
International Journal of Computer Applications (0975 – 8887)

Volume 37– No.11, January 2012

6

Object Oriented Software Metrics and Quality
Assessment: Current State of the Art

Amjan Shaik

M.Tech.(C.S.T.),(Ph.D),
Research Scholar,

Department of CSE,
JNTUH, Hyderabad,

Andhra Pradesh, India.

Dr. C. R. K. Reddy

M.Tech.(C.S.E.),Ph.D.(C.S.E),
HOD & Professor of CSE

CBIT, Hyderabad,
Andhra Pradesh, India

Dr. A. Damodaram

M.Tech.(C.S.E.),Ph.D.(C.S.E),
Professor of CSE &
Director of SCDE,

JNTUH, Hyderabad,
Andhra Pradesh, India.

ABSTRACT
Necessity for a Productive software has been culminating and

Object-Oriented Design technique is providing solution to this

as it is the most powerful mechanism for developing

proficient software systems. It is helpful not only in declining

the cost but also in the development of high quality software

systems. Software developers require accurate metrics for

developing efficient software system. Object-Oriented Metrics

plays a significant role pertaining to this aspect because of

their importance in the development of successful software

applications. In this paper Assessment of the current state of

the art in Metrics and Object-Oriented Software System

Quality is done. Further it contains short descriptive

taxonomy of the Object-Oriented Design and Metrics.

Keywords: System, Metrics, Model, Software, Object-

Oriented.

1. INTRODUCTION
Object-Oriented Design and Development is a famous way in

contemporary software development environment. It enhances

software productivity, reusability and flexibility of software

systems. Object-Oriented Systems are becoming popular as

efficient software systems as they decrease the size of system

and number of logical constructs. Object-Oriented software

generally have huge number of attributes and these attributes

provide more comprehensive descriptions of software’s

internal nature and structure. These software systems consists

of interacting objects which stays in their own local state and

perform on their own information. Concepts such as

complexity, usability, reusability, testability, understandability

etc. are utilized for improving the quality of software system

that also have relation with Object-Oriented features and can

be utilized for improving the efficiency of Object-Oriented

Systems.

Software Metrics have become quite necessary in some areas

of software engineering, as they are utilized for measuring

software quality and also for estimating the cost and effort of

software projects [29].Usually the metrics are utilized to show

the software quality in early stage of Software Development

Life Cycle (SDLC) for observing the cost impact of

modification and also for enhancing the software system,

where as almost all the metrics ready for use for Object-

Oriented Software Analysis normally will be utilized in later

phase of SDLC [10]. As Object-Oriented Metrics need very

good understanding of Object-Oriented concepts and no

single metric is present which gives all the features of Object-

Oriented Software System. Review of the current state of the

art in Metrics in Object Oriented Programming is presented

here.

Further organization of the paper is as follows. Section II

deals with the taxonomy of the Object Oriented Design

Methodology and Metrics, section III is about the current state

of the art after which conclusion and references follow.

2. THE TAXONOMY OF OBJECT

ORIENTED DESIGN AND METRICS

2.1. Object Oriented Design:
It is required to bring about basic standards and guiding

principles which should be followed by the application

developer for getting anticipated benefits and profits of

Object-Oriented Technology. This technology may be utilized

in measurement of the metrics of Object-Oriented Software.

There are various design methodologies which suggested the

guiding principle for many ways for augmenting Object-

Oriented System.

The Booch method [5] explains the analysis and design

phases of an Object-Oriented System implementation. This

method shows a route from pre-requisites to implementation

by utilizing Object-Oriented Analysis and Design and dwells

upon the difference between logical view and physical view

of a system. Jacobson’s Object Oriented Software

Engineering (OOSE) method [9] suggested pyramid model for

the method of developing Object-Oriented Design, in which

tools give aid for the activities in three categories:

architecture, method and process. Object Modeling Technique

(OMT) as explained by Rumbaugh et al. [14], provides

system designers for conceptualizing the overall system

architecture. OMT gives rise to 3 distinct models: object

model, dynamic model and functional model of the system.

Delatte et al. [1] developed Hierarchical Object Oriented

Design (HOOD) method. In this method, the Basic Design

Step, depends on the recognition of objects by means of

Object-Oriented Design techniques. The use of this method is

to develop the design as a set of objects that together give

functionality to the program. Coad-Yourdon [30, 31]

suggested Object-Oriented Analysis and Design method. This

method goes in a step by step process for developing Object-

Oriented Models. These steps are as follows: finding class &

object, identifying structures, defining subjects, defining

attributes, and defining services. Reenskaug et al. [39]

developed an analysis and design method, developed by

Reenskaug, dwells upon the role of objects in the system. This

role depends more on the pre-requisites of the system than the

properties of the object. So a single object will be able to do

different roles at distinct stages of the system. Wirfs- Brock

[36] developed the Object-Oriented approach named as

Responsibility-Driven Design. According to them, for each

class, different responsibilities are defined and in order to

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.11, January 2012

7

fulfill the responsibilities, they require collaboration with

other classes. A set of validation measures for different

Object-Oriented Design approaches are developed by the

object agency[40]. These measures contain concepts,

notations, processes and pragmatics. Various measures for

Object-Oriented Designs have been authorized by [6, 33, 41].

For software system, Design-Level Cohesion is suggested

[12]. For detailing the quality of software system, more

structures connected to the design properties of Object-

Oriented System is given by [17, 18, 19, 20].

2.2 Metrics:
The Concept of Object Oriented programming that depends

on Object-Oriented Metrics joins the design and

implementation phases of software system. Different Object-

Oriented Metrics are suggested in literature [26].Abreau [3,

4], J. Bansiya et al. [10], Briand et al. [17], Chidamber and

Kemerer [37], Lorenz et al.[27], W. Li et al. [42, 43] are the

various metrics that are mostly taken for reference in

different literatures.

Chidamber and Kemerer (CK) [37] are the researchers who

are mostly referred. six metrics were defined by them. They

are Weighted Methods per Class (WMC), Response sets for

Class (RFC), Lack of Cohesion in Methods (LCOM),

Coupling Between Object Classes (CBO), Depth of

Inheritance Tree of a class (DIT) and Number of Children of a

class (NOC). CK Metrics were defined for evaluating design

complexity in relation to their effect on quality factors like

usability, maintainability, functionality, reliability etc. Several

studies were conducted for authorizing CK Metrics. For

example Basili et al. [41] scrutinized the CK Metrics and

validated that five metrics of them appear to be useful for

surmising class fault proneness. [6, 15] gives theoretical

validation of CK Metrics and several experimental studies

have been conducted for validating CK Metrics, for e.g. [2, 7,

11, 16, 18, 19, 22, 23, 24, 28, 33, 38, 40, 41, 43]. Table 2

gives the summary of CK Metrics.

CK Metrics aim is to evaluate the design of Object-Oriented

System rather than the implementation of the system. This is

what that make them more suited to Object-Oriented

Paradigm since, in Object-Oriented Design emphasis is more

on the design phase of software system.

Lorenz et al. [27] defined metrics for calculating static aspects

of software design. These metrics are classified in to various

groups depending on class size, class inheritance and class

internal. Size-oriented metrics for the Object-Oriented classes

lay emphasis on counts of attributes and operations whereas in

the case of inheritance-oriented metrics, the emphasis is on

the manner in which operations are reused in hierarchy class.

Internal class-oriented metrics look at cohesion and code-

oriented issues.

MOOD metric set model, proposed by Abreu [3] is one of the

basic structural methods of the Object-Oriented Paradigm.

They were defined to evaluate the utilization of Object-

Oriented Design Methods such as MIF (Method Inheritance

Factor), AIF (Attribute Inheritance Factor)) metrics,

information hiding (MHF (Method Hiding Factor), AHF

(Attribute Hiding Factor)) metrics, and polymorphism (POF

(Polymorphism Factor), COF (Coupling Factor)) metrics.

Abreu strongly said that metrics definitions and dimensions

should be validated as they have a significant role in the

process of designing the Object-Oriented Metrics.

Within the framework that, many metrics that are applied to

traditional functional development are also applicable to

object-oriented development, Rosenberg et al. [21] developed

nine metrics for object-oriented system, from which three

were traditional metrics viz. Cyclomatic Complexity (CC),

Lines of Code (LOC), Comment Percentage (CP) and the

other 6 metrics were same as that of the CK Metrics. They

validate the six CK metrics were authorized by them at SATC

and a link between significant Object Oriented Software

quality concepts is given by them.

W. Li et al. [43] suggested a new metric suite comprising a

number of Ancestor Classes (NAC), Number of Local

Methods (NLM), Class Method Complexity (CMC), Number

of Descendent Classes (NDC), Coupling Through Abstract

data type (CTA), and Coupling Through Message passing

(CTM). These metrics evaluate various internal attributes like

Coupling, Complexity and Size.

J. Bansiya et al. [10] defined Quality Model for Object

Oriented Design (QMOOD) metrics. The metrics in this

model were given given as Average Number of Ancestors

(ANA), Cohesion Among Methods of Class (CAM), Class

Interface Size (CIS), Data Access Metric (DAM), Direct Class

Coupling (DCC), Measure Of Aggregation (MOA), Measure

of Functional Abstraction (MFA), Number Of Polymorphic

Methods (NOP), Design Size of Class (DSC), Number Of

class Hierarchies (NOH), Number of Methods (NOM). In the

same way as MOOD Metrics, the QMOOD Metrics are

defined to be computable early in the design method. The gist

of above scrutinized metrics is given in Table 1.

Table 1: OBJECT-ORIENTED METRICS FROM

VARIOUS SOURCES

Source Metrics

Chidamber et al. [37] WMC, RFC, LCOM, CBO, DIT,

NOC

Lorenz et al [27] Class size, Class inheritance, Class

internal

Abreu [4] MIF, AIF, MHF, AHF, POF, COF

Rosenberg et al. [21] CC, LOC, CP, WMC, RFC,

LCOM, CBO, DIT, NOC

Li W. et al.[43] NAC, NLM, CMC, CMC, NDC,

CTA, CTM

Bansiya et al. [10] ANA, CAM, CIS, DAM, DCC,

MOA, MFA, NOP, DSC, NOH,

NOM

3. CURRENT STATE OF THE ART
Olague, H.M et al[1A] have given an empirical authorization

of software metric suites on Agile based software for fault-

proneness prediction in Object Oriented Systems. Chidamber

and Kemerer (CK) Metrics, Robert C. Martin Metric Suite

and McCabe’s Metric Suite were the 3 metrics utilized. By

Utilizing them, the flaws existing distinct versions of Rhino

software have examined for predicting the quality of the

software by utilizing the fault proneness concept. Basing on

the results and empirical analysis, the authors contended that

the distinct metric suites have distinct capacity in prediction

of faults. Using this empirical analysis, the authors advised

that software professionals for finding out those particular

metric suites which can predict faults in the process of

developing the quality metric software products utilizing the

OO approach.

The 3 distinct quality metric suites and empirically authorized

them by applying on software Rhino, a java script engine that

was developed in java. The three metrics that are developed

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.11, January 2012

8

are Chidamber and Kemerer (CK) Metrics, Robert C. Martin’s

Metric Suite and McCabe’s Metric Suite.

The empirical authorization of the chosen metric suits was

performed by implementing on Java-Script engine Rhino

which was developed in java. The experiments scrutinized the

software metrics for the object oriented systems by taking into

consideration Rhino software with distinct versions as model

for object oriented software. In the beginning experiments

were scrutinized and noticed that the software development

strategy used in Rhino is highly iterative, with a bottom-up

approach.

The experiments examined 3 OO Metrics which suites their

capacity for predicting software quality by using the metric

measures. The metrics that are Chidamber and Kemerer (CK)

metrics, Robert C. Martin Metric Suite and McCabe’s Metric

Suite. The capacity of these 3 metric suites for predicting the

quality for different versions of Rhino is explained here.

The statistical results for some of the metrics are utilized for

evaluating the quality of the software. The experiments

scrutinized selected metrics such as CK metrics, R. C. Martin

Metric Suite and McCabe’s Metric Suite by scrutinizing the

distribution (mean, median) and variance (standard deviation)

of all the measures.

For performing empirical analysis, the experiments contain

the number of bugs that are observed and rectified in each

class of the system in all of the scrutinized versions. The

experiments depend mainly on the primary hypothesis of

software quality prediction is that a module which is currently

under development is considered to be fault prone in the case

of a module with the analogous product or procedure metrics

in an earlier project (or release) that was developed in the

same environment was fault prone [44]. So the experiments

attempted to scrutinize the correlation of the metric values

with defects faced from distinct versions of rhino.

Observation: Lastly authors came to a conclusion that the

proneness in correlation between coherent metric values and

defects, and also that the class components in the MOOD

metrics suite are not good class fault-proneness predictors.

Scrutinizing multivariate binary logistic regression models

over six Rhino versions shows that these models may be

helpful in evaluating quality in OO Classes developed by

utilizing modern highly iterative or agile software

development procedures. The empirical analysis is confined to

a software developed by using agile model. So there is no hint

regarding the fault-proneness and coherent metrics in other

very fast and complicated development models like rup, rad

and prototype. The experiments require to extend for

scrutinizing the relation between coherent metrics and faults

in distinct software development models like RUP, RAD and

PROTOTYPE.

The other analysis models most frequently quoted in literature

are:

Jie Xu et al. [44] have authorized Object-Oriented Design

Metrics for faults estimation using empirical analysis. The

Chidamber and Kemerer metrics suite were used to appraise

the number of faults in the programs. The method includes

statistical analysis and neuro-fuzzy techniques. The results

showed that we can get dependable fault by using SLOC

(Source Lines of Code), WMC (Weighted Methods per

Class), CBO (Coupling between Object Classes) and RFC

(Response for a Class) metrics. SLOC in particular got the

most considerable effect on the number of defects. Yuming

Zhou and Hareton Leung [45] have considered fault severity

using the logistic regression and machine learning methods in

their experimental exploration of the fault-proneness

predicting capability of Object-Oriented Design Metrics, in

particular, a subset of the Chidamber and kemerer suite. The

statistical relation regarding fault severity between most of

these design metrics and fault-proneness of classes and the

reliance of their prediction competence on severity of faults

was made known by the results that acquired on a public

domain NASA data set. Further the results showed that the

fault-proneness prediction capabilities of these metrics change

reasonably with the severity of the defect.

Antoniol G. et al. [46] have experimentally checked size

estimation models that are object oriented. The pragmatic

examination of Object Oriented Function Points (OOFP) has

been extended to a considerable amount with the aid of a

bigger data set and by comparing OOFP with other predictors

of LOC (Lines of Code) in their work. Linear models where

the independent variable is either a conventional OO entity or

an OOFP-related measure were built and assayed by using a

cross validation approach.

Different things which affect size estimation were recognized

by scrutinizing the collected data points and developer

practices along with removing function point weighting tables

from the OOFP procedure. By observing experimental results,

it can be noticed that considerable enhancement in size

estimates could be attained by governing these factors, 15%

decrease of the normalized mean squared error corresponds

to, a 56% reduction.

Mohammad Alshayeb and Wei Li [23] have given 2 iterative

procedures for the pragmatic study of object oriented metrics.

They include the short-cycled agile process and the long

cycled framework evolution process. By observing the results,

it can be seen that the design efforts and source lines of code

added, changed, and deleted were triumphantly predicted by

object oriented metrics in short-cycled agile process where as

in the case long-cycled framework process the same features

were not successfully predicted by it. This has shown that the

design and implementation changes during development

iterations can be predicted by Object Oriented Metrics, but the

same cannot be the case with long-term development of an

established system.

The experimental proof that has been given by Ramanath

Subramanyam and M.S. Krishnan [48] is that a subset of the

Chidamber and Kemerer suite that are Object Oriented Design

complicated metrics performs a significant role in recognizing

software faults. Pragmatic results on industry data that

belongs to software developed in 2 widespread object oriented

development programming languages indicated that the

metrics have a considerable nexus with faults even after

governing the size of the software. Also, effects of the metrics

on faults changed for distinct samples from the 2

programming languages. Significant inferences for designing

high-quality Object-Oriented Software were provided by these

results.

Hector M. Olague et al. [49] have experimentally checked the

software quality predicting capacity of 3 Object-Oriented

Metrics suites with respect to their fault-proneness. The 3

Object Oriented Metrics suites examined were Chidamber and

Kemerer (CK) metrics, Abreu’s Metrics for Object-Oriented

Design (MOOD), and Bansiya and Davis’ Quality Metrics for

Object-Oriented Design (QMOOD). Defect data for six

versions of Rhino, an open-source JavaScript application that

was written in Java were utilized for knowing the fault-prone

classes predicting capability of the 3 metrics suites. The

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.11, January 2012

9

results authenticated that triumphant statistical models for

tracing error-prone classes are produced by the CK and

QMOOD suites that have analogous components and good

error-prone class predictors are not produced by the class

components of the MOOD metrics suite.

Tibor Gyimothy et al. [50] have illustrated a procedure for

tracing the fault-proneness of the source code of Mozilla

which is an open source Web and e-mail suite, by describing

the computing process of Chidamber and Kemerer object-

oriented metrics. The use of the metrics for fault proneness

prediction was examined by using regression and machine

learning procedures for comparing the values that were

obtained with the amount of bugs that are present in its bug

database known as Bugzilla. The difference in the predicted

fault-proneness in the development cycle of the software

system was recognized by contrasting the metrics of distinct

Mozilla versions.

Mohammad Alshayeb and Wei Li [51] did an experimental

study in 2 Object-Oriented (OO) Systems, built using an agile

process that resembles Extreme Programming (XP) regarding

the class growth and the System Design Instability (SDI)

metrics. The day to day collection of evolutionary data of the

2 systems were assayed. They concluded that class growth of

the systems got observable trends and project progress with

some trends can be shown by the SDI metric. Their other

conclusion is that there lies a correlation between SDI metric

and XP activities. In early and late development phases, two

consistent jumps in the SDI metric values were noticed in

both the studied systems. Part of the results concurred with an

earlier experimental study in a distinct environment.

Raed Shatnawi et al[2A] suggested a statistical model which

is obtained from the logistic regression for identifying

threshold values for the Chidamber and Kemerer (CK)

metrics. The process is authenticated empirically on a large

Open-Source System—the Eclipse project. Their conclusion

depending on the experimental results is that the CK Metrics

have threshold effects at different risk levels. The usefulness

of these thresholds on later releases was authenticated with

the aid of decision trees. Another conclusion of the authors is

that the chosen threshold values were more precise than those

were chosen depending on either intuitive perspectives or on

data distribution parameters.

Observation: Also, the suggested model can be exploited for

knowing the risk level for an arbitrary threshold value. These

findings indicate a relationship between risk levels and

Object-Oriented Metrics and that these risk levels can be

utilized for recognizing threshold effects.

Many techniques were put forth for recognizing threshold

effects from controlled case studies and only a few of them

are most quite regularly quoted in literature.

Daly et al.[52] analysed the effect of the DIT metric on the

effort necessary for fulfilling a maintenance task. They

noticed that varying a program using 5 levels of inheritance

takes more exertion than altering the same program when

reconstructed with zero level of inheritance. Other thing they

noticed is that the changes in a program with 3 inheritance

levels need less exertion than the program which was rebuilt

without having any inheritance, i.e., the optimal value for the

DIT metric was 3. In an empirical study, Cartwright [24]

replicated the study of Daly et al[52] with distinct settings and

tested only the effect of 3 levels of inheritance on the exertion

spent to vary a program. The results of Cartwright’s study and

the results of Daly’s work are distinct. Cartwright’s study

noticed that the changes in a program with 3 levels of

inheritance need more exertion than the program when

reconstructed without using inheritance. Other studies on

inheritance effects, Prechelt et al. [22] and Harrison et al. [32]

have proved the results that appeared in Cartwright’s study.

Benlarbi et al. [56] and El Emam et al. [57] were the only

researchers who appraised the threshold values of a number of

OO Metrics utilizing a statistical model depending upon the

logistic regression model that were proposed by Ulm [58].

But, their study noticed that the threshold values reckoned

from the logistic regression were invalid (that is, there was no

statistical difference between the two models the no threshold

model and the threshold model). In a quantitative study in the

epidemiological field, Bender [59] noticed deficiencies in the

definition of the threshold model that were suggested in [58]

as the model presumed that the defect probability of a class is

flat whenever the value of the metric is below the threshold

(i.e., whenever a metric value is below the threshold, the

probability of finding a fault is a constant) and the fault

probability augments in accordance with the logistic function,

otherwise. Bender showed that the appraised threshold values

(based upon the [58] model) should only be considered

adjustable whenever the assumption of the regression model,

(i.e., a constant risk below the threshold) seems to be possible

[59]. Bender redefined the threshold effects as a risk level that

can be accepted. Till now, there is no agreement on the

threshold values for software metrics, and conceivably not

even for what are the best procedures to utilize in the look

over for the threshold effects. In this research analysis of the

usefulness of a quantitative methodology that was suggested

in [59] for finding the threshold effects, which are redefined

as the acceptable risk level, is done.

Santonu Sarkar et al [3A] suggested few metrics for

calculating the Quality of Modularization of Large-Scale

Object-Oriented Software. They aimed at providing a set of

metrics that characterizes large Object-Oriented Software

Systems with respect to such dependencies. They suggested

few metrics for characterizing the quality of modularization

regarding the APIs of the modules on one side. On the

flipside, regarding such Object-Oriented inter-module

dependencies as produced by inheritance, associational

relationships, state access violations, fragile base-class design,

etc. The validation process that authors utilized was two-

pronged approach and tested it on Open Source applications.

These metrics are developed by the authors with the impact of

their earlier work [4] that aspired to propose api based metrics

for Non Object Oriented Models. Additionally, the metrics

suggested in [4,] the inter-module couplings formulated by

inheritance, containment, access control, polymorphism,

encapsulation, etc., are the new metrics that are discussed.

Module quality examination in the model checked in 2

dimensions. One way the module checked as service module

and other way as extension module. The metrics suggested are

Base-Class Fragility Index(BCFI), Inter-module coupling(IC),

and Association-Induced Coupling(AC) to analyse software

with regard to the inheritance-induced couplings between the

modules. The BCFI, IC, and AC metrics are unaware of the

APIs of the modules, nevertheless they define crucial

auxiliary software properties without which any calculations

that were made by Module Interaction Index (MII) and Non-

API Method Closedness Index(NC) would not be that useful.

The metric State Access Violation Index(SAV I) suggested

that appraises to the range to which software is free of such

procedures. The fundamental reasoning for inserting the

Plugin Pollution Index(PPI) metric is that Object Oriented

Software for large applications depends on third-party plugins

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.11, January 2012

10

in order to elongate the functionality of the original software;

it is common to see the happening of code-bloat in these third-

party packages for the plugins. The metric Not-Programming-

to-Interfaces Index(NPII) suggested to calculate the range to

which the Object-Oriented Software does not follow the

recommended practice of programming to interfaces. The

other metric Classes related utilized together (CReuM)

suggested for proving useful in some applications calculates

the range to which classes that are defined together also get

utilized together. It is usually true that, when classes that are

defined together largely are together utilized, it will be very

easy for working out an influence analysis of any alterations

to those classes as the influence tends to be relatively

localized in the other part of the software. The other metrics

suggested are 1) an index for measuring the variability in the

number of classes in the modules, MU; 2) an index for

calculating the class-size variability by counting the number

of methods in the classes, CUM; and 3) an index for

calculating the class-size variability by counting the number

of lines of code in the classes, CUl are support metrics and

size based metrics.

Observation: As the metric values are being checked by

presuming 2 dimensions for every api, the trustworthiness of

the metric values mostly depends on precision of API tracing

and concluding classes for service dimension and extension

dimension. And the entire discussion is aimed exploring the

methodology and formulation for calculating the metric

values and their relation in quality assessment. No hint given

in the paper regarding the trustworthiness of the

modularization of the application as set of application

programming interfaces and quality measures determined.

Most frequently quoted in literature and analogous to the

work illustrated in [3A] are following.

An early work by Coppick and Cheatham [63] attempted to

elongate the then popular program-complexity metrics, like

the Halstead [64] and the McCabe and Watson complexity

measures [65], to OO software. Consequently, other works on

OO Software Metrics concentrated mostly on the issue of how

to characterize a single class with respect to its own

complexity and its connections with other classes. The ―one

class at a time‖ concentration can be considered to be applied

even when interclass couplings influenced by the procedures

of one class calling the methods of other classes are taken into

account. Major contributions of this early work are done by

Brito e Abreu and Carapuca [66], Chen and Lum [67], Lee et

al. [68], Chidamber and Kemerer (CK) [37], Lorenz and Kidd

[27], Li and Henry [42], [43], Henderson-Sellers [72], and

Briand et al. [73]. These researchers suggested that OO

software be characterized by per-class criteria like the average

number of attributes, average number of methods, average

number of ancestor classes, average number of abstract

attributes, Coupling Between Objects (CBO) as calculated by

the average number of other-class methods called by every

method of a given class and by the average number of other-

class attributes utilized by all of the code in a given class, and

like wise. Other metrics suggested in the same period—

metrics that are straightforwardly redefined on a per-class

basis—contain the MOOD metrics of Brito e Abreu et al. [4],

[75] and Harrison et al. [33]. Particularly, the following

MOOD metrics should be mentioned: the Attribute Hiding

Factor (AHF) and the Method Hiding Factor (MHF) metrics

for calculating the range of encapsulation, both defined as the

ratio of the attributes and methods that are seen in a class as

compared with the total number of the same; the Method

Inheritance Factor (MIF) metric, that is a ratio of the total

number of inherited methods to the total number of the same;

and the Coupling Factor (CF) metric that calculates the

frequency by which a class references an attribute or a method

in another class. Counsell et al. [77] have worked out an

arduous mathematical evaluation of 2 already known cohesion

metrics, cohesion among methods in a class (CAMC) [78] and

normalized Hamming distance (NHD) [79], for understanding

their behaviors and analyse their use in calculating class

cohesion. The prior work that we have quoted also contains

some non-per-class metrics. These comprises the depth of the

inheritance tree in a software system, the inheritance fan-out,

number of ancestor classes, etc. Another previously suggested

nonper-class metric is the system-level Coupling Factor

(COF) that was put forwarded by Ghassemi and Mourant [80].

There have been controversies in the literature regarding the

advantages of the aforementioned metrics, particularly with

respect to the range to which they grasp the subtleties put

forwarded by features that are strange to OO software. Going

by example, when, in a purely count-based approach to

software characterization, the number of attributes and

methods defined for a class is known to reveal us something

about the complication involved in that class. In OO software,

even when a class is explicitly bereft of its own attributes and

methods, it may nevertheless maintain a valuable set of the

same through inheritance. By using the same token, whenever

the code in a class carries out polymorphic method calls, it

generally becomes very strenuous to figure out by static

analysis as to which piece of code is actually being called for

execution. This is what that made some researchers [81], [82],

[83], [84], [17], [86] to debate that the quality measures

created by the previously mentioned metrics may be open to

interpretation.

There is also a body of work in the literature that has

concentrated on OO metrics from the view of their capacity to

predict software maintainability [87], [83], [88] and design

flaws [89], [90], [91]. Much of the work on utilizing metrics

for predicting design defects has concentrated on the CK

metrics. Other thing that researchers analysed is that whether

the fault tolerance of software can be predicted by the same or

analogous metrics [41], [18], [50], [48]. Recently, Olague et

al. [48] have done an empirical evaluation of the CK and the

MOOD metric suites on 6 versions of an open source software

for analyzing their capability to predict fault proneness. In a

similar fashion, researchers have shown an empirical study of

previously known cohesion metrics on a large corpus of

software [97] which disclosed a bimodal behavior by almost

all of these metrics.

Another work [98] on utilizing metrics to ascertain a necessity

for code refactoring (like transferring a method or an attribute

from one class to another, deduction of a new class, and so

on). It is to be observed that the work of Alshayeb and Li [23]

who, by carrying out an empirical study on the Java

Development Kit (JDK), illustrated that the same metrics can

considerably predict the required refactoring and error

correction efforts, more specifically at the end of the Software

Development Cycle (and specifically when the design cycle is

short). Recently, Carey and Gannod [99] have utilized

prevailing OO metrics [37], [72] and machine learning

techniques for identifying domain concepts from source code.

Yuming Zhou et al[4A] scrutinized the Confounding Effect of

Class Size on the Associations between Object-Oriented

Metrics and Change-Proneness. Some experiments on eclipse

are performed by them by utilizing 3 size metrics that are

cohesion, coupling, and inheritance metrics. The results

showed that:

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.11, January 2012

11

1) The Confounding effect of class size on the associations

between OO metrics and change-proneness, generally persists

independent of whichever size metric is utilized;

2) The Perplexing effect of class size usually causes an

overestimate of the associations between OO metrics and

change-proneness; and

3) For many OO metrics, the perplexing effect of class size is

the reason for their associations with change-proneness or

results in a modification of the direction of the associations.

These results profoundly shows that studies authorizing OO

metrics on change-proneness should also consider class size

as a perplexing variable.

Depending on Eclipse source build and class size metrics

SLOC, NMIMP, and NumPara the experiments conducted for

scrutinizing the potentially perplexing effect of class size on

55 OO metrics encompassing cohesion, coupling, and

inheritance metrics and came to a conclusion that the

bewildering effect of class size on the associations between

OO metrics and change-proneness persists for many size

factors.

When metrics are utilized for capturing some external quality

attributes, like change-proneness, the effect of confounding

from the class size must be taken off. Or else, we may get

misleading results.

Observation: The work reported by Yuming Zhou et al[40] is

impressive but confined for checking the association with

traditional metrics and not taking into consideration the limits

of the metrics brought into light in recent literature[50]. The

association between class size and influence of metrics is to

be corroborated empirically.

Jehad Al Dallal et al[50] enumerated and exchanged views

about cases lacking discrimination anomaly (LDA) problem

exists, as described using 16 cohesion metrics. Additionally,

the authors empirically studied the regular happening of the

LDA problem by applying considered metrics to classes in

five open source Java systems. Then suggested a metric and a

simulation-based methodology for calculating the

discriminative power of cohesion metrics. Final conclusion is

that the suggested discrimination metric calculates the

probability that cohesion metric will give different cohesion

values for classes with the same number of attributes and

methods. However, distinct connectivity pattern of cohesive

interactions (CPCIs) and also contended that a highly

differentiated cohesion metric is more desirable as it has a

lower chance of incorrectly taking into consideration classes

to be cohesively equal when they have distinct CPCIs.

The suggested metric DPC defined as "A class model is

defined by its number of methods and attributes/parameter-

types, irrelevant of the CPCI". When cohesion metric and a

class model are taken into consideration, the discriminative

power of class cohesion metric (DPC) is the probability that it

will get distinct cohesion values for classes of the same model

, however with distinct CPCIs.

The DPC measurement procedure was developed based on the

reasoning that "Models with larger numbers of methods and

attributes have much larger numbers of possible distinct

CPCIs". Hence, whenever the discrimination metric takes all

models together for consideration, its value will be

domineered by the larger models as they have much larger

number of distinct CPCIs. For solving this problem, the DPC

of a metric is calculated for each model individually.

Comparison of discriminative power of different metrics can

be done by considering the DPC values for distinct models.

Observation: When cohesion metric and a class model are

taken into consideration, the DPC measuring methodology

gets the accurate DPC value as it takes into account all

obtainable CPCIs. But, few bounds has been noticed in DPC

metric that are given below.

The DPC metric is utilized for comparing the discriminative

power of distinct cohesion metrics. No threshold is required

for evaluating the fitness of cohesion metric by using its

discriminative power. The DPC metric is model-dependent.

Given cohesion metric, the models mostly vary in terms of

DPC values. In some of the cases, a cohesion metric has

higher DPC values than another metric for some models

.However, it has lower DPC values than the same metric for

other models. The DPC calculating procedure is intensive in

computation. The possible number of CPCIs augments

exponentially as the size of the model increases. Assessment

of few other analogous suggestions that are regularly quoted

in literature follows:

Some authors have stated problems in discrimination with

some class cohesion metrics, but this is done without further

study. For example, Briand et al. [74] condemn LCOM3 as a

component that is connected can have distinct degrees of

connectivity. Those authors also said that LCOM2 has little

power to discriminate. Similar criticism is shown towards

LCOM2 by Bonja and Kidanmariam [76]. Counsell et al. [77]

show that CAMC does not differentiate between classes that

have the same number of methods, the same number of

distinct parameter types, and the same total number of

cohesive interactions but that show distinct connectivity

patterns. They also show that NHD is unable to differentiate

between classes having the same number of methods and

different parameter types, where each parameter type is

utilized in the same number of methods, independent of the

connectivity pattern. Bonja and Kidanmariam [76] give

examples to illustrate that CC has more differentiating power

than LCOM2 or CAMC. Fernandez and Pena [53] give

examples illustrating that SCOM has more differentiating

power than LCOM2, LCOM3, and LCOM5.

Al Dallal [102] suggests an HLD cohesion metric and gives

examples for comparing the suggested metric to CAMC and

NHD in terms of differentiating power. In this particular

paper, we suggest a formal definition for discriminative power

and explain a process for calculating. Additionally, we have

given examples for showing which of the 16 metrics taken

into consideration have LDA problems.

The authenticity of a metric has to be studied and scrutinized

both empirically and theoretically [54]. Empirical validation

checks if the calculated and estimated values are consistent

with each other. Theoretical validation checks if the metric

shows the necessary properties of the calculated attribute.

Several researchers have addressed how to empirically

authenticate class cohesion metrics, encompassing [73], [70],

[71], [69], [23], [50], [92], [55], [96] and [85]. Several

properties are put forwarded for authenticating software

metrics theoretically.

The first 4 properties were put forwarded by Briand et al.

[74], the following six properties were illustrated by

Chidamber and Kemerer [37], the next seven properties were

explained by Ferna´ndez and Pen˜a [53], and the last property

was demonstrated by Fenton and Pfleeger [29].We can

observe that some of the properties are specific for class

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.11, January 2012

12

cohesion metrics and others are usually connected with almost

all the software metrics. Authors [74], [73], [47], [62], [72],

[76], [53], [94], [95], [96], and [85] utilized some of these

properties—and especially the first four—to authenticate

many class cohesion metrics. The sensitivity property is very

near to the introduced discriminative power property, but it is

more refined and is conformed for class cohesion metrics.

4. CONCLUSION
This paper appraised contemporary art in metrics and quality

assessment of Object Orient Software Systems. Assessment

illustrates that there is huge progress in utilization of metrics

for OO Software Quality Assessment. Along with that it is

also clear that the new dimensions in usage of metrics and

invention of new metrics gives a greater scope for Research in

Object Oriented Software Assessment Directions and

Strategies. It can also be noticed that large scope in metrics

that gives guidance for indicating the progress an OO

Software System has developed and the quality of design. By

seeing the growing fame of Object-Oriented Software,

possibility of developing models is very high, which would

predict the usability and maintainability of Object-Oriented

Software System in an efficient manner. So we are sanguine

regarding future work in this particular direction.

5. REFERENCES
[1] B. Delatte, M. Heitz, and J. F. Muller, HOOD Reference

Manual 3.1, Masson, Paris, 1993.

[2] B. Unger and L. Prechelt, The impact of inheritance depth

on maintenance tasks – Detailed description and

evaluation of two experimental replications, Technical

Report, Karlsruhe University: Karlsruhe, Germany,

1998.

[3] F. B. Abreu and R. Carapua, ―Candidate Metric for OOS

within taxonomy framework, Journal of System &

Softwrae, Vol. 26, No. 1, July 1994.

[4] F. B. Abreu, ―The MOOD Metrics Set‖, In Proc.

ECOOP’95, Workshop on Metrics, 1995.

[5] G. Booch, Object-oriented analysis and design, Benjamin-

Cummings, U.S.A, pp.107-215, 1994.

[6] G. Poels and G. Dedene, DISTANCE: A Framework for

Software Measure Construction, Research Report

DTEW9937, Dept. Applied Economics, Katholieke

Universiteit Leuven, Belgium, 1999, pp 46.

[7] G. Poelsand and G. Dedene, ―Evaluating the Effect of

Inheritance on the Modifiability of Object-Oriented

Business Domain Models‖, 5th European Conference on

Software Maintenance and Reengineering (CSMR 2001),

Lisbon, Portugal, 2001, pp. 20-29.

[8] H. Sneed, Encapsulating Legacy Software for Reuse in

Client/Server Sstem, In proceedings of WCRE-96, IEEE

press, 1996, Monterey.

[9] I. Jacobson, Object-Oriented Software Engineering,

Addison-Wesley, 1992 .

[10] J. Bansiya and C.G. Davis, ―A Hierarchical Model for

Object-Oriented Design Quality Assessment‖, IEEE

Transactions on Software Engineering, Vol. 28, No. 1,

2002.

[11] J. Daly, A. Brooks, J. Miller, M. Roper and M. Wood,

―An Empirical Study Evaluating Depth of Inheritance on

Maintainability of Object- Oriented Software‖, Empirical

Software Engineering, Vol. 1, No. 2, 1996, pp. 109-132.

[12] J. M. Bieman, and B. K. Kang, ―Measuring Design-Level

Cohesion‖, IEEE Transactions on Software Engineering,

Vol. 24, No. 2, pp. 111- 124, 1998.

[13] J. Pinson Lewis and Richard S. Wiener, An Introduction

to Objectoriented Programming and Smalltalk, Addison-

Wesley pp 49-60, 1988.

[14] J. Rumbaugh, M. Blaha, W. Lorensen, F. Eddy, and W.

Premerlani, Object-Oriented Modeling and Design,

Prentice-Hall, 1991

[15] L. C. Briand, S. Morasca and V. Basili, ―Property-Based

Software Engineering Measurement‖, IEEE Transactions

on Software Engineering, Vol. 22, No. 6, pp. 68-86,

1996.

[16] L. C. Briand, J. W. Daly, V. Porter, and J. Wust, A

Comprehensive Empirical Validation of Product

Measures for Object-Oriented Systems. Technical

Report, ISERN-98-07, 1998.

[17] L. C. Briand, J. W. Daly and J. Wust, ―A Unified

Framework for Coupling Measurement in Object-

Oriented Systems‖, IEEE Transactions on Software

Engineering, Vol. 25, No. 1, pp. 91–121, 1999.

[18] L. C. Briand, J. W. Daly, V. Porter, and J. Wust,

―Exploring the Relationships Between Design Measures

and Software Quality in Object Oriented Systems‖,

Journal of Systems and Software, Vol. 51, No. 3, pp.

245-273, 2000.

[19] L. C. Briand and J. Wust, ―The Impact of Design

Properties on Development Cost in Object-Oriented

Systems‖, Proc. 7th Int’l Software Metrics Symposium

(METRICS 01), IEEE CS Press, 2001.

[20] L. C. Briand, W. L. Melo and J. Wust, ―Assessing the

Applicability of Fault Proneness Models Across Object-

Oriented Software Projects‖, IEEE transactions on

Software Engineering, Vol. 28, No. 7, 2002.

[21] L. H. Rosenberg and L. Hyatt, ―Software Quality Metrics

for Object- Oriented Environments‖, Crosstalk Jounal,

1997.

[22] L. Prechelt, B. Unger, M. Philippsen and W. Tichy, ―A

controlled experiment on inheritance depth as a cost

factor for code maintenance‖, The Journal of Systems

and Software, Vol. 65, 2003, pp. 115-126.

[23] M. Alshayeb, and M. Li, ―An Empirical Validation of

Object-Oriented Metrics in Two Different Iterative

Software Processes‖, IEEE Transactions on Software

Engineering archive, Vol. 29, 2003, pp.1043 – 1049.

[24] M. Cartwright, An Empirical view of inheritance,

Information and Software Technology, Vol. 40, No. 4,

1998, pp. 795-799.

[25] M. El Wakil, A. El Bastawissi, M. Boshra and A. Fahmy,

Object- Oriented Design Quality Models – A Survey and

Comparison. 2nd International Conference on

Informatics and Systems, 2004.

[26] M. G. Bocco, M. Piattini and C. Calero, ―A Survey of

Metrics for UML Class Diagrams‖, Journal of Object

Technology, Vol. 4, 2005, pp. 59- 92.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.11, January 2012

13

[27] M. Lorenz and J. Kidd, Object-Oriented Software

Metrics, Prentice Hall, 1994.

[28] M. Tang, M. Kao and M. Chen, An Empirical Study on

Object-Oriented Metrics, 6th IEEE International

Symposium on Software Metrics, 1998.

[29] N. E. Fenton and S. L. Peeger, Software Metrics: A

Rigorous and Practical Approach, PWS Publishing

Company, Boston, Massachusetts, USA, 1997.

[30] P. Coad and E. Yourdon, Object-Oriented Analysis,

Yourdon Press, Prentice Hall, New Jersey, 1990.

[31] P. Coad and E. Yourdon, Object-Oriented Design,

Yourdon Press, Prentice Hall, New Jersey, 1991.

[32] R. Harrison, S. Counsell and R. Nithi, ―Experimental

Assessment of the Effect of Inheritance on the

Maintainability of Object-Oriented Systems‖, The

Journal of Systems and Software, Vol. 52, 2000, pp. 173-

179.

[33] R. Harrison, S. Counsell and V. Reuben, ―An Evaluation

of the MOOD Set of Object-Oriented Software Metrics‖,

IEEE Transactions on Software Engineering, Vol. 24,

No. 6, pp. 491-496, 1998.

[34] R. Subramanya and M. S. Krishnan, ―Empirical of CK

Metrics for Object-Oriented Design Complexity:

Implication for Software Defects‖, IEEE Transaction on

Software Engineering, Vol. 29, 2003, pp. 297-310.

[35] R. W. Selby and V. R. Vasili, ―Analyzing Error-Prone

Systems Structure‖, IEEE Transactions on Software

Engineering, Vol. 17, 1991, pp. 141-152.

[36] R. Wirfs-brock, B. Wilkerson, and L. Weiner, Designing

Object- Oriented Software, Prentice-Hall, 1990.

[37] S. R. Chidamber and C. F. Kemerer, ―A Metrics Suite for

Object Oriented Design,‖ IEEE Transactions on

Software Engineering, Vol. 20, No. 6, pp. 476–493,

1994.

[38] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer,

―Managerial Use of Metrics for Object-Oriented

Software: An Exploratory Analysis‖, IEEE Transactions

on Software Engineering, Vol. 24, No. 8, pp. 629-637,

1998.

[39] T. Reenskaug, E. Andersen A. Berre, A. Hurlen, A.

Landmark, O. Lehne, E. Nordhagen, E. Ness-Ulseth, G.

Oftedal, A. Skaar, and P. Stenslet , ―OORASS: seamless

support for the creation and maintenance of object

oriented systems‖, Journal of Object Oriented

Programming, Vol. 5, No. 6, 1992, pp. 7-41.

[40] The Object Agency, A comparison of Object–Oriented

Development Methodologies, 1996. http://www.toa.com.

[41] V. R. Basili, L. C. Briand, and W.L. Melo, ―A Validation

of Object- Oriented Design Metrics as Quality

Indicators‖. IEEE Transactions on Software Engineering,

Vol. 22, No. 10, pp. 751-761, 1996.

[42] W. Li, and S. Henry, ―Object-Oriented Metrics that

Predict Maintainability‖. Journal ofSystems and

Software, Vol. 23, No. 2, pp. 111-122, 1993. [43] W. Li,

―Another Metric Suite for Object Oriented

Programming‖, The Journal of Systems and Software,

Vol. 44, No. 2, pp. 155-162, 1998.

[44] Jie Xu, Danny Ho, Luiz Fernando Capretz, ―An

Empirical Validation of Object-Oriented Design Metrics

for Fault Prediction,‖ Journal of Computer Science, Vol:

4, No: 7, pp. 571-577, 2008.

[45] Yuming Zhou, Hareton Leung, ―Empirical Analysis of

Object-Oriented Design Metrics for Predicting High and

Low Severity Faults, ― IEEE transaction on software

engineering, Vol. 32, No. 10, pp. 771-789, 2006.

[46] Antoniol G, Fiutem R, Lokan C, ―Object-Oriented

Function Points: An Empirical Validation,‖ In Kluwer

Academic Publishers, pp: 225-254, 2003.

[47] Y. Zhou, L. Wen, J. Wang, Y. Chen, H. Lu, and B. Xu,

―DRC: A Dependence Relationships Based Cohesion

Measure for Classes,‖ Proc. 10th Asia-Pacific Software

Eng. Conf., pp. 1-9, 2003.

[48] Ramanath Subramanyam, M.S. Krishnan, ―Empirical

Analysis of CK Metrics for Object- Oriented Design

Complexity: Implications for Software Defects,‖ IEEE

transaction on software engineering, Vol. 29, No. 4, pp.

297-310, 2003.

[49] Hector M. Olague, Letha H. Etzkorn, Sampson Gholston,

and Stephen Quattlebaum ―Empirical Validation of

Three Software Metrics Suites to Predict Fault-Proneness

of Object-Oriented Classes Developed Using Highly

Iterative or Agile Software Development Processes,‖

IEEE transaction on software engineering, Vol: 33, No:

6, pp. 402-419, 2007.

[50] Tibor Gyimothy, Rudolf Ferenc, Istvan Siket, ―Empirical

Validation of Object-Oriented Metrics on Open Source

Software for Fault Prediction‖, IEEE Transactions on

Software Engineering, Vol. 31, No. 10, October 2005.

[51] Mohammad Alshayeb, Wei Li, "An empirical study of

system design instability metric and design evolution in

an agile software process‖, Journal of Systems and

Software, Vol: 74, No: 3, pp: 269 - 274, 2005.

[52] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood,

―Evaluating Inheritance Depth on the Maintainability of

Object-Oriented Software,‖ Empirical Software Eng. vol.

1, no. 2, pp. 109-132, 1996.

[53] L. Ferna´ndez and R. Pen˜ a, ―A Sensitive Metric of

Class Cohesion,‖ Int’l J. Information Theories and

Applications, vol. 13, no. 1, pp. 82-91, 2006.

[54] B. Kitchenham, S.L. Pfleeger, and N. Fenton, ―Towards a

Framework for Software Measurement Validation,‖

IEEE Trans. Software Eng., vol. 21, no. 12, pp. 929-944,

Dec. 1995.

[55] A. Marcus, D. Poshyvanyk, and R. Ferenc, ―Using the

Conceptual Cohesion of Classes for Fault Prediction in

Object-Oriented Systems,‖ IEEE Trans. Software Eng.,

vol. 34, no. 2, pp. 287-300, Mar./Apr. 2008.

[56] S. Benlarbi, K. El Emam, N. Goel, and S. Rai,

―Thresholds for Object-Oriented Measures,‖ Proc. 11th

Int’l Symp. Software Reliability Eng., pp. 24-38, 2000.

[57] K. El Emam, S. Benlarbi, N. Goel, W. Melo, H. Lounis,

and S.N. Rai, ―The Optimal Class Size for Object-

Oriented Software,‖ IEEE Trans. Software Eng., vol. 28,

no. 5, pp. 494-509, May 2002.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.11, January 2012

14

[58] K. Ulm, ―A Statistical Method for Assessing a Threshold

in Epidemiological Studies,‖ Statistics in Medicine, vol.

10, no. 3, pp. 341-349, 1991.

[59] R. Bender, ―Quantitative Risk Assessment in

Epidemiological Studies Investigating Threshold

Effects,‖ Biometrical J., vol. 41, no. 3, pp. 305-319,

1999.

[60] R. Strnisa, P. Sewell, and M. Parkinson, ―The Java

Module System: Core Design and Semantic Definition,‖

Proc. ACM SIGPLAN Conf. Object-Oriented

Programming Systems, Languages and Applications, vol.

42, no. 10, pp. 499-514, 2007.

[61] S. Sarkar, G.M. Rama, and A.C. Kak, ―API-Based and

Information- Theoretic Metrics for Measuring the

Quality of Software Modularization,‖ IEEE Trans.

Software Eng., vol. 33, no. 1, pp. 14-32, Jan. 2007.

[62] Z. Chen, B. Xu, and Y. Zhou, ―Measuring Class

Cohesion Based on Dependence Analysis,‖ J. Science

and Technology, vol. 19, no. 6, pp. 859-866, 2004.

[63] C.J. Coppick and T.J. Cheatham, ―Software Metrics for

Object- Oriented Systems,‖ Proc. ACM Ann. Computer

Science Conf., pp. 317-322, 1992.

[64] M.H. Halstead, Elements of Software Science. Elsevier,

1977.

[65] T.J. McCabe and A.H. Watson, ―Software Complexity,‖

Crosstalk, J. Defense Software Eng., vol. 7, no. 12, pp. 5-

9, Dec. 1994.

[66] F. Brito e Abreu and R. Carapuca, ―Candidate Metrics

for Object- Oriented Software within a Taxonomy

Framework,‖ J. Systems and Software, vol. 26, pp. 87-

96, 1994.

[67] J.-Y. Chen and J.-F. Lum, ―A New Metric for Object-

Oriented Design,‖ Information of Software Technology,

vol. 35, pp. 232-240, 1993.

[68] Y.-S. Lee, B.-S. Liang, and F.-J. Wang, ―Some

Complexity Metrics for Object-Oriented Programs Based

on Information Flow,‖ Proc. Sixth IEEE Int’l Conf.

Computer Systems and Software Eng., pp. 302- 310,

1993.

[69] L.C. Briand and J. Wust, ―Empirical Studies of Quality

Models in Object-Oriented Systems,‖ Advances in

Computers, pp. 97-166, Academic Press, 2002.

[70] L.C. Briand, J. Wust, J. Daly, and V. Porter, ―Exploring

the Relationship between Design Measures and Software

Quality in Object-Oriented Systems,‖ J. System and

Software, vol. 51, no. 3, pp. 245-273, 2000.

[71] L.C. Briand, J. Wu¨ st, and H. Lounis, ―Replicated Case

Studies for Investigating Quality Factors in Object-

Oriented Designs,‖ Empirical Software Eng., vol. 6, no.

1, pp. 11-58, 2001.

[72] B. Henderson-Sellers, Object-Oriented Metrics:

Measures of Complexity. Prentice Hall, 1996.

[73] L.C. Briand, S. Morasca, and V.R. Basili, ―Defining and

Validating Measures for Object-Based High-Level

Design,‖ IEEE Trans. Software Eng., vol. 25, no. 5, pp.

722-743, Sept./Oct. 1999.

[74] L.C. Briand, J. Daly, and J. Wuest, ―A Unified

Framework for Cohesion Measurement in Object-

Oriented Systems,‖ Empirical Software Eng.—An Int’l

J., vol. 3, no. 1, pp. 65-113, 1998.

[75] F.B. e Abreu, M. Goulao, and R. Estevers, ―Towards the

Design Quality Evaluation of OO Software Systems,‖

Proc. Fifth Int’l Conf. Software Quality, 1995.

[76] C. Bonja and E. Kidanmariam, ―Metrics for Class

Cohesion and Similarity between Methods,‖ Proc. 44th

Ann. ACM Southeast Regional Conf., pp. 91-95, 2006.

[77] S. Counsell, S. Swift, and J. Crampton, ―The

Interpretation and Utility of Three Cohesion Metrics for

Object-Oriented Design,‖ ACM Trans. Software Eng.

and Methodology, vol. 15, no. 2, pp. 123- 149, 2006.

[78] J. Bansiya, L. Etzkorn, C. Davis, and W. Li, ―A Class

Cohesion Metric for Object-Oriented Designs,‖ J. Object

Oriented Program, vol. 11, no. 8, pp. 47-52, 1999.

[79] S. Counsell, E. Mendes, S. Swift, and A. Tucker,

―Evaluation of an Object-Oriented Cohesion Metric

through Hamming Distances,‖ Technical Report

BBKCS-02-10, Birkbeck College, Univ. of London,

2002.

[80] M.D. Ghassemi and R.R. Mourant, ―Evaluation of

Coupling in the Context of Java Interfaces,‖ Proc. ACM

SIGPLAN Conf. Object- Oriented Programming

Systems, Languages and Applications, pp. 47- 48, 2000.

[81] M. Hitz and B. Montazeri, ―Chidamber and Kemerers

Metrics Suite: A Measurement Theory Perspective,‖

IEEE Trans. Software Eng., vol. 22, pp. 267-271, 1996.

[82] N. Churcher and M. Shepperd, ―Comments on ―A

Metrics Suite for Object-Oriented Design‖,‖ IEEE Trans.

Software Eng., vol. 21, no. 3, pp. 263-265, Mar. 1995.

[83] R.K. Bandi, V.K. Vaishnavi, and D.E. Turk, ―Predicting

Maintenance Performance Using Object-Oriented Design

Complexity Metrics,‖ IEEE Trans. Software Eng., vol.

29, no. 1, pp. 77-86, Jan. 2003.

[84] L. Etzkorn, C. Davis, and W. Li, ―A Practical Look at the

Lack of Cohesion in Methods Metrics,‖ J. Object

Oriented Programming, vol. 11, no. 5, pp. 27-34, 1998.

[85] J. Al Dallal and L. Briand, ―A Precise Method-Method

Interaction- Based Cohesion Metric for Object-Oriented

Classes,‖ ACM Trans. Software Eng. and Methodology,

vol. 20, no. 6, Nov. 2011.

[86] H. Kabaili, R.K. Keller, and F. Lustman, ―Cohesion as

Changeability Indicator in Object-Oriented Systems,‖

Proc. Fifth European Conf. Software Maintenance and

Reengineering, pp. 39-46, 2001.

[87] P. Oman and J. Hagemeister, ―Constructing and Testing

of Polynomials Predicting Software Maintainability,‖ J.

Systems and Software, vol. 24, no. 3, pp. 251-266, Mar.

1994.

[88] M. Dagpinar and J.H. Jahnke, ―Predicting

Maintainability with Object-Oriented Metrics—An

Empirical Comparison,‖ Proc. 10th Working Conf.

Reverse Eng., p. 155, 2003.

[89] R. Marinescu, ―Detecting Design Flaws via Metrics in

Object Oriented Systems,‖ Proc. 39th Int’l Conf. and

Exhibition on Technology of Object-Oriented Languages

and Systems, pp. 173-182, 2001.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.11, January 2012

15

[90] B. Lague, D. Proulx, E.M. Merlo, J. Mayrand, and J.

Hudepohl, ―Assessing the Benefits of Incorporating

Function Clone Detection in a Development Process,‖

Proc. Int’l Conf. Software Maintenance, 1997.

[91] K. Kontogiannis, ―Evaluating Experiments on the

Detection of Programming Patterns Using Software

Metrics,‖ Proc. Working Conf. Reverse Eng., pp. 44-54,

1997.

[92] K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra,

―Investigating Effect of Design Metrics on Fault

Proneness in Object- Oriented Systems,‖ J. Object

Technology, vol. 6, no. 10, pp. 127- 123, 2007.

[93] J. Al Dallal, ―A Design-Based Cohesion Metric for

Object-Oriented Classes,‖ Proc. Int’l Conf. Computer

and Information Science and Eng., Nov. 2007.

[94]] J. Al Dallal, ―Software Similarity-Based Functional

Cohesion Metric,‖ IET Software, vol. 3, no. 1, pp. 46-57,

2009.

[95] J. Al Dallal, ―Mathematical Validation of Object-

Oriented Class Cohesion Metrics,‖ Int’l J. Computer

Science, vol. 4, no. 2, pp. 45-52, 2010.

[96] J. Al Dallal and L. Briand, ―An Object-Oriented High-

Level Design-Based Class Cohesion Metric,‖

Information and Software Technology, vol. 52, no. 12,

pp. 1216-1221, 2010.

[97] R. Barker and E. Tempero, ―A Large-Scale Empirical

Comparison of Object-Oriented Cohesion Metrics,‖

Proc. 14th Asia-Pacific Software Eng. Conf., pp. 414-

421, 2007.

[98] F. Simon, F. Steinbruckner, and C. Lewerentz, ―Metrics

Based Refactoring,‖ Proc. Fifth European Conf.

Software Maintenance and Reengineering, pp. 30-38,

2001.

[99] M.M. Carey and G.C. Gannod, ―Recovering Concepts

from Source Code with Automated Concept

Identification,‖ Proc. 15th IEEE Int’l Conf. Program

Comprehension 2007.

6. AUTHORS PROFILE

Amjan.Shaik is a Research Scholar, Department of

Computer Science and Engineering, JNTUH, Hyderabad,

India. He has received M.Tech.(Computer Science and

Technology) from Andhra University. He has been published

and presented more than 30 Research and Technical papers in

International Journals , International Conferences and

National Conferences. His main research interests are

Software Metrics, Software Engineering, Software Testing,

Software Quality and Object Oriented Design.

Prof. Dr. C.R.K. Reddy is working as a Professor and HOD,

Department of Computer Science and Engineering at

Chaitanya Bharathi Institute of Technology

(CBIT),Hyderabad, India. He has received M.Tech.(

Computer Science and Engineering) from JNTUH,

Hyderabad and Ph.D in Computer Science and Engineering

from Hyderabad Central University (HCU). He has been

published and presented wide range of Research and

Technical Papers in National ,International Journals and

National ,International Conferences. At present 8 Research

Scholars are doing Ph.D under his esteemed guidance. His

main research Interests are Program Testing, Software

Engineering , Software Metrics , Software Architectures,

Neural Networks and Artificial Intelligence.

Prof. Dr. Avula Damodaram joined as faculty of Computer

Science & Engineering at JNTU, Hyderabad in the year 1989.

In his over 2 decades of dedicated service. Dr. Damodaram

performed distinguished services to the University as a

Professor, Head of the Department, Vice Principal, Director

of UGC-Academic Staff College and now Director, School of

Continuing & Distance Education. Dr. Damodaram has

successfully guided 6 Ph.D. and 2 MS Scholars apart from

myriad M.Tech projects. He is currently guiding 9 scholars

for Ph.D and 1 scholar for MS. Dr. Damodaram is on the

editorial board of 2 International Journals and a number of

Course materials. He successfully executed an AICTE

research project at a cost of 7 Lakhs. Dr. Damodaram has

been a UGC nominee for a number of expert and advisory

committees of various Indian Universities. He has been

associated with conduct of many entrance tests in the state

such as ECET and ICET. Dr .Damodaram has been a Life

Member, Vice-President, Director and President of a number

of core committees spread all over the country.

Dr. Damodaram has served the interests of the College and

University teachers at the University, State and National

levels. He has organized as many as 30 Workshops, Short

Term Courses and other Refresher and Orientation

programmes. Dr .Damodaram has published more than 50

well researched papers in national and International journals.

He has also presented 45 papers at different National and

International conferences. Dr. Damodaram visited the

Universities of Austria and the United Kingdom for

presenting papers at International conferences. On the basis of

his scholarly achievements and other multifarious services, Dr

.Damodaram was honoured with the award of

DISTINGUISHED ACADAMICIAN by Pentagram Research

Centre, India, in January 2010.

