If I loop through this collection and

call CalculateTopSpeed on each item in the collection, I would

get polymorphic behavior on each object. Even though all the

objects in the collection are all animals, they are different

kind of animals in their subclass and give different answers

for the overridden method CalculateTopSpeed.

Advantages of OOP:

• It provides a clear modular structure for programs

which makes it good for defining abstract datatypes in

which implementation details are hidden

• Objects can also be reused within an across

applications. The reuse of software also lowers the cost

of development. More effort is put into the object-

oriented analysis and design, which lowers the overall

cost of development.

• It makes software easier to maintain. Since the

design is modular, part of the system can be updated in

case of issues without a need to make large-scale

changes

24 | P a g e

• Reuse also enables faster development. Object-

oriented programming languages come with rich

libraries of objects, and code developed during projects

is also reusable in future projects.

• It provides a good framework for code libraries

where the supplied software components can be easily

adapted and modified by the programmer. This is

particularly useful for developing graphical user

interfaces.

• Better Productivity as OOP techniques enforce rules

on a programmer that, in the long run, help her get

more work done; finished programs work better, have

more features and are easier to read and maintain.

OOP programmers take new and existing software

objects and "stitch" them together to make new

programs. Because object libraries contain many

useful functions, software developers don't have to

reinvent the wheel as often; more of their time goes

into making the new program

What is coop ?

25 | P a g e

Object-oriented programming (OOP) is a programming

paradigm based on the concept of "objects", which can

contain data, in the form of fields (often known

as attributes), and code, in the form of procedures (often

known as methods). A feature of objects is an object's

procedures that can access and often modify the data fields

of the object with which they are associated (objects have a

notion of "this" or "self"). In OOP, computer programs are

designed by making them out of objects that interact with

one another.[1][2] OOP languages are diverse, but the most

popular ones are class-based, meaning that objects

are instances of classes, which also determine their types.

What is object?

an object can be a variable, a data structure, a function, or

a method, and as such, is a value in memory referenced by

an identifier.

In the class-based object-oriented

programming paradigm, object refers to a

particular instance of a class, where the object can be a

combination of variables, functions, and data structures.

 What is class?

 To make object in programming we make classes

Data + function = classes

https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Field_(computer_science)
https://en.wikipedia.org/wiki/Method_(computer_science)
https://en.wikipedia.org/wiki/This_(computer_programming)
https://en.wikipedia.org/wiki/Object-oriented_programming#cite_note-1
https://en.wikipedia.org/wiki/Object-oriented_programming#cite_note-2
https://en.wikipedia.org/wiki/Class-based_programming
https://en.wikipedia.org/wiki/Instance_(computer_science)
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Variable_(computer_science)
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Method_(computer_programming)
https://en.wikipedia.org/wiki/Value_(computer_science)
https://en.wikipedia.org/wiki/Memory_address
https://en.wikipedia.org/wiki/Identifier_(computer_programming)
https://en.wikipedia.org/wiki/Class-based_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Instance_(computer_science)
https://en.wikipedia.org/wiki/Class_(computer_science)

26 | P a g e

What is Object-Orientation?

It is a technique in which we visualize our programming

problems in the form of

objects and their interactions as happen in real life.

What is a Model?

A model is an abstraction of something real or conceptual.

We need models to understand an aspect of reality.

Objects

Ali, Car, House, Tree

Interactions

Ali lives in the house

Ali drives the car

27 | P a g e

Object-Orientation - Advantages

As Object Oriented Models map directly to reality as we have

seen in examples

above therefore,

We can easily develop an object-oriented model for a

problem.

Everyone can easily understand an object-oriented model.

We can easily implement an object-oriented model for a

problem using any object

oriented language like c++ using its features1 like classes,

inheritance, virtual

functions and so on…

What is an Object?

An object is,

1. Something tangible (Ali, School, House, Car).

2. Something conceptual (that can be apprehended

intellectually for example

time, date and so on…).

Summary:

• Model is the abstraction of some real word scenario. It helps

us to understand

that scenario.

• Object oriented model of any scenario (problem) describes

that scenario

(problem) in the form of interacting objects.

28 | P a g e

• We use Object Orientation because it helps us in mapping

real world problem

in a programming language.

• Object Orientation is achieved using objects and their

relationships.

• Properties of an object are described using its data

members and behavior of an

object is described using its functions.

• Objects may be tangible (physical) or intangible (also called

conceptual or

virtual).

• Generally, when we have given a certain problem description,

nouns in that

problem description are candidates for becoming objects of

our system.

• There may be more than one aspect of an object

• It is not necessary that every object has a specific role in

implementation of a

problem there may be some objects without any role, like

school parking in

our school.

• It is easier to develop programs using Object Oriented

Programming because

it is closer to real life.

 #include<iostream>

using namespace std;

29 | P a g e

class sonu

{

 //data members

 strings name;

 int age;

 string address;

 float height;

 //functions

 public:

 void notes making()

 {

 cout<<"i ammaking notes";

 }

 void walk()

 {

 cout<<"i am walking";

 }

 void eating()

30 | P a g e

 {

 cout<<"i am eating";

 }

};

int main ()

{

system("PAUSE");

return 0;

}

31 | P a g e

Use of classes and object in coding

Classy!

Continuing with our example of the house, let's have a look at

how we could 'model' a house using a C++ class:

class house

{

public:

 int number, rooms;

 bool garden;

};

main()

{

 house my_house;

32 | P a g e

 my_house.number=40;

 my_house.rooms=8;

 my_house.garden=1;

 return 0;

}

A class defines a data type

A region of storage with associated semantics.

After the declaration int i; we say that “i is an object of

type int.” In OO/C++, “object” usually means “an instance of a

class.” Thus a class defines the behavior of possibly many

objects (instances).

Lecture No.02

Information Hiding:

Information hiding is one of the most important principles of

OOP inspired from real

life which says that all information should not be accessible to

all persons. Private

information should only be accessible to its owner.

By Information Hiding we mean “Showing only those details to

the outside world which

33 | P a g e

are necessary for the outside world and hiding all other

details from the outside world.”

Real Life Examples of Information Hiding

1. Ali’s name and other personal information is stored in his

brain we can’t

access this information directly. For getting this information

we need to ask

Ali about it and it will be up to Ali how much details he would

like to share

with us.

2. An email server may have account information of millions of

people but it

will share only our account information with us if we request it

to send

anyone else accounts information our request will be refused

In object oriented programming approach we have objects

with their attributes and

behaviors that are hidden from other classes, so we can say

that object oriented

programming follows the principle of information hiding.

“Hiding the object details (state and behavior) from the

users”

Information Hiding is achieved in Object Oriented

Programming using the

following principles,

34 | P a g e

•All information related to an object is stored within the

object

•It is hidden from the outside world

•It can only be manipulated by the object itself

Advantages of Information Hiding

Following are two major advantages of information hiding,

It simplifies our Object Oriented Model:

As we saw earlier that our object oriented model only had

objects and their

interactions hiding implementation details so it makes it easier

for everyone to

understand our object oriented model.

It is a barrier against change propagation

As implementation of functions is limited to our class and we

have only given the

name of functions to user along with description of

parameters so if we change

implementation of function it doesn’t affect the object

oriented model.

We can achieve information hiding using Encapsulation and

Abstraction, so we see

these two concepts in detail now,

Encapsulation

Encapsulation means “we have enclosed all the characteristics

of an object in the object

itself”

35 | P a g e

Encapsulation and information hiding are much related

concepts (information

hiding is achieved using Encapsulation)

Consider the same example of object Ali of previous lecture

we described it as

follows,

object characteristics include data members and behavior of

the object in the form of functions.

we can say that Data and Behavior are tightly coupled inside

an object and both the information structure and

implementation details of its operations are hidden from the

outer world.

You can see that Ali stores his personal information in itself

and its behavior is

also implemented in it.

Now it is up to object Ali whether he wants to share that

information with

outside world or not. Same thing stands for its behavior if

some other object in

real life wants to use his behavior of walking it can not use it

without the

permission of Ali.

So we say that attributes and behavior of Ali are

encapsulated in it.

36 | P a g e

Advantages of Encapsulation

The following are the main advantages of Encapsulation,

a. Simplicity and clarity

As all data and functions are stored in the objects so there is

no data or function

around in program that is not part of any object and is this

way it becomes very

easy to understand the purpose of each data member and

function in an object.

b. Low complexity

As data members and functions are hidden in objects and each

object has a

specific behavior so there is less complexity in code there will

be no such

situations that a functions is using some other function and

that functions is

using some other function.

c. Better understanding

Everyone will be able to understand whole scenario by simple

looking into object

diagrams without any issue as each object has specific role

and specific relation

with other objects.

Interface :

37 | P a g e

Interface is a set of functions of an object that he wants to

expose to other objects

• Different objects may need different functions of an object

so interface of

an object may be different for different objects.

• Interfaces are necessary for object communication. Each

object provides

interface/s (operations) to other objects through these

interfaces other

objects communicate with this object.

Example – Interface of a Phone

• Input Number

• Place Call

• Disconnect Call

• Add number to address book

• Remove number

• Update number

Implementation

It is actual implementation of the behavior of the object in

any Object Oriented

language.

It has two parts,

• Internal data structures to hold an object state that will be

hidden from us

it will store values for an object data members.

38 | P a g e

• Functionality in the form of member functions to provide

required

behavior.

• Data Structure in the form of Mechanical structure of gear

box

• Functionality mechanism to change gear

b. Address Book in a Phone

Similarly take the example of contact details saved in the

SIM of a phone,

In that case we can say physical structure of SIM card as

Data Structure

And Read/write operations provided by the phone as

Functionality.

Real Life example of separation of interface and

implementations

 Driver has a standard interface to drive a car and using that

interface

he drive can drive any car regardless of its model or type

whatever

engine type it has or whatever type of fuel it is using.

Question

What is the difference between an Object Model Diagram and a Class Diagram in IBM
Rational Rhapsody?

39 | P a g e

Cause

You may want to understand which diagram is more suitable as per your requirement.

Answer

Class diagram is a graph of classifier elements connected by their various static
relationships. A “class” diagram may also contain interfaces, packages, relationships,
and even instances,
such as objects and links. Perhaps a better name would be “static structural diagram”,
but “class diagram” is shorter and well established.

Object diagram on the other hand is a graph of instances, including objects and data
values. A static object diagram is an instance of a class diagram. It shows a snapshot of
the detailed state of a system at a point in time. The use of object diagrams is fairly
limited, mainly to show examples of data structures.

The actual differences lie in their purpose. A Class diagram shows your classes and
their relationships. An Object Model Diagram shows the interaction between objects at
some point, during run time.
The actual differences lie in their purpose. A Class diagram shows your classes and their

relationships. An Object Model Diagram shows the interaction between objects at some point,

during run time.

A Class Diagram will show what the Objects in your system consist of (members) and what they

are capable of doing (methods) mostly static. In contrast, an Object Diagram will show how

objects in your system are interacting with each other at some point in time, and what values

those objects contain when the program is in this state.

