
1

Object-Relational
DBMS

Wei Hong, Ph.D.
Intel Research, Berkeley

whong@intel-research.net

“You know my methods, Watson.
Apply them.”

-- A.Conan Doyle, The
Memoirs of Sherlock Holmes

Motivation
• Relational model (70’s): clean and simple

– great for administrative data
– not as good for other kinds of data (e.g.

multimedia, networks, CAD)
• Object-Oriented models (80’s): complicated,

but some influential ideas
– complex data types
– object identity/references
– ADTs (encapsulation, behavior goes with data)
– inheritance

• Idea: build DBMS based on OO model

2

Object-Oriented Databases

• Initial Idea: make (C++) objects persistent
– Good for “pointer chasing” type of apps (e.g.,

CAD, CAM), niche market
– Big paradigm shift from relational databases
– Players: Objectivity, Object Design, Versant, etc.

• Evolution: towards Object-Relational
– Added limited SQL support
– Embracing Java and XML

“Object-Relational” Databases
• Idea: add OO features to the type system of SQL, i.e.

“plain old SQL”, but...
– columns can be of new atomic types (ADTs)
– columns and rows can be of complex types
– user-defined methods on new types
– object identity, reference types and “deref”
– type inheritance
– old SQL schemas still work! (backwards compatibility)

• Evolution:
– All major relational vendors have evolved their RDBMS into

ORDBMS.
– SQL-99 is the current standard, but not nearly as well adopted as

SQL-92.
• Postgres:

– one of the first ORDBMS prototypes, turned into Illustra, then
Informix, now IBM.

– PostgreSQL: an open-source ORDBMS at your finger tips!

3

Example App: Asset Management

• Old world: data models a business
• New world: data IS business

– 1011010111010100010100111 = $$$$$!
– software vendors, entertainment industry, direct-

mail marketing, etc...
– this data is typically more complex than

administrative data
• Emerging apps mix these two worlds.

An Asset Management Scenario

• Dinkey Entertainment Corp.
– assets: cartoon videos, stills, sounds
– Herbert films show worldwide
– Dinkey licenses Herbert videos, stills, sounds for

various purposes
• action figures
• video games
• product endorsements

– database must manage assets and business data

Herbert the Worm

4

Why not a Standard RDBMS?

• Binary Large Objects (BLOBs): collection of
bits that can be stored and fetched like a file

• App code must provide logic to interpret the
bits, e.g., colors of an image

• Hard for code sharing
• Poor Performance

– Scenario: client (Machine A) requests images for
all frames in DBMS (Machine B)

create table frames (frameno integer, image BLOB,
category integer)

An Example ORDBMS Schema
create table frames (frameno integer, image jpeg,

category integer);

create table categories (cid integer, name text,
lease_price float, comments text);

create type theater_t row (tno integer, name
text, address text, phone integer)

create table theaters of type theater_t;

create table nowshowing (film integer, theater
ref(theater_t), start date, end date);

create table films (filmno integer, title text,
stars set(text), director text, budget float);

create table countries (name text, boundary
polygon, population integer, language text)

ADTs

structured
types

5

ADTs: User-Defined Atomic Types
• Basic SQL types (int, varchar, etc.): builtin atomic types

– builtin methods, e.g., math, comparison, etc.
• ORDBMS: can define new types (& methods)

create type jpeg (internallength = variable,

input = jpeg_in, output = jpeg_out);

Create type point (internallength = 16, input =
point_in, output = point_out);

• Not naturally composed of built-in types
– new atomic types

• Required parameters for new ADT
– Internallength
– Input/output: convert from/to string

• Optional Parameters
– Alignment
– Send/receive: convert to/from wire format
– Etc.

User-Defined Methods
• New ADTs will need methods to manipulate them

– e.g. for jpeg: thumbnail, crop, rotate, smooth, detect
Herbert, etc.

– expert user writes these methods in a language like C,
compiles them

– register methods with ORDBMS:
create function Herbert(jpeg) returns boolean
as external name ‘/a/b/Dinkey.so’ language C;
create function thumbnail(jpeg) returns jpeg
as external name ‘/a/b/Dinkey.so’ language C
trusted not variant;

• Elements of a user-defined function
– Name, argument types and return type
– Implementation and language
– Attributes, e.g., trusted, iscachable, handles_null, etc.

6

User-Defined Methods, cont
• C Functions

– ORDBMS dynamically links functions into server at run time
– Must use specific ORDBMS server programming API

� Access to run-time states, e.g., argument types
� Access to system resources, e.g., memory
� Access to database: query interface

– High performance, but
� Tricky to write: thread safety, resource management, exception

handling, interrupts, etc.
� Security concerns

– Tend to be built by DBMS developers themselves: DataBlades,
DataCartridges, Extenders, etc.

• SQL Functions
create function ConvertCurrency(float, text) returns float

as ‘select $1 * exchange_ratio from CurrencyExchange
where country_name = $2’ language SQL;

• Other languages: JAVA, PERL, TCL, proprietary stored
procedure languages (e.g., PLSQL)

User-defined Operators
• Shorthand for function calls: x = y is

equivalent to Equal(x, y)
• Some systems let you modify the operator-to-

function bindings, e.g.,
create operator || (procedure = overlap)

• Attributes for the optimizer
– Commutator
– Negator
– Selectivity estimator
– Hashable, sortable?

7

User-defined Aggregates
• Aggregates beyond min, max, sum, avg, count,

e.g., ThirdLargest
• Aggregates on new types, e.g., polygon
• Aggregation framework: state init, state

transition, finalize
create aggregate name (BASETYPE =
input_data_type, SFUNC = sfunc, STYPE =
state_type, [, FINALFUNC = ffunc] [,
INITCOND = initial_condition]);

• Avg: state is count and sum initialized to 0,
state transition is increment count, add to
sum, finalize by dividing sum with count.

Distinct Types

• Clone an existing type and all its methods,
overload methods

• Example:
create distinct type Price as float; -- simply
for strong typing

create distinct type BerkeleyTime as Time;

create function IsLate(BerkeleyTime) returns
boolean as ‘select curtime() > $1 + ’10
minutes’’ language SQL;

• Don’t develop a brand new type unless you
have to!

8

Structured Types

• use type constructors to generate new types
• Collection types

– set(T): multiset
– array(T), T[][]
– list(T)

• Row types (composite type)
– row (Col1 T1, ..., Colk Tk)
– Named row type, e.g., theater_t

• Reference Types
– Ref(T)

• All first-class types!

Collection Types

• IN operator: elem IN collection
• Collection type expressions can be used in

FROM clause (table expressions)
create function Theaters(date) returns
SET(theater_t) …;

select name from Theaters(curdate()) where
address like ‘%Berkeley%’;

• Subqueries are of SET type
HerbertFight((select * from frames where
Herbert(images)))

• Array and List: ordered, access elements by
index

9

Row Type

• Dot opeartor: theater.address
• Nested dot notation: theater.address.zipcode
• Ambiguity with schema.table.column
• Backward compatibility is higher priority

Reference Types
• In most ORDBMS, every object has an OID
• So, can “point” to objects -- reference types!

– ref(theater_t)
• Don’t confuse reference and row types!

– mytheater row(tno integer, name text,
address text, phone integer)

– theater ref(theater_t)

• “by value” v.s. “by reference”
• Deref: deref(theater) returns a theater_t row,

theater->name is shorthand for
deref(theater).name

• Referential integrity
– ORDBMS may not enforce it!

10

Dinkey Schema Revisited
create table frames (frameno integer, image jpeg,

category integer); -- images from films

create table categories (cid integer, name text,
lease_price float, comments text); -- pricing

create type theater_t tuple(tno integer, name
text, address text, phone integer)

create table theaters of type theater_t;

create table films (filmno integer, title text,
stars setof(text), director text, budget
float); -- Dinkey films

create table nowshowing (film integer, theater
ref(theater_t), start date, end date);

create table countries (name text, boundary
polygon, population integer, language text)

More Example Queries

• Clog Cereal wants to license an image of
Herbert in front of a sunrise:

– The thumbnail method produces a small image
– The Sunrise method returns T iff there’s a sunrise

in the pic
– The Herbert method returns T iff Herbert’s in pic

select F.frameno, thumbnail(F.image), C.lease_price
from frames F, categories C

where F.category = C.cid
and Sunrise(F.image)
and Herbert(F.image);

11

Another Example
• Find theaters showing Herbert films within 100

km of Andorra:

– theater attribute of nowshowing: ref to an object
in another table. Use -> as shorthand for
deref(theater).name

– set-valued attributes get compared using set
methods

select N.theater->name, N.theater->address, F.name
from nowshowing N, frames F, countries C

where N.film = F.filmno
and Radius(N.theater->location, 100) || C.boundary
and C.name = ‘Andorra’
and `Herbert the Worm’ IN F.stars

Example 2, cont.

• join of N and C is complicated!
– Radius returns a circle of radius 100 centered at

location
– || operator tests circle,polygon for spatial overlap

select N.theater->name, n.theater->address, F.name
from nowshowing N, frames F, countries C

where N.film = F.filmno
and Radius(N.theater->location, 100) || C.boundary
and C.name = ‘Andorra’
and ‘Herbert the Worm’ IN F.stars

12

Path Expressions
• Can have nested row types (Emp.spouse.name)

• Can have ref types and row types combined
– nested dots & arrows. (Emp->Dept->Mgr.name)

• Generally, called path expressions
– Describe a “path” to the data

• Path-expression queries can often be rewritten
as joins. Why is that a good idea?

• What about Emp.children.hobbies?

select E->Dept->Mgr.name
from emp E;

select M.name
from emp E, Dept D, Emp M

where E.Dept = D.oid
and D.Mgr = M.oid;

Inheritance
• As in C++, useful to “specialize” types:

– create type theatercafe_t under theater
(menu set(row(item text, price Price)));

– methods on theater_t also apply to its subtypes
• “Collection hierarchies”: inheritance on tables

– create table student_emp under emp (gpa
float);

– queries on emp also return tuples from
student_emp (unless you say “emp only”)

• “Type extents”
– all objects of a given type can be selected from a

single view (e.g., select * from theater_t)

13

Popular Extensions to ORDBMS
• Spatial (come with Postgres)

– Point, polygon, circle, etc.
– Overlap, contain, etc.
– Spatial index, e.g., R-tree

• Multimedia
– Text, image, video
– Text search, image/video manipulation and search

• TimeSeries
– Timestamped arrays of row types
– Clip, merge, moving averages, etc.

Summary, cont.

• Tips on how to use Object-Relation features
– Think beyond alpha-numeric types
– Push data logic into DBMS
– Leverage existing or prepackaged types and methods, e.g.,

DataBlades, Cartridges, Extenders.
– Modify behavior through distinct types or inheritance
– Complex types are a double-edged sword. Use caution!

• Watch out for XML data models (XML Schema, XQuery)!!

