Object-Relational
DBMS

Wei Hong, Ph.D.
Intel Research, Berkeley
whong@intel-research.net

“You know my methods, Watson.
Apply them.”

~~ A.Conan Doyle, The

Memoirs of Sherlock Holmes

Motivation

¢ Relational model (70’s): clean and simple
— great for administrative data

— not as good for other kinds of data (e.g.
multimedia, networks, CAD)

¢ Object-Oriented models (80’s): complicated,
but some influential ideas

— complex data types
— object identity/references
— ADTs (encapsulation, behavior goes with data)
— inheritance
¢ Idea: build DBMS based on OO model

Object-Oriented Databases

e Initial Idea: make (C++) objects persistent

— Good for “pointer chasing” type of apps (e.g.,
CAD, CAM), niche market

— Big paradigm shift from relational databases

— Players: Objectivity, Object Design, Versant, etc.
¢ Evolution: towards Object-Relational

— Added limited SQL support

— Embracing Java and XML

=
. “Object-Relational” Databases

o Idea: add OO features to the type system of SQL, i.e.
“plain old SQL", but...
— columns can be of new atomic types (ADTSs)
— columns and rows can be of complex types
— user-defined methods on new types
— object identity, reference types and “deref”
— type inheritance
— old SQL schemas still work! (backwards compatibility)
¢ Evolution:

— All major relational vendors have evolved their RDBMS into
ORDBMS.

— SQL-99 is the current standard, but not nearly as well adopted as
SQL-92.
¢ Postgres:

— one of the first ORDBMS prototypes, turned into Illustra, then
Informix, now IBM.

— PostgreSQL: an open-source ORDBMS at your finger tips!

Example App: Asset Management

¢ Old world: data models a business
¢ New world: data IS business
—1011010111010100010100111 = $$$%$$!

— software vendors, entertainment industry, direct-
mail marketing, etc...

— this data is typically more complex than
administrative data

e Emerging apps mix these two worlds.

An Asset Management Scenario

¢ Dinkey Entertainment Corp.
— assets: cartoon videos, stills, sounds
— Herbert films show worldwide Herbert the Worm

— Dinkey licenses Herbert videos, stills, sounds for
various purposes

e action figures
e video games
e product endorsements
— database must manage assets and business data

Why not a Standard RDBMS?

create table frames (frameno integer, image BLOB,
category integer)

¢ Binary Large Objects (BLOBs): collection of
bits that can be stored and fetched like a file

e App code must provide logic to interpret the
bits, e.g., colors of an image

¢ Hard for code sharing
¢ Poor Performance

— Scenario: client (Machine A) requests images for
all frames in DBMS (Machine B)

An Example ORDBMS Schema

create table frames (frameno integer, image
category integer) ;

create table categories (cid integer, name text,
lease price float, comments text);

— Create type theater t row (tno integer, name

text, address text, hone integer
structured p ger)

typesNieate table theaters of

create table nowshowing (film integer, theater
ref (theater t start date, end date);
c e table films (filmno integer, title text,

star director text, budget float);
create table countries (name text, bounda
polygon) population integer, language text)

e
- ADTs: User-Defined Atomic Types

¢ Basic SQL types (int, varchar, etc.): builtin atomic types
— builtin methods, e.g., math, comparison, etc.
¢ ORDBMS: can define new types (& methods)
create type jpeg (intermnallength = variable,
input = jpeg in, output = jpeg out);
Create type point (internallength = 16, input =
point in, output = point out);
* Not naturally composed of built-in types
— new atomic types
¢ Required parameters for new ADT
— Internallength
— Input/output: convert from/to string
¢ Optional Parameters
— Alignment
— Send/receive: convert to/from wire format
— Etc.

T
. User-Defined Methods

e New ADTs will need methods to manipulate them
— e.g. for jpeg: thumbnail, crop, rotate, smooth, detect
Herbert, etc.
— expert user writes these methods in a language like C,
compiles them
— register methods with ORDBMS:
create function Herbert (jpeg) returns boolean
as external name ‘/a/b/Dinkey.so’ language C;
create function thumbnail (jpeg) returns jpeg
as external name ‘/a/b/Dinkey.so’ language C
trusted not variant;
+ Elements of a user-defined function
— Name, argument types and return type
— Implementation and language
— Attributes, e.g., trusted, iscachable, handles_null, etc.

e

User-Defined Methods, cont

¢ C Functions
— ORDBMS dynamically links functions into server at run time
— Must use specific ORDBMS server programming API
» Access to run-time states, e.g., argument types
» Access to system resources, e.g., memory
> Access to database: query interface
— High performance, but
> Tricky to write: thread safety, resource management, exception
handling, interrupts, etc.
» Security concerns
— Tend to be built by DBMS developers themselves: DataBlades,
DataCartridges, Extenders, etc.
¢ SQL Functions
create function ConvertCurrency(float, text) returns float
as ‘select $1 * exchange ratio from CurrencyExchange
where country name = $2’ language SQL;
« Other languages: JAVA, PERL, TCL, proprietary stored
procedure languages (e.g., PLSQL)

User-defined Operators

e Shorthand for function calls: x =y is
equivalent to Equal(x, y)

e Some systems let you modify the operator-to-
function bindings, e.g.,

create operator || (procedure = overlap)
o Attributes for the optimizer

— Commutator

— Negator

— Selectivity estimator
— Hashable, sortable?

- User-defined Aggregates

¢ Aggregates beyond min, max, sum, avg, count,
e.g., ThirdLargest

» Aggregates on new types, e.g., polygon

e Aggregation framework: state init, state
transition, finalize
create aggregate name (BASETYPE =
input data type, SFUNC = sfunc, STYPE =
state type, [, FINALFUNC = ffunc] [,
INITCOND = initial condition]);
e Avg: state is count and sum initialized to O,
state transition is increment count, add to
sum, finalize by dividing sum with count.

'iii'

Distinct Types

¢ Clone an existing type and all its methods,
overload methods

e Example:
create distinct type Price as float; -- simply
for strong typing
create distinct type BerkeleyTime as Time;

create function IsLate(BerkeleyTime) returns
boolean as ‘select curtime() > $1 + ’10
minutes’’ language SQL;

e Don’t develop a brand new type unless you
have to!

Structured Types

use type constructors to generate new types
Collection types

— set(T): multiset

— array(T), T[I[]

— list(T)
Row types (composite type)

- row (Col, T4, ..., Col, T,)

— Named row type, e.g., theater_t
Reference Types

— Ref(T)
All first-class types!

'iii'

Collection Types

e IN operator: elem IN collection

¢ Collection type expressions can be used in
FROM clause (table expressions)

create function Theaters(date) returns
SET (theater t) ..;

select name from Theaters(curdate()) where
address like ‘%Berkeley%’;
e Subqueries are of SET type
HerbertFight ((select * from frames where
Herbert (images)))
¢ Array and List: ordered, access elements by
index

Row Type

Dot opeartor: theater.address

Nested dot notation: theater.address.zipcode
Ambiguity with schema.table.column
Backward compatibility is higher priority

=

Reference Types

¢ In most ORDBMS, every object has an OID
So, can “point” to objects -- reference types!
— ref(theater_t)

e Don’t confuse reference and row types!
- mytheater row(tno integer, name text,
address text, phone integer)

- theater ref (theater t)
¢ “by value” v.s. “by reference”

¢ Deref: deref(theater) returns a theater_t row,
theater->name is shorthand for
deref(theater).name

¢ Referential integrity
— ORDBMS may not enforce it!

Dinkey Schema Revisited

create table frames (frameno integer, image jpeg,
category integer); -- images from films

create table categories (cid integer, name text,
lease price float, comments text); -- pricing

create type theater t tuple(tno integer, name
text, address text, phone integer)

create table theaters of type theater t;

create table films (filmno integer, title text,
stars setof (text), director text, budget
float); -- Dinkey films

create table nowshowing (film integer, theater
ref (theater t), start date, end date);

create table countries (name text, boundary
polygon, population integer, language text)

More Example Queries

¢ Clog Cereal wants to license an image of
Herbert in front of a sunrise:

select F.frameno, thumbnail (F.image), C.lease price

from frames F, categories C
where F.category = C.cid

and Sunrise (F.image)

and Herbert (F.image) ;

— The thumbnail method produces a small image

— The Sunrise method returns T iff there’s a sunrise
in the pic

— The Herbert method returns T iff Herbert's in pic

10

Another Example

¢ Find theaters showing Herbert films within 100
km of Andorra:

select N.theater->name, N.theater->address, F.name
from nowshowing N, frames F, countries C

where N.film = F.filmno
and Radius (N.theater->location, 100) || C.boundary
and C.name = ‘Andorra’
and “Herbert the Worm’ IN F.stars

— theater attribute of howshowing: ref to an object
in another table. Use -> as shorthand for
deref(theater).name

— set-valued attributes get compared using set
methods

Example 2, cont.

select N.theater->name, n.theater->address, F.name
from nowshowing N, frames F, countries C

where N.film = F.filmno
and Radius (N.theater->location, 100) || C.boundary
and C.name = ‘Andorra’
and ‘Herbert the Worm’ IN F.stars

e join of N and C is complicated!

— Radius returns a circle of radius 100 centered at
location

— || operator tests circle,polygon for spatial overlap

11

- .
- Path Expressions

e Can have nested row types (Emp.spouse.name)
e Can have ref types and row types combined
— nested dots & arrows. (Emp->Dept->Mgr.name)
¢ Generally, called path expressions
— Describe a “path” to the data

¢ Path-expression queries can often be rewritten
as joins. Why is that a good idea?
select M.name
select E->Dept->Mgr.name from emp E, Dept D, Emp M

from emp E; where E.Dept = D.oid
and D.Mgr = M.oid;

e What about Emp.children.hobbies?

Inheritance

e As in C++, useful to “specialize” types:

- create type theatercafe t under theater
(menu set(row(item text, price Price)));

— methods on theater_t also apply to its subtypes

e “Collection hierarchies”: inheritance on tables

- create table student emp under emp (gpa
float) ;

— queries on emp also return tuples from
student_emp (unless you say “emp only”)

e "Type extents”

— all objects of a given type can be selected from a
single view (e.g., select * from theater_t)

12

Popular Extensions to ORDBMS

¢ Spatial (come with Postgres)

— Point, polygon, circle, etc.

— Overlap, contain, etc.

— Spatial index, e.g., R-tree
e Multimedia

— Text, image, video

— Text search, image/video manipulation and search
e TimeSeries

— Timestamped arrays of row types

— Clip, merge, moving averages, etc.

Summary, cont.

+ Tips on how to use Object-Relation features
— Think beyond alpha-numeric types
— Push data logic into DBMS

— Leverage existing or prepackaged types and methods, e.g.,
DataBlades, Cartridges, Extenders.

— Modify behavior through distinct types or inheritance
— Complex types are a double-edged sword. Use caution!
e Watch out for XML data models (XML Schema, XQuery)!!

&

13

