
Chapter 3  
 

Objects and JUnit 
 

Goals 
This chapter is mostly about using objects and getting comfortable with sending messages to objects. Several new 
types implemented as Java classes are introduced to show just a bit of Java’s extensive library of classes. This 
small subset of classes will then be used in several places throughout this textbook. You will begin to see that 
programs have many different types of objects. After studying this chapter, you will be able to: 
 

• Use existing types by constructing objects 
• Be able to use existing methods by reading method headings and documentation 
• Introduce assertions with JUnit 
• Evaluate Boolean expressions that result in true or false. 

 
 
 

3.1 Find the Objects  
Java has two types of values: primitive values and reference values. Only two of Java’s eight primitive types (int 
and double) and only one of Java’s reference types (the Scanner class) have been shown so far. Whereas a 
primitive variable stores only one value, a reference variable stores a reference to an object that may have many 
values. Classes allow programmers to model real-world entities, which usually have more values and operations 
than primitives. 
 Although the Java programming language has only eight primitive types, Java also come with thousands of 
reference types (implemented as Java classes). Each new release of Java tends to add new reference types. For 
example, instances of the Java String class store collections of characters to represent names and addresses in 
alphabets from around the world. Other classes create windows, buttons, and input areas of a graphical user 
interface. Other classes represent time and calendar dates. Still other Java classes provide the capability of 
accessing databases over networks using a graphical user interface. Even then, these hundreds of classes do not 
supply everything that every programmer will ever need. There are many times when programmers discover they 
need their own classes to model things in their applications. Consider the following system from the domain of 
banking:  

The Bank Teller Specification 
Implement a bank teller application to allow bank customers to access bank accounts through unique 
identification. A customer, with the help of the teller, may complete any of the following transactions: 
withdraw money, deposit money, query account balances, and see the most recent 10 transactions. 
The system must maintain the correct balances for all accounts. The system must be able to process 
one or more transactions for any number of customers. 
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You are not asked to implement this system now. However, you should be able to pick out some things (objects) 
that are relevant to this system. This is the first step in the analysis phase of object-oriented software 
development. One simple tool for finding objects that potentially model a solution is to write down the nouns and 
noun phrases in the problem statement. Then consider each as a candidate object that might eventually represent 
part of the system. The objects used to build the system come from sources such as 

• the problem statement 
• an understanding of the problem domain (knowledge of the system that the problem statement may 

have missed or taken for granted)  
• the words spoken during analysis 
• the classes that come with the programming language 

The objects should model the real world if possible. Here are some candidate objects: 

Candidate Objects to Model a Solution  
bank teller transaction 
customers most recent 10 transactions 
bank account window  

Here is a picture to give an impression of the major objects in the bank teller system. The BankTeller will 
accomplish this by getting help from many other objects. 

 
We now select one of these objectsBankAccount. 

BankAccount Objects 
Implementing a BankAccount type as a Java class gives us the ability to have many (thousands of) BankAccount 
objects. Each instance of BankAccount represents an account at a bank. Using your knowledge of the concept of a 
bank account, you might recognize that each BankAccount object should have its own account number and its 
own account balance. Other values could be part of every BankAccount object: a transaction list, a personal 
identification number (PIN), and a mother’s maiden name, for example. You might visualize other banking 
methods, such as creating a new account, making deposits, making withdrawals, and accessing the current 
balance. There could also be many other banking messages—applyInterest and printStatement, for 
example.  
 As a preview to a type as a collection of methods and data, here is the BankAccount type implemented as a 
Java class and used in the code that follows. The Java class with methods and variables to implement a new type 
will be discussed in Chapters 4 (Methods) and 10 (Classes). Consider this class to be a blueprint that can be used 
to construct many BankAccount objects. Each BankAccount object will have its their own balance and ID. 
Each BankAccount will understand the same four messages: getID, getBalance, deposit, and withdraw. 
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// A type that models a very simple account at a bank. 
public class BankAccount { 
 
  // Values that each object "remembers": 
  private String ID; 
  private double balance; 
 
  // The constructor: 
  public BankAccount(String initID, double initBalance) { 
    ID = initID; 
    balance = initBalance; 
  } 
 

  // The four methods: 
  public String getID() { 
    return ID; 
  } 
 

  public double getBalance() { 
    return balance; 
  } 
 

  public void deposit(double depositAmount) { 
    balance = balance + depositAmount; 
  } 
 

  public void withdraw(double withdrawalAmount) { 
    balance = balance - withdrawalAmount; 
  } 
} 
 
This BankAccount type has been intentionally kept simple for ease of study. The available BankAccount 
messages include—but are not limited to—withdraw, deposit, getID, and getBalance. Each will store an 
account ID and a balance. 
 Instances of BankAccount are constructed with two arguments to help initialize these two values. You can 
supply two initial values in the following order: 

1. a sequence of characters (a string) to represent the account identifier (a name, for example) 
2. a number to represent the initial account balance 

 

Here is one desired object construction that has two arguments for the purpose of initializing the two desired 
values: 

 
    BankAccount anAccount = new BankAccount("Chris", 125.50); 

 

The construction of new objects (the creation of new instances) requires the keyword new with the class name and 
any required initial values between parentheses to help initialize the state of the object. The general form for 
creating an instance of a class: 
 
General Form: Constructing objects (initial values are optional) 
class-name object-name = new class-name( initial-value(s) ); 

 

Every object has 
1. a name (actually a reference variable that stores a reference to the object) 
2. state (the set of values that the object remembers) 
3. messages (the things objects can do and reveal) 

Every instance of a class will have a reference variable to provide access to the object. Every instance of a class 
will have its own unique state. In addition, every instance of a class will understand the same set of messages. For 
example, given this object construction,  
 

BankAccount anotherAccount = new BankAccount("Justin", 60.00); 
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we can derive the following information: 
 

1. name: anotherAccount 
2. state: an account ID of "Justin" and a balance of 60.00 
3. messages: anotherAccount understands withdraw, deposit, getBalance, … 

 

Other instances of BankAccount will understand the same set of messages. However, they will have their own 
separate state. For example, after another BankAccount construction,  

 
    BankAccount theNewAccount = new BankAccount("Kim", 1000.00); 

 

theNewAccount has its own ID of "Kim" and its own balance of 1000.00. The three characteristics of an object 
can be summarized with diagrams. This class diagram represents one class.  

  
 

A class diagram lists the class name in the topmost compartment. The instance variables appear in the 
compartment below it. The bottom compartment captures the methods. 
 Objects can also be summarized in instance diagrams.  

These three 
object diagrams describe the current state of three different BankAccount objects. One class can be used to make 
have many objects, each with its own separate state (set of values). 
 

Sending Messages to Objects 
In order for objects to do something, your code must send messages to them. A message is a request for the object 
to provide one of it services through a method. 

General Form: Sending a message to an object 
object-name.message-name(argument1, argument2, ...) 

Some messages ask for the state of the object. Other messages ask an object to do something, For example, each 
BankAccount object was designed to have the related operations withdraw, deposit, getBalance, and 
getID. These messages ask the two different BankAccount objects to return information: 
 
  anAccount.getID(); 
  anAccount.getBalance(); 
  anotherAccount.getID(); 
  anotherAccount.getBalance(); 
 
These messages ask two different BankAccount objects to do something: 
  anAccount.withdraw(40.00); 
  anAccount.deposit(100.00); 
  anotherAccount.withdraw(20.00); 
  anotherAccount.deposit(157.89); 
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The optional arguments—expressions between the parentheses—are the values required by the method to fulfill 
its responsibility. For example, withdraw needs to know how much money to withdraw. On the other hand, 
getBalance doesn’t need any arguments to return the current balance of the BankAccount object. The output 
below indicates deposit and withdraw messages modify the account balances in an expected manner: 
 
// Construct two objects and send messages to them. 
public class ShowTwoBankAccountObjects { 
 
  public static void main(String[] args) { 
     
    BankAccount b1 = new BankAccount("Kim", 123.45); 
    BankAccount b2 = new BankAccount("Chris", 500.00); 
 
    System.out.println("Initial values"); 
    System.out.println(b1.getID() + ": " + b1.getBalance()); 
    System.out.println(b2.getID() + ": " + b2.getBalance()); 
 
    b1.deposit(222.22); 
    b1.withdraw(20.00); 
    b2.deposit(55.55); 
    b2.withdraw(10.00); 
    System.out.println(); 
    System.out.println("Value after deposit and withdraw messages"); 
    System.out.println(b1.getID() + ": " + b1.getBalance()); 
    System.out.println(b2.getID() + ": " + b2.getBalance()); 
  } 
} 
 

Output 
Initial values 
Kim: 123.45 
Chris: 500.0 
 
Value after deposit and withdraw messages 
Kim: 325.67 
Chris: 545.55 

3.2  Making Assertions about Objects with JUnit 
The println statements in the program above reveal the changing state of objects. However, in such examples, 
many lines can separate the output from the messages that affect the objects. This makes it a bit awkward to 
match up the expected result with the code that caused the changes. The current and changing state of objects can 
be observed and confirmed by making assertions. An assertion is a statement that can relay the current state of an 
object or convey the result of a message to an object. Assertions can be made with methods such assertEquals.  
 
General Form: JUnit's assertEquals method for int and double values 
  assertEquals(int expected, int actual); 
  assertEquals(double expected, double actual, double errorTolerance); 
Examples to assert integer expressions:  
 
  assertEquals(2, 5 / 2); 
  assertEquals(14, 39 % 25); 
 
Examples to assert a floating point expression:  
 
  assertEquals(325.67, b1.getBalance(), 0.001); 
  assertEquals(545.55, b2.getBalance(), 0.001); 
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With assertEquals, an assertion will be true—or will "pass"—if the expected value equals the actual value. 
When comparing floating-point values, a third argument is needed to represent the error tolerance, which is the 
amount by which two real numbers may differ and still be equal. (Due to round off error, and the fact that 
numbers are stored in base 2 (binary) rather than in base 10 (decimal), two expressions that we consider “equal” 
may actually differ by a very small amount. This textbook will often use the very small error tolerance of 1e-14 or 
0.00000000000001. This means that the following two numbers would be considered equal within 1e-14: 
 
  assertEquals(1.23456789012345, 1.23456789012346, 1e-14);  
 

In contrast, these numbers are not considered equal when using an error factor of 1e-14. 
 
  assertEquals(1.23456789012345, 1.23456789012347, 1e-14);  
 

So using 1e14 ensures two values are equals to 13 decimal places, which is about as close as you can get. JUnit 
assertions allow us to place the expected value next to messages that reveal the actual state. This makes it easer to 
demonstrate the behavior of objects and to learn about new types. Later, you will see how assertions help in 
designing and testing your own Java classes, by making sure they have the correct behavior.  
The assertEquals method is in the Assert class of org.junit. The Assert class needs to be imported (shown 
later) or assertEquals needs to be qualified (shown next).  
 
  // Construct two BankAccount objects 
  BankAccount anAccount = new BankAccount("Kim", 0.00); 
  BankAccount anotherAccount = new BankAccount("Chris", 500.00); 
 
  // These assertions pass  
  org.junit.Assert.assertEquals(0.00, anAccount.getBalance(), 1e-14);    
  org.junit.Assert.assertEquals("Kim", anAccount.getID()); 
  org.junit.Assert.assertEquals("Chris", anotherAccount.getID()); 
  org.junit.Assert.assertEquals(500.00, anotherAccount.getBalance(), 1e-14);  
 
  // Send messages to the BankAccount objects 
  anAccount.deposit(222.22); 
  anAccount.withdraw(20.00); 
  anotherAccount.deposit(55.55); 
  anotherAccount.withdraw(10.00); 
 
  // These assertions pass  
  org.junit.Assert.assertEquals(202.22, anAccount.getBalance(), 1e-14);   
  org.junit.Assert.assertEquals(545.55, anotherAccount.getBalance(), 1e-14);   
 
To make these assertions, you must have access to the JUnit testing framework, which is available in virtually all 
Java development environments. Eclipse does. Then assertions like those above can be placed in methods 
preceded by @Test. These methods are known as test methods. They are most often used to test a new method. 
The test methods here demonstrate some new types.  A test method begins in a very specific manner: 
 
  @org.junit.Test 
  public void testSomething()  {   // more to come   
 
Much like the main method, test methods are called from another program (JUnit). Test methods need things 
from the org.junit packages. This code uses fully qualified names . 
 
public class FirstTest { 
 
  @org.junit.Test // Marks this as a test method. 
  public void testDeposit() { 
    BankAccount anAccount = new BankAccount("Kim", 0.00); 
    anAccount.deposit(123.45); 
    org.junit.Assert.assertEquals(123.45, anAccount.getBalance(), 0.01); 
  } 
} 
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Adding imports shortens code in all test methods. This feature allows programmers to write the method name 
without the class to which the method belongs. The modified class shows that imports reduce the amount of code 
by org.junit.Assert and ord.junit for every test method and assertion, which is a good thing since much 
other code that is required. 
  

import static org.junit.Assert.assertEquals; 
import org.junit.Test; 
 
public class FirstTest { 
 
  @Test  // Marks this as a test method. 
  public void testDeposit() { 
    BankAccount anAccount = new BankAccount("Kim", 0.00); 
    anAccount.deposit(123.45); 
    assertEquals(123.45, anAccount.getBalance()); 
  } 
 
  @Test  // Marks this as a test method. 
  public void testWithdraw() { 
    BankAccount anotherAccount = new BankAccount("Chris", 500.00); 
    anotherAccount.withdraw(160.01); 
    assertEquals(339.99, anotherAccount.getBalance()); 
  } 
 
} // End unit test for BankAccount 
 

Running JUnit 
An assertion passes when the actual value equals the expected value in assertEquals.  
 
  assertEquals(4, 9 / 2); // Assertion passes 
 

An assertion failes when the actual values does not equal the expected value.  
 
  assertEquals(4.5, 9 / 2, 1e-14); // Assertion fails 
 

With integrated development environments such as Eclipse, Netbeans, Dr. Java, BlueJ, when an assertion fails, 
you see a red bar. For example, this screenshot of Eclipse shows a red  bar. 
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The expected and actual values are shown in the lower left corner when the code in FirstTest.java is run as a JUnit 
test. Changing the testDeposit method to have the correct expected value results in a green bar, indicating all 
assertions have passed successfully. Here is  JUnit's window when all assertions pass: 
 

 

Red bar 

Green bar 
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assertTrue and assertFalse 
JUnit Assert class has several other methods to demonstrate and test code. The assertTrue assertion passes if 
its Boolean expression argument evaluates to true. The assertFalse assertion passes if the Boolean expression 
evaluates to false.  
 
// Use two other Assert methods: assertTrue and assertFalse 
import static org.junit.Assert.assertFalse; 
import static org.junit.Assert.assertTrue; 
import org.junit.Test; 
 
public class SecondTest { 
 
  @Test 
  public void showAssertTrue() { 
    int quiz = 98; 
    assertTrue(quiz >= 60); 
  } 
 
  @Test 
  public void showAssertFalse() { 
    int quiz = 55; 
    assertFalse(quiz >= 60); 
  } 
} 
 
The three Assert methodsassertEquals, assertTrue, and assertFalsecover most of what we'll need. 
 
 

3.3  String Objects 
Java provides a String type to store a sequence of characters, which can represent an address or a name, for 
example. Sometimes a programmer is interested in the current length of a String (the number of characters). It 
might also be necessary to discover if a certain substring exists in a string. For example, is the substring ", " 
included in the string "Last, First". and if so, where does substring "the" begin?  Java’s String type, 
implemented as a Java class, provides a large number of methods to help with such problems required knowledge 
of the string value. You will use String objects in many programs.  
Each String object stores a collection of zero or more characters. String objects can be constructed in two 
ways.  

General Form: Constructing String objects in two different ways  
String identifier = new String(string-literal); 
String identifier = string-literal; 

Examples 
String stringReference = new String("A String Object"); 
String anotherStringReference = "Another"; 
 

String length 
For more specific examples, consider two length messages sent to two different String objects. Both messages 
evaluate to the number of characters in the String.  
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import static org.junit.Assert.assertEquals;   
import org.junit.Test; 
public class StringTest { 
 
  @Test   
  public void showLength() { 
    String stringReference = new String("A String Object"); 
    String anotherStringReference = "Another"; 
    // These assertions pass 
    assertEquals(15, stringReference.length()); 
    assertEquals(7, anotherStringReference.length()); 
  } 
 
  // . . . more test methods will appear below 
} 
 

String charAt 
A charAt message returns the character located at the index passed as an int argument. Notice that String 
objects have zero-based indexing. The first character is located at index 0, and the second character is located at 
index 1, or charAt(1). 
 

  @Test   
  public void showcharAt() { 
    String stringReference = new String("A String"); 
 
    assertEquals('A', stringReference.charAt(0)); // Evaluates to 'A' 
    assertEquals('r', stringReference.charAt(4)); // Evaluates to 'r' 
 
    int len = stringReference.length() - 1; 
    assertEquals('g', stringReference.charAt(len)); // The last char 
  } 

String indexOf 
An indexOf message sent to a String object returns the index of the first character where the String argument 
is found. For example, "no-yes".indexOf("yes") returns 3. If the String argument does not exist, 
indexOf returns -1. 
 
  @Test 
  public void showIndexOf() { 
    String stringReference = new String("A String Object"); 
    assertEquals(3, stringReference.indexOf("tri")); 
    assertEquals(-1, stringReference.indexOf("not here")); 
  } 

Concatenation with the + operator 
Programmers often make one String object from two separate strings with the + operator, that concatenates 
(connects) two or more strings into one string.  
 

  @Test 
  public void showConcatenate() { 
    String firstName = "Kim"; 
    String lastName = "Madison"; 
    String fullName = lastName + ", " + firstName; 
    assertEquals("Madison, Kim", fullName); 
  } 
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String substring 
A substring message returns the part of a string indexed by the beginning index through the ending index minus 1.  
  
  @Test 
  public void showSubString() { 
    String str = "Smiles a Lot"; 
    assertEquals("mile", str.substring(1, 5)); 
  } 

String toUpperCase and toLowerCase 
A toUpperCase message sent to a String object returns a new string that is the uppercase equivalent of the 
receiver of the message. A toLowerCase message returns a new string with all uppercase letters in lowercase. 
 
  @Test 
  public void testToUpperCase() { 
    String str = new String("MiXeD cAsE!"); 
    assertEquals("MIXED CASE!", str.toUpperCase()); 
    assertEquals("mixed case!", str.toLowerCase()); 
    assertEquals("MiXeD cAsE!", str);  // str did not change! 
  } 
 

Although it may sound like toUpperCase and toLowerCase modify String objects, they do not. Once 
constructed, String objects can not be changed. String objects are immutable. Simply put, there are no 
String messages that can modify the state of a String object. The final assertion above shows that 
str.equals("MiXeD cAsE!") still, even after the other two messages were sent. Strings are immutable 
to save memory. Java also supplies StringBuilder, a string type that has methods that do modify the 
objects. 
 Use an assignment if you want to change the String reference to refer to a different String. 

 
  @Test 
  public void showHowToUpperCaseWithAssignment() { 
    String str = new String("MiXeD cAsE!"); 
    str = str.toUpperCase(); 
    assertEquals("MIXED CASE!", str); // str references a new string 
  } 
 

Comparing Strings with equals 
JUnit's assertEquals method uses Java's equals method to compare the strings. This is the way to see if two 
String objects have the same sequence of characters. It is case sensitive.  
 
  @Test 
  public void showStringEquals() { 
    String s1 = new String("Casey"); 
    String s2 = new String("Casey"); 
    String s3 = new String("CaSEy"); 
    assertTrue(s1.equals(s2));            
    assertFalse(s1.equals(s3)); 
  } 
 

Avoid using == to compare strings. The results can be surprising. 
 
  @Test 
  public void showCompareStringsWithEqualEqual() { 
    String s1 = new String("Casey"); 
    assertTrue(s1 == "Casey");   // This assertion fails. 
  } 

Almost never use == 
to compare string 
objects. Use equals 
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The == with objects compares references, not the values of the objects. The above code generates two different 
String objects that just happen to have the same state.  Use the equals method of String. The equals method 
was designed to compare the actual values of the stringthe characters, not the reference values.   
 
  @Test 
  public void showCompareStringWithEquals() { 
    String s1 = "Casey"; 
    assertTrue(s1.equals("Casey"));   // This assertion passes. 
  } 
 

Self-Check 
3-1 Each of the lettered lines has an error. Explain why.  
 

    BankAccount b1 = new BankAccount("B.  ");        // a 
    BankAccount b2("The ID", 500.00);                // b 
    BankAccount b3 = new Account("N.  Li", 200.00);  // c 
    b1.deposit();                                    // d 
    b1.deposit("100.00");                            // e 
    b1.Deposit(100.00);                              // f 
    withdraw(100);                                   // g 
    System.out.println(b4.getID());                  // h 
    System.out.println(b1.getBalance);               // i 
 
 

3-2 What values makes these assertions pass (fill in the blanks)? 
 

 @Test public void testAcct() { 
    BankAccount b1 = new BankAccount("Kim", 0.00); 
    BankAccount b2 = new BankAccount("Chris", 500.00); 
    assertEquals(        , b1.getID()); 
    assertEquals(        , b2.getID()); 
    b1.deposit(222.22); 
    b1.withdraw(20.00); 
    assertEquals(        , b1.getBalance(), 0.001); 
    b2.deposit(55.55); 
    b2.withdraw(10.00); 
    assertEquals(        , b2.getBalance(), 0.001); 
  } 
} 
 
 

3-3 What value makes this assertion pass? 
    String s1 = new String("abcdefghi"); 
    assertEquals(       , s1.indexOf("g")); 

 
 
 

3-4 What value makes this assertion pass? 
    String s2 = "abcdefghi"; 
    assertEquals(        , s2.substring(4, 6)); 

 
 

3-5 Write an expression to store the middle character of a String into a char variable named mid. If there is an 
even number of characters, store the char to the right of the middle. For example, the middle character of 
"abcde" is 'c' and of "Jude" is 'd'.  
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3-6 For each of the following messages, if there is something wrong, write “error”; otherwise, write the value of 
the expression. 
    String s = new String("Any String"); 

    a. length(s)  d. s.indexOf(" ") 
    b. s.length  e. s.substring(2, 5)  
    c. s(length)  f. s.substring("tri") 
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Answers to Self-Checks 
3-1 -a Missing the second argument in the object construction. Add the starting balance—a number. 
 -b Missing = new BankAccount. 
 -c Change Account to BankAccount. 
 -d Missing a numeric argument between ( and ). 
 -e Argument type wrong. pass a number, not a String. 
 -f Deposit is not a method of BankAccount.  Change D to d. 
 -g Need an object and a dot before withdraw. 
 -h b4 is not a BankAccount object. It was never declared to be anything. 
 -i Missing (). 

3-2    a?   "Kim" 
b?  "Chris" 
c?  202.22 
d?  545.55 

3-3 6 

3-4  "ef" 

3-5  String aString = "abcde"; 
int midCharIndex = aString.length( ) / 2;  
char mid = aString.charAt( midCharIndex );  

3-6  -a error -d 3 
 -b error -e y S  
 -c error -f error (wrong type of argument) 
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Methods 
 
Goal 

• Implement well-tested Java methods 

4.1 Methods 
A java class typically has two or more methods. There are two major components to a method:  
 

1. the method heading  
2. the block (a pair of curly braces with code to complete the method’s functionality 

 

Several modifiers may begin a method heading, such as public or private. The examples shown here 
will use only the modifier public. Whereas private  methods are only accessible from the class in 
which they exist, public methods are visible from other classes. Here is a general form for method 
headings. 

General Form: A public method heading 
public return-type method-name(parameter-1, parameter-2, …,  parameter-n )  

The return-type represents the type of value returned from the method. The return type can be any primitive type, 
such as int or double (as in String’s length method or BankAccount’s withdraw method, for example). 
Additionally, the return type can be any reference type, such as String or Scanner. The return type may also be 
void to indicate that the method returns nothing, as see in void main methods. 
 The method-name is any valid Java identifier. Since most methods need one or more values to get the job 
done, method headings may also specify parameters between the required parentheses. Here are a few 
syntactically correct method headings: 

Example Method Headings  
public int charAt(int index)                           // String 
public void withdraw(double withdrawalAmount)          // BankAccount 
public int length()                                    // String 
public String substring(int startIndex, int endIndex)  // String 

 

The other part of a method is the body. A method body begins with a curly brace and ends with a curly brace. 
This is where the programmer places variable declarations, object constructions, assignments, and other messages 
that accomplish the purpose of the method. For example, here is the very simple deposit method from the 
BankAccount class. This method has access to the parameter depositAmount and to the BankAccount instance 
variable named myBalance (instance variables are discussed in a later chapter).  

 
  // The method heading . . .  
  public void deposit(double depositAmount) { 
    // followed by the method body 
    myBalance = myBalance + depositAmount;  
  } 
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Parameters 
A parameter is an identifier declared between the parentheses of a method heading. Parameters specify the 
number and type of arguments that must be used in a message. For example, depositAmount in the deposit 
method heading above is a parameter of type double. The programmer who wrote the method specified the 
number and type of values the method would need to do its job. 
 A method may need one, two, or even more arguments to accomplish its objectives. “How much money do 
you want to withdraw from the BankAccount object?” “What is the beginning and ending index of the 
substring you want?” “How many days do you want to add". Parameters provide the mechanism to get the 
appropriate information to the method when it is called. For example, a deposit message to a BankAccount 
object requires that the amount to be deposited, (a double), be supplied. 

 
public void deposit(double depositAmount) 
                              ↑ 
        anAccount.deposit(123.45); 

 

When this message is sent to anAccount, the value of the argument 123.45 is passed on to the associated 
parameter depositAmount. It may help to read the arrow as an assignment statement. The argument 123.45 is 
assigned to depositAmount and used inside the deposit method.  This example has a literal argument 
(123.45). The argument may be any expression that evaluates to the parameter’s declared type, such as 
(checks + cash).  

 
  double checks = 123.45; 
  double cash = 100.00; 
  anAccount.deposit(checks + cash); 

 

When there is more than one parameter, the arguments are assigned in order. The replace method of  the String 
type requires two character values so the method knows which character to replace and with which character. 
 
 
 public String replace(char oldChar, char newChar) 
                                                                
   String newString = str.replace('t', 'X');      
     

Reading Method Headings 
When properly documented, the first part of a method, the heading, explains what the method does and 
describe the number of arguments and the type All of these things allow the programmer to send 
messages to objects without knowing the details of the implementation of those methods. For example, 
to send a message to an object, the programmer must:  
 

• know the method name 
• supply the proper number and type of arguments 
• use the return value of the method correctly 

 

All of this information is specified in the method heading. For example, the substring method of 
Java’s String class takes two int arguments and evaluates to a String.  
 
 // Return portion of this string indexed from beginIndex through endIndex-1 
 public String substring(int beginIndex, int endIndex) 
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The method heading for substring provides the following information: 
  

• type of value returned by the method: String 
• method name: substring 
• number of arguments required: 2 
• type of the arguments required: both are int 

 

Since substring is a method of the String class, the message begins with a reference to a string before 
the dot.  

 
  String str = new String("small"); 
  assertEquals("mall", str.substring(1, str.length()));  
   
  // Can send messages to String literals ... 
  assertEquals("for", "forever".substring(0, 3));  

 
A substring message requires two arguments, which specify the beginning and ending index of the 
String to return. This can be observed in the method heading below, which has two parameters named 
beginIndex and endIndex. Both arguments in the message fullName.substring(0,6) are of type int 
because the parameters in the substring method heading are declared as type int.  

 
public String substring(int beginIndex, int endIndex) 
                                   ↑          ↑ 
                fullName.substring(0,         6); 
 
When this message is sent, the argument 0 is assigned to the parameter beginIndex, and the argument 
6 is assigned to the parameter endIndex. Control is then transferred to the method body where this 
information is used to return what the method promises. In general, when a method requires more than 
one argument, the first argument in the message will be assigned to the first parameter, the second 
argument will be assigned to the second parameter, and so on. In order to get correct results, the 
programmer must also order the arguments correctly. Whereas not supplying the correct number and 
type of arguments in a message results in a compile time (syntax) error, supplying the correct number 
and type of arguments in the wrong order results in a logic error (i.e., the program does what you typed, 
not what you intended). 
And finally, there are several times when the substring method will throw an exception because the 
integer arguments are not in the correct range.  
 

  String str = "abc"; 
  str.substring(-1, 1)  // Runtime error because beginIndex < 0 
  str.substring(0, 4)   // Runtime error because endIndex of 4 is off by 1 
  str.substring(2, 1)   // Runtime error because beginIndex > endIndex 

 

Self-Check 
Use the following method heading to answer the first three questions that follow. This concat method is from 
Java’s String class. 
  
    // Return the concatenation of str at the end of this String object 
    public String concat(String str) 
 

4-1  Using the method heading above, determine the following for String's concat method: 
       -a return type   -d first argument type (or class) 
        -b method name   -e second argument type (or class) 
        -c number of arguments   
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4-2 Assuming String s = new String("abc");, write the return value for each valid message or explain 
why the message is invalid. 
 

       -a s.concat("xyz"); -d   s.concat("x", "y"); 
-b s.concat();  -e   s.concat("wx" + " yz"); 
-c s.concat(5); -f   s.concat("d"); 

 
 

4-3 What values make these assertions pass?  
 
import static org.junit.Assert.assertEquals; 
import org.junit.Test; 
 
public class StringTest { 
 
  @Test 
  public void testConcat() { 
     String s = "abc"; 
     assertEquals(          , s.concat("!")); 
     assertEquals(          , s.concat("cba")); 
     assertEquals(          , s.concat("123")); 
  } 
} 
 
Use the following method heading to answer the first three questions that follow. This concat method is from 
Java’s String class. 
  
  // Returns a new string resulting from replacing all  
  // occurrences of oldChar in this string with newChar. 
  public String replace(char oldChar, char newChar) 

 
4-4 Using the method heading above, determine the following for String's replace method: 
      -a return type   -d  first argument type 
       -b method name   -e second argument type  
       -c number of arguments   
 
4-5 Assuming String s = new String("abcabc");, write the return value for each valid message or 
explain why the message is invalid. 

-a s.replace("a");  -d   s.replace("x", "y"); 
-b s.replace('c', 'Z'); -e   s.replace('a', 'X'); 
-c s.replace('b', 'Z'); -f   s.concat('X', 'a'); 
 

4-6 What values make the assertions pass? 
 
import static org.junit.Assert.assertEquals; 
import org.junit.Test; 
 
public class StringTest { 
  @Test 
  public void testReplace () { 
     String s = "aabbcc"; 
     assertEquals("__a.___", s.replace('a', 'T')); 
     assertEquals("__b.___", s.replace ('b', ' ')); 
     assertEquals("__c.___", s.replace ('c', 'Y')); 
  } 
} 
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Methods that return Values 
When a method is called, the values of the arguments are copied to the parameters so the values can be 
used by the method. The flow of control then transfers to the called method where those statements are 
executed. One of those statements in all non-void methods must return a value.  This is done with the 
Java return statement that allows a method to return information. Here is the general form: 

General Form  return statement 
 return expression;  
 
The following examples show the return statement in the context of complete methods. The three methods are 
captured in a class named ExampleMethods, which implies there is no relationship between the methods. It 
simply provides methods with different return types.   
 
// This class contains several unrelated methods to provide examples.  
public class ExampleMethods { 
 
  // Return a number that is twice the value of the argument. 
  public double f(double argument) { 
    return 2.0 * argument; 
  } 
 
  // Return true if argument is an odd integer, false when argument is even. 
  public boolean isOdd(int argument) { 
    return (argument % 2 != 0); 
  } 
 
  // Return the first two and last two characters of the string. 
  // Precondition: str.length() >= 4 
  public String firstAndLast(String str) { 
    int len = str.length(); 
    String firstTwo = str.substring(0, 2); 
    String lastTwo = str.substring(len - 2, len); 
    return firstTwo + lastTwo; 
  } 
} // End of class with three example methods. 

 

When a return statement is encountered, the expression that follows return replaces the message part 
of the statement. This allows a method to communicate information back to the caller. Whereas a void 
method returns nothing (see any of the void main methods or test methods), any method that has a 
return type other than void must return a value that matches the return type. So, a method declared to 
return a String must return a reference to a String object. A method declared to return a double must 
return a primitive double value. Fortunately, the compiler will complain if you forget to return a value 
or you attempt to return the wrong type of value. 
 As suggested in Chapter 1, testing can occur at many times during software development. When you write a 
method, test it. For example, a test method for firstAndLast could look like this. 
 
  @Test 
  public void testFirstAndLast() { 
    ExampleMethods myMethods = new ExampleMethods(); 
    assertEquals("abef", myMethods.firstAndLast("abcdef")); 
    assertEquals("raar", myMethods.firstAndLast("racecar")); 
    assertEquals("four", myMethods.firstAndLast("four")); 
    assertEquals("A ng", myMethods.firstAndLast("A longer string")); 
  } 
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Methods may exist in any class. We could use test methods in the same class as the methods being tested because 
it is convenient to write methods and tests in the same file. That approach would also have the benefit not 
requiring an new ExampleMethods() object thereby requiring us to write less code. However, it is common 
practice to write tests in a separate test class. Conveniently, we can place test methods for each of the three  
ExampleMethods in another file keeping tests separate from the methods. 

 
// This class is used to test the three methods in ExampleMethods. 
import static org.junit.Assert.*; 
import org.junit.Test; 
 
public class ExampleMethodsTest { 
 
  @Test 
  public void testF() { 
    ExampleMethods myMethods = new ExampleMethods(); 
    assertEquals(9.0, myMethods.f(4.5), 1e-14); 
    assertEquals(0.0, myMethods.f(0.0), 1e-14); 
    assertEquals(-4.4, myMethods.f(-2.2), 1e-14); 
  } 
 
  @Test 
  public void testIsOdd() { 
    ExampleMethods myMethods = new ExampleMethods(); 
    assertTrue(myMethods.isOdd(5)); 
    assertFalse(myMethods.isOdd(4)); 
    assertFalse(myMethods.isOdd(0)); 
    assertTrue(myMethods.isOdd(-3)); 
    assertFalse(myMethods.isOdd(-2)); 
  } 
 
  @Test 
  public void testFirstAndLast() { 
    ExampleMethods myMethods = new ExampleMethods(); 
    assertEquals("abef", myMethods.firstAndLast("abcdef")); 
    assertEquals("raar", myMethods.firstAndLast("racecar")); 
    assertEquals("four", myMethods.firstAndLast("four")); 
    assertEquals("A ng", myMethods.firstAndLast("A longer string")); 
  } 
} 
 
This is a relatively new way to implement and test methods made possible with the JUnit testing framework. Most 
college textbooks use printlns and user input to show the results of running code that requires several program 
runs with careful input of values and careful inspection of the output each time. This textbook integrates testing 
with JUnit, an industry-level testing framework that makes software development more efficient and less error 
prone. It is easer to test and debug your code. You are more likely to find errors more quickly. When run as a 
JUnit test, all assertions pass in all three test-methods and the green bar appears. 
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With JUnit, you can set up your tests and methods and run them with no user input. The process can be easily 
repeated while you debug. Writing assertions also makes us think about what the method should do before writing 
the method. Writing assertions will help you determine how to best test code now and into the future, a 
worthwhile skill to develop that costs little time. 
 
 
 

Self-Check 
 
4-7  a) Write a complete test method named testInRange as if it were in class ExampleMethodsTest to test 
method inRange that will be placed in class ExampleMethods. Here is the method heading for the method that will 
go into class ExampleMethods. 
 
  // Return true if number is in the range of 1 through 10 inclusive. 
  public boolean inRange(int number) 

 

b) Write the complete method named inRange as if it were in ExampleMethods. 
 
 

4-8 a) Write a complete test method named testAverageOfThree as if it were in class ExampleMethodsTest to 
test method averageOfThree that will be placed in class ExampleMethods. Here is the method heading for the 
method that will go into class ExampleMethods. 
 
  // Return the average of the three arguments. 
  public double averageOfThree(double a, double b, double c) 

 

b) Write the complete method named averageOfThree as if it were in ExampleMethods. 
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4-9 a) Write a complete test method named testRemoveMiddleTwo as if it were in class ExampleMethodsTest to 
test method removeMiddleTwo that will be placed in class ExampleMethods. removeMiddleTwo should return a 
string that has all characters except the two in the middle. Assume the String argument has two or more characters. 
Here is the method heading for the method that will go into class ExampleMethods. 
 
  // Return the String argument with the middle two character missing. 
  // removeMiddleTwo("abcd") should return "ad" 
  // removeMiddleTwo("abcde") should return "abd" 
  // Precondition: sr.length() >= 2 
  public String removeMiddleTwo(String str) 
 
b) Write the complete method named removeMiddleTwo as if it were in the ExampleMethods class. 

How do we know what to test? 
Methods are deigned to have parameters to allow different arguments. This makes them generally useful in future 
applications. But how do we know these methods work?  Is it important that they are correct? Software quality is 
important. It is impossible to write perfect code.  
 One effective technique to ensure a method does what it is supposed to do is to write assertions to fully test 
the method. Asserting a method returns the correct value for one value is usually not enough.  How many 
assertions should we make? What arguments should we use? The answers are not preordained. However, by 
pushing the limits of all the possible assertions and values we can think of, and doing this repeatedly, we get 
better at testing. Examples help. Consider this maxOfThree method.  
 
// Return the maximum value of the integer arguments. 
public int maxOfThree(int a, int b, int c) 
 
As recommended in Chapter 1, it helps to have sample input with the expected result. Some test cases to consider 
include all three numbers the same, all 0, and certainly all different. Testing experts will tell you that test cases 
include all permutations of the different integers. So the test cases should include the max of (1, 2, 3), (1, 3, 2), (2, 
1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1).  Whenever negative numbers are allowed, write assertions with negative 
numbers.  
 This large number of test cases probably seems excessive, but it doesn't take much time. There are a large 
number of algorithms that will make maxOfThree work. I have personally seen many of these that work in most 
cases, but not all cases. Especially interesting are the test cases when two are equal (students often write > rather 
than >=).  So other test cases should include the max of (1, 2, 2), (2, 1, 2), and (2, 2, 1).  
 Since we can setup these test cases with the expected value and actual value next to each other and then run 
the tests once (or more than once if you detect a bug or use incorrect expected values).  This test method contains 
more assertions than you would typically need due to the nature of the problem where the largest could be any of 
the three arguments and any one could equal another two. 
 
  @Test 
  public void testMaxOfThree() { 
    ExampleMethods myMethods = new ExampleMethods(); 
 
    // All equal 
    assertEquals(5, myMethods.maxOfThree(5, 5, 5)); 
    assertEquals(-5, myMethods.maxOfThree(-5, -5, -5)); 
    assertEquals(0, myMethods.maxOfThree(0, 0, 0)); 
     
    // All permutations of 3 different arguments 
    assertEquals(3, myMethods.maxOfThree(1, 2, 3)); 
    assertEquals(3, myMethods.maxOfThree(1, 3, 2)); 
    assertEquals(3, myMethods.maxOfThree(2, 1, 3)); 
    assertEquals(3, myMethods.maxOfThree(2, 3, 1)); 
    assertEquals(3, myMethods.maxOfThree(3, 1, 2)); 
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    assertEquals(3, myMethods.maxOfThree(3, 2, 1)); 
    
    // All permutations of two integers that are the largest 
    assertEquals(2, myMethods.maxOfThree(1, 2, 2)); 
    assertEquals(2, myMethods.maxOfThree(2, 1, 2)); 
    assertEquals(2, myMethods.maxOfThree(2, 2, 1)); 
 
    // All permutations of two integers that are the smallest 
    assertEquals(2, myMethods.maxOfThree(1, 1, 2)); 
    assertEquals(2, myMethods.maxOfThree(2, 1, 1)); 
    assertEquals(2, myMethods.maxOfThree(1, 2, 1)); 
  } 
 

Self-Check 
4-10 Consider a method that takes three integer arguments representing the three sides of a triangle. The method 
must reports whether the triangle is scalene (three sides different), isosceles (two sides equal), equilateral, or not a 
triangle (cannot be). What tests should be written and for each, what should the result be?  

 

4-11 Boggle tests your ability to find words in a random array of dice with letters. Words must be in the range of 
3..16 characters inclusive. Method inRange(String str) must return true if the length of str is in the range 
of 3 through 16 characters inclusive. What tests should be written and for each, what should the result be?  
 
 

Answers to Self-Check Questions 
4-1  -a  String   -d  String 
 -b  concat   -e  There is no second parameter 
 -c  1   
 

4-2  -a  "abcxyz   -d   One too many arguments  
 -b  needs argument  -e   "abcwx yz" 
 -c  5 wrong type;   -f   "abcd" 

 

4-3    assertEquals("abc!", s.concat("!")); 
     assertEquals("abccba" , s.concat("cba")); 
     assertEquals("abc123", s.concat("123")); 

 

4-4       -a  String   -d  char 
       -b  replace   -e  char  
 -c   2   

 

4-5  -a  need 2 char arguments  -d   wrong type arguments.  Need char, not String 
 -b  "abZabZ"   -e   "XbcXbc" 
 -c  "aZcaZb   -f   Wrong type and number of arguments for concat 
 

4-6  assertEquals("TTbbcc", s.replace('a', 'T')); 
    assertEquals("aa  cc", s.replace('b', ' ')); 
    assertEquals("aabbYY", s.replace('c', 'Y')); 

   

4-7 a) @Test 
     public void testInRange() { 
       assertFalse(inRange(0)); 
       assertTrue(inRange(1)); 
       assertTrue(inRange(5)); 
       assertTrue(inRange(10)); 
       assertFalse(inRange(11));  
     } 
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      b)  public boolean inRange(int number) { 
       return (number >= 1) && (number <= 10);  
     } 

 
 

4-8 a)  @Test 
      public void testAverageThree() { 
        ExampleMethods myMethods = new ExampleMethods(); 
        assertEquals(0.0, myMethods.averageOfThree(0.0, 0.0, 0.0), 0.1); 
        assertEquals(90.0, myMethods.averageOfThree(90.0, 90.0, 90.0), 0.1); 
        assertEquals(82.5, myMethods.averageOfThree(90.0, 80.5, 77.0), 0.1); 
        assertEquals(-2.0, myMethods.averageOfThree(-1, -2, -3), 0.1);       
      } 
 

    b)  public double averageOfThree(double a, double b, double c) { 
       return (a + b + c) / 3.0; 
      } 
 

4-9 a)  @Test 
      public void testRemoveMiddleTwo() { 
        ExampleMethods myMethods = new ExampleMethods(); 
        assertEquals("", myMethods.removeMiddleTwo("12")); 
        assertEquals("ad", myMethods.removeMiddleTwo("abcd")); 
        assertEquals("ade", myMethods.removeMiddleTwo("abcde")); 
        assertEquals("abef", myMethods.removeMiddleTwo("abcdef"));      
      } 
 

b)   public String removeMiddleTwo(String str) { 
       int mid = str.length() / 2; 
       return str.substring(0, mid-1) + str.substring(mid + 1, str.length()); 
     } 
 
4-10  Equilateral: (5, 5, 5)   
           Isosceles with permutations: (3, 3, 2)  (2, 3, 3)  (3, 2, 3) 
           Scalene with permutations: (2, 3, 4)  (2 ,4, 3)  (3, 2, 4)  (3, 4, 2)  (4 , 2, 3)  (4, 3, 2)  
           Not a triangle and permutations: (1, 2, 3)  (1, 3, 2)  (2, 1, 3)  (2, 3, 1)  (3, 2, 1)  (3, 1, 2)  
           Not a triangle and permutations: (1, 2, 4)  (1, 4, 2)  (2, 1, 4)  (2, 4, 1)  (4, 2, 1)  (4, 1, 2)  
           Not a triangle and permutations: (0, 2, 3)  (1, 0, 2)  (2, 1, 0)  
           Not a triangle with negative lengths and permutations: (-1, 2, 3)  (1, -2, 3)  (1, 2, -3) 
           Not a triangle, all negative, but would be if equilateral if positive: (-5, -5, -5)  
 

4-11 @Test 
    public void testInRangeString() { 
      ExampleMethods myMethods = new ExampleMethods(); 
      assertFalse(myMethods.inRange("")); // Empty string 
      assertFalse(myMethods.inRange("ab")); // On the border -1 
      assertTrue(myMethods.inRange("abc")); // On the border 
      assertTrue(myMethods.inRange("abcd")); // On the border + 1 
      assertTrue(myMethods.inRange("abcdef")); // In the middle 
      assertTrue(myMethods.inRange("1234567890")); // In the middle 
      assertTrue(myMethods.inRange("123456789012345")); // On the border - 1 
      assertTrue(myMethods.inRange("1234567890123456")); // On the border 
      assertFalse(myMethods.inRange("12345678901234567")); // On the border + 1 
       }



 

 
Chapter 12 
 
 
 

Algorithm Analysis 
 
 
 
 
 
Goals 
• Analyze algorithms 
• Understand some classic searching and sorting algorithms 
• Distinguish runtime order: O(1), O(n), O(n log n), and O(n2)  
 
 

12.1 Algorithm Analysis 
This chapter introduces a way to investigate the efficiency of algorithms. Examples include searching for an 
element in an array and sorting elements in an array. The ability to determine the efficiency of algorithms allows 
programmers to better compare them. This helps when choosing a more efficient algorithm when implementing 
data structures. 
 An algorithm is a set of instructions that can be executed in a finite amount of time to perform some task. 
Several properties may be considered to determine if one algorithm is better than another. These include the 
amount of memory needed, ease of     implementation, robustness (the ability to properly handle exceptional 
events), and the relative efficiency of the runtime.  
 The characteristics of algorithms discussed in this chapter relate to the number of operations required to 
complete an algorithm. A tool will be introduced for measuring anticipated runtimes to allow comparisons. Since 
there is usually more than one algorithm to choose from, these tools help programmers answers the question: 
“Which algorithm can accomplish the task more efficiently?”  
 Computer scientists often focus on problems related to the efficiency of an algorithm: Does the algorithm 
accomplish the task fast enough? What happens when the number of elements in the collection grows from one 
thousand to one million? Is there an algorithm that works better for storing a collection that is searched 
frequently? There may be two different algorithms that accomplish the same task, but all other things being equal, 
one algorithm may take much longer than another when implemented and run on a computer.  
 Runtimes may be reported in terms of actual time to run on a particular computer. For example, 
SortAlgorithmOne may require 2.3 seconds to sort 2000 elements while SortAlgorithmTwo requires 5.7 seconds. 
However, this time comparison does not ensure that SortAlgorithmOne is better than SortAlgorithmTwo. There 
could be a good implementation of one algorithm and a poor implementation of the other. Or, one computer might 
have a special hardware feature that SortAlgorithmOne takes advantage of, and without this feature 
SortAlgorithmOne would not be faster than SortAlgorithmTwo. Thus the goal is to compare algorithms, not 
programs. By comparing the actual running times of SortAlgorithmOne and SortAlgorithmTwo, programs are 
being considered—not their algorithms. Nonetheless, it can prove useful to observe the behavior of algorithms by 
comparing actual runtimes — the amount of time required to perform some operation on a computer. The same 
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tasks accomplished by different algorithms can be shown to differ dramatically, even on very fast computers. 
Determining how long an algorithm takes to complete is known as algorithm analysis. 
 Generally, the larger the size of the problem, the longer it takes the algorithm to complete. For example, 
searching through 100,000 elements requires more operations than searching through 1,000 elements. In the 
following discussion, the variable n will be used to suggest the "number of things".  
 We can study algorithms and draw conclusions about how the implementation of the algorithm will behave. 
For example, there are many sorting algorithms that require roughly n2 operations to arrange a list into its natural 
order. Other algorithms can accomplish the same task in n * log 2 n operations. There can be a large difference in 
the number of operations needed to complete these two different algorithms when n gets very large. 
 Some algorithms don't grow with n. For example, if a method performs a few additions and assignment 
operations, the time required to perform these operations does not change when n increases. These instructions are 
said to run in constant time. The number of operations can be described as a constant function f(n) = k, where k is 
a constant.  
 Most algorithms do not run in constant time. Often there will be a loop that executes more operations in 
relation to the size of the data variable such as  searching for an element in a collection, for example. The more 
elements there are to locate, the longer it can take. 
 Computer scientists use different notations to characterize the runtime of an algorithm. The three major 
notations O(n),  Ω(n), and Θ(n) are pronounced “big-O”, “big-Omega”, and “big-Theta”, respectively. The big-O 
measurement represents the upper bound on the runtime of an algorithm; the algorithm will never run slower than 
the specified time. Big-Omega is symmetric to big-O. It is a lower bound on the running time of an algorithm; the 
algorithm will never run faster than the specified time. Big-Theta is the tightest bound that can be established for 
the runtime of an algorithm. It occurs when the big-O and Omega running times are the same, therefore it is 
known that the algorithm will never run faster or slower then the time specified. This textbook will introduce and 
use only big-O. 
 When using notation like big-O, the concern is the rate of growth of the function instead of the precise 
number of operations. When the size of the problem is small, such as a collection with a small size, the 
differences between algorithms with different runtimes will not matter. The differences grow substantially when 
the size grows substantially. 
 Consider an algorithm that has a cost of n2 + 80n + 500 statements and expressions. The upper bound on the 
running time is O(n2) because the larger growth rate function dominates the rest of the terms. The same is true for 
coefficients and constants. For very small values of n, the coefficient 80 and the constant 500 will have a greater 
impact on the running time. However, as the size grows, their impact decreases and the highest order takes over. 
The following table shows the growth rate of all three terms as the size, indicated by n, increases.  

Function growth and weight of terms as a percentage of all terms as n increases 

n f(n) n2 80n 500 
10 1,400 100  (  7%) 800  (57%) 500  (36%) 

100 18,500 10,000  (54%) 8,000  (43%) 500  (  3%) 
1000 1,0805,000 1,000,000  (93%) 80,000  ( 7%) 500  (  0%) 

10000 100,800,500 100,000,000  (99%) 800,000  ( 1%) 500  (  0%) 
 
This example shows that the constant 500 has 0% impact (rounded) on the running time as n increases. The 
weight of this constant term shrinks to near 0%. The term 80n has some impact, but certainly not as much as the 
term n2, which raises n to the 2nd power. Asymptotic notation is a measure of runtime complexity when n is large. 
Big-O ignores constants, coefficients, and lower growth terms.  
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12.2 Big-O Definition 
The big-O notation for algorithm analysis has been introduced with a few examples, but now let’s define it a little 
further. We say that f(n) is O(g(n)) if and only if there exist two positive constants c and N such that  f(n) <= 
c*g(n) for all n > N. We say that g(n) is an asymptotic upper bound for f(n). As an example, consider this graph 
where f(n) = n2 + 2n + 3 and g(n) = c*n2 

 

   Show that f(n) = n2 + 2n + 3 is O(n2) 
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To fulfill the definition of big-O, we only find constants c and N at the point in the graph where c*g(n) is greater 
than f(n). In this example, this occurs when c is picked to be 2.0 and N is 4. The above graph shows that if n < N, 
the function g is at or below the graph of f. In this example, when n ranges from 0 through 2, g(n) < f(n). c*g(n) is 
equal to f(n) when c is 2 and n is 3 (2*32 == 18 as does 32+2*3+3). And for all n >= 4, f(n) <= c*g(n). Since g(n) 
is larger than f(n) when c is 2.0 and N >= 4, it can be said that f(n) is O(g(n)). More specifically, f(n) is O(n2).   
 The g(n) part of these charts could be any of the following common big-O expressions that represent the 
upper bound for the runtime of algorithms: 

Big-O expressions and commonly used names 
O(1)   constant (an increase in the size of the problem (n) has no effect) 
O(log n)  logarithmic (operations increase once each time n doubles)  
O(n)   linear 
O(n log n)  n log n  (no abbreviated name, also John "computational biologist" K's licence plate) 
O(n2)  quadratic 
O(n3)  cubic 
O(2n)  exponential 
 
 
 

Properties of Big-O 
When analyzing algorithms using big-O, there are a few properties that will help to determine the upper bound of 
the running time of algorithms.   
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Property 1, coefficients: If f(n) is x * g(n) then f(n) is O(g(n)) 
This allows the coefficient (x) to be dropped. 
Example: 
 f(n) = 100*g(n) 
 then f(n) is O(n) 
 
Property 2, sum: If f1(n) is O(g(n)) and f2(n) is O(g(n)) then f1(n) + f2(n) is O(g(n)) 
This property is useful when an algorithm contains several loops of the same order. 
Example:  
 f1(n) is O(n)  
 f2(n) is O(n)  
 then f1(n) + f2(n) is O(n) + O(n), which is O(n) 
 
Property 3, sum: If f1(n) is O(g1(n)) and f2(n) is O(g2(n)) then f1(n) + f2(n) is O(max(g1(n), g2(n))). This property 
works because we are only concerned with the term of highest growth rate. 
Example:  
 f1(n) is O(n2)  
 f2(n) is O(n)  
 so f1(n) + f2(n) = n2 + n, which is O(n2) 
 
Property 4, multiply: If f1(n) is O(g1(n)) and f2(n) is O(g2(n)) then f1(n) ∗ f2(n) is O(g1(n) ∗ g2(n)). This property 
is useful for analyzing segments of an algorithm with nested loops. 
Example:  
 f1(n) is O(n2)  
 f2(n) is O(n)  
 then f1(n) ∗ f2(n) is O(n2) ∗ O(n),  which is O(n3) 
 

12.3 Counting Operations 
We now consider one technique for analyzing the runtime of algorithms—approximating the number of 
operations that would execute with algorithms written in Java. This is the cost of the code. Let the cost be defined 
as the total number of operations that would execute in the worst case. The operations we will measure may be 
assignment statements, messages, and logical expression evaluations, all with a cost of 1. This is very general and 
does not account for the differences in the number of machine instructions that actually execute. The cost of each 
line of code is shown in comments. This analysis, although not very exact, is precise enough for this illustration. 
In the following code, the first three statements are assignments with a cost of 1 each. 

Example 1 
  int n = 1000;                   // 1 instruction 
  int operations = 0;             // 1 
  int sum = 0;                    // 1 
  for (int j = 1; j <= n; j++) {  // 1 + (n+1) +  n  
    operations++;                 // n 
    sum += j;                     // n 
  } 
 
The loop has a logical expression j ≤ n that evaluates n + 1 times. (The last time it is false.) The increment j++ 
executes n times. And both statements in the body of the loop execute n times. Therefore the total number of 
operations f(n) = 1 +1 + 1 + 1 + (n+1) + n + n + n = 4n + 5. To have a runtime O(n), we must find a real constant 
c and an integer constant N such that 4n +5 ≤ cN for all N > n.  There are an infinite set of values to choose from, 
for example c = 6 and N = 3, thus 17 ≤ 18. This is also true for all N > 3, such as when N = 4 (21 ≤ 24) and when 
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N = 5 (25 < 30). A simpler way to determine runtimes is to drop the lower order term (the constant 5) and the 
coefficient 4. 
 

Example 2 
A sequence of statements that does not grow with n is O(1) (constant time). For example, the following algorithm 
(implemented as Java code) that swaps two array elements has the same runtime for any sized array. f(n) = 3, 
which is O(1). 
 
  private void swap(String[] array, int left, int right)  { 
    String temp = array[left];      // 1 
    array[left] = array[right];     // 1 
    array [right] = temp;           // 1 
  } 
 
For a runtime O(1), we must find a real constant c and an integer constant N such that f(n) = 3 ≤ cN. For example, 
when c = 2 and N = 3 we get 3 ≤ 6.  
 

Example 3 
The following code has a total cost of 6n + 3, which after dropping the coefficient 6 and the constant 3, is O(n). 
 
 

  // Print @ for each n            
  for (int i = 0; i < 2 * n; i++)  // 1 + (2n+1) + 2n 
    System.out.print("@");         // 2n+1 
 
To have a runtime O(n), we must find a real constant c and an integer constant N such that f(n) = 2n+1 ≤ cN.  For 
example, c = 4 and N = 3 (7 ≤ 12).  
 

Example 4 
Algorithms under analysis typically have one or more loops. Instead of considering the comparisons and 
increments in the loop added to the number of times each instruction inside the body of the loop executes, we can 
simply consider how often the loop repeats. A few assignments before or after the loop amount to a small constant 
that can be dropped. The following loop, which sums all array elements and finds the largest, has a total cost of 5n 
+ 1. The runtime once again, after dropping the coefficient 5 and the constant 1, is O(n).  
 

  double sum = 0.0;             // 1 
  double largest = a[0];        // 1 
  for (int i = 1; i < n; i++) { // 1 + n + (n-1) 
    sum += a[i];                // n-1 
    if (a[i] > largest)         // n-1 
      largest = a[i];           // n-1, worst case: a[i] > largest always 
  } 
 

Example 5 
In this next example, two loops execute some operation n times. The total runtime could be described as O(n) + 
O(n). However, a property of big O is that the sum of the same orders of magnitude is in fact that order of 
magnitude (see big-O properties below). So the big-O runtime of this algorithm is O(n) even though there are two 
individual for loops that are O(n).  
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  // f(n) = 3n + 5 which is O(n) 
  // Initialize n array elements to random integers from 0 to n-1 
  int n = 10;                                            // 1 
  int[] a = new int[n];                                  // 1 
  java.util.Random generator = new java.util.Random();   // 1 
  for (int i = 0; i < n; i++)                            // 2n + 2       
    a[i] = generator.nextInt(n);                         // n 
   
 
  // f(n) = 5n + 3 which is O(n) 
  // Rearrange array so all odd integers in the lower indexes 
  int indexToPlaceNextOdd = 0;            // 1 
  for (int j = 0; j < n; j++) {           // 2n + 2     
    if (a[j] % 2 == 1) {                  // n: worst case whn all elements are all odd 
      // Swap the current element into 
      // the sub array of odd integers 
      swap(a, j, indexToPlaceNextOdd);    // n  
      indexToPlaceNextOdd++;              // n       
    } 
  } 
 
To reinforce that O(n) + O(n) is still O(n), all code above can be counted as f(n)= 8n + 8, which is O(n). To have a 
runtime O(n), use c = 12 and N = 4 where 10n+8 ≤ cN, or  40 ≤ 48. 
 

Example 6 
The runtime of nested loops can be expressed as the product of the loop iterations. For example, the following 
inner loop executes (n-1) + (n-2) + (n-3) + ... + 3 + 2 + 1 times, which is n/2 operations. The outer loop executes 
the inner loop n-1 times. The inner loop executes (n-1)*(n/2) twice, which is n2 – n operations. Add the others to 
get f(n) = 3n2+4n-2. After dropping the coefficient from n2 and the lower order terms 4n and –2, the runtime is 
O(n2). 
 
  // Rearrange arrays so integers are sorted in ascending order 
  for (int top = 0; top < n - 1; top++) {        // 2n + 1 
    int smallestIndex = top;                     //  n - 1 
    for (int index = top; index < n; index++) {  // (n-1)*(2n) 
      if (a[index] < a[smallestIndex])           // (n-1)*(n/2) 
        smallestIndex = index;                   // (n-1)*(n/2) at worst  
    } 
    swap(a, top, smallestIndex);                 // 3n 
  } 
 
To have a runtime O(n2), use c = 4 and N = 4 where 3n2 + 4n - 2  ≤ cN, or  62 ≤ 64. 
 

Example 7 
If there are two or more loops, the longest running loop takes precedence. In the following example, the entire 
algorithm is O(n2) + O(n). The maximum of these two orders of magnitudes is O(n2). 
 
  int operations = 0;                          // 1 
 int n = 10000;                               // 1 
 // The following code runs O(n*n)       
 for (int j = 0; j < n; j++)                  // 2n+2 
   for (int k = 0; k < n; k++)                // n*(2n+2) 
     operations++;                            // n*(2n+2) 
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 // The following code runs O(n) 
 for (int i = 0; i < n; i++)                  // 2n+2 
   operations++;                              // n 
 
Since f(n) = 4n2+9n+6 < cn2 for c = 6.05 when N = 5, f(n) is O(n2).  

Tightest Upper Bound 
Since big-O notation expresses the notion that the algorithm will take no longer to execute than this measurement, 
it could be said, for example, that sequential search is O(n2) or even O(2n). However, the notation is only useful 
by stating the runtime as a tight upper bound. The tightest upper bound is the lowest order of magnitude that still 
satisfies the upper bound. Sequential search is more meaningfully characterized as O(n). 
 Big-O also helps programmers understand how an algorithm behaves as n increases. With a linear algorithm 
expressed as O(n), as n doubles, the number of operations doubles. As n triples, the number of operations triples. 
Sequential search through a list of 10,000 elements takes 10,000 operations in the worst case. Searching through 
twice as many elements requires twice as many operations. The runtime can be predicted to take approximately 
twice as long to finish on a computer.   
 Here are a few algorithms with their big-O runtimes. 
 
• Sequential search (shown earlier) is O(n) 
• Binary search (shown earlier) is O(log n) 
• Many sorting algorithms such as selection sort (shown earlier) are O(n2)  
• Some faster sort algorithms are O(n log n) — one of these (Quicksort) will be later  
• Matrix multiplication is O(n3)  

 
 

Self-Check 
 
12-1 Arrange these functions by order of growth from highest to lowest 

100*n2     1000     2n     10*n       n3      2*n 
 
12-2 Which term dominates this function when n gets really big, n2, 10n, or 100?  

n2 + 10n + 100 
 
12-3. When n = 500 in the function above, what percentage of the function is the term? 
 
12-4 Express the tightest upper bound of the following loops in big-O notation. 
 

a) int sum = 0; 
int n = 100000; 

d) for (int j = 0; j < n; j++) 
  sum++; 
for (int j = 0; j < n; j++) 
  sum--; 

b) int sum = 0; 
for (int j = 0; j < n; j++) 
  for (int k = 0; k < n; k++) 
     sum += j * k; 

 

e) 
 
for (int j = 0; j < n; j++) 
  sum += j; 
 

 
c) 

 
for (int j = 0; j < n; j++) 
  for (int k = 0; k < n; k++) 
    for (int l = 0; l < n; l++) 
      sum += j * k * l; 

f) for (int j = 1; j < n; j *= 2) 
  sum += j;   
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Search Algorithms with Different Big-Os 
A significant amount of computer processing time is spent searching. An application might need to find a specific 
student in the registrar's database. Another application might need to find the occurrences of the string "data 
structures" on the Internet. When a collection contains many, many elements, some of the typical operations on 
data structures—such as searching—may become slow. Some algorithms result in programs that run more quickly 
while other algorithms noticeably slow down an application.  

Sequential Search 
This sequential search algorithm begins by comparing the first element in the array. 
 

sequentially compare all elements, from index 0 to size-1 { 
      if searchID equals ID of the object  
           return a reference to that object 
} 
return null because searchID does not match any elements from index 0..size-1 
 

If there is no match, the second element is compared, then the third, up until the last element. If the element being 
sought is found, the search terminates.  Because the elements are searched one after another, in sequence, this 
algorithm is called sequential search. However since the worst case is a comparison of all elements and the 
algorithm is O(n), it is also known as linear search. 
 The binary search algorithm accomplishes the same task as sequential search. Binary search is more efficient. 
One of its preconditions is that the array must be sorted. Half of the elements can be eliminated from the search 
every time a comparison is made. This is summarized in the following algorithm: 

Algorithm: Binary Search, use with sorted collections that can be indexed  
while the element is not found and it still may be in the array { 
     Determine the position of the element in the middle of the array as middle 
     If arraymiddle equals the search string 
           return arraymiddle 
     If arraymiddle is not the one being searched for:  
           remove the half of the sorted array that cannot contain the element form further searches 
} 

 
Each time the search element is compared to one array element, the binary search effectively eliminates half the 
remaining array elements from the search. This makes binary search O(n log n) 
 When n is small, the binary search algorithm does not see a gain in terms of speed. However when n gets 
large, the difference in the time required to search for an element can make the difference between selling the 
software and having it unmarketable. Consider how many comparisons are necessary when n grows by powers of 
two. Each doubling of n would require potentially twice as many loop iterations for sequential search. However, 
the same doubling of n would only require potentially one more comparison for binary search. 
Maximum number of comparisons for two different search algorithms 
Power 
of  2 

n Sequential  
Search 

Binary 
Search 

22 4 4 2 
24 16 16 4 
28 128 128 8 
212 4,096 4,096 12 
224 16,777,216 16,777,216 24 

 

As n gets very large, sequential search has to do a lot more work. The numbers above represent the maximum 
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number of iterations necessary to search for an element. The difference between 24 comparisons and almost 17 
million comparisons is quite dramatic, even on a fast computer. Let us analyze the binary search algorithm by 
asking, "How fast is Binary Search?" 
 The best case is when the element being searched for is in the middle—one iteration of the loop. The upper 
bound occurs when the element being searched for is not in the array. Each time through the loop, the "live" 
portion of the array is narrowed to half the previous size. The number of elements to consider each time through 
the loop begins with n elements (the size of the collection) and proceeds like this: n/2, n/4, n/8, ... 1. Each term in 
this series represents one comparison (one loop iteration). So the question is "How long does it take to get to 1?" 
This will be the number of times through the loop.  Another way to look at this is to begin to count at 1 and 
double this count until the number k is greater than or equal to n.  
 

 1, 2, 4, 8, 16, ... , k >= n         or   20, 21, 22, 23, 24, ... , 2c >= n 
 
The length of this series is c+1. The number of loop iterations can be stated as “2 to what power c is greater than 
or equal to n?” . 
 

if n is 2, c is 1 
if n is 4, c is 2 
if n is 5, c is 3 
if n is 100, c is 7 
if n is 1024, c is 10 
if n is 16,777,216, c is 24    

 
In general, as the number of elements to search (n) doubles, binary search requires only one more iteration to 
effectively remove half of the array elements from the search. The growth of this function is said to be 
logarithmic. Binary search is O(log n). The base of the logarithm (2) is not written, for two reasons:  
 
• The difference between log2n and log3n is a constant factor and constants are not a concern.  
• The convention is to use base 2 logarithms. 
 
The following graph illustrates the difference between linear search, which is O(n), and binary search, which 
takes at most log2n comparisons.  
 

Comparing O(n) to O(log n) 
 
 
 
 
 
 
 
 
 
 
 
 
To further illustrate, consider the following experiment: using the same array of objects, search for every element 
in that array. Do this using both linear search and binary search. This experiment searches for every single list 
element. There is one O(n) loop that calls the binary search method with an O(log n) loop. Therefore, the time to 
search for every element using binary search indicates an algorithm that is O(n log n).  
 
 
 

log 
n 

n 

f(n) 
n 
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Searching for every element in the array (1.3 gig processor, 512 meg RAM):  
       Binary Search for every element O(n log n)                          Sequential search for every element O(n2) 

n Binary 
Search 

#operations 

average 
operations 
per search 

total  
time in 

seconds 

 Sequential 
Search 

#operations 

average 
operations  
per search 

total time 
in 

seconds 
100 588 5.9 0.00  5,050 50.5 0.0 

1,000 9,102 9.1 0.01  500,500 500.5 0.3 
10,000 124,750 12.4 0.30  5,0005,000 5,000.5 4.7 

100,000 1,581,170 15.8 2.40  5,000,050,000 50,000.5 1,168.6 
 
The time for sequential search also reflects a search for every element in the list. An O(n) loop calls a method that 
in turn has a loop that executes operations as follows (searching for the first element requires 1 comparison, 
searching for the second element requires 2 comparisons, and searching for the last two elements requires n-1 and 
n operations).   

 1 + 2 + 3 +, ... + n-2 + n-1 + n  
 
This sequence adds up to the sum of the first n integers: n(n+1)/2. So when n is 100, 100(100+1)/2 = 5050 
operations are required. The specific number of operations after removing the coefficient 1/2 is n*(n+1). 
Sequentially searching for every element in a list of size n is O(n2). Notice the large difference when n is 100,000: 
1,168 seconds for the O(n2) algorithm compared to 4.5 seconds for the O(n log n) operation. 
 One advantage of sequential search is that it does not require the elements to be in sorted order. Binary search 
does have this precondition. This should be considered when deciding which searching algorithm to use in a 
program. If the program is rarely going to search for an item, then the overhead associated with sorting before 
calling binary search may be too costly. However, if the program is mainly going to be used for searching, then 
the time expended sorting the list may be made up with repeated searches. 
 

12.5 Example Logarithm Functions 
Here are some other applications that help demonstrate how fast things grow if doubled and how quickly 
something shrinks if repeatedly halved. 

1. Guess a Number between 1 and 100 
Consider a daily number game that asks you to guess some number in the range of 1 through 1000. You could 
guess 1, then 2, then 3, all the way up to 1000. You are likely to guess this number in 500 tries, which grows in a 
linear fashion. Guessing this way for a number from 1 to 10,000 would likely require 10 times as many tries. 
However, consider what happens if you are told your guess is either too high, too low, or just right 
 Try the middle (500), you could be right. If it is too high, guess a number that is near the middle of 1..499 
(250). If your initial guess was too low, check near middle of 501..1000 (750). You should find the answer in 2c 

>= 1000 tries. Here, c is 10. Using the base 2 logarithm, here is the maximum number of tries needed to guess a 
number in a growing range. 

from 1..250, a maximum of 2c >= 250, c == 8 
from 1..500, a maximum of 2c >= 500, c == 9 
from 1..1000, a maximum of 2c >= 1000, c == 10 
 

2. Layers of Paper to Reach the Moon 
Consider how quickly things grow when doubled. Assuming that an extremely large piece of paper can be cut in 
half, layered, and cut in half again as often as you wish, how many times do you need to cut and layer until paper 
thickness reaches the moon? Here are some givens: 
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1. paper is 0.002 inches thick 
2. distance to moon is 240,000 miles 
3. 240,000 * 5,280 feet per mile * 12 inches per foot =  152,060,000,000 inches to the moon  

3. Storing Integers in Binary Notation 
Consider the number of bits required to store a binary number. One bit represents two unique integer values: 0 
and 1. Two bits can represent the four integer values 0 through 3 as 00, 01, 10, and 11. Three bits can store the 
eight unique integer values 0 through 7 as 000, 001, 010, ... 111. Each time one more bit is used twice as many 
unique values become possible. 

4. Payoff for Inventing Chess 
It is rumored that the inventor of chess asked the grateful emperor to be paid as follows: 1 grain of rice on the first 
square, 2 grains of rice on the next, and double the grains on each successive square. The emperor was impressed 
until later that month he realized that the 264 grains of rice on the 64th square would be enough rice to cover the 
earth's surface.  
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Answers to Self-Check Questions 
12-1 order of growth, highest to lowest 
  -1   2n  (2 to the nth power) -3  100*n2 -5  2*n 
  -2   n3         -4  10*n  -6  1000 
  

12-2  n2   dominates the function 
 

12-3 percentage of the function 
   n2  =  98% 
   10n  =  1.96% 
   100  =  0.0392% 
  

12-4 tightest upper bounds 
   -a  O(1)                                   -d  O(n) 
   -b  O(n2) On the order of n squared  -e  O(n) 
   -c  O(n3)      -f  O(log n) 
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Generic Collections 
 
 
 
 
 
Goals 
• Introduce class Object and inheritance 
• Show how one collection class can store any type of element using Object[] 
 
 
 

13.1   A Generic Collection with Object[] 
The StringBag class shown earlier is a collection type that could only store one type of element. If you wanted 
to store a collection of Integer objects you would need a new type perhaps named IntegerBag. Rather than 
implementing a new class for each type, Java provides two approaches to allow for just one collection class to 
store any type of elements:  
 

1. Store references to Object objects rather than just String (this section) 
2. Use Java generics with a type parameter like <E> (in a later section of this chapter) 

 

We'll consider the first option now, which requires knowledge of Java's Object class, inheritance, and casting. 
 Java's Object class has one constructor (no arguments) and 11 methods, including equals and toString. All 
classes in Java extend the Object class or another class that extends Object. There is no exception to this. All 
classes inherit the methods of the Object class.  
 One class inherits the methods and instance variables of another class with the keyword extends. For 
example, the following class heading explicitly states that the EmptyClass class inherits all of the method of class 
Object. If a class heading does not have extends, the compiler automatically adds extends Object. 

 
// This class extends Object even if extends Object is omitted 
public class EmptyClass extends Object { 
} 

 

Even though this EmptyClass defines no methods, a programmer can construct and send messages to EmptyClass 
objects. This is possible because a class that extends Object inherits (obtains) Object’s methods. A class that 
extends another is called a subclass. Here are three of the methods that EmptyClass inherits from the Object 
class: 
 

Two Methods of the Object Class 
• toString returns a String that is the class name concatenated with the at symbol (@) and a hexadecimal 

(base 16) number related to locating the object at runtime. 
• equals returns true if both the receiver and argument reference the same object. 
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Additionally, a class that does not declare a constructor is given a default constructor. This is to ensure that 
constructor for Object gets invoked. The following code is equivalent to that shown above 
 
// This class extends Object implicitly 
public class EmptyClass { 
  public EmptyClass() { 
    super();    // Explicitly call the constructor of the superclass, which is Object 
  } 
} 
 
This following code shows these two methods used by a class that extends class Object.   

 
  EmptyClass one = new EmptyClass(); 
  EmptyClass two = new EmptyClass(); 
 
  assertFalse(one.equals(two)); // passes 
  System.out.println(two.toString()); 
  System.out.println(one.toString()); 
 
  one = two;    // The variable two will now reference the same object as one 
  assertTrue(one.equals(two)); 
  System.out.println("after assignment->"); 
  System.out.println(two.toString()); 
  System.out.println(one.toString()); 

Output 
EmptyClass@8813f2 
EmptyClass@1d58aae 
after assignment-> 
EmptyClass@8813f2 
EmptyClass@8813f2 
 
The Object class captures methods that are common to all Java objects. Java makes sure that all classes extend 
the Object class because there are several things that all objects must be capable of in order to work with Java's 
runtime system. For example, Object’s constructor gets invoked for every object construction to help allocate 
computer memory for the object at runtime. The class also has methods to allow different processes to run at the 
same time, allowing applications such as Web browsers to be more efficient. Java programs can download several 
files while browsing elsewhere, while creating another image, and so on.  

One-way Assignment Compatibility 
Because all classes extend Java’s Object class, a reference to any type of object can be assigned to an Object 
reference variable. For example, consider the following valid code that assigns a String object and an 
EmptyClass object to two different reference variables of type Object: 
 
  String aString = new String("first"); 
  // Assign a String reference to an Object reference 
  Object obj1 = aString; 
 
  EmptyClass one = new EmptyClass(); 
  // Assign an EmptyClass reference to an Object reference 
  Object obj2 = one; 
 
Java’s one-way assignment compatibility means that you can assign a reference variable to the class that it 
extends. However, you cannot directly assign in the other direction. For example, an Object reference cannot be 
directly assigned to a String reference. 

 
  Object obj = new Object(); 
  String str = obj; 
    Type mismatch: cannot convert from Object to String 
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This compile time error occurs because the compiler recognizes that obj is a reference to an Object that cannot 
be assigned down to a String reference variable. 

 This GenericList class uses Object parameters in the add and remove methods, an Object return type 
in the get method, and an array of Objects as the instance variable to store any type element that can be 
assigned to Object (which is any Java type).  The SimpleList interface was introduced at the end of the 
previous chapter. 
 
public class GenericList implements SimpleList {   
 
  private Object[] elements; 
  private int n; 
 
  // Construct an empty list 
  public GenericList() { 
    elements = new Object[10]; 
  } 
 
  // Provide access to the number of meaningful list elements 
  public int size() { 
    return n; 
  } 
 
  // Add an element to the end of this list 
  public void add(Object elementToAdd) { 
    elements[n] = elementToAdd; 
    n++; 
  } 
 
  // Retrieve a reference to an element 
  public Object get(int index) { 
    return elements[index]; 
  } 
} 
 
 
This design allows one class to store collections with any type of elements: 
 
  @Test 
  public void testGenericity() { 
    GenericList names = new GenericList(); 
    names.add("Kim"); 
    names.add("Devon"); 
 
    GenericList accounts = new GenericList(); 
    accounts.add(new BankAccount("Speilberg", 1942)); 
 
    GenericList numbers = new GenericList(); 
    numbers.add(12.3); 
    numbers.add(4.56); 
  } 

 

In such a class, a method that returns a value would have to return an Object reference.  
 
  public Object get(int index) { 
    return elements[index]; 
  } 

 
 

This approach requires a cast. You have to know the type stored.  
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  @Test 
  public void testGet() { 
    GenericList strings = new GenericList(); 
    strings.add("A"); 
    strings.add("B"); 
    String firstElement = (String) strings.get(0); 
    assertEquals("A", firstElement); 
  } 
 
With this approach, programmers always have to cast, something Java software developers had been complaining 
about for years (before Java 5). With this approach, you also have to be wary of runtime exceptions. For example, 
even though the following code compiles, when the test runs, a runtime error occurs.  
 
  @Test 
  public void testGetWithLoop() { 
    GenericList strings = new GenericList(); 
    strings.add("A"); 
    strings.add("B"); 
    // Using Object objects for a generic collection is NOT type safe. 
    // Any type of object can be added accidentally (not usually desirable). 
    strings.add(123); 
 
    // The attempt to cast different types of elements fails when index == 2: 
    for (int index = 0; index < 3; index++) { 
      String theString = (String) strings.get(index); 
      System.out.println(theString.toLowerCase()); 
    } 
  } 
 

  java.lang.ClassCastException: java.util.Integer 
 
strings.get(2) returns a reference to an integer, which the runtime treats as a String in the cast. A 
ClassCastException occurs because a String cannot be cast to an integer. In a later section, Java Generics will 
be shown as a way to have a collection store a specific type.  One collection class is all that is needed, but the 
casting and runtime error will disappear. 
 
 

Self-Check 
13-1 Which statements generate compiletime errors?   
      Object anObject = "3";            // a. 
      int anInt = anObject;             // b. 
      String aString = anObject;        // c. 
      anObject = new Object();          // d. 
 
13-2 Which letters represent valid assignment statements that compile? 
      Object obj = "String";            // a. 
      String str = (String)obj;         // b. 
      Object obj2 = new Point(3, 4);    // c. 
      Point p = (String)obj2;           // d. 
 
13-3  Which statements generate compile time errors? 
      Object[] elements = new Object[5]; // a. 
      elements[0] = 12;                  // b. 
      elements[1] = "Second";            // c. 
      elements[2] = 4.5;                 // d. 
      elements[3] = new Point(5, 6);     // e. 
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Collections of Primitive Types 
Collections of the primitive types such int, double, char can also be stored in a generic class. The type 
parameter could be one of Java's "wrapper" classes (or had to be wrapped before Java 5). Java has a "wrapper" 
class for each primitive type named Integer, Double, Character, Boolean, Long, Short, and Float. A 
wrapper class does little more than allow a primitive value to be viewed as a reference type that can be assigned to 
an Object reference. A GenericList of integer values can be stored like this: 
 
  GenericList tests = new GenericList(); 
  tests.add(new Integer(79)); 
  tests.add(new Integer(88)); 
 
However, since Java 5, integer values can also be added like this: 
 
  tests.add(76); 
  tests.add(100); 
 
Java now allows primitive integers to be treated like objects through the process known as autoboxing. 

Autoboxing / Unboxing 
Before Java 5, to treat primitive types as reference types, programmers were required to "box" primitive values in 
their respective "wrapper" class. For example, the following code was used to assign an int to an Object 
reference. 
 
  Integer anInt = new Integer(123); // Wrapper class needed for an int 
  tests.add(anInt);                 // to be stored as an Object reference 
 
To convert from reference type back to a primitive type, programmers were required to "unbox" by asking the 
Integer object for its intValue like this: 
 

  int primitiveInt = anInt.intValue();   
   
Java 5.0 automatically performs this boxing and unboxing. 
 

  Integer anotherInt = 123;              // autobox 123 as new Integer(123) 
  int anotherPrimitiveInt = anotherInt;  // unboxed automatically 
 
This allows primitive literals to be added. The autoboxing occurs automatically when assigning the int arguments 
79 and 88 to the Object parameter of the add method. 
 
  GenericList tests = new GenericList(); 
  tests.add(79); 
  tests.add(88); 
 
However, with the current implementation of GenericList, we still have to cast the return value from this get 
method.  
 
  public Object get(int atIndex)  { 
    return elements[index]; 
 } 
   
The compiler sees the return type Object that must be cast to whatever type of value happens to stored at 
elements[index]: 
 
 Integer anInt = (Integer)tests.get(0); 
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Self-Check 
 

13-4  Place a check mark √ in the comment after assignment statement that compiles (or leave blank).  

    Object anObject = new Object(); 
    String aString = "abc"; 
    Integer anInteger = new Integer(5); 
    anObject = aString;    // ______ 
    anInteger = aString;   // ______ 
    anObject = anInteger;  // ______ 
    anInteger = anObject;  // ______ 
 
13-5  Place a check mark √ in the comment after assignment statement that compiles (or leave blank). 

    Object anObject = new String("abc"); 
    Object anotherObject = new Integer(50); 
    Integer n = (Integer) anObject;          // ______ 
    String s = (String) anObject;            // ______ 
    anObject = anotherObject;                // ______ 
    String another = (String) anotherObject; // ______ 
    Integer anotherInt = (Integer) anObject; // ______ 
 
 
13-6  Place a check mark √ in the comment after assignment statement that compiles (or leave blank). 

    Integer num1 = 5;           // ______ 
    Integer num2 = 5.0;         // ______ 
    Object num3 = 5.0;          // ______ 
    int num4 = new Integer(6);  // ______ 
 
 
 

13.2   Java Generics with Type Parameters 
The manual boxing, the cast code, and the problems associated with collections that can accidentally add the 
wrong type element are problems that all disappeared in Java 5. Now the programmer can specify the one type 
that should be stored by passing the type as an argument to the collection class. Type parameters and arguments 
parameters are enclosed between < and > rather than ( and ).  Now these safer collection classes look like this: 
 
public class ListTypeParameter<E> { 
 
  private Object[] elements; 
  private int n; 
 
 
  public ListTypeParameter() { 
    elements = new Object[10]; 
    n = 0; 
  } 
 
  public int size() { 
    return n; 
  } 
 
  // Retrieve a reference to an element 
  // Precondition: index >= 0 && index < size() 
  public void add(E element) {  
    elements[n] = elementToAdd; 
    n++; 
  } 
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  // Place the cast code here once so no other casting code is necessary  
  public E get(int index) {  
    return (E)elements[index]; 
  } 
} 
 
Instances of ListTypeParameter would now be constructed by passing the type of element as an argument to the 
class: 
 
ListTypeParameter<String> strings = new ListTypeParameter<String>(); 
ListTypeParameter<Integer> tests = new ListTypeParameter<Integer>(); 
ListTypeParameter<BankAccount> accounts = new ListTypeParameter<BankAccount>(); 
 
In the add method, Object is replaced with E so only elements of the type argumentString, Integer or 
BankAccount abovecan be added to that collection. 
 The compiler catches accidental calls to add with the wrong type of argument. For example, the following 
three attempts to add the wrong type generate compiletime errors. This is a good thing. It is better than waiting 
until runtime when the program would otherwise terminate.  
 
strings.add(123); 
The method add(String) in the type ListTypeParameter<String> is not applicable for the arguments (int) 
 
tests.add("a String"); 
The method add(Integer) in the type ListTypeParameter<Integer> is not applicable for the arguments (String) 
 
You also don’t have to manually box primitives during add messages. 
 

tests.add(89); 
tests.add(77); 
tests.add(95);  
Nor do the return values need to be cast since the cast to the correct type is done in the get method. 
 
strings.add("First"); 
strings.add("Second"); 
String noCastToStringNeeded = strings.get(0);  
   
And in the case of Integer, the Integer object is automticallyunboxed to a primitive int. 
 

int sum = 0; 
for (int i = 0; i < tests.size(); i++) { 
  sum += tests.get(i); // no cast needed because get already casts to (E) 
} 
 
Using Java generic type arguments does require extra syntax when constructing a collection (two sets of angle 
brackets and the type to be stored twice). However the benefits include much less casting syntax, the ability to 
have collections of primitives where the primitives appear to be objects, and we gain the type safety that comes 
from allowing the one type of element to be maintained by the collection. The remaining examples in this 
textbook will use Java Generics with < and > rather than having parameters and return types of type Object.  

Self-Check 
 
13-7 Give the following code, print all elements in uppercase. Hint no cast required before sending a message 
 
    ListTypeParameter<String> strings = new ListTypeParameter<String>(); 
    strings.add("lower"); 
    strings.add("Some UpPeR"); 
    strings.add("ALL UPPER");  
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Answers to Self-Check Questions 
 

13-1 which have errors? b and c 
  -b cannot assign an Object to an Integer 
  -c cannot assign an Object to a String even when it references a String 
  
13-2 a, b, and c.  In d, the compiler notices the attempt to store a String into a Point? 
    Point p = (String)obj2;           // d. 
 

13-3  None 
 
13-4 anObject = aString;    // __x___ 
    anInteger = aString;   // Can't assign String to Integer 
    anObject = anInteger;  // __x___ 
    anInteger = anObject;  // Can;t assign Obect to Integer 
 
13-5 Integer n = (Integer) anObject;          // __x___ 
    String s = (String) anObject;            // __x___ 
    anObject = anotherObject;                // __x___ 
    String another = (String) anotherObject; // __x___ 
    Integer anotherInt = (Integer) anObject; // __x___ 
 
13-6 Integer num1 = 5;           // _x_ 
    Integer num2 = 5.0;         // ___ 
    Object num3 = 5.0;          // _x_ 
    int num4 = new Integer(6);  // _x_ 
 
 
13-7  for (int i = 0; i < strings.size(); i++) { 
      System.out.println(strings.get(i).toUpperCase()); 
    } 



 

 

 

Chapter 14 
 

Interfaces 
 
 
 
Goals 

• Understand what it means to implement a Java interface 
• Use the Comparable interface to have any type of elements sorted and binary searched 
• Show how a Java interface can specify a type 

 

14.1  Java Interfaces    
Java has 422 interfaces. Of the 1,732 Java classes, 646 classes or 37%, implement one or more interfaces. 
Considering the large number of interfaces in Java and the high percentage of Java classes that implement the 
interfaces, interfaces should be considered to be an important part of the Java programming language. Interfaces 
are used for several reasons: 
 

• Guarantee a class has a particular set of methods and catch errors at compile-time rather than runtime. 
• Implement the same behavior with different algorithms and data structures where one may be better in 

some circumstances, and the other better in other circumstances. 
• Treat a variety of types as the same type where the same message results in different behavior  
• Provide programming projects that guarantee the required methods have the required method signature 
• In larger projects, develop software using an interface before the completed implementation  

 
You will not be asked to write the interfaces themselves (like the TimeTalker interface below). Instead, you will 
be asked to write a class that implements an interface. The interface will be given to you in programming 
projects.  
 A Java interface begins with a heading that is similar to a Java class heading except the keyword 
interface is used. A Java interface cannot have constructors or instance variables. A Java interface will be 
implemented by one or more Java classes that add instance variables and have their own constructors. A Java 
interface specifies the method headings that someone decided would represent what all instances of the class 
must be able to do.  
 Here is a sample Java interface that has only one method. Although not very useful, it provides a simple first 
example of an interface and the classes that implement the interface in different ways. 
 
// File name: TimeTalker.java 
// An interface that will be implemented by several classes 
public interface TimeTalker { 
  // Return a representation of how each implementing class tells time 
  public String tellMeTheTime(); 
} 
 

For each interface, there are usually two or more classes that implement it. Here are three classes that 
implement the TimeTalker interface. One instance variable has been added to store the name of any 
TimeTalker. A constructor was also needed to initialize this instance variable with anybody's name. 
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// File name: FiveYearOld.java 
// Represent someone who cannot read time yet. 
public class FiveYearOld implements TimeTalker { 
  String name; 
 
  public FiveYearOld(String name) { 
    name = name; 
  } 
 
  public String tellMeTheTime() { 
    return name + " says it's morning time"; 
  } 
} 
 
 
// File name: DeeJay.java 
// A "hippy dippy" DJ who always mentions the station 
public class DeeJay implements TimeTalker { 
  String name; 
 
  public DeeJay(String name) { 
    name = name; 
  } 
 
  public String tellMeTheTime() { 
    return name + " says it's 7 oh 7 on your favorite oldies station"; 
  } 
} 
 
 
// File name: FutureOne.java 
// A "Star–Trekker" who speaks of star dates 
public class FutureOne implements TimeTalker { 
  String name; 
 
  public FutureOne(String name) { 
    name = name; 
  } 
 
  public String tellMeTheTime() { 
    return name + " says it's star date 78623.23"; 
  } 
} 
 
One of several reasons that Java has interfaces is to allow many classes to be treated as the same type. To 
demonstrate that this is possible, consider the following code that stores references to three different types of 
objects as TimeTalker variables. 
 
  // These three objects can be referenced by variables  
  // of the interface type that they implement. 
  TimeTalker youngOne = new FiveYearOld("Pumpkin"); 
  TimeTalker dj = new DeeJay("WolfMan Jack"); 
  TimeTalker captainKirk = new FutureOne("Jim"); 
  System.out.println(youngOne.tellMeTheTime()); 
  System.out.println(dj.tellMeTheTime()); 
  System.out.println(captainKirk.tellMeTheTime()); 

Output 
Pumpkin says it's morning time 
WolfMan Jack says it's 7 oh 7 on your favorite oldies station 
Jim says it's star date 78623.23 
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Because each class implements the TimeTalker interface, references to instances of these three 
classesFiveYearOld, DeeJay, and FutureOnecan be stored in the reference type variable TimeTalker. 
They can all be considered to be of type TimeTalker. However, the same message to the three different classes 
of TimeTalker objects results in three different behaviors. The same message executes three different methods 
in three different classes. 
 A Java interface specifies the exact method headings of the classes that need to be implemented. These 
interfaces capture design decisionswhat instances of the class should be able to dothat were made by a team 
of programmers.  
 

Self-Check 
14-1 Write classes Chicken and Cow that both implement this interface:  
 
  public interface BarnyardAnimal { 
    public String sound();   
  } 
 

The following assertions in this test method must pass.  
 
  @Test 
  public void animalsTest() { 
    BarnyardAnimal a1 = new Chicken("cluck"); 
    BarnyardAnimal a2 = new Cow("moo"); 
    assertEquals("cluck", a1.sound()); 
    assertEquals("moo", a2.sound()); 
    a1 = new Chicken("Cluck Cluck"); 
    a2 = new Cow("Moo Moo"); 
    assertEquals("Cluck Cluck", a1.sound()); 
    assertEquals("Moo Moo", a2.sound()); 
  } 
 
 
 

14.2   The Comparable Interface 
The compareTo method has been shown to compare two String objects to see if one was less than, greater than, 
or equal to another. This section introduces a general way to compare any objects with the same compareTo 
message. This is accomplished by having a class implement the Comparable interface. Java's Comparable 
interface has just one methodcompareTo.  
 
public interface Comparable<T> {  
 
 /*  
  * Returns a negative integer, zero, or a positive integer when this object is     
  * less than, equal to, or greater than the specified object, respectively. 
  */ 
  public int compareTo(T other); 
} 
 
The angle brackets represent a new syntactical element that specifies the type to be compared. Since any class can 
implement the Comparable interface, the T in <T> will be replaced with the class name that implements the 
interface. This ensures the objects being compared are the same class. This example shows how one class may 
implement the Comparable<T> interface with as little code as possible (it compiles, but makes no sense):  
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public class AsSmallAsPossible implements Comparable<AsSmallAsPossible> { 
 
  // No instance variables to compare, two AsSmallAsPossible objects are always equal 
 
  public int compareTo(AsSmallAsPossible other) { 
    // TODO Auto-generated method stub 
    return 0;   
  } 
} 
 
With this incomplete type only shown to demonstrate a class implementing an interface (it is useless otherwise), 
all AsSmallAsPossible objects would be considered equal since compareTo always returns 0.   
 When a class implements the Comparable interface, instances of that class are guaranteed to understand the 
compareTo message. Some Java classes already implement Comparable.1 Additionally, any class you write 
may also implement the Comparable interface. For example, to sort or binary search an array of BankAccount 
objects, BankAccount can be made to implement Comparable<BankAccount>. Then two BankAccount 
objects in an array named data can be compared to see if one is less than another: 
 
  // . . . in the middle of selection sort . . .  
  // Then compare all of the other elements, looking for the smallest  
  for(int index = top + 1; index < data.length; index++) { 
    if(data[index].compareTo(data[indexOfSmallest]) < 0 )  
      indexOfSmallest = index;  
  }  
  // . . .   
 
The expression highlighted above is true if data[index] is "less than" data[smallestIndex]. What "less 
than" means depends upon how the programmer implements the compareTo method. The compareTo method 
defines what is known as the "natural ordering" of objects. For strings, it is alphabetic ordering. For Double and 
Integer it is what we already know: 3 < 4 and 1.2 > 1.1, for example. In the case of BankAccount, we will see 
that one BankAccount can be made to be "less than" another when its ID precedes the other's ID alphabetically. 
The same code could be used to sort any type of objects as long as the class implements the Comparable 
interface.  Once sorted, the same binary search method could be used for any array of objects, as long as the 
objects implement the comparable interface. 
 To have a new type fit in with this general method for comparing two objects, first change the class heading 
so the type implements the Comparable interface. 
 
  public class BankAccount implements Comparable<BankAccount> { 
 
The <T> in the Comparable interface becomes <BankAccount>. If the class name were String, the heading 
would use <String> as in 
 
  public class String implements Comparable<String> { 
 
Adding implements is not enough. An attempt to compile the class without adding the compareTo method 
results in this compile time error: 
 
   The type BankAccount must implement the inherited abstract method    
   Comparable<BankAccount>.compareTo(BankAccount) 
 
Adding the compareTo method to the BankAccount class resolves the compile time error.  The heading must 
match the method in the interface. So the method must return an int. And the compareTo method really should 

                                                
1 Some of the Java classes that implement the Comparable interface are Character, File, Long, ObjectStreamField, Short, 
String, Float, Integer, Byte, Double, BigInteger, BigDecimal, Date, and CollationKey.  
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return zero, a negative, or a positive integer to indicate if the object before the dot (the receiver of the message) is 
equal to, less than, or greater than the object passed as the argument. This desired behavior is indicated in the 
following test method. 
 
  @Test 
  public void testCompareTo() { 
    BankAccount b1 = new BankAccount("Chris", 100.00); 
    BankAccount b2 = new BankAccount("Kim", 100.00); 
 
    // Note: The natural ordering is based on IDs, the balance is ignored 
    assertTrue(b1.compareTo(b1) == 0); // "Chris" == "Chris" 
    assertTrue(b1.compareTo(b2) < 0);  // "Chris" < "Kim" 
    assertTrue(b2.compareTo(b1) > 0);  // "Kim" > "Chris" 
  } 
 
Since the Comparable interface was designed to work with any Java class, the compareTo method must have a 
parameter of that same class.  
 
 /** 
   * This method allows for comparison of two BankAccount objects. 
   *  
   * @param other is the object being compared to this BankAccount. 
   * @return a negative integer if this object has an ID that alphabetically 
   * precedes other (less than), 0 if the IDs are equals, or a positive  
   * integer if this object follows other alphabetically (greater than). 
   */ 
  public int compareTo(BankAccount other) { 
    if (this.getID().compareTo(other.getID()) == 0) 
      return 0;  // This object "equals" other 
    else if (this.getID().compareTo(other.getID()) < 0) 
      return -1; // This object < other 
    else 
      return +1; // This object > other  
  }  
 
Or since String's compareTo method already exists, this particular compareTo method can be written more 
simply. 
 
  public int compareTo(BankAccount other) { 
    return this.getID().compareTo(other.getID()); 
  } 

The Implicit Parameter this 
The code shown above has getID() messages sent to this. In Java, the keyword this is a reference variable 
that allows an object to refer to itself. When this  is the receiver of a message, the object is using its own internal 
state (instances variables). Because an object sends messages to itself so frequently, Java provides a shortcut: 
this and the dot are not really necessary before the method name. Whereas the keyword this is sometimes 
required, it was not really necessary in the code above. It was used only to distinguish the two objects being 
compared. Therefore the method could also be written as follows: 
 
  public int compareTo(BankAccount other) { 
    return getID().compareTo(other.getID()); // "this." removed  
  } 
 
It's often a matter of taste of when to use this. You rarely need this, but this sometimes clarifies things. Here 
is an example where this is needed. Since the constructor parameters have the same names as the instance 
variables, the assignments currently have no effect.  
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public class BankAccount implements Comparable<BankAccount> { 
   
  // Instance variables that every BankAccount object will maintain. 
  private String ID; 
  private double balance; 
 
  public BankAccount(String ID, double balance) { 
    ID = ID; 
    balance = balance; 
  } 
 
If you really want to name instance variables the same as the constructor parameters, you must write this to 
distinguish the two. With the code above, the instance variables will never change to the expected values of the 
arguments. To fix this error, add this  to distinguish instance variables from parameters. 
 
  public BankAccount(String ID, double balance) { 
    this.ID = ID; 
    this.balance = balance; 
  } 

Self-Check 
 
14-2 Modify compareTo so it defines the natural ordering of BankAccount based on balances rather than IDs. 
One account is less than another if the balance is less than the other. The following assertions must pass. 
 
  @Test 
  public void testCompareTo() { 
    BankAccount b1 = new BankAccount("Chris", 111.11); 
    BankAccount b2 = new BankAccount("Chris", 222.22); 
    // Note: The natural ordering is based on the balance. IDs are ignored. 
    assertTrue(b1.compareTo(b1) == 0); // 111.11 == 111.11 
    assertTrue(b1.compareTo(b2) < 0);  // 111.11  < 222.22 
    assertTrue(b2.compareTo(b1) > 0);  // 222.22 > 111.11 
  } 
 

14.3   New Types Specified as Java Interfaces  
The Java interface can also be used to specify a type. For example, the following Java interface specifies the 
operations for a String-like type that has methods that actually change the objects of any class that implements 
MutableString. 
 
 
public interface MutableString { 
 
  /** 
   * Return the number of characters in this object 
   */ 
  public int length(); 
 
  /** 
   * Returns the character in this sequence at the specified index  
   */ 
  public char charAt(int index); 
 
  /** 
   * Change all lower case letters to upper case. 
   */ 
  public void toUpperCase(); 
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  /** 
   * Replaces each occurrence of oldChar with newChar. If oldChar 
   * does not exist, no change is made to this object  
   */ 
  public void replace(char oldChar, char newChar); 
 
  /** 
   * Add the chars in array at the end of this object. 
   */ 
  public void concatenate(char [] array); 
} 
 

An interface does not specify instance variables, constructors, or the algorithms for the methods specified in the 
interface. Comments and well-named identifiers imply the behavior of operations. This behavior can be made 
much more explicit with assertions. For example, the assertions shown in the following test methods help describe 
the behavior of add and size. This code assumes that a class named OurString implements interface 
MutableString and a constructor exists that takes a n array of char to initialize OurString objects. 
 
  @Test 
  public void testGetters() { 
    char[] toAdd = { 'a', 'b', 'c' }; 
    MutableString s = new OurString(toAdd); 
    assertEquals(3, s.length()); 
    assertEquals('a', s.charAt(0)); 
    assertEquals('b', s.charAt(1)); 
    assertEquals('c', s.charAt(2)); 
  } 
 
  @Test 
  public void testMakeUpper() { 
    MutableString s = new OurString(new char[] { 'a', '&', '1', 'z' }); 
    s.toUpperCase(); 
    assertEquals('A', s.charAt(0)); 
    assertEquals('&', s.charAt(1)); 
    assertEquals('1', s.charAt(2)); 
    assertEquals('Z', s.charAt(3)); 
  } 
 
  @Test 
  public void testConcatenate() { 
    char[] a1 = { 'a', 'b', 'c' }; 
    MutableString s = new OurString(a1); 
    // Pass an new array of char to concatenate as an argument 
    s.concatenate(new char[] { ',', 'D' }); 
    assertEquals(5, s.length()); 
    assertEquals('a', s.charAt(0)); 
    assertEquals('b', s.charAt(1)); 
    assertEquals('c', s.charAt(2)); 
    assertEquals(',', s.charAt(3)); 
    assertEquals('D', s.charAt(4)); 
  } 
 
Since the interface does not specify constructors and instance variables, the programmer is left to design the name 
of the class, the constructor, and a way to store the state of the objects. In the following design, the constructor 
takes an array of char and stores the characters in the first array.length locations of the char[] instance 
variable. Notice that the array is bigger than need be. This design uses a buffer--a place to store new characters 
during concatenate without growing the array. 
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public class OurString implements MutableString { 
 
  private char[] theChars; 
  private int n; // the number of meaningful characters in this object  
 
  /** 
   * Construct a mutable OurString object with an array of characters 
   */ 
  public OurString(char[] array) { 
    n = array.length; 
    theChars = new char[128]; 
    for (int i = 0; i < n; i++) 
      theChars[i] = array[i]; 
  } 
 
  /** 
   * Return the number of chars in this OurString object 
   */ 
  public int length() { 
    return n; 
  } 
 
  /** 
   * Returns the character in this sequence at the specified index. The first 
   * char value is at index 0, the next at index 1, and so on, as in array 
   * indexing. The index argument must be greater than or equal to 0, and less 
   * than the length of this sequence of characters 
   */ 
  public char charAt(int index) { 
    return theChars[index]; 
  } 
    
  // The other methods are written as stubs that need to be implemented. 
  // They don't work, but they are needed for this class to compile. 
 
  public void concatenate(char[] array) { 
    // TODO Auto-generated method stub 
  } 
 
  public void replace(char oldChar, char newChar) { 
    // TODO Auto-generated method stub 
  } 
 
  public void toUpperCase() { 
    // TODO Auto-generated method stub 
  } 
} 

 
Note: If you are using an integrated development environment (IDE), you can quickly obtain a class that 
implements an interface. That class will have all methods from the interface written as stubs to make things 
compile. A stub has a method heading and a body. For non void functions, the IDE will add some default return 
values such as return 0; from an int method. 
 Completing the other three methods in OurString is left as an optional exercise. 
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Answers to Self-Check Questions 
14-1 public class Chicken implements BarnyardAnimal { 
       private String mySound; 
 
       public Chicken(String sound) { 
         mySound = sound; 
       } 
 
       public String sound() { 
         return mySound; 
       } 
     } 
 
     public class Cow implements BarnyardAnimal { 
        private String mySound; 
 
        public Cow(String sound) { 
          mySound = sound; 
        } 
 
        public String sound() { 
          return mySound; 
        } 
      } 
 
14-2  public int compareTo(BankAccount other) { 
       double thisObjectsPennies = 100 * this.getBalance(); 
       double theOtherObjectsPennies = 100 * other.getBalance(); 
       return (int) thisObjectsPennies - (int) theOtherObjectsPennies; 
     } 
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Chapter 15 
 

Collection Considerations 
 

 
 
 
 
 
 

Goals 
 

• Distinguish Collection classes, data structures, and ADTs 
• Consider three data structures used in this textbook: array, singly linked, and tree 
• Observe that a Java interface can be used to specify a type to be implemented with   

                 different classes using different data structures 
 
 
 

15.1 ADTs, Collection Classes, and Data Structures 
A collection class is a Java class whose main purpose is to store, retrieve, and manage a collection of objects in 
some meaningful way. Collection classes have the following characteristics: 

 

• The main responsibility of a collection class is to store a collection of values. 
• Elements may be added and removed from the collection. 
• A collection class allows clients to access the individual elements. 
• A collection class may have search-and-sort operations for locating a particular element. 
• Some collections allow duplicate elements while other collections do not. 
• Some collections are naturally ordered while other collections are not. 

 

Some collection classes are designed to store large amounts of information where any element may need to be 
found quickly—to find a phone listing, for example. Other collections are designed to have elements that are 
added, removed, and changed frequently—an inventory system, for example. Some collections store elements in a 
first in first out basis—such as a queue of incoming packets on an Internet router. Other collections are used to 
help build computer systems—a stack that manages method calls, for example. 
 Collection classes support many operations. The following is a short list of operations that are common to 
many collection classes:  

 

• add Place an object into a collection (insertion point varies). 
• find Get a reference to an object in a collection so you can send messages to it.  
• remove Take the object out of the collection (extraction point varies). 
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The Java class is a convenient way to encapsulate algorithms and store data in one module. In addition to writing 
the class and method headings, decisions have to be made about what data structures to use.  

Data Structures 
A data structure is a way of storing data on a computer so it can be used efficiently. There are several 
structures available to programmers for storing data. Some are more appropriate than others, depending 
on how you need to manage your information. Although not a complete list, here are some of the storage 
structures you have or will see in this book: 
 

• arrays  (Chapters 7, 8, and 10) 
• linked structure (Chapter 16) 
• hash tables  (beyond the scope of this book) 
 
Data can be stored in contiguous memory with arrays or in non-contiguous memory with linked structures. Arrays 
allow you to reserve memory where each element can be physically located next to its predecessor and successor. 
Any element can be directly changed and accessed through an index.  
 
  String[] data = new String[5]; 
  data[0] = "Al"; 
  data[1] = "Di"; 
  data[2] = "Mo"; 
  data[3] = "Xu"; 
 
data (where data.length == 5): 
[0] [1] [2] [3] [4] 

"Al" "Di" "Mo" "Xu" null 

 
A singly linked structure contains nodes that store a reference to an element and a reference to another node. The 
reference to another node may be null to indicate there are no more elements stored. 
 

 
 
You will see that both of these storage mechanisms  arrays and linked structures  implement the same List 
ADT in subsequent chapters.  
 You will also see how binary trees store data that can be added, removed, and found more quickly. The 
following picture indicates a linked structure where each node contains a reference to data (integers are used here 
to save space) and references to two other nodes, or to nothing (shown as diagonal lines). 
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The hash table is another data structure uses a key—such as a student ID, employee number, or Social Security 
Number—to find the value very quickly. 
 

Array  
Index 

Key Value mapped to the key  
(null or five instance variables 

shown) 
[0] "1023"  "Devon" 40.0 10.50 1 'S' 

[1] null   null 

[2] "5462"  "Al" 42.5 12.00 2 'M' 

[3] null   null 

[4] "3343"  "Ali" 20.0 9.50 0 'S' 

…   

[753] "0930"  "Chris" 0.0 13.50 1 'S' 

 
 
Although hash tables are beyond the scope of this book, you will see collection classes using the other three data 
structures to implement abstract data types with a java class. 
 

Abstract Data Types  
An abstract data type (ADT) describes a set of data values and associated operations that are precisely specified 
independent of any particular implementation. An abstract data type can be specified using axiomatic semantics. 
For example, here is the Bag ADT as described by the National Institute of Standards and Technology (NIST)2.  
 
 
 
 
 
 

                                                
2     http://www.nist.gov/dads/HTML/bag.html 
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Bag 
 
Definition: An unordered collection of values that may have duplicates.  
 
Formal Definition: A bag has a single query function, occurencesOf(v, B), which tells how many 
copies of an element are in the bag, and two modifier functions, add(v, B) and remove(v, B). These may 
be defined with axiomatic semantics as follows. 
  
   1.   new() returns a bag  
   2.   occurencesOf(v, new()) = 0  
   3.   occurencesOf(v, add(v, B)) = 1 + occurencesOf(v, B) 3 
   4.   occurencesOf(v, add(u, B)) = occurencesOf(v, B) if v ≠ u  
   5.   remove(v, new()) = new()   
   6.   remove(v, add(v, B)) = B  
   7.   remove(v, add(u, B)) = add(u, remove(v, B)) if v ≠ u  
 
where B is a bag and u and v are elements.  
 
The predicate isEmpty(B) may be defined with the following additional axioms:  
 
   8.   isEmpty(new()) = true  
   9.   isEmpty(add(v, B)) = false  
 
Also known as multi-set.  
Note: A bag, or multi-set, is a set where values may be repeated. Inserting 2, 1, 2 into an empty set gives 
the set {1, 2}. Inserting those values into an empty bag gives {1, 2, 2}.  
 
 
Although an abstract data type describes how each operation affects data, an ADT 
 
• does not specify how data will be stored  
• does not specify the algorithms needed to accomplish the listed operations 
• is not dependent on a particular programming language or computer system.  
 
An ADT can also be described as a Java interface that specifies the operations and JUnit assertions to specify 
behavior. 
 

ADTs Described with Java Interfaces and JUnit Assertions 
The Java interface can also be used to specify an abstract data type. For example, the following Java interface 
specifies the operations for a Bag ADT as method headings. The new operation from NIST's Bag ADT is not 
included here simply because the Java interface does not allow constructor to be specified in an interface. We will 

                                                
3    This definition shows a bag B is passed as an argument. In an object-oriented language you send a message to an object of type B as in 
aBag.add("New Element); rather than add("New Element", aBag); 
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use new later when there is some class that implements the interface. The syntactic element <E> requires the class 
to specify the type of element to be stored.   
 
/** 
 * This interface specifies the methods for a Bag ADT. It is designed to be 
 * generic so any type of element can be stored. 
 */ 
public interface Bag<E> { 
 
  /** 
   * Add element to this Bag. 
   * @param element: The element to insert. 
   */ 
  public void add(E element); 
 
  /** 
   * Return true if no elements have been added to this bag. 
   * @return False if there is one or more elements in this bag. 
   */ 
  public boolean isEmpty(); 
 
  /** 
   * Return how many elements match element according to the equals method of 
   * the type specified at construction. 
   * @param element The element to count in this Bag. 
   */ 
  public int occurencesOf(E element); 
 
  /** 
   * Remove the first occurrence of element and return true if found. Otherwise 
   * leave this Bag unchanged. 
   * @param element: The element to remove 
   * @return true if element was removed, false if element was not equal to any 
   *         in this bag. 
   */ 
  public boolean remove(E element); 
} 
 

Like an ADT specified with axiomatic expressions, an interface does not specify the data structure and the 
algorithms to add, remove, or find elements. Comments and well-named identifiers imply the behavior of the 
operations; however the behavior can be made more explicit with assertions. For example, the assertions like 
those shown in the following test method help describe the behavior of add and occurencesOf. This code 
assumes that a class named ArrayBag implements interface Bag<E>. 
 
  @Test 
  public void testAddWithOccurencesOf() { 
    Bag<String> names = new ArrayBag<String>(); 
 
    // A new bag has no occurrences of any string 
    assertEquals(0, names.occurencesOf("NOT here")); 
    names.add("Sam"); 
    names.add("Devon"); 
    names.add("Sam"); 
    names.add("Sam"); 
    assertEquals(0, names.occurencesOf("NOT Here")); 
    assertEquals(1, names.occurencesOf("Devon")); 
    assertEquals(3, names.occurencesOf("Sam")); 
  } 
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If any assertion fails, either that assertion is stated incorrectly or a method such as isEmpty or add is incorrect. Or 
the constructor (new) may be wrong. In any case, you will know something is wrong with the concrete 
implementation or testing of the new type (a Java class). 

One Class, Any Type Element 
The Bag ADT from NIST does not specify what type of elements can be stored. The Bag interface uses 
type parameters top specify the type of elements that can be added, removed and gotten. Any class that 
implements the Bag interface above will be able to store the type of element with the type passed 
during the construction of the object. This is specified with the parameter <E> in add, occurencesOf, 
and remove. The compiler replaces the type specified in a construction wherever E is found. So, when a 
Bag is constructed to store BankAccount objects, you can add BankAccount objects. At compiletime, the 
parameter E in public void add(E element) is considered to be BankAccount. 
 
  Bag<BankAccount> accounts = new ArrayBag<BankAccount>(); 
  accounts.add(new BankAccount("Chris", 100.00)); 
  accounts.add(new BankAccount("Skyler", 2802.67)); 
  accounts.add(new BankAccount("Sam", 31.13)); 
 
When a Bag is constructed to store Point objects, you can add Point objects. At compile time, the parameter E 
in public void add(E element) is considered to be Point. 
 
  Bag<Point> points = new ArrayBag<Point>(); 
  points.add(new Point(2, 3)); 
  points.add(new Point(0, 0)); 
  points.add(new Point(-2, -1)); 
 
Since Java 5.0, you can add primitive values. This is possible because integer literals such as 100 are autoboxed 
as new Integer(100). At compiletime, the parameter E in public void add(E element) is considered to be 
Integer for the Bag ints.   
 
  Bag<Integer> ints = new ArrayBag<Integer>(); 
  ints.add(100); 
  ints.add(95); 
  ints.add(new Integer(95)); 
 
One of the advantages of using generics is that you cannot accidentally add the wrong type of element. Each of the 
following attempts to add the element that is not of type E for that instance results in a compiletime error.  
 
  ints.add(4.5); 
  ints.add("Not a double"); 
  points.add("A String is not a Point"); 
  accounts.add("A string is not a BankAccount"); 

 
A JUnit test describes the behavior of methods in a very real sense by sending messages and making assertions 
about the state of a Bag. The assertions shown describe operations of the Bag ADT in a concrete fashion.  

Not Implementing the Bag<E> interface 
This chapter does not have a class to implement the methods of the Bag<E> interface because it would have 
algorithms very similar to the non-generic StringBag from an earlier chapter. Additionally, the next chapter will 
implement a new interface (OurList) using a type parameter to give us a generic collection using an array 
instance variable. 
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Self-Check 
 
15-1 Write a test method for remove. 
15-2 Implement the remove method as if you were writing it inside the ArrayBag class when the class begins as 
 
// An ArrayBag object can store elements as a multi-set where elements can 
// "equals" each other.  There is no specific order to the elements. 
public class ArrayBag<E> implements Bag<E> { 
 
  // --Instance variables 
  private Object[] data; 
  private int n; 
 
  // Construct an empty bag that can store any type of element. 
  public ArrayBag() { 
    data = new Object[20]; 
    n = 0; 
  } 
 
  // Return true if there are 0 elements in this bag. 
   public boolean isEmpty() { 
    return n == 0; 
  } 
 
  // Add element to this bag 
  public void add(E element) { 
    data[n] = element; 
    n++; 
  } 
 
   // Add remove here 
} 
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Answers to Self-Check Questions 
 

15-1  One possible test method for  remove: 
 
 

  @Test 
  public void testRemove() { 
    Bag<String> names = new ArrayBag<String>(); 
    names.add("Sam"); 
    names.add("Chris"); 
    names.add("Devon"); 
    names.add("Sandeep"); 
 
    assertFalse(names.remove("Not here")); 
 
    assertTrue(names.remove("Sam")); 
    assertEquals(0, names.occurencesOf("Sam")); 
    // Attempt to remove after remove 
    assertFalse(names.remove("Sam")); 
    assertEquals(0, names.occurencesOf("Sam")); 
 
    assertEquals(1, names.occurencesOf("Chris")); 
    assertTrue(names.remove("Chris")); 
    assertEquals(0, names.occurencesOf("Chris")); 
 
    assertEquals(1, names.occurencesOf("Sandeep")); 
    assertTrue(names.remove("Sandeep")); 
    assertEquals(0, names.occurencesOf("SanDeep")); 
 
    // Only 1 left 
    assertEquals(1, names.occurencesOf("Devon")); 
    assertTrue(names.remove("Devon")); 
    assertEquals(0, names.occurencesOf("Devon")); 
  } 
  
 
15-2 remove method in the ArrayBag class 
 
  // Remove element if it is in this bag, otherwise return false. 
  public boolean remove(E element) { 
 
    for (int i = 0; i < n; i++) { 
      if (element.equals(data[i])) { 
        // Replace with the element at the send 
        data[i] = data[n - 1]; 
        // Reduce the size 
        n--; 
        return true; // Found--end the search 
      } 
    } 
    // Did not find element "equals" anything in this bag. 
    return false; 
  } 
 



 

 

Chapter 16 
 

A List ADT 
 
 
This chapter defines an interface that represents a List abstract data type. The class that implements this interface 
uses an array data structure to store the elements.  In the next chapter, we will see how this very same interface 
can be implementeded using a linked data structure.  

Goals 
• Introduce a List ADT 
• Implement an interface 
• Shift array elements during insertions and removals 
• Have methods throw exceptions and write tests to ensure that the methods do throw them. 
 

16.1 A List ADT 
A list is a collection where each element has a specific position—each element has a distinct predecessor (except 
the first) and a distinct successor (except the last). A list allows access to elements through an index. The list 
interface presented here supports operations such as the following: 
 

4. add, get, or remove an element at specific location in the list  
5. find or remove an element with a particular characteristic 

 
From an application point of view, a list may store a collection of elements where the index has some importance. 
For example, the following interface shows one view of a list that stores a collection of DVDs to order. The DVD 
at index 0, “The Matrix Revolutions”, has the top priority. The DVD at index 4 has a lower priority than the DVD 
at index 3. By moving any “to do” item up or down in the list, users reprioritize what movies to get next. Users 
are able to add and remove DVDs or rearrange priorities. 
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From an implementation point of view, your applications could simply use an existing Java collection class such 
as ArrayList<E> or LinkedList<E>. As is customary in a second level course in computer science, we will be 
implementing our own, simpler version, which will  
 

• enhance your ability to use arrays and linked structures (required in further study of computing). 
• provide an opportunity to further develop programming skills: coding, testing, and debugging. 
• help you understand how existing collection classes work, so you can better choose which one to use in 

programs.  

Specifying ADTs as Java Interfaces 
To show the inner workings of a collection class (first with an array data structure, and then later with a linked 
structure), we will have the same interface implemented by two different classes (see Chapter 17: A Linked 
Structure). This interface, shown below, represents one abstract view of a list that was designed to support the 
goals mentioned above.  

The interface specifies that implementing classes must be able to store any type of element through Java 
generics—List<E>, rather than List. One alternative to this design decision is to write a List class each time 
you need a new list of a different type (which could be multiple classes that are almost the same). You could 
implement a class for each type of the following objects: 

 
  // Why implement a new class for each type? 
  StringList stringList = new StringList(); 
  BankAccountList bankAccountList = new BankAccountList(); 
  DateList dateList = new DateList(); 
 
An alternative was shown with the GenericList class shown in the previous chapter. The method heading that 
adds an element would use an Object parameter and the get method to return an element would have an 
Object return type. 
   
  // Add any reference type of element (no primitive types)  
  public void add(Object element); 
 
  // Get any reference type of element (no primitive types)  
  public Object get(int index); 
 
Collections of this type require the extra effort of casting when getting an element. If you wanted a collection of 
primitives, you would have to wrap them. Additionally, these types of collections allow you to add any mix of 
types. The output below also shows that runtime errors can occur because any reference type can be added as an 
element. The compiler approves, but we get a runtime exception.  

 
  GenericList list = new GenericList(); 
  list.add("Jody"); 
  list.add(new BankAccount("Kim", 100)); 
  for (int i = 0; i < list.size(); i++) { 
    String element = (String) list.get(i); // cast required 
    System.out.println(element.toUpperCase()); 
  } 

Output: 
JODY 
Exception in thread "main" java.lang.ClassCastException: BankAccount 
 
The preferred option is to focus on classes that have a type parameter in the heading like this  
 
  public class OurList<E>  // E is a type parameter 
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Now E represents the type of elements to that can be stored in the collection. Generic classes provide the same 
services as the raw type equivalent with the following advantages: 

  

• require less casting 
• can store collections of any type, including primitives (at least give the appearance of) 
• generate errors at compile time when they are much easier to deal with 
• this approach is used in the new version of Java's collection framework 

 
Generic collections need a type argument at construction to let the compiler know which type E represents. When 
an OurList object is constructed with a <String> type argument, every occurrence of E in the class will be seen 
as String. 

 
  // Add a type parameter such as <E> and implement only one class 
  OurList<String> sl = new OurArrayList<String>(); 
  OurList<BankAccount> bl = new OurArrayList<BankAccount>(); 
  OurList<Integer> dl = new OurArrayList<Integer>(); 

 

Now an attempt to add a BankAccount to a list constructed to only store strings  
 

  sl.add(0, new BankAccount("Jody", 100)); 
 
results in this compiletime error: 
  
  The method add(int, String) in the type OurList<String> is not applicable for the arguments (int, BankAccount)  
 
 

16.2  A List ADT Specified as a Java interface 
Interface OurList specifies a reduced version of Java's List interface (7 methods instead of 25). By design, 
these methods match the methods of the same name found in the two Java classes that implement Java's List 
interface: ArrayList<E> and LinkedList<E>.  
 
/** 
 * This interface specifies the methods for a generic List ADT. It is designed to be  
 * with a type parameter so any type element can be stored.  Some methods will be  
 * implemented with an array data structure in this chapter and then as a  
 * linked structure in the chapter that follows.  
 * These 7 methods are a subset of the 25 methods specified in java.util.List<E> 
 */ 
 public interface OurList<E>  { 
 
  // Insert an element at the specified location 
  // Precondition: insertIndex >= 0 and insertIndex <= size() 
  public void add(int insertIndex, E element) throws IllegalArgumentException; 
 
  // Get the element stored at a specific index 
  // Precondition: insertIndex >= 0 and insertIndex < size() 
  public E get(int getIndex) throws IllegalArgumentException; 
 
  // Return the number of elements currently in the list 
  public int size(); 
 
  // Replace the element at a specific index with element 
  // Precondition: insertIndex >= 0 and insertIndex < size() 
  public void set(int insertIndex, E element) throws IllegalArgumentException; 
 
  // Return a reference to element in the list or null if not found. 
  public E find(E search); 
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  // Remove element specified by removalIndex if it is in range 
  // Precondition: insertIndex >= 0 and insertIndex < size() 
  public void removeElementAt(int removalIndex) throws IllegalArgumentException; 
 
  // Remove the first occurrence of element and return true or if the  
  // element is not found leave the list unchanged and return false 
  public boolean remove(E element); 
} 

OurArrayList<E> implements OurList<E> 
The following class implements OurList using an array as the structure to store elements. The constructor 
ensures the array has the capacity to store 10 elements. (The capacity can change). Since n is initially set to 0, the 
list is initially empty.  
 
public class OurArrayList<E> implements OurList<E> { 
   
 /** 
   * A class constant to set the capacity of the array.  
   * The storage capacity increases if needed during an add. 
   */ 
  public static final int INIITIAL_CAPACITY = 10; 
 
 /** 
   * A class constant to help control thrashing about when adding and  
   * removing elements when the capacity must increase or decrease. 
   */ 
  public static final int GROW_SHRINK_INCREMENT = 20; 
 
  // --Instance variables 
  private Object[] data; // Use an array data structure to store elements 
  private int n;         // The number of elements (not the capacity) 
 
  /** 
   * Construct an empty list with an initial default capacity.  
   * This capacity may grow and shrink during add and remove. 
   */ 
  public OurArrayList() { 
    data = new Object[INIITIAL_CAPACITY]; 
    n = 0; 
  } 
 

Whenever you are making a generic collection, the type parameter (such as <E>) does not appear in the 
constructor. Since the compiler does not know what the array element type will be in the future, it is declared to 
be an array of Objects so it can store any reference type.  
 The initial capacity of OurList object was selected as 10, since this is the same as Java's ArrayList<E>. This 
class does not currently have additional constructors to start with a larger capacity, or a different grow and shrink 
increment, as does Java's ArrayList. Enhancing this class in this manner is left as an exercise. 
 

size 
The size method returns the number of elements in the list which, when empty, is zero. 

 
  public void testSizeWhenEmpty() { 
    OurList<String> emptyList = new OurArrayList<String>(); 
    assertEquals(0, emptyList.size()); 
  } 

 
 

Because returning an integer does not depend on the number of elements in the collection, the size method 
executes in constant time. 
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/**  
  * Accessing method to determine how many elements are in this list. 
  * Runtime: O(1) 
  * @returns the number of elements in this list. 
  */ 
  public int size() { 
    return n; 
  } 

get 
OurList specifies a get method that emulates the array square bracket notation [] for getting a reference to a 
specific index. This implementation of the get method will throw an IllegalArgumentException if argument 
index is outside the range of 0 through size()-1. Although not specified in the interface, this design decision 
will cause the correct exception to be thrown in the correct place, even if the index is in the capacity bounds of the 
array. This avoids returning null or other meaningless data during a “get” when the index is in the range of 0 
through data.length-1 inclusive.  
 
/**  
  * Return a reference to the element at the given index.  
  * This method acts like an array with [] except an exception  
  * is thrown if index >= size().  
  * Runtime: O(1) 
  * @returns Reference to object at index if 0 <= index < size(). 
  * @throws IllegalArgumentException when index<0 or index>=size(). 
  */ 
  public E get(int index) throws IllegalArgumentException { 
    if (index < 0 || index >= size()) 
      throw new IllegalArgumentException("" + index); 
    return (E)data[index]; 
  } 
 
 
 

16.2 Exception Handling 
When programs run, errors occur. Perhaps an arithmetic expression results in division by zero, or an array 
subscript is out of bounds, or to read from a file with a name that simply does not exist. Or perhaps, the get 
method receives an argument 5 when the size was 5. These types of errors that occur while a program is running 
are known as exceptions.  
 The get method throws an exception to let the programmer using the method know that an invalid argument 
was passed during a message. At that point, the program terminates indicating the file name, the method name, 
and the line number where the exception was thrown. When size is 5 and the argument 5 is passed, the get 
method throws the exception and Java prints this information: 
 
java.lang.IllegalArgumentException: 5  
at OurArrayListTest.get(OurArrayListTest.java:108) 
 
Programmers have at least two options for dealing with these types of errors: 

 

• Ignore the exception and let the program terminate 
• Handle the exception 

 
Java allows you to try to execute methods that may throw an exception. The code exists in a try block—the 
keyword try followed by the code wrapped in a block, { }. 
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  try { 
     code that may throw an exception when an exception is thrown 
  } 
  catch(Exception anException) { 
     code that executes only if an exception is thrown from code in the above try block. 
  } 
A try block must be followed by a catch block—the keyword catch followed by the anticipated exception as a 
parameter and code wrapped in a block. The catch block contains the code that executes when the code in the 
try block causes an exception to be thrown (or called a method that throws an exception).  
 Because all exception classes extend the Exception class, the type of exception in as the parameter to catch 
could always be Exception. In this case, the catch block would catch any type of exception that can be thrown. 
However, it is recommended that you use the specific exception that is expected to be thrown by the code in the 
try block, such as IllegalArgumentException.  
 The following example will always throw an exception since the list is empty. Any input by the user for 
index will cause the get method to throw an exception.  
 
  Scanner keyboard = new Scanner(System.in); 
  OurArrayList<String> list = new OurArrayList<String>(); 
  int index = keyboard.nextInt(); 
 
  try { 
    String str = list.get(index); // When size==0, get always throws an exception 
  } 
  catch (IllegalArgumentException iobe) { 
    JOptionPane.showMessageDialog(null, "Application terminated. " 
                            + " If problem persists contact vendor"); 
  } 
 

 
 
If the size were greater than 0, the user input may or may not cause an exception to be thrown.  
 To successfully handle exceptions, a programmer must know if a method might throw an exception, and if so, 
the type of exception. This is done through documentation in the method heading.  
 
  public  E get(int index)throws IllegalArgumentException { 
 
A programmer has the option to put a call to get in a try block or the programmer may call the method without 
placing it in a try block. The option comes from the fact that IllegalArgumentException is a 
RuntimeException that needs not be handled. Exceptions that don’t need to be handled are called unchecked 
exceptions. The unchecked exception classes are those that extend RuntimeException, plus any Exception 
that you write that also extends RuntimeException. The unchecked exceptions include the following types (this 
is not a complete list): 

• ArithmeticException 
• ClassCastException 
• IllegalArgumentException 
• IllegalArgumentException 
• NullPointerException 
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Other types of exceptions require that the programmer handle them. These are called checked exceptions. There 
are many checked exceptions when dealing with file input/output and networking that must be surrounded by a try 
catch. For example when using the Scanner class to read input from a file, the constructor needs a 
java.io.File object. Because that constructor can throw a FileNotFoundException, the Scanner must be 
constructed in a try bock. 
 
Scanner keyboard = new Scanner(System.in); 
String fileName = keyboard.nextLine(); 
Scanner inputFile = null; 
 
try { 
  // Throws exception if file with the input name can not be found 
  inputFile = new Scanner(new File(filename));  
}  
catch (FileNotFoundException fnfe) { 
  JOptionPane.showMessageDialog(null, "File not found: '" + 
                                       fileName + "'"); 
} 
 
Output assuming the user entered WrongNameWhoops.data and that file name does not exist. 
 

 
 
 
 

Self-Check 
16-1 Which of the following code fragments throws an exception? 

-a  int j = 7 / 0; 
-b  String[] names = new String[5]; 
    names[0] = "Chris"; 
    System.out.println(names[1].toUpperCase()); 

-c  String[] names; 
    names[0] = "Kim"; 

16-2     Write a method that reads and prints all the lines in the file. 
 

Testing that the Method throws the Exception 
The get method is supposed to throw an exception when the index is out of bounds. To make sure this happens, 
the following test method will fail if the get method does not throw an exception when it is expected: 
 
  @Test  
  public void testEasyGetException() { 
    OurArrayList<String> list = new OurArrayList<String>(); 
    try { 
      list.get(0); // We want get to throw an exception . . . 
      fail();      // Show the red bar only if get did NOT throw the exception 
    }  
    catch (IllegalArgumentException iobe) {  
      // . . . and then skip fail() to execute this empty catch block  
    } 
  } 
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This rather elaborate way of testing—to make sure a method throws an exception without shutting down the 
program—depends on the fact that the empty catch block will execute rather than the fail method. The fail 
method of class TestCase automatically generates a failed assertion. The assertion will fail only when your 
method does not throw an exception at the correct time.  
 JUnit now provides an easier technique to ensure a method throws an exception. The @Test annotation takes 
a parameter, which can be the type of the Exception that the code in the test method should throw. The following 
test method will fail if the get method does not throw an exception when it is expected:  

 
  @Test(expected = IllegalArgumentException.class) 
  public void testEasyGetException() { 
    OurArrayList<String> list = new OurArrayList<String>(); 
    list.get(0);   // We want get to ensure this does throws an exception. 
  } 
 
We will use this shorter technique. 
 

add(int, E) 
An element of any type can be inserted into any index as long as it in the range of 0 through size() inclusive. Any 
element added at 0 is the same as adding it as the first element in the list. 

 
  @Test 
  public void testAddAndGet() { 
    OurList<String> list = new OurArrayList<String>(); 
    list.add(0, "First"); 
    list.add(1, "Second"); 
    list.add(0, "New first"); 
    assertEquals(3, list.size()); 
    assertEquals("New first", list.get(0)); 
    assertEquals("First", list.get(1)); 
    assertEquals("Second", list.get(2)); 
  } 
 
  @Test(expected = IllegalArgumentException.class) 
  public void testAddThrowsException() { 
    OurArrayList<String> list = new OurArrayList<String>(); 
    list.add(1, "Must start with 0");  
  } 
 

The add method first checks to ensure the parameter insertIndex is in the correct range. If it is out of range, 
the method throws an exception.  
 
 /** 
   * Place element at insertIndex.  
   * Runtime: O(n) 
   *  
   * @param element The new element to be added to this list 
   * @param insertIndex The location to place the new element. 
   * @throws IllegalArgumentException if insertIndex is out of range. 
   */ 
  public void add(int insertIndex, E element) throws IllegalArgumentException { 
    // Throw exception if insertIndex is not in range 
    if (insertIndex < 0 || insertIndex > size()) 
      throw new IllegalArgumentException("" + insertIndex); 
 
    // Increase the array capacity if necessary 
    if (size() == data.length) 
      growArray(); 
 



 
 

Chapter 16: A List ADT 
 

71 

    // Slide all elements right to make a hole at insertIndex 
    for (int index = size(); index > insertIndex; index--) 
      data[index] = data[index - 1]; 
 
    // Insert element into the "hole" and increment n. 
    data[insertIndex] = element; 
    n++; 
  } 
   
If the index is in range, the method checks if the array is full. If so, it calls the private helper method growArray 
(shown later) to increase the array capacity. A for loop then slides the array elements one index to the right to 
make a "hole" for the new element. Finally, the reference to the new element gets inserted into the array and n 
(size) increases by +1.  Here is a picture of the array after five elements are added with the following code: 
 
  OurList<String> list = new OurArrayList<String>(); 
  list.add(0, "A"); 
  list.add(1, "B"); 
  list.add(2, "C"); 
  list.add(3, "D"); 
  list.add(4, "E"); 
 
n: 5 
data: 
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 
"A" "B" "C" "D" "E" null null null null null 
 
At this point, an add(0, "F") would cause all array elements to slide to the right by one index. This leaves a 
"hole" at index 0, which is actually an unnecessary reference to the String object "A" in data[0]. This is okay, 
since this is precisely where the new element "F" should be placed. 
 
n: 5 
data: 
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 
"A" "A" "B" "C" "D" "E" null null null null 
 
After storing a reference to "F" in data[0] and increasing n, the instance variables should look like this: 
 
n: 6 
data: 
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 
"F" "A" "B" "C" "D" "E" null null null null 
 
An add operation may require that every reference slide to the bordering array location. If there are 1,000 
elements, the loop executes 1,000 assignments. Assuming that an insertion is as likely to be at index 1 as at index 
n-1 or any other index, the loop will likely average n/2 assignments to make a "hole" for the new element. With 
the possibility of growArray executing O(n), add, for all other cases, f(n) = n/2 + n or 1.5n. After dropping the 
coefficient 1.5, the runtime of add would still be O(n). The tightest upper bound is still O(n) even if growArray 
is called, since it too is O(n).  
 

find(E) 
The find method returns a reference to the first element in the list that matches the argument. It uses the equals 
method that is defined for that type. The find method returns null if the argument does not match any list 
element, again using the equals method for the type of elements being stored. Any class of objects that you store 
should override the equals method such that the state of the objects are compared rather than references. 
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 Searching for a String in a list of strings is easy, since the String equals method does compare the state of 
the object. You can simply ask to get a reference to a String by supplying the string you seek as an argument. 

 
  @Test 
  public void testFindWithStrings() { 
    OurList<String> list = new OurArrayList<String>(); 
    list.add(0, "zero"); 
    list.add(1, "one"); 
    list.add(2, "two"); 
    assertNotNull(list.find("zero")); 
    assertNotNull(list.find("one")); 
    assertNotNull(list.find("two")); 
  } 
 
A test should also exist to make sure null is returned when the string does not exist in the list 
 
  @Test   
  public void testFindWhenNotHere() { 
    OurList<String> names = new OurArrayList<String>(); 
    names.add(0, "Jody"); 
    names.add(1, "Devon"); 
    names.add(2, "Nar"); 
    assertNull(names.find("Not Here")); 
  } 
 
However, for most other types, searching through an OurArrayList object (or an ArrayList or  LinkedList 
object) requires the creation of a faked temporary object that "equals" the object that you wish to query or 
whose state you wish to modify. Consider the following test that establishes a small list for demonstration 
purposes. Using a small list of BankAccount objects, the following code shows a deposit of 100.00 made to one 
of the accounts. 
 
  @Test   
  public void testDepositInList() { 
    OurList<BankAccount> accountList = new OurArrayList<BankAccount>(); 
    accountList.add(0, new BankAccount("Joe", 0.00)); 
    accountList.add(1, new BankAccount("Ali", 1.00)); 
    accountList.add(2, new BankAccount("Sandeep", 2.00)); 
 
    String searchID = "Ali"; 
    // Make an account that EQUALS an element in the array (ID only needed 
    BankAccount searchAccount = new BankAccount(searchID, -999); 
    BankAccount ref = accountList.find(searchAccount); 
    ref.deposit(100.00); 
    // Make sure the correct element was really changed 
    ref = accountList.find(searchAccount); 
    assertEquals(101.00, ref.getBalance(), 1e-12); 
  } 
 

The code constructs a "fake" reference (searchAccount) to be compared to elements in the list. This temporary 
instance of BankAcccount exists solely for aiding the search process. To make an appropriate temporary search 
object, the programmer must know how the equals method returns true for this type when the IDs match exactly. 
(You may need to consult the documentation for equals methods of other type.) The temporary search account 
need only have the ID of the searched-for object—equals ignores the balance. They do not need to match the 
other parts of the real object's state.4 The constructor uses an initial balance of -999 to emphasize that the other 
parameter will not be used in the search.  
                                                

4 This is typical when searching through indexed collections. However, there are better ways to do the same thing. Other 
collections map a key to a value. All the programmer needs to worry about is the key, such as an account number or student ID. There is no 
need to construct a temporary object or worry about how a particular equals method works for many different classes of objects. 
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 The find method uses the sequential search algorithm to search the unsorted elements in the array structure. 
Therefore it runs O(n).  
 
 /** 
   * Return a reference to target if target "equals" an element in this list, 
   * or null if not found.  
   * Runtime: O(n) 
   * @param target The object that will be compared to list elements. 
   * @returns Reference to first object that equals target (or null). 
   */   
   public E find(E target) { 
     // Get index of first element that equals target 
     for (int index = 0; index < n; index++)  { 
       if (target.equals(data[index])) 
         return data[index]; 
     } 
     return null; // Did not find target in this list 
   } 
 
The following test method builds a list of two BankAccount objects and asserts that both can be successfully 
found.  
 
  @Test   
  public void testFindWithBankAccounts() { 
    // Set up a small list of BankAccounts 
    OurList<BankAccount> list = new OurArrayList<BankAccount>(); 
    list.add(0, new BankAccount("zero", 0.00)); 
    list.add(1, new BankAccount("one", 1.00)); 
 
    // Find one 
    BankAccount fakedToFind = new BankAccount("zero", -999); 
    BankAccount withTheRealBalance = list.find(fakedToFind); 
 
    // The following assertions expect a reference to the real account 
    assertNotNull(withTheRealBalance); 
    assertEquals("zero", withTheRealBalance.getID()); 
    assertEquals(0.00, withTheRealBalance.getBalance(), 1e-12); 
 
    // Find the the other 
    fakedToFind = new BankAccount("one", +234321.99); 
    withTheRealBalance = list.find(fakedToFind); 
   
    // The following assertions expect a reference to the real account 
    assertNotNull(withTheRealBalance); 
    assertEquals("one", withTheRealBalance.getID()); 
    assertEquals(1.00, withTheRealBalance.getBalance(), 1e-12); 
  } 
And of course we should make sure the find method returns null when the object does not "equals" any element 
in the list: 
 
@Test   
  public void testFindWhenElementIsNotThere() { 
    OurList<BankAccount> list = new OurArrayList<BankAccount>(); 
    list.add(0, new BankAccount("zero", 0.00)); 
    list.add(1, new BankAccount("one", 1.00)); 
    list.add(2, new BankAccount("two", 2.00)); 
    BankAccount fakedToFind = new BankAccount("Not Here", 0.00); 
    // The following assertions expect a reference to the real account 
    assertNull(list.find(fakedToFind)); 
  } 
  
The other methods of OurList are left as an optional exercise. 
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Answers to Self-Check Questions 
16-1 which throws an exception? a, b, and c 
 -a- / by 0  
 -b- NullPointerException because names[1] is null 
 -c- No runtime error, but this is a compiletime error because names is not initialized 
 
16-2  read in from a file 
 
    public void readAndPrint(String fileName) { 
      Scanner inputFile = null; // To avoid compiletime error later 
      try { 
        inputFile = new Scanner(new File(fileName)); 
      } 
      catch (FileNotFoundException e) { 
        e.printStackTrace(); 
      } 
 
      while (inputFile.hasNextLine()) { 
         System.out.println(inputFile.nextLine()); 
      } 
    } 



 

 

Chapter 17 
 

A Linked Structure 
 
 
 
 
This chapter demonstrates the OurList interface implemented with a class that uses a linked structure rather than 
the array implementation of the previous chapter. The linked version introduces another data structure for 
implementing collection classes: the singly linked structure. 
 
Goals 

• Show a different way to elements in a collection class 
• See how nodes can be linked 
• Consider the differences from arrays in order to such as sequencing through elements that are no longer in 

contiguous memory 
 
 

17.1    A Linked Structure 
A collection of elements can be stored within a linked structure by storing a reference to elements in a node and a 
reference to another node of the same type. The next node in a linked structure also stores a reference to data and 
a reference to yet another node. There is at least one variable to locate the beginning, which is named first here 
  first 

  

 

 

 

         null  Joe Sue  Kim 

 
A linked structure with three nodes  
 
Each node is an object with two instance variables: 
 

1. A reference to the data of the current node  ("Joe", "Sue", and "Kim" above) 
2. A reference to the next element in the collection, indicated by the arrows 

 
The node with the reference value of null indicates the end of the linked structure. Because there is precisely one 
link from every node, this is a singly linked structure. (Other linked structures have more than one link to other 
nodes.)  
 A search for an element begins at the node referenced by the external reference first. The second node can 
be reached through the link from the first node. Any node can be referenced in this sequential fashion. The search 
stops at the null terminator, which indicates the end. These nodes may be located anywhere in available memory. 
The elements are not necessarily contiguous memory locations as with arrays. Interface OurList will now be 
implemented using many instances of the private inner class named Node.  
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/** 
 * OurLinkedList is a class that uses an singly linked structure to  
 * store a collection of elements as a list. This is a growable coll- 
 * ection that uses a linked structure for the backing data storage.  
 */ 
public class OurLinkedList<E> implements OurList<E> { 
  // This private inner class is accessible only within OurLinkedList. 
  // Instances of class Node will store a reference to the same  
  // type used to construct an OurLinkedList<Type>.  
  private class Node  { 
    // These instance variables can be accessed within OurLinkedList<E> 
    private E data;     
    private Node next;  
 
    public Node(E element) { 
      data = element; 
      next = null; 
    } 
  } // end class Node 
 
  // TBA: OurLinkedList instance variables and methods 
 
} // end class OurLinkedList  

 
The Node instance variable data is declared as Object in order to allow any type of element to be stored in a 
node. The instance variable named next is of type Node. This allows one Node object to refer to another instance 
of the same Node class. Both of these instance variables will be accessible from the methods of the enclosing 
class (OurLinkedList) even though they have private access.  

We will now build a linked structure storing a collection of three String objects. We let the Node reference 
first store a reference to a Node with "one" as the data. 
 
  // Build the first node and keep a reference to this first node 
  Node first = new Node("one"); 
    
 

 

 

 

 

 null 

 first 

"one" 

 
The following construction stores a reference to the string "second". However, this time, the reference to the 
new Node object is stored into the next field of the Node referenced by first. This effectively adds a new node 
to the end of the list. 
 

 // Construct a second node referenced by the first node's next  
 first.next = new Node("Second"); 
  
 

 

 

 

 

first "Second" "one" 
 null 

 
 
The code above directly assigned a reference to the next instance variable. This unusual direct reference to a 
private instance variable makes the implementation of OurLinkedList than having a separate class as some 
textbooks use. Since Node is intimately tied to this linked structure  and it has been made an inner class  you 
will see many permitted assignments to both of Node's private instance variables, data and next. 
 This third construction adds a new Node to the end of the list.  The next field is set to refer to this new node 
by referencing it with the dot notation first.next.next.  
 

public Node(Object objectReference) { 
  data = objectReference; 
  next = null; 
} 
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  // Construct a third node referenced by the second node's next 
  Node temp = new Node("Third"); 
  // Replace null with the reference value of temp (pictured as an arrow) 
  first.next.next = temp; 
 
The following picture represents this hard coded (not general) list:  

 

 

 

 

 

 

first 

"Second" "one"  null "Third" 

temp 

                                                                                                                                                        
                                                                          
                                                                                  first.next.next 
 

The Node reference variable named first is not an internal part of the linked structure. The purpose of first is 
to find the beginning of the list so algorithms can find an insertion point for a new element, for example.  
 In a singly linked structure, the instance variable data of each Node refers to an object in memory, which 
could be of any type. The instance variable next of each Node object references another node containing the next 
element in the collection. One of these Node objects stores null to mark the end of the linked structure. The 
null value should only exist in the last node.  

Self-Check 
Use this linked structure to answer the questions that follow. 
 
 
 
 
 
 
17-1 What is the value of first.data? 
17-2  What is the value of first.next.data? 
17-3 What is the value of first.next.next.next.data? 
17-4 What is the value of first.next.next.next? 

Each node stores a reference to the element 
A linked structure would be pictured more accurately with the data field shown to reference an object 
somewhere else in memory.  
 

 

 

 
 

 

 

 

first  

"one"  "Second"  "Third"  

Three linked nodes  

The elements referenced 

from the linked nodes  

 null  

 
However, it is more convenient to show linked structures with the value of the element written in the node, 
especially if the elements are strings. This means that even though both parts store a reference value (exactly four 
bytes of memory to indicate a reference to an object), these structures are often pictured with a box dedicated to 
the data value, as will be done in the remainder of this chapter.  The reference values, pictured as arrows, are 
important. If one of these links becomes misdirected, the program will not be able to find elements in the list. 

 

"Bob"  

first  

"Chris " 

"Zorro " 

"Yean " 
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Traversing a Linked Structure 
Elements in a linked structure can be accessed in a sequential manner. Analogous to a changing int subscript to 
reference all elements in an array, a changing Node variable can reference all elements in a singly linked 
structure. In the following for loop, the Node reference begins at the first node and is updated with next until it 
becomes null. 
 
for (Node ref = first; ref != null; ref = ref.next) { 
  System.out.println(ref.data.toString()); 

Output 
one 
Second 
Third 

 
When the loop begins, first is not null, thus neither is ref. The Node object ref refers to the first 
node.  

 

 

 

 

 

 

 

 

 

 

 null 

first 

ref 

"one" "Second" "Third" 

LinkNode ref = first; 

 
 
At this point, ref.data returns a reference to the object referenced by the data field—in this case, the string 
"one". To get to the next element, the for loop updates the external pointer ref to refer to the next node in the 
linked structure. The first assignment of ref = ref.next sets ref to reference the second node. 
 

 

 

 

 

 

 

  

 null 

first 

ref 

"one" "Second" "Third" 

ref = ref.next; 

 
 
At the end of the next loop iteration, ref = ref.next sets ref to reference the third node. 
 

 

 

 

 

 

 

 

  

 

 null 

first 

ref 

"one" "Second" "Third" 

ref = ref.next; 

 
And after one more ref = ref.next, the external reference named ref is assigned null.  
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ref 

null 

 
 
At this point, the for loop test ref != null is false. The traversal over this linked structure is complete.  
 With an array, the for loop could be updating an integer subscript until the value is beyond the index of the 
last meaningful element (index == n for example). With a linked structure, the for loop updates an external 
reference (a Node reference named ref here) so it can reference all nodes until it finds the next field to be null.  
 This traversal represents a major difference between a linked structure and an array. With an array, subscript 
[2] directly references the third element. This random access is very quick and it takes just one step. With a 
linked structure, you must often use sequential access by beginning at the first element and visiting all the nodes 
that precede the element you are trying to access. This can make a difference in the runtime of certain algorithms 
and drive the decision of which storage mechanism to use.  
 

17.2 Implement OurList with a Linked Structure  
Now that the inner private class Node exists, consider a class that implements OurList. This class will 
provide the same functionality as OurArrayList with a different data structure. The storage mechanism will be 
a collection of Node objects. The algorithms will change to accommodate this new underlying storage structure 
known as a singly linked structure. The collection class that implements ADT OurList along with its methods and 
linked structure is known as a linked list. 
 This OurLinkedList class uses an inner Node class with two additional constructors (their use will be 
shown later). It also needs the instance variable first to mark the beginning of the linked structure. 
 
// A type-safe Collection class to store a list of any type element 
public class OurLinkedList<E> implements OurList<E> { 
  
  // This private inner class is only known within OurLinkedList. 
  // Instances of class Node will store a reference to an  
  // element and a reference to another instance of Node.  
  private class Node  { 
 
    // Store one element of the type specified during construction 
    private E data;    
    // Store a reference to another node with the same type of data 
    private Node next;  
 
 
    // Allows Node n = new Node(); 
    public Node() { 
      data = null; 
      next = null; 
    } 
 
    // Allows Node n = new Node("Element"); 
    public Node(E element) { 
      data = element; 
      next = null; 
    } 
 
    // Allows Node n = new Node("Element", first); 
    public Node(E element, Node nextReference) { 
      data = element; 
      next = nextReference; 
    } 
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  } /////// end inner class Node ////////// 
 
  // Instance variables for OurLinkedList 
  private Node first; 
 
  private int size; 
 
  // Construct an empty list with size 0 
  public OurLinkedList() { 
    first = null; 
    size = 0; 
  } 
 
  // more to come … 
} 
After construction, the picture of memory shows first with a null value written as a diagonal line.  
 
  OurLinkedList<String> list = new OurLinkedList<String>(); 
 
                                           An empty list: 
 
 
 

 
The first method isEmpty returns true when first is null. 
  
  /** 
   * Return true when no elements are in this list 
   */  
  public boolean isEmpty() { 
    return first == null; 
  } 
 
 

Adding Elements to a Linked Structure 
This section explores the algorithms to add to a linked structure in the following ways:  
  

• Inserting an element at the beginning of the list 
• Inserting an element at the end of the list 
• Inserting an element anywhere in the list at a given position 

 
To insert an element as the first element in a linked list that uses an external reference to the first node, the 
algorithm distinguishes these two possibilities: 
 

1. the list is empty  
2. the list is not empty 

 
If the list is empty, the insertion is relatively easy. Consider the following code that inserts a new String object 
at index zero of an empty list. A reference to the new Node object with "one" will be assigned to first. 
 
  OurLinkedList<String> stringList = new OurLinkedList<String>(); 
  stringList.addFirst("one"); 
 
         first 

 

 

 

 

"one" 

 

first 

 
The diagonal line 
signifies  the null value 
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/** Add an element to the beginning of this list. 
  * O(1) 
  * @param element The new element to be added at index 0. 
  */ 
  public void addFirst(E element) {  
    // The beginning of an addFirst operation  
    if (this.isEmpty()) {  
      first = new Node(element); 
      // ...  
 
When the list is not empty, the algorithm must still make the insertion at the beginning; first must still refer to 
the new first element. You must also take care of linking the new element to the rest of the list. Otherwise, you 
lose the entire list! Consider adding a new first element (to a list that is not empty) with this message:  
 
  stringList.addFirst("two"); 
 
This can be accomplished by constructing a new Node with the zero-argument constructor that sets both data 
and next to null. Then the reference to the soon to be added element is stored in the data field (again E can 
represent any reference type). 
 
    else { 
      // the list is NOT empty 
      Node temp = new Node(); // data and next are null 
      temp.data = element;    // Store reference to element 
 
There are two lists now, one of which is temporary. 
 

 

 

 

 

 

"one" "two" temp first 

 
The following code links the node that is about to become the new first so that it refers to the element that is 
about to become the second element in the linked structure.  
 
   temp.next = first; // 2 Nodes refer to the node with "one" 
  } 
 
 
 
 
 
 
 
 
 

Now move first to refer to the Node object referenced by first and increment size. 
 

      first = temp; 
    }  // end method addFirst 
    size++; 
  } // end addFirst 
 

"one" "two" 
temp first 
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temp 

"one" "two" 

first 

 
 
After "two" is inserted at the front, the local variable temp is no longer needed in the picture. The list can also be 
drawn like this since the local variable temp will no longer exist after the method finishes: 
 

          

 

 

 

 

 

first 

"one" "two" 

 
This size method can now return the number of elements in the collection (providing the other add methods also 
increment size when appropriate). 
 
 /** 
   * Return the number of elements in this list 
   */   
  public int size() { 
    return size;  
  } 
 

Self-Check 
17-5  Draw a picture of memory after each of the following sets of code executes: 

 
a.      OurLinkedList<String> aList = new OurLinkedList<String>(); 
 
b.   OurLinkedList<String> aList = new OurLinkedList<String>(); 
    aList.addFirst("Chris"); 
 
c.   OurLinkedList<Integer> aList = new OurLinkedList<Integer>(); 
    aList.addFirst(1); 

 aList.addFirst(2); 

addFirst(E) again 
The addFirst method used an if…else statement to check if the reference to the beginning of the list needed to 
be changed. Then several other steps were required. Now imagine changing the addFirst method using the two-
argument constructor of the Node class.  
 
   public Node(Object element, Node nextReference) { 
    data = element; 
    next = nextReference;   
  } 
 
To add a new node at the beginning of the linked structure, you can initialize both Node instance variables. This 
new two-argument constructor takes a Node reference as a second argument. The current value of first is stored 
into the new Node's next field. The new node being added at index 0 now links to the old first.  
 
 /** Add an element to the beginning of this list. 
   * @param element The new element to be added at the front. 
   * Runtime O(1) 
   */ 
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  public void addFirst(E element) { 
    first = new Node(element, first); 
    size++; 
  } 
 
To illustrate, consider the following message to add a third element to the existing list of two nodes (with "two" 
and "one"): stringList.addFirst("tre");  
  
 

 

 

 

 

 

first  

"one" "two" 

 
 
The following initialization executes in addFirst: 
 
  first = new Node(element, first); 
 
This invokes the two-argument constructor of class Node: 
 
  public Node(Object element, Node nextReference) { 
    data = element; 
    next = nextReference; 
  } 
 
This constructor generates the Node object pictured below with a reference to "tre" in data. It also stores the 
value of first in its next field. This means the new node (with "tre") has its next field refer to the old first 
of the list.    
     

  

 

 

 

 

 

 

   

first 

? 

"one" 

"tre"  

"two" 

new Node("tre", first); 

 
 
Then after the construction is finished, the reference to the new Node is assigned to first. Now first refers to 
the new Node object. The element "tre" is now at index 0. 

    

 

 

   

 

 

 

 

first 

"two" "one" 

"tre"  

first = 

 
 
The following code illustrates that addFirst will work even when the list is empty. You end up with a new 
Node whose reference instance variable next has been set to null and where first references the only element 
in the list.  
 
OurLinkedList<String> anotherList = new OurLinkedList<String>(); 
anotherList.addFirst("Was Empty"); 
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       Before                                        After 
 

 

 

 

first first 

"Was Empty" 

 
Since the addFirst method essentially boils down to two assignment statements, no matter how large the list, 
addFirst is O(1).  
 
E get(int) 
OurList specifies a get method that emulates the array square bracket notation [] for getting a reference to a 
specific index. This implementation of the get method will throw an IllegalArgumentException if the 
argument index is outside the range of 0 through size()-1. This avoids returning null or other meaningless 
data during a get when the index is out of range.  
 
 /** 
   * Return a reference to the element at index getIndex 
   * O(n) 
   */ 
  public E get(int getIndex) { 
  // Verify insertIndex is in the range of 0..size()-1 
  if (getIndex < 0 || getIndex >= this.size()) 
    throw new IllegalArgumentException("" + getIndex); 
   

Finding the correct node is not the direct access available to an array. A loop must iterate through the linked 
structure. 
  
    Node ref = first; 
    for (int i = 0; i < getIndex; i++)  
      ref = ref.next; 
    return ref.data;   
  } // end get 
 
When the temporary external reference ref points to the correct element, the data of that node will be returned. It 
is now possible to test the addFirst and get methods. First, let's make sure the method throws an exception 
when the index to get is out of range. First we’ll try get(0) on an empty list.  
 
  @Test(expected = IllegalArgumentException.class) 
  public void testGetExceptionWhenEmpty() { 
    OurLinkedList<String> list = new OurLinkedList<String>(); 
    list.get(0); // We want get(0) to throw an exception 
  } 
 

Another test method ensures that the indexes just out of range do indeed throw exceptions. 
 
  @Test(expected = IllegalArgumentException.class) 
  public void testGetExceptionWhenIndexTooBig() { 
    OurLinkedList<String> list = new OurLinkedList<String>(); 
    list.addFirst("B"); 
    list.addFirst("A"); 
    list.get(2); // should throw an exception 
  } 
    
  @Test(expected = IllegalArgumentException.class) 
  public void testGetExceptionWhenIndexTooSmall () { 
    OurLinkedList<String> list = new OurLinkedList<String>(); 
    list.addFirst("B"); 
    list.addFirst("A"); 
    list.get(-1); // should throw an exception 
  } 
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This test for addFirst will help to verify it works correctly while documenting the desired behavior. 
 
  @Test 
  public void testAddFirstAndGet() { 
    OurLinkedList<String> list = new OurLinkedList<String>(); 
    list.addFirst("A"); 
    list.addFirst("B"); 
    list.addFirst("C"); 
    // Assert that all three can be retrieved from the expected index 
    assertEquals("C", list.get(0)); 
    assertEquals("B", list.get(1)); 
    assertEquals("A", list.get(2)); 
  } 

Self-Check 
17-6 Which one of the following assertions would fail: a, b, c, or d? 
     
  OurLinkedList<String> list = new OurLinkedList<String>(); 
  list.addFirst("El"); 
  list.addFirst("Li"); 
  list.addFirst("Jo"); 
  list.addFirst("Cy"); 
  assertEquals("El", list.get(3));  // a. 
  assertEquals("Li", list.get(2));  // b. 
  assertEquals("JO", list.get(1));  // c. 
  assertEquals("Cy", list.get(0));  // d. 

 
String toString() 
Programmers using an OurLinkedList object may be interested in getting a peek at the current state of the list 
or finding an element in the list. To do this, the list will also have to be traversed.  
 This algorithm in toString begins by storing a reference to the first node in the list and updating it until it 
reaches the desired location. A complete traversal begins at the node reference by first and ends at the last node 
(where the next field is null). The loop traverses the list until ref becomes null. This is the only null value 
stored in a next field in any proper list. The null value denotes the end of the list. 
 
/**  
  * Return a string with all elements in this list. 
  * @returns One String that concatenation of toString versions of all  
  * elements in this list separated by ", " and bracketed with "[  ]". 
  */ 
  public String toString() { 
    String result = "["; 
    if (! this.isEmpty()) { // There is at least one element 
      // Concatenate all elements except the last 
      Node ref = first; 
      while (ref.next != null) { 
        // Concatenate the toString version of each element 
        result = result + ref.data.toString() + ", "; 
        // Bring loop closer to termination 
        ref = ref.next; 
      } 
      // Concatenate the last element (if size > 0) but without ", " 
      result += ref.data.toString(); 
    } 
    // Always concatenate the closing square bracket 
    result += "]"; 
    return result; 
  } 
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Notice that each time through the while loop, the variable ref changes to reference the next element. The loop 
keeps going as long as ref does not refer to the last element (ref.next != null) . 
 Modified versions of the for loop traversal will be used to insert an element into a linked list at a specific 
index, to find a specific element, and to remove elements.  

The add(int, E) Method 

Suppose a linked list has the three strings "M", "F", and "J": 
 
OurLinkedList<String> list = new OurLinkedList<String>(); 
list.add(0, "M"); 
list.add(1, "F"); 
list.add(2, "J"); 
assertEquals("[M, F, J]", list.toString()); 
 
The linked structure generated by the code above would look like this: 

 

 

 

 

first   "M"   "F"   "J"  

 

This message inserts a fourth string into the 3rd position, at index 2, where "J" is now: 
 
list.add(2, "A"); // This has zero based indexing--index 2 is 3rd spot 
assertEquals("[M, F, A, J]", list.toString()); 
 
Since the three existing nodes do not necessarily occupy contiguous memory locations in this list, the elements in 
the existing nodes need not be shifted as did the array data structure. However, you will need a loop to count to 
the insertion point. Once again, the algorithm will require a careful adjustment of links in order to insert a new 
element. Below, we will see how to insert "A" at index 2.  

 

 

 

 

 

first  

 "M"  "F" 

 "A" 

 "J" 

 
The following algorithm inserts an element into a specific location in a linked list. After ensuring that the index is 
in the correct range, the algorithm checks for the special case of inserting at index 0, where the external reference 
first must be adjusted. 

if the index is out of range 
     throw an exception 
else if the new element is to be inserted at index 0 
   addFirst(element) 
else { 
   Find the place in the list to insert 
   construct a new node with the new element in it 
   adjust references of existing Node objects to accommodate the insertion 
} 

 

This algorithm is implemented as the add method with two arguments. It requires the index where that new 
element is to be inserted along with the object to be inserted. If either one of the following conditions exist, the 
index is out of range: 
   

1. a negative index   
2. an index greater than the size() of the list 
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The add method first checks if it is appropriate to throw an exception  when  insertIndex is out of range. 
 
/** Place element at the insertIndex specified.  
  * Runtime: O(n) 
  * @param element The new element to be added to this list 
  * @param insertIndex The location where the new element will be added 
  * @throws IllegalArgumentException if insertIndex is out of range 
  */ 
  public void add(int insertIndex, E element) { 
    // Verify insertIndex is in the range of 0..size()-1 
    if (insertIndex < 0 || insertIndex > this.size()) 
      throw new IllegalArgumentException("" + insertIndex); 

 
The method throws an IllegalArgumentException if the argument is less than zero or greater than the 
number of elements. For example, when the size of the list is 4, the only legal arguments would be 0, 1, 2, or 3 
and 4 (inserts at the end of the list). For example, the following message generates an exception because the 
largest index allowed with “insert element at” in a list of four elements is 4. 
 
list.add(5, "Y"); 
java.lang.IllegalArgumentException: 5 
 
If insertIndex is in range, the special case to watch for is if the insertAtIndex equals 0. This is the one case 
when the external reference first must be adjusted.  
 
  if (insertIndex == 0) {  
    // Special case of inserting before the first element. 
    addFirst(element); 
  } 
 
The instance variable first must be changed if the new element is to be inserted before all other elements. It is 
not enough to simply change the local variables. The addFirst method shown earlier conveniently takes the 
correct steps when insertIndex==0.  
 If the insertIndex is in range, but not 0, the method proceeds to find the correct insertion point. Let's return 
to a list with three elements, built with these messages: 
 
  OurLinkedList<String> list = new OurLinkedList<String>(); 
  list.add(0, "M"); 
  list.add(1, "F"); 
  list.add(2, "J"); 

 

 

 

 

 

first  

 "M"   "F"   "J"  

 
This message inserts a new element at index 2, after "F" and before "J". 
 

list.add(2, "A"); // We're using zero based indexing, so 2 is 3rd spot 
 
This message causes the Node variable ref (short for reference) to start at first and get. This external reference 
gets updated in the for loop.  
 
  else { 
    Node ref = first; 
    for (int index = 1; index < insertIndex; index++) { 
      // Stop when ref refers to the node before the insertion point  
      ref = ref.next; 
    } 
    ref.next = new Node(element, ref.next); 
  } 
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The loop leaves ref referring to the node before the node where the new element is to be inserted. Since this is a 
singly linked list (and can only go forward from first to back) there is no way of going in the opposite direction 
once the insertion point is passed. So, the loop must stop when ref refers to the node before the insertion point. 
 

 

 

 

 

 

 

 

 

 

Finding the insertion position. When index is 2, insert after "F" and before "J"  

first  

 "M"  "F"  "J" 

ref 

 
 
The insertion can now be made with the Node constructor that takes a Node reference as a second argument. 
 
ref.next = new Node(element, ref.next); 

   

 

 

 

 

 

 

 

 

 

                                                           Inserting at index 2  

first 

 "M"  "F"  "J" 

ref 

 "A" 

  
Consider the insertion of an element at the end of a linked list. The for loop advances ref until it refers to the last node in the 
list, which currently has the element "J". The following picture provides a trace of ref using this message  
 
  list.add(list.size(), "LAST"); 
 

 

 

 

 

 

 

 

"M"  "F"  "A"  "J"  

first  

ref  

 
 
If the list has 1,000 elements, this loop requires 999 (or in general n-1) operations.  
 
  for (int index = 1; index < insertIndex - 1; index++) { 
    ref = ref.next; 
  } 
 

Once the insertion point is found, with ref pointing to the correct node, the new element can be added with one 
assignment and help from the Node class. 
 
  ref.next = new Node(element, ref.next); 
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ref 

"M"  "F"  "A"  "J"  

first  

"LAST"  

 
 
The new node's next field becomes null in the Node constructor. This new node, with "LAST" in it, marks the 
new end of this list. 

 

Self-Check 
17-7 Which of the add messages (there may be more than one) would throw an exception when sent 

immediately after the message list.add(0, 4);? 
 

OurLinkedList<Integer> list = new OurLinkedList<Integer> (); 
list.add(0, 1); 
list.add(0, 2); 
list.add(0, 3); 
list.add(0, 4); 
 
  a. list.add(-1, 5); 
  b. list.add(3, 5); 
  c.  list.add(5, 5); 
  d. list.add(4, 5); 
 
 

addLast 
The addLast method is easily implemented in terms of add. It could have implemented the same algorithm 
separately, however it is considered good design to avoid repeated code and use an existing method if possible. 
 
/**  
  * Add an element to the end of this list. 
  * Runtime: O(n) 
  * @param element The element to be added as the new end of the list. 
  */ 
  public void addLast(E element) { 
    // This requires n iterations to determine the size before the 
    // add method loops size times to get a reference to the last  
    // element in the list. This is n + n operations, which is O(n). 
    add(size(), element); 
  } 
 
The addLast algorithm can be modified to run O(1) by adding an instance variable that maintains an external 
reference to the last node in the linked list. Modifying this method is left as a programming exercise. 
 
Removing from a Specific Location: removeElementAt(int) 
 

Suppose a linked list has these three elements: 
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first 

 "M"  "F"  "J" 

 
Removing the element at index 1 is done with a removeElementAt message.  
 
    assertEquals("[M, F, J]", list.toString());  
  list.removeElementAt(1);  
  assertEquals("[M, J]", list.toString());  
 
The linked list should look like this after the node with "F" is reclaimed by Java's garbage collector. There are no 
more references to this node, so it is no longer needed. 
 

   

 

 

 

 

 

 "M"  "F"  "J" 

first 

 
 
Assuming the index of the element to be removed is in the correct range of 0 through size()-1, the following 
algorithm should work with the current implementation: 
 

  if removal index is out of range 
       throw an exception 
  else if the removal is the node at the first  
     change first to refer to the second element  (or make the list empty if size()==1) 
  else  { 
     Get a reference to the node before the node to be removed  
     Send the link around the node to be removed 
  }  
 
A check is first made to avoid removing elements that do not exist, including removing index 0 from an empty 
list. Next up is checking for the special case of removing the first node at index 0 ("one" in the structure below). 
Simply send first.next "around" the first element so it references the second element. The following 
assignment updates the external reference first to refer to the next element.  
  
 first = first.next; 
 

   

 

 

 

 

 

 

 

"J" "A"  "F" "M" 

first  

"LAST"  "1st"  

 
This same assignment will also work when there is only one element in the list. 
 
 

 

 

 

first 

"1st" 
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With the message list.removeElementAt(0) on a list of size 1, the old value of first is replaced with null, 
making this an empty list. 
 

 

 

 

 

first 

"1st" 

 
Now consider list.removeElementAt(2) ("F") from the following list: 
 
  first 

 

 

 

"J" "A" "F" "M" "LAST" 

 
The following assignment has the Node variable ref refer to the same node as first: 
 
  Node ref = first; 
 
ref then advances to refer to the node just before the node to be removed.  
 
  for (int index = 1; index < removalIndex; index++) // 1 iteration only 
    ref = ref.next; 
 
 

 

 

 

 

 

"J" "A" "F" "M" 

first 

ref 

"LAST" 

 
Then the node at index 1 ("A") will have its next field adjusted to move around the node to be removed ("F").  
The modified list will look like this: 
 

 

 

 

 

 

 

 

"J"  "A"  "F"  "M"  

first  

ref  

"LAST"  

 
Since there is no longer a reference to the node with "F", the memory for that node will be reclaimed by Java's 
garbage collector. When the method is finished, the local variable ref also disappears and the list will look like 
this: 

 

 

 

 

 

 

"J" "A" "M" 

first 

"LAST" 

 
The removeElementAt method is left as a programming exercise.  
 
Deleting an element from a Linked List: remove 
When deleting an element from a linked list, the code in this particular class must recognize these two cases: 
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1. Deleting the first element from the list (a special case again) 
2. Deleting an interior node from the list (including the last node) 

 
When deleting the first node from a linked list, care must be taken to ensure that the rest of the list is not 
destroyed. The adjustment to first is again necessary so that all the other methods work (and the object is not in 
a corrupt state). This can be accomplished by shifting the reference value of first to the second element of the 
list (or to null if there is only one element). One assignment will do this: 
 
  first = first.next; 
 
Now consider removing a specific element that may or may not be stored in an interior node. As with 
removeElementAt, the code will look to place a reference to the node just before the node to be removed. So to 
remove "M", the link to the node before M is needed. This is the node with "A". 
 
  list.remove("M"); 
 

 

 

 

 

 

                              previous node   Node to be deleted  

first  

 "J"  "A"  "M" "LAST" 

 
 
At this point, the next field in the node with "A" can be "sent around" the node to be removed ("M"). Assuming 
the Node variable named ref is storing the reference to the node before the node to be deleted, the following 
assignment effectively removes a node and its element "M" from the structure: 
 
  ref.next = ref.next.next; 

 

 

 

 

 

 

 

Deleting a specific internal node, in this case "M"  

ref  

first  

 "J"   "A"   "M"  "LAST"  

 
 
This results in the removal of an element from the interior of the linked structure. The memory used to store the 
node with "M" will be reclaimed by Java's garbage collector.  
 The trick to solving this problem is comparing the data that is one node ahead. Then you must make a 
reference to the node before the found element (assuming it exists in the list). The following code does just that. It 
removes the first occurrence of the objectToRemove found in the linked list. It uses the class's equals method 
to make sure that the element located in the node equals the state of the object that the message intended to 
remove. First, a check is made for an empty list. 
 
/** Remove element if found using the equals method for type E. 
  * @param The object to remove from this list if found 
  */ 
  public boolean remove(E element) { 
    boolean result = true; 
 
    // Don't attempt to remove an element from an empty list 
    if (this.isEmpty()) 
      result = false; 
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The following code takes care of the special case of removing the first element when the list is not empty: 
 
    else { 
      // If not empty, begin to search for an element that equals obj 
      // Special case: Check for removing first element  
      if (first.data.equals(element)) 
        first = first.next; 
 
 

 

 

 

 

 

ref 

first  

 "J"  "A"  "M" "LAST" 

 
Checking for these special cases has an added advantage. The algorithm can now assume that there is at least one 
element in the list. It can safely proceed to look one node ahead for the element to remove. A while loop 
traverses the linked structure while comparing objectToRemove to the data in the node one element ahead. 
This traversal will terminate when either of these two conditions occur: 

 

1. The end of the list is reached. 
2. An item in the next node equals the element to be removed.  

 
The algorithm assumes that the element to be removed is in index 1 through size()-1 (or it's not there at all). 
This allows the Node variable named ref to "peek ahead" one node. Instead of comparing objectToRemove to 
ref.data, objectToRemove is compared to ref.next.data. 

 
  else {  
    // Search through the rest of the list 
    Node ref = first; 
    // Look ahead one node 
    while ((ref.next != null) && !(element.equals(ref.next.data))) 
      ref = ref.next; 
 
This while loop handles both loop termination conditions. The loop terminates when ref's next field is null 
(the first expression in the loop test). The loop will also terminate when the next element (ref.next.data) in 
the list equals(objectToRemove), the element to be removed. Writing the test for null before the equals 
message avoids null pointer exceptions. Java's guaranteed short circuit boolean evaluation will not let the 
expression after && execute when the first subexpression (ref.next != null) is false. 
 

Self-Check 
17-8  What can happen if the subexpressions in the loop test above are reversed? 

        while (!(objectToRemove.equals(ref.next.data))  
                 && (ref.next != null)) 
 
 
At the end of this loop, ref would be pointing to one of two places:  

 

1. the node just before the node to be removed, or  
2. the last element in the list.  

 
In the latter case, no element "equaled" objectToRemove. Because there are two ways to terminate the loop, a 
test is made to see if the removal element was indeed in the list. The link adjustment to remove a node executes 
only if the loop terminated before the end of the list was reached. The following code modifies the list only if 
objectToRemove was found. 
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    // Remove node if found (ref.next != null).  However, if 
    // ref.next is null, the search stopped at end of list. 
    if (ref.next == null) 
      return false;  // Got to the end without finding element 
    else { 
      ref.next = ref.next.next; 
      return true; 
    } 
  } // end remove(E element) 
 

Self-Check 
17-9   In the space provided, write the expected value that would make the assertions pass: 

 
    OurLinkedList<String> list = new OurLinkedList<String>(); 
    list.addLast("A"); 
    list.insertElementAt(0, "B"); 
    list.addFirst("C"); 
    assertEquals(______________, list.toString());  // a. 
    list.remove("B"); 
    assertEquals(______________, list.toString());  // b. 
    list.remove("A"); 
    assertEquals(______________, list.toString());  // c. 
    list.remove("Not Here"); 
    assertEquals(______________, list.toString());  // d. 
    list.remove("C"); 
    assertEquals(______________, list.toString());  // e. 
 

 

17-10 What must you take into consideration when executing the following code? 
 
    if (current.data.equals("CS 127B")) 
      current.next.data = "CS 335"; 
 
 

17.3 When to use Linked Structures 
The one advantage of a linked implementation over an array implementation may be constrained to the growth 
and shrink factor when adding elements. With an array representation, growing an array during add and shrinking 
an array during remove requires an additional temporary array of contiguous memory be allocated. Once all 
elements are copied, the memory for the temporary array can be garbage collected. However, for that moment, the 
system has to find a large contiguous block of memory. In a worst case scenario, this could potentially cause an 
OutOfMemoryException.  
 When adding to a linked list, the system allocates the needed object and reference plus an additional 4 bytes 
overhead for the next reference value. This may work on some systems better than an array implementation, but 
it is difficult to predict which is better and when.  
 The linked list implementation also may be more time efficient during inserts and removes. With an array, 
removing the first element required n assignments. Removing from a linked list requires only one assignment. 
Removing an internal node may also run a bit faster for a linked implementation, since the worst case rarely 
occurs. With an array, the worst case always occurs—n operations are needed no matter which element is being 
removed. With a linked list, it may be more like n/2 operations. 
 Adding another external reference to refer to the last element in a linked list would make the addLast method 
run O(1), which is as efficient as an array data structure. A linked list can also be made to have links to the node 
before it to allow two-way traversals and faster removes  a doubly linked list. This structure could be useful in 
some circumstances. 
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 A good place to use linked structures will be shown in the implementation of the stack and queue data 
structures in later chapters. In both collections, access is limited to one or both ends of the collection. Both grow 
and shrink frequently, so the memory and time overhead of shifting elements are avoided (however, an array can 
be used as efficiently with a few tricks). 
 Computer memory is another thing to consider when deciding which implementation of a list to use. If an 
array needs to be "grown" during an add operation, for a brief time there is a need for twice as many reference 
values. Memory is needed to store the references in the original array. An extra temporary array is also needed. 
For example, if the array to be grown has an original capacity of 50,000 elements, there will be a need for an 
additional 200,000 bytes of memory until the references in the original array are copied to the temporary array. 
Using a linked list does not require as much memory to grow. The linked list needs as many references as the 
array does for each element, however at grow time the linked list can be more efficient in terms of memory (and 
time). The linked list does not need extra reference values when it grows.  
 Consider a list of 10,000 elements. A linked structure implementation needs an extra reference value (next) 
for every element. That is overhead of 40,000 bytes of memory with the linked version. An array-based 
implementation that stores 10,000 elements with a capacity of 10,000 uses the same amount of memory. Imagine 
the array has 20 unused array locations  there would be only 80 wasted bytes. However, as already mentioned, 
the array requires double the amount of overhead when growing itself. Linked lists provide the background for 
another data structure called the binary tree structure in a later chapter. 
 

When not to use Linked Structures 
If you want quick access to your data, a linked list will not be that helpful when the size of the collection is big. 
This is because accessing elements in a linked list has to be done sequentially. To maintain a fixed list that has to 
be queried a lot, the algorithm needs to traverse the list each time in order to get to the information. So if a lot of 
set and gets are done, the array version tends to be faster. The access is O(1) rather than O(n). Also, if you 
have information in an array that is sorted, you can use the more efficient binary search algorithm to locate an 
element. 
 A rather specific time to avoid linked structures (or any dynamic memory allocations) is when building 
software for control systems on aircraft. The United States Federal Aviation Association (FAA) does not allow it 
because it's not safe to have a airplane system run out of memory in flight. The code must work with fixed arrays. 
All airline control code is carefully reviewed to ensure that allocating memory at runtime is not present. With 
Java, this would mean there could never be any existence of new. 
 One reason to use the linked version of a list over an array-based list is when the collection is very large and 
there are frequent add and removal messages that trigger the grow array and shrink array loops. However, this 
could be adjusted by increasing the GROW_SHRINK_INCREMENT from 20 to some higher number. Here is a 
comparison of the runtimes for the two collection classes implemented over this and the previous chapter. 
 
 

 OurArrayList OurLinkedList 

get and set O(1) O(n) 
remove removeElementAt O(n) O(n) 

find5 O(n) O(n) 
add(int index, Object el)  O(n) O(n) 

size6 O(1) O(n) 
addFirst  O(n) O(1) 
addLast7 O(1) O(n) 

                                                
5 find could be improved to O(log n) if the data structure is changed to an ordered and sorted list. 
6size could be improved to O(1) if the SimpleLinkedList maintained a separate instance variable for the number of element 
in the list (add 1during inserts subtract 1 during successful removes) 
7 addLast with SimpleLinkedList could be improved by maintaining an external reference to the last element in the list. 
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One advantage of arrays is the get and set operations of OurArrayList are an order of magnitude better than 
the linked version. So why study singly linked structures?  
 

1. The linked structure is a more appropriate implementation mechanism for the stacks and queues of 
the next chapter. 

2. Singly linked lists will help you to understand how to implement other powerful and efficient linked 
structures (trees and skip lists, for example). 

 
When a collection is very large, you shouldn't use either of the collection classes shown in this chapter, or even 
Java's ArrayList or LinkedList classes in the java.util package. There are other data structures such as 
hash tables, heaps, and trees for large collections. These will be discussed later in this book. In the meantime, the 
implementations of a list interface provided insights into the inner workings of collections classes and two storage 
structures. You have looked at collections from both sides now. 

Self-Check 
17-11  Suppose you needed to organize a collection of student information for your school’s administration. 

There are approximately 8,000 students in the university with no significant growth expected in the 
coming years. You expect several hundred lookups on the collection everyday. You have only two data 
structures to store the data, and array and a linked structure. Which would you use? Explain. 
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Answers to Self-Checks 
17-1 first.data.equals("Bob") 
17-2 first.next.data ("Chris"); 
17-3 first.next.next.next.data.equals("Zorro"); 
17-4 first.next.next.next refers to a Node with a reference to "Zorro" and null in its next field. 
17-5 drawing of memory 

 

 

 
17-6  c  would fail  ("JO" should be "Jo") 

17-7 which would throw an exception 
   -a- IndexOutOfBoundsException 
   -c- the largest valid index is currently 4 
   -d- Okay since the largest index can be the size, which is 4 in this case 

17-8 if switched, ref would move one Node too far and cause a NullPointerException 

17-9 assertions - listed in correct order 
 
     OurLinkedList<String> list = new OurLinkedList<String>(); 
     list.addLast("A"); 
     list.insertElementAt(0, "B"); 
     list.addFirst("C"); 
     assertEquals(__"[C, B, A]"__, list.toString()); // a.  
     list.remove("B"); 
     assertEquals(___"[C, A]"__, list.toString());  // b. 
     list.remove("A"); 
     assertEquals(____"[C]"_____, list.toString()); // c. 
     list.remove("Not Here"); 
     assertEquals(____"[C]"_____, list.toString()); // d. 
     list.remove("C"); 
     assertEquals(_____"[]"_____, list.toString()); // e. 

17-10 Whether or not a node actually exists at current.next. It could be null.  

17-11 An array so the more efficient binary search could be used rather than the sequential search necessary with 
a linked structure. 

 
 
   
 

a. 
 
 
 
b. 
 
 
 
c. 
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Chapter 18 
 

Stacks and Queues  
 
 
 
 
 
 
 
 
 

18.1 Stacks 
The stack abstract data type allows access to only one element—the one most recently added. This location is 
referred to as the top of the stack.  
 Consider how a stack of books might be placed into and removed from a cardboard box, assuming you can 
only move one book at a time. The most readily available book is at the top of the stack. For example, if you add 
two books—Book 1 and then Book 2—into the box, the most recently added book (Book 2) will be at the top of 
the stack. If you continue to stack books on top of one another until there are five, Book 5 will be at the top of the 
stack. To get to the least recently added book (Book 1), you first remove the topmost four books (Book 5, Book 4, 
Book 3, Book 2) — one at a time. Then the top of the stack would be Book 1 again. 
 

 

 

 

 

 

 

 

 

 

 

 

Book 1  
Book 1  

Book 2  

Book 3  

Book 4  

Book 2  

Book 5  

 
 
Stack elements are added and removed in a last in first out (LIFO) manner. The most recent element added to the 
collection will be the first element to be removed from the collection. Sometimes, the only data that is readily 
needed is the most recently accessed one. The other elements, if needed later, will be in the reverse order of when 
they were pushed. Many real world examples of a stack exist. In a physical sense, there are stacks of books, stacks 
of cafeteria trays, and stacks of paper in a printer’s paper tray. The sheet of paper on the top is the one that will get 
used next by the printer.  
For example, a stack maintains the order of method calls in a program. If main calls function1, that method 
calls function2, which in turn calls function3.  Where does the program control go to when function3 is 
finished? After function3 completes, it is removed from the stack as the most recently added method. Control 
then returns to the method that is at the new top of the stack  function2. 
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 Here is a view of the stack of function calls shown in a thread named main. This environment (Eclipse) 
shows the first method (main) at the bottom of the stack. main will also be the last method popped as the 
program finishes — the first method called is the last one to execute. At all other times, the method on the top of 
the stack is executing. When a method finishes, it can be removed and the method that called it will be the next 
one to be removed form the stack of method calls. 

 
The program output indicates the last in first out (or first in last out) nature of stacks: 
Four method calls are on the stack 
Two about to end 
One about to end 
main about to end 
 
Another computer-based example of a stack occurs when a compiler checks the syntax of a program. For 
example, some compilers first check to make sure that [ ], { }, and ( ) are balanced properly. Thus, in a Java 
class, the final } should match the opening  {. Some compilers do this type of symbol balance checking first 
(before other syntax is checked) because incorrect matching could otherwise lead to numerous error messages that 
are not really errors. A stack is a natural data structure that allows the compiler to match up such opening and 
closing symbols (an algorithm will be discussed in detail later).  

A Stack Interface to capture the ADT 
Here are the operations usually associated with a stack.  (As shown later, others may exist):  
• push   place a new element at the "top" of the stack  
• pop remove the top element and return a reference to the top element  
• isEmpty  return true if there are no elements on the stack 
• peek  return a reference to the element at the top of the stack 
 



 
 

Chapter 18: Stacks and Queues 
 

101 

Programmers will sometimes add operations and/or use different names. For example, in the past, Sun 
programmers working on Java collection classes have used the name empty rather than isEmpty. Also, some 
programmers write their stack class with a pop method that does not return a reference to the element at the top of 
the stack. Our pop method will modify and access the state of stack during the same message. 
 Again, a Java interface helps specify Stack as an abstract data type. For the discussion of how a stack 
behaves, consider that LinkedStack (a collection class) implements the OurStack interface, which is an ADT 
specification in Java. 
 
import java.util.EmptyStackException; 
 
public interface OurStack<E> { 
/** Check if the stack is empty to help avoid popping an empty stack. 
  * @returns true if there are zero elements in this stack. 
  */ 
  public boolean isEmpty(); 
 
/** Put element on "top" of this Stack object. 
  * @param The new element to be placed at the top of this stack. 
  */ 
  public void push(E element); 
 
/** Return reference to the element at the top of this stack. 
  * @returns A reference to the top element. 
  * @throws EmptyStackException if the stack is empty. 
  */ 
  public E peek() throws EmptyStackException; 
 
/** Remove element at top of stack and return a reference to it. 
  * @returns A reference to the most recently pushed element. 
  * @throws EmptyStackException if the stack is empty. 
  */ 
  public E pop() throws EmptyStackException; 
} 
 
You might need a stack of integers, or a stack of string values, or a stack of some new class of Token objects 
(pieces of source code). One solution would be to write and test a different stack class for each new class of object 
or primitive value that you want to store. This is a good reason for developing an alternate solution— a generic 
stack.  
 The interface to be implemented specifies the operations for a stack class. It represents the abstract 
specification. There is no particular data storage mentioned and there is no code in the methods. The type 
parameter <E> and return types E indicate that the objects of the implementing class will store any type of 
element. For example, push takes an E parameter while peek and pop return an E reference.   
 The following code demonstrates the behavior of the stack class assuming it is implemented by a class named 
LinkedStack. 
 
// Construct an empty stack that can store any type of element 
OurStack stackOfStrings<String> = new LinkedStack<String>(); 
// Add three string values to the stack 
stackOfStrings.push("A"); 
stackOfStrings.push("B"); 
stackOfStrings.push("C"); 
// Show each element before removal in a LIFO order 
while (! stackOfStrings.isEmpty()) {  
  // Print the value at the top as it is removed 
  System.out.print(stackOfStrings.pop() + " "); 
} 

Output 
C B A 
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Self-Check 
18-1 Write the output generated by the following code: 

OurStack<String> aStack = new LinkedStack<String> (); 
aStack.push("x"); 
aStack.push("y"); 
aStack.push("z"); 

       while (! aStack.isEmpty()) { 
  out.println(aStack.pop()); 
} 

 
18-2 Write the output generated by the following code: 

OurStack<Character> opStack = new OurLinkedStack<Character>(); 
System.out.println(opStack.isEmpty()); 
opStack.push('>'); 
opStack.push('+'); 
opStack.push('<'); 
out.print(opStack.peek()); 
out.print(opStack.peek());  // careful 
out.print(opStack.peek()); 

 
18-3 Write the output generated by the following code: 

OurStack<Integer> aStack = new OurLinkedStack<Integer>(); 
aStack.push(3); 
aStack.push(2); 
aStack.push(1); 
System.out.println(aStack.isEmpty()); 
System.out.println(aStack.peek()); 
aStack.pop(); 
System.out.println(aStack.peek()); 
aStack.pop(); 
System.out.println(aStack.peek()); 
aStack.pop(); 
System.out.println(aStack.isEmpty()); 
 
 
 
 

18.2 Stack Application: Balanced Symbols 
Some compilers perform symbol balance checking before checking for other syntax errors. For example, consider 
the following code and the compile time error message generated by a particular Java compiler (your compiler 
may vary). 
 
public class BalancingErrors 
  public static void main(String[] args) { 
    int x = p; 
    int y = 4; 
    in z = x + y; 
    System.out.println("Value of z = " + z); 
  } 
} 
 

Notice that the compiler did not report other errors, one of which is on line 3. There should have been an error 
message indicating p is an unknown symbol. Another compile time error is on line 5 where z is incorrectly 
declared as an in not int. If you fix the first error by adding the left curly brace on a new line 1 you will see 
these other two errors.  
 

 
BalancingErrors.java:1: '{' expected 
public class BalancingErrors 
                                             ^ 
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public class BalancingErrors  {  // <- add an opening curly brace 
  public static void main(String[] args) { 
    int x = p; 
    int y = 4; 
    in z = x + y; 
    System.out.println("Value of z = " + z); 
  } 
} 
 
BalancingErrors.java:3: cannot resolve symbol 
symbol  : variable p  
location: class BalancingErrors 
    int x = p; 
            ^ 
BalancingErrors.java:5: cannot resolve symbol 
symbol  : class in  
location: class BalancingErrors 
    in z = x + y; 
    ^ 
2 errors 
 
This behavior could be due to a compiler that first checks for balanced { and } symbols before looking for other 
syntax errors.  
 Now consider how a compiler might use a stack to check for balanced symbols such as ( ) , { }, and [ ]. As 
it reads the Java source code, it will only consider opening symbols: ( { [, and closing symbols: )  } ]. If an 
opening symbol is found in the input file, it is pushed onto a stack. When a closing symbol is read, it is compared 
to the opener on the top of the stack. If the symbols match, the stack gets popped. If they do not match, the 
compiler reports an error to the programmer. Now imagine processing these tokens, which represent only the 
openers and closers in a short Java program: {{([])}}. As the first four symbols are read — all openers — they 
get pushed onto the stack. 
 

Java source code starts as: {{([])}} 
 
 [  
 ( 
 { 
 { 
 
The next symbol read is a closer: "]". The "[" would be popped from the top of the stack and compared to "]". 
Since the closer matches the opening symbol, no error would be reported. The stack would now look like this with 
no error reported: 
 
 ( 
 { 
 { 
 
 
The closing parenthesis ")" is read next. The stack gets popped again. Since the symbol at the top of the stack 
"(" matches the closer ")", no error needs to be reported. The stack would now have the two opening curly 
braces.  
 
 { 
 { 
 
The two remaining closing curly braces would cause the two matching openers to be popped with no errors. It is 
the last-in-first-out nature of stacks that allows the first pushed opener "{" to be associated with the last closing 
symbol "}" that is read.  

 push the first four opening symbols with [ at the top. Still need to read ])}} 

 pop [ which matches ]. There is no error. Still need to read ) }} 

 pop ( which matches). There is no error. Still need to read }} 
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 Now consider Java source code with only the symbols (]. The opener "(" is pushed. But when the closer 
"]" is encountered, the popped symbol "(" does not match "]" and an error could be reported. Here are some 
other times when the use of a stack could be used to help detect unbalanced symbols: 

6. If a closer is found and the stack is empty. For example, when the symbols are {}}. The opening { is pushed 
and the closer "}" is found to be correct. However when the second } is encountered, the stack is empty. 
There is an error when } is discovered to be an extra closer (or perhaps { is missing). 

7. If all source code is read and the stack is not empty, an error should be reported. This would happen with Java 
source code of {{([])}. In this case, there is a missing right curly brace. Most symbols are processed 
without error. At the end, the stack should be empty. Since the stack is not empty, an error should be reported 
to indicate a missing closer. 

 
This algorithm summarzies the previous actions.  
 
1. Make an empty stack named s  
2. Read symbols until end of file  
      if it's an opening symbol, push it  
      if it is a closing symbol && s.empty  
          report error  
     otherwise  
          pop the stack  
          if symbol is not a closer for pop's value, report error  
 3. At end of file, if !s.empty, report error 

 

Self-Check 
18-4 Write the errors generated when the algorithm above processes the following input file: 

public class Test2 { 
   public static void main(String[) args) { 
     System.out.println(); 
  )) { 



 
 

Chapter 18: Stacks and Queues 
 

105 

 

18.3 FIFO Queues 
A first-in, first-out (FIFO) queue  pronounced “Q”  models a waiting line. Whereas stacks add and remove 
elements at one location — the top — queues add and remove elements at different locations. New elements 
are added at the back of the queue. Elements are removed from the front of the queue. 
 
                  front                                    back 

 1st 2nd 3rd 4th 
                                                Queue 
 
 
 
 
Whereas stacks mimic LIFO behavior, queues mimic a first in first out (FIFO) behavior. So, for example, the 
queue data structure models a waiting line such as people waiting for a ride at an amusement park. The person at 
the front of the line will be the first person to ride. The most recently added person must wait for all the people in 
front of them to get on the ride. With a FIFO queue, the person waiting longest in line is served before all the 
others who have waited less time8. 
 Another example of queue behavior can be found when several documents need to be printed at a shared 
printer. Consider three students, on the same network, trying to print one document each. Who gets their 
document printed first? If a FIFO queue is being used to store incoming print requests, the student whose request 
reached the print queue first will get printed ahead of the others. Now assume that the printer is busy and the print 
queue gets a print request from student #3 while a ducument is printing. The print queue would look something 
like this: 
 
                           front & back 

  #3 
 
In this case the queue’s front element is also at the back end of the queue. The queue contains one element. Now 
add another request from student #1, followed by another request from student #2 for printing, and the print queue 
would look like this: 
 
                                front                            back                       

  #3 #1 #2 
 
Student #1 and student #2 requests were added to the back of queue. The print requests are stored in the order in 
which they arrived. As the printer prints documents, the document will be removed from the front. Once the 
printer has printed the current document, the document for student #3 will then be removed. Then the state of the 
queue will now look like this: 
 
                              front        back 

  #1 #2  
 

 

                                                
8 Note: A priority queue has different behavior where elements with a higher priority would be removed first. For example, 
the emergency room patient with the most need is attended to next, not the patient who has been there the longest. 
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A Queue Interface  Specifying the methods 
There is no universally agreed upon set of operations; however the following is a reasonable set of operations for 
a FIFO Queue ADT. 
• isEmpty  Return true only when there are zero elements in the queue 
• add  Add an element at the back of the queue 
• peek  Return a reference to the element at the front of the queue 
• remove  Return a reference to the element at the front and remove the element 
 
This leads to the following interface for a queue that can store any class of object. 
public interface OurQueue<E> { 
 
  /** 
   * Find out if the queue is empty. 
   * @returns true if there are zero elements in this queue. 
   */ 
  public boolean isEmpty(); 
 
  /** 
   * Add element to the "end" of this queue. 
   * @param newEl element to be placed at the end of this queue. 
   */ 
  public void add(E newEl); 
 
  /** 
   * Return a reference to the element at the front of this queue. 
   * @returns A reference to the element at the front. 
   * @throws NoSuchElementException if this queue is empty. 
   */ 
  public E peek(); 
 
  /** 
   * Return a reference to front element and remove it. 
   * @returns A reference to the element at the front. 
   * @throws NoSuchElementException if this queue is empty. 
   */ 
  public E remove(); 
} 
 
The following code demonstrates the behavior of the methods assuming OurLinkedQueue implements interface 
OurQueue: 
 
OurQueue<Integer> q = new OurLinkedQueue<Integer>(); 
q.add(6); 
q.add(2); 
q.add(4); 
while (!q.isEmpty()) { 
  System.out.println(q.peek()); 
  q.remove(); 
} 

Output 
6 2 4 
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Self-Check 
 

18-5 Write the output generated by the following code. 
 
OurQueue<String> strinqQueue = new OurLinkedQueue<String>(); 
strinqQueue.add("J"); 
strinqQueue.add("a"); 
strinqQueue.add("v"); 
strinqQueue.add("a"); 
while (!strinqQueue.isEmpty()) { 
  System.out.print(strinqQueue.remove()); 
} 
 

18-6 Write the output generated by the following code until you understand what is going on. 
 
OurQueue<String> strinqQueue = new OurLinkedQueue<String>(); 
strinqQueue.add("first"); 
strinqQueue.add("second"); 
while (! strinqQueue.isEmpty()) { 
  System.out.println(strinqQueue.peek()); 
} 
 

18-7 Write code that displays a message to indicate if each integer in a queue named intQueue is even or odd. The 
queue must remain intact after you are done. The queue is initialized with random integers in the range of 0 
through 99. 

 
OurQueue<Integer> intQueue = new OurLinkedQueue<Integer>(); 
Random generator = new Random();   
for(int j = 1; j <= 7; j++) { 
  intQueue.add(generator.nextInt(100)); 
} 
// Your solution goes here 

Sample Output (output varies since random integers are added) 
28 is even 
72 is even 
4 is even 
37 is odd 
94 is even 
98 is even 
33 is odd 
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18.4 Queue with a Linked Structure 
We will implement interface OurQueue with a class that uses a singly linked structure. There are several reasons 
to choose a linked structure over an array: 
 
• It is easier to implement.  (A programming project explains the trickier array-based implementation).  
• The Big-O runtime of all algorithms is as efficient as if an array were used to store the elements. All 

algorithms can be O(1). 
• An array-based queue would have add and remove methods, which will occasionally run O(n) rather than 

O(1). This occurs whenever the array capacity needs to be increased or decreased. 
• It provides another good example of implementing a data structure using the linked structure introduced in the 

previous chapter. 
  
Elements are removed from the "front" of a queue. New elements are added at the back of the queue. Both "ends" 
of the queue are frequently accessed. Therefore, this implementation of OurQueue will use two external 
references. Only one external reference to the front is required. However, this would make for O(n) behavior 
during add messages, since a loop would need to sequence through all elements before reaching the end. With 
only a reference to the front, all elements must be visited to find the end of the list before one could be added. 
Therefore, an external reference named back will be maintained in addition to front. This will allow add to be 
O(1). An empty OurLinkedQueue will look like this: 
 
  front              back        size: 0

 
After q.add("First"), a queue of size 1 will look like this: 
  front                                           back        size: 1

First

 
After q.add("Second"), the queue of size 2 will  look like this: 
  front                                                                               back       size: 2

First Second

 
This test method shows the changing state of a queue that follows the above pictures of memory.  
 
  @Test 
  public void testAddAndPeek() { 
    OurQueue<String> q = new OurLinkedQueue<String>(); 
    assertTrue(q.isEmpty()); // front == null 
    q.add("first"); 
    assertEquals("first", q.peek());  // front.data is "first" 
    assertFalse(q.isEmpty()); 
  
    q.add("second");  // Change back, not front 
    // Front element should still be the same  
    assertEquals("first", q.peek()); 
  } 
 
The first element is accessible as front.data. A new element is added by storing a reference to the new node 
into back.next and adjusting back to reference the new node at the end.  
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 Here is the beginning of class OurLinkedQueue that once again uses a private inner Node class to store the 
data along with a link to the next element in the collection. There are two instance variables to maintain both ends 
of the queue. 
 
public class OurLinkedQueue<E> implements OurQueue<E> { 
 
  private class Node { 
    private E data;    
    private Node next;  
 
    public Node() { 
      data = null; 
      next = null; 
    } 
 
    public Node(E elementReference, Node nextReference) { 
      data = elementReference; 
      next = nextReference; 
    } 
  } // end class Node  
 
  // External references to maintain both ends of a Queue 
  private Node front; 
  private Node back; 
   
  /**  
   * Construct an empty queue (no elements) of size 0. 
   */ 
  public OurLinkedQueue() { 
    front = null; 
    back = null; 
  } 
 
 /** Find out if the queue is empty. 
  * @returns true if there are zero elements in this queue. 
  */ 
  public boolean isEmpty()  { 
    return front == null; 
  } 
 
  // More methods to be added . . . 
} 
 
This implementation recognizes an empty queue when front is null.  
 

add 
The add operation will first check for the special case of adding to an empty queue. The code to add to a non-
empty queue is slightly different. If the queue is empty, the external references front and back are both null.  
 
  front              back

 
 
In the case of an empty queue, the single element added will be at front of the queue and also at the back of the 
queue. So, after building the new node, front and back should both refer to the same node. Here is a before and 
after picture made possible with the code shown. 
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  // Build a node to be added at the end. A queue can  
  // grow as long as the computer has enough memory.  
  // With a linked structure, resizing is not necessary. 
  if (this.isEmpty()) { 
     front = new Node(element, null); 
     back = front; 
   }  
 
When an add messages is sent to a queue that is not empty, the last node in the queue must be made to refer to the 
node with the new element. Although front must remain the same during add messages, back must be changed 
to refer the new element at the end.  
 
  else { 
    back.next = new Node(element);     
    back = back.next;     
  } 
 
There are several viable variations of how algorithms could be implemented when a linked structure is used to 
store the collection of elements. The linked structure used here always maintains two external references for the 
front and back of the linked structure. This was done so add is O(1) rather than O(n). In summary, the 
following code will generate the linked structure shown below. 
 
  OurQueue<String> q = new OurLinkedQueue<String>(); 
  q.add("first"); 
  q.add("second"); 
  q.add("third"); 
 

      front                                         back

first second third

 
 
 

Self-Check 
18-8 Draw a picture of what the memory would look like after this code has executed 
     OurQueue<Double> q1 = new OurLinkedQueue<Double>(); 
     q1.add(5.6)); 
     q1.add(7.8)); 
 
18-9 Implement a toString method for OurLinkedQueue so this assertion would pass after the code in the 
previous self-check question:  
     assertEquals("[a, b]", q2.toString());    

 

peek  
The peek method throws a NoSuchElementException if the queue is empty. Otherwise, peek returns a 
reference to the element stored in front.data. 
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  /**  
   * Return a reference to the element at the front of this queue. 
   * @returns A reference to the element at the front. 
   * @throws NoSuchElementException if this queue is empty. 
   */ 
  public E peek() { 
    if (this.isEmpty()) 
      throw new java.util.NoSuchElementException(); 
    else 
      return front.data; 
  } 
 
The next two test methods verify that peek returns the expected value and that it does not modify the queue. 
 
  @Test 
  public void testPeek() { 
    OurQueue<String> q = new OurLinkedQueue<String>(); 
    q.add(new String("first")); 
    assertEquals("first", q.peek()); 
    assertEquals("first", q.peek()); 
 
    OurQueue<Double> numbers = new OurLinkedQueue<Double>(); 
    numbers.add(1.2); 
    assertEquals(1.2, numbers.peek(), 1e-14); 
    assertEquals(1.2, numbers.peek(), 1e-14); 
  } 
 
  @Test 
  public void testIsEmptyAfterPeek() { 
    OurQueue<String> q = new OurLinkedQueue<String>(); 
    q.add("first"); 
    assertFalse(q.isEmpty()); 
    assertEquals("first", q.peek()); 
  } 
   
An attempt to peek at the element at the front of an empty queue results in a 
java.util.NoSuchElementException, as verified by this test: 
 
  @Test(expected = NoSuchElementException.class) 
  public void testPeekOnEmptyList() { 
    OurQueue<String> q = new OurLinkedQueue<String>(); 
    q.peek(); 
  } 
 

remove 

The remove method will throw an exception if the queue is empty. Otherwise, remove returns a reference to the 
object at the front of the queue (the same element as peek() would). The remove method also removes the front 
element from the collection. 
   
  @Test 
  public void testRemove() { 
    OurQueue<String> q = new OurLinkedQueue<String>(); 
    q.add("c"); 
    q.add("a"); 
    q.add("b"); 
    assertEquals("c", q.remove()); 
    assertEquals("a", q.remove()); 
    assertEquals("b", q.remove()); 
  } 
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  @Test(expected = NoSuchElementException.class) 
  public void testRemoveThrowsAnException() {     
    OurQueue<Integer> q = new OurLinkedQueue<Integer>();  
    q.remove(); 
  }  
 
Before the front node element is removed, a reference to the front element must be stored so it can be returned 
after removing it.  
 
  E frontElement = front.data; 
 
front's next field can be sent around the first element to eliminate it from the linked structure. 
 
  front = front.next; 
  

      front                                         back 

 

 

 

 

first second third 

 
 
Now the method can return a reference to firstElement. The linked structure would now look like this. 

 

 

                  front                              back 

 

 

 

 

second third 

 
 
Another remove makes the list look like this.  

 

                                 front              back 

 

 

 

 

third 

 
 
Another remove message will return "third". The remove method should set front to null so isEmpty() will still 
work. This will leave the linked structure like this with back referring to a node that is no longer considered to be 
part of the queue. In this case, back will also be set to null. 

 

                                 front              back 

 

 

 

 

 
 

Self-Check 
 
18-10 Complete method remove so it return a reference to the element at the front of this queue while removing the 
front element. If the queue is empty, throw new NoSuchElementException(). 
 
  public E remove() { 
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Answers to Self-Checks 
 18-1  z 
   y 
   x 
        
 18-2 true 
   <<< 
      
 18-3 false 
      1 
      2 
      3 
      true 
      
 18-4  Check symbols in Test2.java 
      Abc.java:2 expecting ] 
      Abc.java:4 expecting } 
      Abc.java:4 expecting } 
      missing } 
      4 errors 
      
 18-5  Java 
 
 18-6  first 
      first 
      first  
        ... 
      first until someone terminates the program or the power goes out  
      
 18-7     int size = intQueue.size(); 
      for (int j = 1; j <= size; j++) { 
        int nextInt = intQueue.peek(); 
        if (nextInt % 2 != 0) 
           System.out.println(nextInt + " is odd"); 
        else 
           System.out.println(nextInt + " is even"); 
        intQueue.remove(); 
        intQueue.add(nextInt); 
      } 
 
 
18-8  

 

                               front                                back 

 

 

 

15.6 7.8 
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18-9      public String toString() { 
          String result = "["; 
   
          // Concatenate all but the last one (if size > 0) 
          Node ref = front; 
          while (ref != back) { 
            result += ref.data + ", "; 
            ref = ref.next; 
          } 
     
          // Last element does not have ", " after it 
          if (ref != null) 
            result += ref.data; 
   
          result += "]"; 
   
          return result; 
       } 
 
 
18-10   public E remove() throws NoSuchElementException { 
         if (this.isEmpty()) 
           throw new NoSuchElementException(); 
 
         E frontElement = front.data; 
         front = front.next; 
 
         if (front == null) 
           front = back = null; 
 
         return frontElement; 
       } 
 
 
 



 

 

Chapter 19 
 

Recursion 
 
 
 
Goals 

• Trace recursive algorithms 
• Implement recursive algorithms 

19.1 Simple Recursion 
One day, an instructor was having difficulties with a classroom’s multimedia equipment. The bell rang, and still 
there was no way to project the lecture notes for the day. To keep her students occupied while waiting for the AV 
folks, she asked one of her favorite students, Kelly, to take attendance. Since the topic of the day was recursion, 
the instructor proposed a recursive solution: Instead of counting each student in the class, Kelly could count the 
number of students in her row and remember that count. The instructor asked Kelly to ask another student in the 
row behind her to do the same thing—count the number of students in their row, remember the count, and ask the 
same question of the next row. 
 By the time the question reached the last row of seats in the room, there was one person in each row who 
knew the number of students in that particular row. Andy, who had just counted eight students in the last row, 
asked his instructor what to do since there were no more rows of seats behind him. The teacher responded that all 
he had to do was return the number of students in his row to the person who asked him the question moments ago. 
So, Andy gave his answer of eight to the person in the row in front of him. 
The student in the second to last row added the number of people in her row (12) to the number of students in the 
row behind her, which Andy had just told her (8). She returned the sum of 20 to the person in the row in front of 
her. 
 At that point the AV folks arrived and discovered a bent pin in a video jack. As they were fixing this, the 
students continued to return the number of students in their row plus the number of students behind them, until 
Kelly was informed that there were 50 students in all the rows behind her. At that point, the lecture notes, entitled 
“Recursion”, were visible on the screen. Kelly told her teacher that there were 50 students behind her, plus 12 
students in her first row, for a total of 62 students present. 
 The teacher adapted her lecture. She began by writing the algorithm for the head count problem. Every row 
got this same algorithm. 

 
    if you have rows behind you 
       return the number of students in your row plus the number behind you 
   otherwise 
       return the number of students in your row 
 
Andy asked why Kelly couldn’t have just counted the students one by one. The teacher responded, “That would 
be an iterative solution. Instead, you just solved a problem using a recursive solution. This is precisely how I 
intend to introduce recursion to you, by comparing recursive solutions to problems that could also be solved with 
iteration. I will suggest to you that some problems are better handled by a recursive solution.” 
 Recursive solutions have a final situation when nothing more needs to be done—this is the base case—and 
situations when the same thing needs to be done again while bringing the problem closer to a base case. Recursion involves 
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partitioning problems into simpler subproblems. It requires that each subproblem be identical in structure to the original 
problem.  
 Before looking at some recursive Java methods, consider a few more examples of recursive solutions and 
definitions. Recursive definitions define something by using that something as part of the definition. 

Recursion Example 1 
Look up a word in a dictionary: 
 find the word in the dictionary 
 if there is a word in the definition that you do not understand 
     look up that word in the dictionary 
 
Example: Look up the term object 
 Look up object, which is defined as “an instance of a class.” 
 What is a class? Look up class to find “a collection of methods and data.” 

What is a method? Look up method to find “a method heading followed by a collection of 
programming statements.” 

 
Example: Look up the term method heading 

What is a method heading? Look up method heading to find “the name of a method, its return type, 
followed by a parameter list in parentheses.” 
What is a parameter list? Look up parameter list to find “a list of parameters.” 
Look up list, look up parameters, and look up return type, and you finally get a definition of all of 
the terms using the same method you used to look up the original term. And then, when all new 
terms are defined, you have a definition for object.\ 

Recursion Example 2 
A definition of a queue: 
 empty 
 or has one element at the front of the queue followed by a queue 

 

Recursion Example 3 
An arithmetic expression is defined as one of these: 
 a numeric constant such as 123 or –0.001 
 or a numeric variable that stores a numeric constant 
 or an arithmetic expression enclosed in parentheses 
 or an arithmetic expression followed by a binary operator (+, -, /, %, or *)  
               followed by an arithmetic expression  
 

Characteristics of Recursion 
A recursive definition is a definition that includes a simpler version of itself. One example of a recursive 
definition is given next: the power method that raises an integer (x) to an integer power (n). This definition is 
recursive because xn-1 is part of the definition itself. For example, 

  
 43 = 4 × 4(n-1) = 4 × 4(3-1) = 4 × 42 
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What is 42? Using the recursive definition above, 42 is defined as: 
 

  42 = 4 × 4(n-1) = 4 × 4(2-1) = 4 × 41 
 

and 41 is defined as 
 

  41 = 4 × 4(n-1) = 4 × 4(1-1) = 4 × 40 
 

and 40 is a base case defined as 
 

  40 = 1 
 

The recursive definition of 43 includes 3 recursive definitions. The base case is n==0: 
xn = 1 if n = 0 

 

To get the actual value of 43, work backward and let 1 replace 40, 4 * 1 replace 41, 4 * 41 replace 42, and 4 * 42 
replace 43. Therefore, 43 is defined as 64. 
 To be recursive, an algorithm or method requires at least one recursive case and at least one base case. The 
recursive algorithm for power illustrates the characteristics of a recursive solution to a problem. 
 
• The problem can be decomposed into a simpler version of itself in order to bring the problem closer to a base 

case. 
• There is at least one base case that does not make a recursive call. 
• The partial solutions are managed in such a way that all occurrences of the recursive and base cases can 

communicate their partial solutions to the proper locations (values are returned). 

Comparing Iterative and Recursive Solutions  
For many problems involving repetition, a recursive solution exists. For example, an iterative solution is shown 
below along with a recursive solution in the TestPowFunctions class, with the methods powLoop and 
powRecurse, respectively. First, a unit test shows calls to both methods, with the same arguments and same 
expected results. 
 
// File RecursiveMethodsTest.java 
import static org.junit.Assert.assertEquals; 
import org.junit.Test; 
 
public class RecursiveMethodsTest { 
 
  @Test 
  public void testPowLoop() { 
    RecursiveMethods rf = new RecursiveMethods(); 
    assertEquals(1, rf.powLoop(4, 0)); 
    assertEquals(1, rf.powRecurse(4, 0)); 
 
    assertEquals(4, rf.powLoop(4, 1)); 
    assertEquals(4, rf.powRecurse(4, 1)); 
 
    assertEquals(16, rf.powLoop(2, 4)); 
    assertEquals(16, rf.powRecurse(2, 4)); 
  } 
} 
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// File RecursiveMethods.java 
public class RecursiveMethods { 
 
  public int powLoop(int base, int power) { 
    int result; 
    if (power == 0) 
      result = 1; 
    else { 
      result = base; 
      for (int j = 2; j <= power; j++) 
        result = result * base; 
    } 
    return result; 
  } 
 
  public int powRecurse(int base, int power) { 
    if (power == 0) 
      return 1; 
    else 
                    // Make a recursive call \\ 
      return base * powRecurse(base, power - 1); 
  } 
} 
 
In powRecurse, if n is 0the base casethe method call evaluates to 1. When n > 0the recursive casethe 
method is invoked again with the argument reduced by one. For example, powRecurse(4,1) calls 
powRecurse(4, 1-1), which immediately returns 1. For another example, the original call powRecurse(2,4) 
calls powRecurse(2,3), which then calls powRecurse(2,2), which then calls powRecurse(2,1), which 
then calls powRecurse(2,0), which returns 1. Then, 2*powRecurse(2,0)evaluates to 2*1, or 2, so 
2*powRecurse(2,1) evaluates to 4,  2*powRecurse(2,2) evaluates to 8, 2*powRecurse(2,3) evaluates to 
16, and 2*powRecurse(2,4) evaluates to 32.  
 Tracing recursive methods requires diligence, but it can help you understand what is going on. Consider 
tracing a call to the recursive power method to get 24.  
 
  assertEquals(16, rf.powRecurse(2, 4)); 
 
After the initial call to powRecurse(2,4), powRecurse calls another instance of itself until the base case of 
power==0 is reached. The following picture illustrates a method that calls instances of the same method. The 
arrows that go up indicate this. When an instance of the method can return something, it returns that value to the 
method that called it. The arrows that go down with the return values written to the right indicate this. 
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base case reached

8

1

4

2

powRecurse(2,0) = 1

2*powRecurse(2,1-1)=2*1

2*powRecurse(2,2-1)=2*2

2*powRecurse(2,3-1)=2*4

2*powRecurse(2,4-1)=2*8

16 replaces original method call
powRecurse(2,4)

 
 
The final value of 16 is returned to the main method, where the arguments of 2 and 4 were passed to the first 
instance of powRecurse. 
 

Self-Check 
19-1 What is the value of rf.powRecurse(3, 0)? 

19-2 What is the value of rf.powRecurse(3, 1)? 

19-3 Fill in the blanks with a trace of the call rf.powRecurse(3, 4) 

Tracing Recursive Methods 
In order to fully understand how recursive tracing is done, consider a series of method calls given the following 
method headers and the simple main method: 
 
 
// A program to call some recursive methods 
public class Call2RecursiveMethods { 
 
  public static void main(String[] args) { 
    Methods m = new Methods(); 
    System.out.println ("Hello"); 
    m.methodOne(3); 
    m.methodTwo(6); 
  } 
} 
 
// A class to help demonstrate recursive method calls 
public class Methods { 
  public void methodOne(int x) { 
    System.out.println("In methodOne, argument is " + x); 
  } 
 
  public void methodTwo(int z) { 
    System.out.println("In methodTwo, argument is " + z); 
  } 
} 
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Output 
Hello 
In methodOne, argument is 3 
In methodTwo, argument is 6 
 
This program begins by printing out "Hello". Then a method call is made to methodOne. Program control 
transfers to methodOne, but not before remembering where to return to. After pausing execution of main, it 
begins to execute the body of the methodOne method. After methodOne has finished, the program flow of 
control goes back to the last place it was and starts executing where it left off—in this case, in the main method, 
just after the call to methodOne and just before the call to methodTwo. Similarly, the computer continues 
executing main and again transfers control to another method: methodTwo. After it completes execution of 
methodTwo, the program terminates. 
 The above example shows that program control can go off to execute code in other methods and then know 
the place to come back to. It is relatively easy to follow control if no recursion is involved. However, it can be 
difficult to trace through code with recursive methods. Without recursion, you can follow the code from the 
beginning of the method to the end. In a recursive method, you must trace through the same method while trying 
to remember how many times the method was called, where to continue tracing, and the values of the local 
variables (such as the parameter values). Take for example the following code to print out a list of numbers from 
1 to n, given n as an input parameter. 
 
  public void printSeries(int n) { 
    if (n == 1) 
      System.out.print(n + " "); 
    else  { 
      printSeries(n - 1); 
      // after recursive call \\  
      System.out.print(n + " "); 
    } 
  } 
 

A call to printSeries(5) generates the output: 1 2 3 4 5 
 

Let’s examine step by step how the result is printed. Each time the method is called, it is stacked with its 
argument. For each recursive case, the argument is an integer one less than the previous call. This brings the 
method one step closer to the base case. When the base case is reached (n==1) the value of n is printed. Then the 
previous method finishes up by returning to the last line of code below /* after recursive call */.  

 

print "2 " 

print "3 " 

print "4 " 

print "5 " 

print "1 " 
printSeries( 1 ) 

printSeries ( 2 ) 

printSeries ( 3 ) 

printSeries( 4 ) 

printSeries( 5 ) 

main 

 
Recursive execution of printSeries(5) 
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Notice that when a new recursive call is made, the current invocation of the method printSeries(5) starts a 
completely new invocation of the same method printSeries(4).  The system pushes the new method 
invocation on the top of a stack. Method invocations are pushed until the method finds a base case and finishes. 
Control returns back to previous invocation printSeries(2) by popping the stack, and the value of n (2) prints.  
 Now consider a method that has multiple recursive calls within the recursive case. 
 
  public void mystery(int n) { 
    if (n == 1) 
      System.out.print(" 1 ");   
    else { 
      mystery(n - 1); 
      System.out.print("<" + n + ">"); 
      mystery(n - 1); 
    } 
  }   
 
When the base case has not yet been reached, there is a recursive call, then a print statement, and then another 
recursive call. With two recursive calls, it proves more insightful to approach a trace from a graphical perspective. 
A method call tree for mystery(4) looks like this.   

 

mystery(4) 

mystery(1) mystery(1) mystery(1) mystery(1) mystery(1) mystery(1) mystery(1) mystery(1) 

mystery(3) 

mystery(2) mystery(2) mystery(2) mystery(2) 

mystery(3) 

 
Recursive execution of mystery(4) 

 
As you can see, when there are multiple recursive calls in the same method, the number of calls increases 
exponentially  there are eight calls to mystery(1). The recursion reaches the base case when at the lowest 
level of the structure (at the many calls to mystery(1)). At that point " 1 " is printed out and control returns to 
the calling method. When the recursive call returns, "<" + n + ">" is printed and the next recursive call is 
called. First consider the left side of this tree. The branches that are numbered 1, 2, 3, and 4 represent the method 
calls after mystery(4) is called. After the call #3 to mystery, n is 1 and the first output " 1 " occurs.  

 

3 4 

2 

1 

B 

mystery(4) 

mystery(1) mystery(1) 

mystery(3) 

mystery(2) 

A 

 
The first part of mystery  

 
 
Control returns to the previous call when n was 2. <2> is printed. The output so far:  
 
1 <2>  
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Then a recursive call is a made as mystery(2-1) and " 1 " is printed again. The output so far: 
 
1 <2> 1 
 
Control then returns to the first call to mystery(3) and <3> is printed. The output so far: 
 
1 <2> 1 <3> 
 
 
Then these method calls behind                occur.  
 
 
 

 

 

 

 

 

mystery(1) mystery(1) 

mystery(2) 

 
With n == 2, the base case is skipped and the recursive case is called once again. This means another call to 
mystery(2-1), which is " 1 ", a printing of <2>, followed by another call to mystery(2-1), which is yet 
another " 1 ". Add these three prints to the previous output and the output so far is: 
 
1 <2> 1 <3> 1 <2> 1 
 
This represents the output from mystery(3). Control then returns to the original call mystery(4) when <4> 
is printed. Then the cloud behind B prints the same output as mystery(3), the output shown immediately 
above. The final output is mystery(3), followed by printing n when n is 4, followed by another mystery(3). 
  
1 <2> 1 <3> 1 <2> 1 <4> 1 <2> 1 <3> 1 <2> 1 
 

Self-Check 
19-4 Describe the output that would be generated by the message mystery(5); .  
19-5 What does mystery2(4) return? 

  public void mystery2(int n)  { 
    if (n > 1) 
      mystery2(n - 1); 
    System.out.print(n + " "); 
  } 

Infinite Recursion 
Infinite recursion occurs when a method keeps calling other instances of the same method without making 
progress towards the base case or when the base case can never be met. 
 
  public int sum(int n) { 
    if (n  ==  0) 
      return 0; 
    else 
      return n + sum(n + 1); 
  } 
 
In this example, no progress is made towards the base case when n is a positive integer because every time sum is 
called, it is called with a larger value, so the base condition will never be met. 
 
 

A  
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Recursion and Method Calls 
Recursion can be implemented on computer systems by allowing each method call to create a stack frame (also 
known as an activation record). This stack frame contains the information necessary for the proper execution of 
the many methods that are active while programs run. Stack frames contain information about the values of local 
variables, parameters, the return value (for non-void methods), and the return address where the program should 
continue executing after the method completes. This approach to handling recursive method calls applies to all 
methods. A recursive method does not call itself; instead, a recursive call creates an instance of a method that just 
happens to have the same name.  
 With or without recursion, there may be one too many stack frames on the stack. Each time a method is 
called, memory is allocated to create the stack frame. If there are many method calls, the computer may not have 
enough memory. Your program could throw a StackOverflowError. In fact you will get a 
StackOverflowError if your recursive case does not get you closer to a base case.  
 
  // Recursive case does not bring the problem closer to the base case. 
  public int pow(int base, int power) { 
    if (power == 0) 
      return 1; 
    else 
      return base * pow(base, power + 1); // <- should be power - 1 
  } 
Output 
java.lang.StackOverflowError 
 
The exception name hints at the fact that the method calls are being pushed onto a stack (as stack frames). At 
some point, the capacity of the stack used to store stack frames was exceeded. pow, as written above, will never 
stop on its own. 
 
 

Self-Check 
19-6  Write the return value of each. 

a. ____ mystery6(-5) 
b. ____  mystery6(1) 
c. ____  mystery6(2) 

d. ____  mystery6(3) 
e. ____  mystery6(4) 

 
 

        public int mystery6(int n) { 
          if (n < 1) 
            return 0; 
          else if (n == 1) 
            return 1; 
          else 
            return 2 * mystery6(n - 1); 
        } 
 
19-7  Write the return value of each. 

a. ____ mystery7(14, 7)   b. ____  mystery7(3, 6)     c. ____ mystery7(4, 8) 
 

        public boolean mystery7(int a, int b) { 
          if (a >= 10 || b <= 3) 
            return false; 
          if (a == b) 
            return true; 
          else 
           return mystery7(a + 2, b - 2) || mystery7(a + 3, b - 4); 
        } 
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19-8  Given the following definition of the Fibonacci sequence, write a recursive method to compute the nth 
term in the sequence. 
fibonacci(0) = 1; 
fibonacci(1) = 1; 
fibonacci(n) = fibonacci(n-1) + fibonacci(n-2); when n >= 2 

 

19-9 Write recursive method howOften as if it were n class RecursiveMethods that will compute how often a 
substring occurs in a string. Do not use a loop. Use recursion.   These assertions must pass: 
  @Test 
  public void testSequentialSearchWhenNotHere() { 
    RecursiveMethods rm = new RecursiveMethods(); 
    assertEquals(5, rm.howOften("AAAAA", "A")) ; 
    assertEquals(0, rm.howOften("AAAAA", "B")) ; 
    assertEquals(2, rm.howOften("catdogcat", "cat")) ; 
    assertEquals(1, rm.howOften("catdogcat", "dog")) ; 
    assertEquals(2, rm.howOften("AAAAA", "AA")) ;   
  }  
 

19.2  Palindrome  
Suppose that you had a word and you wanted the computer to check whether or not it was a palindrome. A 
palindrome is a word that is the same whether read forward or backward; radar, madam, and racecar, for 
example. To determine if a word is a palindrome, you could put one finger under the first letter, and one finger 
under the last letter. If those letters match, move your fingers one letter closer to each other, and check those 
letters. Repeat this until two letters do not match or your fingers touch because there are no more letters to 
consider. 
 The recursive solution is similar to this. To solve the problem using a simpler version of the problem, you can 
check the two letters on the end. If they match, ask whether the String with the end letters removed is a 
palindrome. 
 The base case occurs when the method finds a String of length two with the same two letters. A simpler case 
would be a String with only one letter, or a String with no letters. Checking for a String with 0 or 1 letters is 
easier than comparing the ends of a String with the same two letters. When thinking about a base case, ask 
yourself, “Is this the simplest case? Or can I get anything simpler?” Two base cases (the number of characters is 0 
or 1) can be handled like this (assume str is the String object being checked). 
 
   if (str.length() <= 1) 
    return true; 

 

Another base case is the discovery that the two end letters are different when str has two or more letters. 
 

  else if (str.charAt(0) != str.charAt(str.length() - 1)) 
    return false; // The end characters do not match 

 

So now the method can handle the base cases with Strings such as "", "A", and "no". The first two are 
palindromes; "no" is not. 
 If a String is two or more characters in length and the end characters match, no decision can be made other 
than to keep trying. The same method can now be asked to solve a simpler version of the problem. Take off the 
end characters and check to see if the smaller string is a palindrome. String’s substring method will take the 
substring of a String like "abba" to get "bb". 

 
  // This is a substring of the original string 
  // with both end characters removed. 
  return isPalindrome(str.substring(1, str.length() - 1)); 
 
This message will not resolve on the next call. When str is "bb", the next call is isPalindrome(""), which 
returns true. It has reached a base case—length is 0. Here is a complete recursive palindrome method.  
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  // Return true if str is a palindrome or false if it is not 
  public boolean isPalindrome(String str) { 
    if (str.length() <= 1) { 
      // Base case when this method knows to return true. 
      return true; 
    } 
    else if (str.charAt(0) != str.charAt(str.length() - 1)) { 
      // Base case when this method knows to return false 
      // because the first and last characters do not match. 
      return false; 
    } 
    else { 
      // The first and last characters are equal so check if the shorter  
      // string--a simpler version of this problem--is a palindrome. 
      return isPalindrome(str.substring(1, str.length() - 1)); 
    } 
  } 
 
If the length of the string is greater than 1 and the end characters match, isPalindrome calls another instance of 
isPalindrome with smaller and smaller String arguments until one base case is reached. Either a String is 
found that has a length less than or equal to 1, or the characters on the ends are not the same. The following trace 
of isPalindrome("racecar") visualizes the calls that are made in this way. 

isPalindrome Recursive Calls (true result) 
 

 

true 

true 

isPalindrome("e")=true 

isPalindrome("cec")=true 

isPalindrome("aceca")=true 

isPalindrome("racecar")=true 

isPalindrome("racecar") 

true 

 base case 

 

true 

 
 

Since the fourth (topmost) call to isPalindrome is called with the String "e", a base case is found—a String 
with length 1. This true value gets returned to its caller (argument was "e"), which in turn returns true back to 
its caller (the argument was "cec"), until true gets passed back to the first caller of isPalindrome, the method 
call with the original argument of "racecar", which returns the value true. Now consider tracing the recursive 
calls for the String "pooltop". 
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isPalindrome Recursive Calls (false result) 
 

 

false 

false 

isPalindrome("olt")=false 

isPalindrome("oolto")=false 

isPalindrome("pooltop")=false 

isPalindrome("pooltop") 
false 

base case 

 

The base case is reached when the method compares the letters at the ends—"o" and "t" do not match. That 
particular method call returns false back to its caller (whose argument was "oolto"), which returns false to its 
caller. The original call to isPalindrome("pooltop") is replaced with false to the method that originally asked 
if "pooltop" was a palindrome. 
 

Self-Check 
19-10 What value is returned from isPalindrome("yoy")? 

19-11 What value is returned from isPalindrome("yoyo")? 

19-12 Write the return value of each method call 
     a. ________ huh("+abc+"); 
     b. ________ huh("-abc-"); 
     c. ________ huh("-a-b-c-"); 
     d. ________ huh("------abc-----"); 

    
    public String huh(String str) { 
      if (str.charAt(0) == '-') 
        return huh(str.substring(1, str.length())); 
      else if (str.charAt(str.length() - 1) == '-') 
        return huh(str.substring(0, str.length() - 1)); 
      else 
        return str; 
    } 
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19.3 Recursion with Arrays 
The sequential search algorithm uses an integer subscript that increases if an element is not found and the index is 
still in the range (meaning that there are more elements to compare).  This test method demonstrates the desired 
behavior. 
 
  @Test 
  public void testSequentialSearchWhenHere() { 
    RecursiveMethods rm = new RecursiveMethods(); 
    String[] array = { "Kelly", "Mike", "Jen", "Marty", "Grant" }; 
    int lastIndex = array.length - 1; 
 
    assertTrue(rm.exists(array, lastIndex, "Kelly")); 
    assertTrue(rm.exists(array, lastIndex, "Mike")); 
    assertTrue(rm.exists(array, lastIndex, "Jen")); 
    assertTrue(rm.exists(array, lastIndex, "Marty")); 
    assertTrue(rm.exists(array, lastIndex, "Grant")); 
  } 
 
 The same algorithm can be implemented in a recursive fashion. The two base cases are: 
 
 1. If the element is found, return true. 
 2. If the index is out of range, terminate the search by returning false. 
 
The recursive case looks in the portion of the array that has not been searched. With sequential search, it does not 
matter if the array is searched from the smallest index to the largest or the largest index to the smallest. The 
exists message compares the search element with the largest valid array index. If it does not match, the next call 
narrows the search. This happens when the recursive call simplifies the problem by decreasing the index. If the 
element does not exist in the array, eventually the index goes to -1 and the method returns false to the preceding 
call, which returns false to the preceding call, until the original method call to exists returns false to the point 
of the call. 
 
  // This is the only example of a parameterized method. 
  // The extra <T>s allow any type of arguments. 
  public <T> boolean exists(T[] array, int lastIndex, T target) { 
    if (lastIndex < 0) { 
      // Base case 1: Nothing left to search 
      return false; 
    } else if (array[lastIndex].equals(target)) { // Base case 2: Found it 
      return true; 
    } else { // Recursive case 
      return exists(array, lastIndex - 1, target); 
    } 
  } 
 
A test should also be made to ensure exists returns false when the target is not in the array. 
 
  @Test 
  public void testSequentialSearchWhenNotHere() { 
    RecursiveMethods rm = new RecursiveMethods(); 
    Integer[] array = { 1, 2, 3, 4, 5 }; 
    int lastIndex = array.length - 1; 
    assertFalse(rm.exists(array, lastIndex, -123)); 
    assertFalse(rm.exists(array, lastIndex, 999)); 
  } 
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Self-Check 
19-13 What would happen when lastIndex is not less than the array's capacity as in this assertion?  

  assertFalse(rm.exists(array, array.length + 1, "Kelly")); 
 

19-14  What would happen when lastIndex is less than 0 as in this assertion? 
             assertFalse(rm.exists(array, -1, "Mike")); 

 

19-15 Write a method printForward that prints all objects referenced by the array named x (that has n 
elements) from the first element to the last. Use recursion. Do not use any loops. Use this 
method heading: 

     public void printForward(Object[] array, int n)  
 

19-16 Complete this testReverse method so a method named reverse in class RecursiveMethods 
will reverse the order of all elements in an array of Objects that has n elements. Use this 
heading: 

    public void printReverse(Object[] array, int leftIndex, int rightIndex) 
 
         @Test 
         public void testReverse() { 
                   RecursiveMethods rm = new RecursiveMethods(); 
 
            String[] array =  { "A", "B", "C" }; 
            rm.reverse(array, 0, 2);   
            assertEquals(                      ); 
            assertEquals(                      ); 
            assertEquals(                      ); 
          } 

 

19-17 Write the recursive method reverse is if it were in class RecursiveMethods. Use recursion. Do 
not use any loops.  

 

19.4 Recursion with a Linked Structure 
This section considers a problem that you have previously resolved using a loop — searching for an object 
reference from within a linked structure. Consider the base cases first.  
 The simplest base case occurs with an empty list. In the code shown below, this occurs when there are no 
more elements to compare. A recursive find method returns null to indicate that the object being searched for did 
not equal any in the list. The other base case is when the object is found. A recursive method then returns a 
reference to the element in the node.  
 The recursive case is also relatively simple: If there is some portion of the list to search (not yet at the end), 
and the element is not yet found, search the remainder of the list. This is a simpler version of the same problem – 
search the list that does not have the element that was just compared. In summary, there are two base cases and 
one recursive case that will search the list beginning at the next node in the list: 
 

Base cases: 
   If there is no list to search, return null. 
   If the current node equals the object, return the reference to the data. 
 
Recursive case: 
   Search the remainder of the list – from the next node to the end of the list 
 
The code for a recursive search method is shown next as part of class SimpleLinkedList. Notice that there 
are two findRecursively methods  one public and one private. (Two methods of the same name are allowed 
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in one class if the number of parameters differs.) This allows users to search without knowing the internal 
implementation of the class. The public method requires the object being searched for, but not the private instance 
variable named front, or any knowledge of the Node class. The public method calls the private method with the 
element to search for along with the first node to compare  front. 
 
public class SimpleLinkedList<E> { 
 
  private class Node  { 
    private E data;     
    private Node next;  
 
    public Node(E objectReference, Node nextReference) { 
      data = objectReference; 
      next = nextReference; 
    } 
  } // end class Node 
 
  private Node front; 
   
  public SimpleLinkedList() { 
    front = null;  
  } 
   
  public void addFirst(E element) { 
    front = new Node(element, front); 
  } 
 
  // Return a reference to the element in the list that "equals" target 
  // Precondition: target's type overrides "equals" to compare state 
  public E findRecursively(E target) { 
    // This public method hides internal implementation details 
    // such as the name of the reference to the first node to compare. 
    // 
    // The private recursive find, with two arguments, will do the work. 
    // We don't want the programmer to reference first (it's private). 
    // Begin the search at the front, even if front is null. 
    return findRecursively(target, front); 
  } 
 
  private E findRecursively(E target, Node currentNode) { 
    if (currentNode == null) // Base case--nothing to search for 
      return null; 
    else if (target.equals(currentNode.data)) // Base case -- element found 
      return currentNode.data; 
    else 
      // Must be more nodes to search, and still haven't found it; 
      // try to find from the next to the last. This could return null. 
      return findRecursively(target, currentNode.next); 
  } 
} 
 
Each time the public findRecursively method is called with the object to find, the private 
findRecursively method is called. This private method takes two arguments: the object being searched for and 
front  the reference to the first node in the linked structure. If front is null, the private findRecursively 
method returns null back to the public method findRecursively , which in turn returns null back to main 
(where it is printed). 
 In a non-empty list, currentNode refers to a node containing the first element. If the first node's data does 
not equal the search target, a recursive call is made. The second argument would be a reference to the second node 
in the list. (The method still needs to pass the object being searched). This time, the problem is simpler because 
there is one less element in the list to search. Each recursive call to findRecursively has a list with one less 
node to consider. The code is effectively "shrinking” the search area.  
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 The recursive method keeps making recursive calls until there is either nothing left of the list to search (return 
null), or the element being searched for is found in the smaller portion of the list. In this latter case, the method 
returns the reference back to the public method, which in turn returns the reference back to main (where it is 
printed). 
 At some point, the method will eventually reach a base case. There will be one method call on the stack for 
each method invocation. The worst case for findRecursively is the same for sequential search: O(n). This 
means that a value must be returned to the calling function, perhaps thousands of times. A trace of looking for an 
element that is not in the list could look like this. The portion of the list being searched is shown to the right of the 
call ([] is an empty list): 
 

null

null

null

null

findRecursively("X")  []

findRecursively("X") [C]

findRecursively("X") [B, C]

findRecursively("X") [A, B, C]

 
And here is a trace of a successful search for "C". If "C" were at the end of the list with size() == 975, there would 
have been 975 method calls on the stack. 
 

 

"C" 

"C" 

"C" 

findRecursively("C") [C] 

 

findRecursively("C") [B, C] 

 

findRecursively("C") [A, B, C] 

 
  

Self-Check 
19-18 Add a recursive method toString to the SimpleLinkedList class above that returns a string with the 

toString of all elements in the linked list separated by spaces. Use recursion, do not use a loop. 
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Answers to Self-Checks 
19-1 powRecurse (3, 0) == 1 

19-2 powRecurse (3, 1) == 3 

19-3 filled in from top to bottom 
 3*(3, 0) = 1 
 3*(3, 1) = 3*1 = 3 
 3*(3, 2) = 3*3 = 9 
 3*(3, 3) = 3*9 = 27 
 3*(3, 4) = 3*27 = 81 

19-4 result mystery(5) 
   1 <2> 1 <3> 1 <2> 1 <4> 1 <2> 1 <3> 1 <2> 1 <5> 1 <2> 1 <3> 1 <2> 1 <4> 1 <2> 1 <3> 1 <2> 1  
   fence post pattern - the brackets follow the numbers being recursed back into the method 

19-5 mystery2(4) result: 1 2 3 4  
 
19-6       a. __0__ mystery6(-5) 

b. __1__  mystery6(1) 
c. __2__  mystery6(2) 

d. __4__  mystery6(3) 
e. __8__  mystery6(4) 

 
 
19-7  a.  false      b. false     c. true 
 
19-8 
  public int fibonacci(int n){ 
    if(n == 0) 
      return 1; 
    else if(n ==1) 
      return 1; 
    else if(n >= 2) 
      return fibonacci(n-1) + fibonacci(n-2); 
    else 
     return -1; 
  } 
 
19-9 
  public int howOften(String str, String sub) { 
    int subsStart = str.indexOf(sub); 
    if (subsStart < 0) 
      return 0; 
    else 
      return 1 + howOften(str.substring(subsStart + sub.length()), sub); 
  } 
 

19-10 isPalindrome ("yoy") == true 

19-11 isPalindrome("yoyo") == false 

19-12 return values for huh, in order 
  a.  +abc+ 
  b.  abc 
  c.  a-b-c 
  d.  abc 
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19-13 - if "Kelly" is not found at the first index, it will throw an arrayIndexOutOfBounds exception 
 
19-14 - it will immediately return false without searching 
 
19-15  
  public void printForward(Object[] array, int n) { 
    if (n > 0) { 
      printForward(array, n - 1); 
      System.out.println(array[n-1].toString()); 
    } 
  } 
 
19-16  
  assertEquals("A", array[2]); 
  assertEquals("B", array[1]); 
  assertEquals("C", array[0]); 
    
19-17  
  public void reverse(Object[] array, int leftIndex, int rightIndex) { 
    if (leftIndex < rightIndex) { 
      Object temp = array[leftIndex]; 
      array[leftIndex] = array[rightIndex]; 
      array[rightIndex] = temp; 
      reverse(array, leftIndex + 1, rightIndex - 1); 
    } 
  }  
 
19-18 
  public String toString (){ 
    return toStringHelper(front); 
  } 
 
  private String toStringHelper(Node ref) { 
    if(ref == null) 
      return ""; 
    else  
      return ref.data.toString() + " " + toStringHelper(ref.next); 
  }



 

 

 
 

Chapter 20 
 

Binary Trees    
 
 

 
 
The data structures presented so far are predominantly linear. Every element has one unique predecessor and one 
unique successor (except the first and last elements). Arrays, and singly linked structures used to implement lists, 
stacks, and queues all have this linear characteristic. The tree structure presented in this chapter is a hierarchical 
in that nodes may have more than one successor.  
 
Goals 

• Become familiar with tree terminology and some uses of trees 
• Store data in a hierarchical data structure as a Java Collection class 
• Implement binary tree algorithms 
• Implement algorithms for a Binary Search Tree 
 
 

20.1 Trees 
Trees are often used to store large collections of data in a hierarchical manner where elements are arranged in 
successive levels. For example, file systems are implemented as a tree structure with the root directory at the 
highest level. The collection of files and directories are stored as a tree where a directory may have files and other 
directories. Trees are hierarchical in nature as illustrated in this view of a very small part of a file system (the root 
directory is signified as /). 

 

Each node in a tree has exactly one parent except for the distinctive node known as the root. Whereas the root of 
a real tree is usually located in the ground and the leaves are above the root, computer scientists draw trees upside 
down. This convention allows us to grow trees down from the root since most people find it more natural to write 
from top to bottom. You are more likely to see the root at the 'top' with the leaves at the 'bottom' of trees. Trees 
implemented with a linked structure can also be pictured like this: 
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root 

edges 

2 

4 

3 

1 

6 5 

nodes 

leaves 
 

 
A nonempty tree is a collection of nodes with one node designated as the root. Each node contains a reference to 
an element and has edges connecting it to other nodes, which are also trees. These other nodes are called children. 
A tree can be empty  have no nodes. Trees may have nodes with two or more children. 
 A leaf is a node with no children. In the tree above, the nodes with 4, 5, and 6 are leafs. All nodes that are not 
leaves are called the internal nodes of a tree, which are 1, 2, and 3 above. A leaf node could later grow a 
nonempty tree as a child. That leaf node would then become an internal node. Also, an internal node might later 
have its children become empty trees. That internal node would become a leaf. 
 A tree with no nodes is called an empty tree. A single node by itself can be considered a tree. A structure 
formed by taking a node N and one or more separate trees and making N the parent of all roots of the trees is also 
a tree. This recursive definition enables us to construct trees from existing trees. After the construction, the new 
tree would contain the old trees as subtrees. A subtree is a tree by itself. By definition, the empty tree can also be 
considered a subtree of every tree. 
 All nodes with the same parent are called siblings. The level of a node is the number of edges it takes to reach 
that particular node from the root. For example, the node in the tree above containing J is at level 2. The height of 
a tree is the level of the node furthest away from its root. These definitions are summarized with a different tree 
where the letters A through I represent the elements.  
 
 

 

root     A 

internal nodes   A B D 

leaves    E F C G H I  

height    2 

level of root   0   

level of node with B  1 

level of node with E 2 

nodes at level 1   3 

parent of G, H and I  D 

children of B   E F 

  
 
 
A binary tree is a tree where each node has exactly two binary trees, commonly referred to as the left child and 
right child. Both the left or right trees are also binary trees. They could be empty trees. When both children are 
empty trees, the node is considered a leaf. Under good circumstances, binary trees have the property that you can 
reach any node in the tree within log2n steps, where n is the number of nodes in the tree.  

Expression Tree 
An expression tree is a binary tree that stores an arithmetic expression. The tree can then be traversed to evaluate 
the expression. The following expression is represented as a binary tree with operands as the leaves and operators 
as internal nodes.  
 
 
                             (1 + (5 + (2 * 3))) / 3 

Empty trees are 
shown here as / 
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Depending on how you want to traverse this tree  visit each node once  you could come up with different 
orderings of the same expression: infix, prefix, or postfix. These tree traversal algorithms are presented later in 
this chapter. 

Binary Search Tree 
Binary Search Trees are binary trees with the nodes arranged according to a specific ordering property. For 
example, consider a binary search tree that stores Integer elements. At each node, the value in the left child is 
less than the value of the parent. The right child has a value that is greater than the value of its parent. Also, since 
the left and right children of every node are binary search trees, the same ordering holds for all nodes. For 
example, all values in the left subtree will be less than the value in the parent. All values in the right subtree will 
be greater than the value of the parent.  

 
The left child of the root (referenced by A) has a value (5) that is less than the value of the root (8). Likewise, the 
value of the right child of the root has a value (10) that is greater than the root’s value (8). Also, all the values in 
the subtree referenced by A (4, 5, 7), are less than the value in the root (8). 
 To find the node with the value 10 in a binary search tree, the search begins at the root. If the search value 
(10) is greater than the element in the root node, search the binary search tree to the right. Since the right tree has 
the value you are looking for, the search is successful. If the key is further down the tree, the search keeps going 
left or right until the key is found or the subtree is empty indicating the key was not in the BST. Searching a 
binary search tree can be O(log n) since half the nodes are removed from the search at each comparison. Binary 
search trees store large amounts of real world data because of their fast searching, insertions, and removal 
capabilities. The binary search tree will be explored later in this chapter. 

Huffman Tree 
David Huffman designed one of the first compression algorithms in 1952. In general, the more frequently 
occurring symbols have the shorter encodings. Huffman coding is an integral part of the standards for high 
definition television (HDTV). The same approach to have the most frequently occurring characters in a text file be 
represented by shorter codes, allows a file to be compressed to consume less disk space and to take less time to 
arrive over the Internet.  
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 Part of the compression algorithm involves creation of a Huffman tree that stores all characters in the file as 
leaves in a tree. The most frequently occurring letters will have the shortest paths in the binary tree. The least 
occurring characters will have longer paths. For example, assuming a text file contains only the characters 'a',  'e',  
'h',  'r', 't', and '_', the Huffman tree could look like this assuming that 'a', 'e', and '_' occur more frequently than 'h' 
and 'r'. 

 
 
With the convention that 0 means go left and 1 right, the 6 letters have the following codes:  
 
'a'  01 
'_'  10 
'e'  11 
't'  000 
'h'  0010 
'r'  0011 
 
Instead of storing 8 bits for each character, the most frequently occurring letters in this example use only 2 or 3 
bits. Some of the characters in a typical file would have codes for some characters that are much longer than 8 
bits. These 31 bits represent a text file containing the text "tea_at_three". 
 
0001101100100010000001000111111  
  | | | | |  | |  |   |   | | | 
  t e a _ a  t _  t   h   r e e 
 
 
Assuming 8 bit ASCII characters, these 31 bits would require 12*8 or 96 bits.  
 

20.2 Implementing Binary Trees 
A binary tree can be represented in an array. With an array-based implementation, the root node will always be 
positioned at array index 0. The root’s left child will be positioned at index 1, and the right child will be 
positioned at array index 2. This basic scheme can be carried out for each successive node counting up by one, 
and spanning the tree from left to right on a level-wise basis.  
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null
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Notice that some nodes are not used. These unused array locations show the "holes" in the tree. For example, 
nodes at indexes 3 and 7 do not appear in the tree and thus have the null value in the array. In order to find any 
left or right child for a node, all that is needed is the node’s index. For instance to find node 2’s left and right 
children, use the following formula: 
 
Left Child’s Index   =  2 * Parent’s Index + 1 
Right Child’s Index  =  2 * Parent’s Index + 2 
 
So in this case, node 2’s left and right children have indexes of 5 and 6 respectively. Another benefit of using an 
array is that you can quickly find a node’s parent with this formula: 
 
Parent’s Index = (Child’s Index – 1) / 2     
 
For example, (5-1)/2 and (6-1)/2 both have the same parent in index 2. This works, because with integer division, 
4/2 equals 5/2.  
 
 
Linked Implementation 
 
Binary trees are often implemented as a linked structure. Whereas nodes in a singly linked structure had one 
reference field to refer to the successor element, a TreeNode will have two references  one to the left child 
and one to the right child. A tree is a collection of nodes with a particular node chosen as the root. Assume the 
TreeNode class will be an inner class with private instance variables that store these three fields 
 
• a reference to the element  
• a reference to a left tree (another TreeNode),  
• a reference to a right tree (another TreeNode).  
 
To keep things simple, the TreeNode class begins like this so it can store only strings. There are no 
generics yet. 
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  // A type to store an element and a reference to two other TreeNode objects           
  private class TreeNode { 
  
    private String data; 
    private TreeNode left; 
    private TreeNode right; 
 
    public TreeNode(String elementReference) { 
      data = elementReference; 
      left = null; 
      right = null; 
    } 
  } 
 
The following three lines of code (if in the same class as this inner node class) will generate the binary tree 
structure shown: 
 
 TreeNode root = new TreeNode("T"); 
 root.left = new TreeNode("L"); 
 root.right = new TreeNode("R"); 

 

"T" 

root 

"L" "R" 

 
 
 
 

Self-Check 
20-1 Using the tree shown below, identify  
  a) the root    c) the leaves  e) the children of delta 
  b) size   d) the internal nodes f) the number of nodes on level 4 
 

 

   theRootValue 

      able 

      baker       charlie       echo      foxtrot 

     delta 

 
20-2 Using the TreeNode class above, write the code that generates the tree above. 
 

 
Node as an Inner Class 
Like the node classes of previous collections, this TreeNode class can also be placed inside another. However, 
instead of a collection class with an insert method, hardCodeATree will be used here to create a small binary 
tree. This will be the tree used to present several binary tree algorithms such as tree traversals in the section that 
follows. 
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// This simple class stores a collection of strings in a binary tree. 
// There is no add or insert method. Instead a tree must be "hard coded" to  
// demonstrate algorithms such as tree traversals, makeMirror, and height. 
public class BinaryTreeOfStrings { 
 
 private class TreeNode { 
 
   private String data; 
   private TreeNode left; 
   private TreeNode right; 
 
   public TreeNode(String elementReference) { 
     data = elementReference; 
      left = null; 
      right = null; 
    } 
  } 
 
  // The entry point into the tree 
  private TreeNode root;  
 
  // Construct and empty tree 
  public BinaryTreeOfStrings() { 
    root = null; 
  } 
 
  // Hard code a tree of size 6 on 4 levels 
  public void hardCodeATree() { 
    root = new TreeNode("C"); 
    root.left = new TreeNode("F"); 
    root.left.left = new TreeNode("T");  
    root.left.left.left = new TreeNode("B");  
    root.left.left.right = new TreeNode("R"); 
    root.left.right = new TreeNode("K");  
    root.right = new TreeNode("G");  
  } 
} 
 
The tree built in hardCodeATree() 
 

 

"C" 

"G" "F" 

root 

"T" 

"R" "B" 

"K" 
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20.3  Binary Tree Traversals 
Code that traverses a linked list would likely visit the nodes in sequence, from the first element to the last. Thus, if 
the list were sorted in a natural ordering, nodes would be visited in from smallest to largest. With binary trees, the 
traversal is quite different. We need to stack trees of parents before visiting children. Common tree traversal 
algorithms include three of a possible six: 
 

• Preorder traversal: Visit the root, preorder traverse the left tree, preorder traverse the right subtree 
• Inorder traversal: Inorder traverse the left subtree, visit the root, inorder traverse the right subtree 
• Postorder traversal: Postorder traverse the left subtree, postorder traverse the right subtree, visit the root 

 
When a tree is traversed in a preorder fashion, the parent is processed before its children — the left and right 
subtrees.  
 

Algorithm: Preorder Traversal of a Binary Tree 
• Visit the root 
• Visit the nodes in the left subtree in preorder 
• Visit the nodes in the right subtree preorder 

 
When a binary tree is traversed in a preorder fashion, the root of the tree is "visited" before its children — its left 
and right subtrees. For example, when preorderPrint is called with the argument root, the element C would 
first be visited. Then a call is made to do a preorder traversal beginning at the left subtree. After the left subtree 
has been traversed, the algorithm traverses the right subtree of the root node making the element G the last one 
visited during this preorder traversal. 
 

 

"C" 

"G" "F" 

root 

"T" 

"R" "B" 

"K" 

 
 
The following method performs a preorder traversal over the tree with "C" in the root node. Writing a solution to 
this method without recursion would require a stack and a loop. This algorithm is simpler to write with recursion.  
 

    public void preOrderPrint() { 
      preOrderPrint(root); 
    } 
 
    private void preOrderPrint(TreeNode tree) { 
      if (tree != null) { 
        // Visit the root 
        System.out.print(tree.data + " "); 
        // Traverse the left subtree 
        preOrderPrint(tree.left); 
        // Traverse the right subtree 
        preOrderPrint(tree.right); 
      } 
    } 
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When the public method calls preOrderPrint passing the reference to the root of the tree, the node with C is first 
visited. Next, a recursive call passes a reference to the left subtree with F at the root. Since this TreeNode argument it 
is not null, F is visited next and is printed.   
 
 

"C" 

"G" "F" 

root 

"T" 

"R" "B" 

"K" 

 
 

Preorder Traversal so far: C F 
 

Next, a recursive call is made with a reference to the left subtree of F with T at the root, which is visited before 
the left and right subtrees. 
 

 

"C" 

"G" "F" 

root 

"T" 

"R" "B" 

"K" 

 
Preorder Traversal so far: C F T 
After the root is visited, another recursive call is made with a reference to the left subtree B and it is printed. 
Recursive calls are made with both the left and right subtrees of B. Since they are both null, the if statement is 
false and the block of three statement is skipped. Control returns to the method with T at the root where the right 
subtree is passed as the argument.  

Preorder Traversal so far: C F T B R 
The flow of control returns to visiting the right subtree of F, which is K. The recursive calls are then made for 
both of K's children (empty trees). Again, in both calls, the block of three statements is skipped since t.left and 
t.right are both null. 
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"C" 

"G" "F" 

root 

"T" 

"R" "B" 

"K" 

 

Preorder Traversal so far: C F T B R K 
 

Finally, control returns to visit the right subtree in the first call with the root as the parameter to visit the right 
subtree in preorder fashion when G is printed. 

Inorder Traversal 
During an inorder traversal, each parent gets processed between the processing of its left and right children. The 
algorithm changes slightly. 

• Traverse the nodes in the left subtree inorder 
• Process the root 
• Traverse the nodes in the right subtree inorder 

 
Inorder traversal visits the root of each tree only after its left subtree has been traversed inorder. The right subtree 
is traversed inorder after the root. 
 
public void inOrderPrint() { 
    inOrderPrint(root); 
  } 
 
  private void inOrderPrint(TreeNode t) { 
    if (t != null) { 
      inOrderPrint(t.left); 
      System.out.print(t.data + " "); 
      inOrderPrint(t.right); 
    } 
  } 
 

Now a call to inOrderPrint would print out the values of the following tree as 
 

                B T R F K C G 
 

"C" 

"G" "F" 

root 

"T" 

"R" "B" 

"K" 
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The inOrderPrint method keeps calling inOrderPrint recursively with the left subtree. When the left 
subtree is finally empty, t.left==null, the block of three statements executed for B. 

Postorder Traversal 
In a postorder traversal, the root node is processed after the left and right subtrees. The algorithm shows 
the process step after the two recursive calls. 

1. Traverse the nodes in the left subtree in a postorder manner 
2. Traverse the nodes in the right subtree in a postorder manner 
3. Process the root 

 
A postorder order traversal would visit the nodes of the same tree in the following fashion: 
 

  B R T K F G C 
 

"C" 

"G" "F" 

root 

"T" 

"R" "B" 

"K" 

 
 

The toString method of linear structures, such as lists, is straightforward. Create one big string from the first 
element to the last. A toString method of a tree could be implemented to return the elements concatenated in 
pre-, in-, or post-order fashion. A more insightful method would be to print the tree to show levels with the root at 
the leftmost (this only works on trees that are not too big). A tree can be printed sideways with a reverse inorder 
traversal. Visit the right, the root, and then the left. 
 

    G 
C 
        K 
    F 
            R 
        T 
            B 
 

The printSideways method below does just this To show the different levels, the additional parameter depth 
begins at 0 to print a specific number of blank spaces depth times before each element is printed. When the root is 
to be printed depth is 0 and no blanks are printed. 
 
  public void printSideways() { 
    printSideways(root, 0); 
  } 
 
  private void printSideways(TreeNode t, int depth) { 
    if (t != null) { 
      printSideways(t.right, depth + 1); 
      for (int j = 1; j <= depth; j++) 
        System.out.print("    "); 
      System.out.println(t.data); 
      printSideways(t.left, depth + 1); 
    } 
  } 
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Self-Check 
 
20-3 Write out the values of each node of this tree as the tree is traversed both  

a. inOrder              b. preorder                 c. postOrder 
 

 
 
20-4 Implement the private helper method postOrderPrint that will print all elements separated by a space 
when this public method is called: 
 
  public void postOrderPrint() { 
    postOrderPrint(root); 
  } 
 
 

20.4 A few other methods 
This section provides a few algorithms on binary trees, a few of which you may find useful. 

height 
The height of an empty tree is -1, the height of an tree with one node (the root node) is 0, and the height of a tree 
of size greater than 1 is the longest path found in the left tree from the root. The private height method first 
considers the base case to return -1 if the tree is empty.   
 
 
 
  // Return the longest path in this tree or –1 if this tree is empty. 
  public int height() { 
    return height(root); 
  } 
 
  private int height(TreeNode t) { 
    if (t == null) 
      return -1; 
    else 
      return 1 + Math.max(height(t.left), height(t.right)); 
  } 
 
When there is one node, height returns 1 + the maximum height of the left or right trees. Since both are empty, 
Math.max returns -1 and the final result is (1 + -1) or 0. For larger trees, height returns the larger of the height 
of the left subtree or the height of the right subtree. 
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leafs  
Traversal algorithms allow all nodes in a binary tree to be visited. So the same pattern can be used to search for 
elements, send messages to all elements, or count the number of nodes. In these situations, the entire binary tree 
will be traversed.  
 The following methods return the number of leafs in a tree When a leaf is found, the method returns 1 + all 
leafs to the left + all leafs to the right. If t references an internal node (not a leaf), the recursive calls to the left 
and right must still be made to search further down the tree for leafs. 
 

  public int leafs() { 
    return leafs(root); 
  } 
 

  private int leafs(TreeNode t) { 
    if (t == null) 
      return 0; 
    else { 
      int result = 0; 
      if (t.left == null && t.right == null) 
        result = 1; 
      return result + leafs(t.left) + leafs(t.right); 
    } 
  } 

findMin 
The findMin method returns the string that precedes all others alphabetically. It uses a preorder traversal 
to visit the root nodes first (findMin could also use be a postorder or inorder traversal). This example 
show that it may be easier to understand or implement a binary tree algorithm that has an instance 
variable initialized in the public method and adjusted in the private helper method. 
 

  // This instance variable is initialized it in the public method findMin. 
  private String min; 
 
  // Return a reference the String that alphabetically precedes all others 
  public String findMin() { 
    if (root == null) 
      return null; 
    else { 
      min = root.data; 
      findMinHelper(root); 
      return min; 
    } 
  } 
 
  public void findMinHelper(TreeNode t) { 
    // Only compare elements in nonempty nodes 
    if (t != null) {   
     // Use a preorder traversal to compare all elements in the tree.  
     if (t.data.compareTo(min) < 0) 
        min = t.data; 
      findMinHelper(t.left);  
      findMinHelper(t.right); 
    } 
  } 

Self-Check 
20-5 To BinaryTreeOfStrings, add method findMax that returns the string that follows all others 

alphabetically. 

20-6 To BinaryTreeOfStrings, add method size that returns the number of nodes in the tree.  
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Answers to Self-Checks 

20-1   a) theRootValue   c)  baker, Charlie, echo, foxtrot  e) echo, foxtrot 
   b) 7    d) theRootValue, able, delta  f) 0   the bottom level is 2  
 
20-2 Assume this code is in a method of class BinaryTreeOfStrings 
   root = new TreeNode("theRootValue"); 
   root.left = new TreeNode("able"); 
   root.left.left = new TreeNode("baker"); 
   root.left.right = new TreeNode("charlie"); 
   root.right = new TreeNode("delta"); 
   root.right.left = new TreeNode("echo"); 
   root.right.right = new TreeNode("foxtrot"); 
 
20-3  a.  inorder: 5 + 4 * 2 / 3 * 6  b. preorder: * + 5 4 / 2 * 3 6 c. postOrder: 5 4 + 2 3 6 * / * 
 
20-4  Output using the tree would be:   baker Charlie able echo foxtrot delta theRootValue 
 

    private void postOrderPrint(TreeNode t) { 
      if (t != null) { 
        postOrderPrint(t.left); 
        postOrderPrint(t.right); 
        System.out.print(t.data + " "); 
      } 
    } 
 
20-5  Alternatives exist. This solution shows an extra instance variable can make it easier to understand 
 

 private int max; 
 

 public int findMax(TreeNode<Integer> t) { 
   if (t == null) 
     return 0; 
   else { 
     max = t.data; 
     findMaxHelper(t); 
     return max; 
   } 
 } 
 
 public void findMaxHelper(TreeNode<Integer> t) { 
   if (t != null) { 
     int temp = ((Integer) t.data).intValue(); 
     if (temp > max) 
       min = temp; 
     findMaxHelper(t.left); 
     findMaxHelper(t.right); 
   } 
 } 
 
20-6  
 public int size() { 
   return size(root); 
 } 
 
 private int size(TreeNode t) { 
   if (t == null) 
     return 0; 
   else 
     return 1 + size(t.left) + size(t.right); 
 }



 

 

 

Chapter 21 
 

Binary Search Trees 
 
 

Binary Search Trees 
 
A Binary Search Tree is a binary tree with an ordering property that allows O(log n) retrieval, insertion, and 
removal of individual elements. Defined recursively, a binary search tree is 
 
1. an empty tree, or 
2. consists of a node called the root, and two children, left and right, each of which are themselves binary search 

trees. Each node contains data at the root that is greater than all values in the left subtree while also being less 
than all values in the right subtree. No two nodes compare equally. This is called the binary search tree 
ordering property. 

 
The following two trees represent a binary search tree and a binary tree respectively. Both have the same structure 
— every node has two children (which may be empty trees shown with /). Only the first tree has the binary 
search ordering property.  
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The second does not have the BST ordering property. The node containing 55 is found in the left subtree of 50 
instead of the right subtree. 
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The BinarySearchTree class will add the following methods: 
 
 insert Add an element to the binary search tree while maintaining the ordering property. 
 find  Return a reference to the element that "equals" the argument according to compareTo 
 remove Remove the that "equals" while maintaining the ordering property (left as an exercise) 
 
Java generics will make this collection class more type safe. It would be tempting to use this familiar class 
heading. 
 
  public class BinarySearchTree<E> 
 
However, to maintain the ordering property, BinarySearchTree algorithms frequently need to compare two 
elements to see if one element is greater than, less than, or equal to another element. These comparisons can be 
made for types that have the compareTo method. 
 Java generics have a way to ensure that a type has the compareTo method. Rather than accepting any type with 
<E>, programmers can ensure that the type used to construct an instance does indeed implement the Comparable 
interface (or any interface that extends the Comparable interface) with this syntax: 
 
public class BinarySearchTree <E extends Comparable<E>> { 

 
This class heading uses a bounded parameter to restrict the types allowed in a BinarySearchTree to 
Comparables only. This heading will also avoid the need to cast to Comparable. Using <E extends 
Comparable <E>> will also avoid cast exceptions errors at runtime. Instead, an attempt to compile a 
construction with a NonComparable  assuming NonComparable is a class that does not implement 
Comparable  results in a more preferable compile time error. 
 
  BinarySearchTree<String> strings = new BinarySearchTree<String>(); 
  BinarySearchTree<Integer> integers = new BinarySearchTree<Integer>(); 
  BinarySearchTree<NonComparable> no = new BinarySearchTree<NonComparable>(); 
                                                     ⇑ 

Bound mismatch: The type NonComparable is not a valid substitute for the bounded parameter <E extends 
Comparable<E>> 

 
So far, most elements have been String or Integer objects. This makes explanations shorter. For example, it is 
easier to write stringTree.insert("A"); than accountTree.insert(new BankAccount("Zeke Nathanielson", 150.00)); 
(and it is also easier for authors to fit short strings and integers in the boxes that represent elements of a tree).  
 However, collections of only strings or integers are not all that common outside of textbooks. You will more 
likely need to store real-world data. Then the find method seems more appropriate. For example, you could have a 
binary search tree that stores BankAccount objects assuming BankAccount implements Comparable. Then the return 
value from find could be used to update the object in the collection, by sending withdraw, deposit, or getBalance 
messages.   

Not less 
than 50  
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accountCollection.insert(new BankAccount("Mark", 50.00)); 
accountCollection.insert(new BankAccount("Jeff", 100.00)); 
accountCollection.insert(new BankAccount("Nathan", 150.00)); 
 
// Need to create a dummy object that will "equals" the account in the BST 
BankAccount toBeMatched = new BankAccount("Jeff", -999); 
BankAccount currentReference = accountCollection.find(toBeMatched); 
assertNotNull(currentReference); 
assertEquals("Jeff", currentReference.getID()); 
 
accountCollection.printSideways(); 
currentReference.deposit(123.45); 
 
System.out.println("After a deposit for Jeff"); 
accountCollection.printSideways(); 

Output (Notice that the element with ID Jeff changes): 
    Nathan $150.00 
Mark $50.00 
    Jeff $100.00 
After a deposit for Jeff 
    Nathan $150.00 
Mark $50.00 
    Jeff $223.45 

Linked Implementation of a BST 
The linked implementation of a binary search tree presented here uses a private inner class TreeNode that stores 
the type E specified as the type parameter. This means the nodes can only store the type of element passed as the 
type argument at construction (which must implement Comparable or an interface that extends interface 
Comparable). 
 
// This simple class stores a collection of strings in a binary tree. 
// There is no add or insert method.Instead a tree will be "hard coded" to 
// demonstrate algorithms such as tree traversals, makeMirror, and height. 
public class BinarySearchTree<E extends Comparable<E>> { 
 
  private class TreeNode { 
 
    private E data; 
    private TreeNode left; 
    private TreeNode right; 
 
    TreeNode(E theData) { 
      data = theData; 
      left = null; 
      right = null; 
    } 
  } 
 
  private TreeNode root; 
 
  public BinarySearchTree() { 
    root = null; 
  } 
  
  // The insert and find methods will be added here 
} 
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boolean insert(E) 
A new node will always be inserted as a leaf. The insert algorithm begins at the root and proceeds as if it were 
searching for that element. For example, to insert a new Integer object with the value of 28 into the following 
binary search tree, 28 will first be compared to 50. Since 28 is less than the root value of 50, the search proceeds 
down the left subtree. Since 28 is greater than 25, the search proceeds to the right subtree. Since 28 is less than 36, 
the search attempts to proceed left, but stops. The tree to the left is empty. At this point, the new element should 
be added to the tree as the left child of the node with 36. 
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28 

 
 
The search to find the insertion point ends under either of these two conditions: 

1. A node matching the new value is found.  
2. There is no further place to search. The node can then be added as a leaf. 

 
In the first case, the insert method could simply quit without adding the new node (recall that binary search trees 
do not allow duplicate elements). If the search stopped due to finding an empty tree, then a new TreeNode with 
the integer 28 gets constructed and the reference to this new node replaces one of the empty trees (the null 
value) in the leaf last visited. In this case, the reference to the new node with 28 replaces the empty tree to the left 
of 36. 
 One problem to be resolved is that a reference variable (named curr in the code below) used to find the 
insertion point eventually becomes null. The algorithm must determine where it should store the reference to the 
new node. It will be in either the left link or the right link of the node last visited. In other words, after the 
insertion spot is found in the loop, the code must determine if the new element is greater than or less than its soon 
to be parent. 
 Therefore, two reference variables will be used to search through the binary search tree. The TreeNode 
reference named prev will keep track of the previous node visited. (Note: There are other ways to implement 
this). 
 The following method is one solution to insertion. It utilizes the Binary Search Tree ordering property. The 
algorithm checks that the element about to be inserted is either less than or greater than each node visited. This 
allows the appropriate path to be taken. It ensures that the new element will be inserted into a location that keeps 
the tree a binary search tree. If the new element to be inserted compares equally to the object in a node, the insert 
is abandoned with a return statement.  
 
public boolean insert(E newElement) { 
    // newElement will be added and this will still be a BinarySearchTree. This tree will  
    // not insert newElement if it will compareTo an existing element equally. 
    if (root == null) 
      root = new TreeNode(newElement); 
    else {  
      // find the proper leaf to attach to 
      TreeNode curr = root; 
      TreeNode prev = root; 
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      while (curr != null) { 
        prev = curr; 
        if (newElement.compareTo(curr.data) < 0) 
          curr = curr.left; 
        else if (newElement.compareTo(curr.data) > 0) 
          curr = curr.right; 
        else { 
          System.out.println(newElement + " in this BST"); 
          return false; 
        } 
      } 
 
      // Determine whether to link the new node came from prev.left or prev.right 
      if (newElement.compareTo(prev.data) < 0) 
        prev.left = new TreeNode(newElement); 
      else 
        prev.right = new TreeNode(newElement); 
    } 
    return true; 
  }  
 

When curr finally becomes null, it must be from either prev's left or right.  

      
This situation is handled by the code at the end of insert that compares newElement to prev.data.  

E find(E) 
This BinarySearchTree needed some way to insert elements before find could be tested so insert could be 
tested, a bit of illogicality. Both will be tested now with a unit test that begins by inserting a small set of integer 
elements. The printSideways message ensures the structure of the tree has the BST ordering property.   
 

import static org.junit.Assert.*; 
import org.junit.Test; 
import org.junit.Before; 
 
public class BinarySearchTreeTest { 
 
  private BinarySearchTree<Integer> aBST; 
  // Any test method can use aBST with the same 9 integers shown in @Before as  
  // setUpBST will be called before each @Test 
  @Before 
  public void setUpBST() { 
    aBST = new BinarySearchTree<Integer>(); 
    aBST.insert(50); 
    aBST.insert(25); 
    aBST.insert(75); 
    aBST.insert(-12); 
    aBST.insert(36); 
    aBST.insert(57); 
    aBST.insert(90); 
    aBST.insert(52); 
    aBST.insert(61); 
    aBST.printSideways(); 
  } 
} 
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Output Picture the state of aBST 
 
        90 
    75 
            61 
        57 
            52 
50 
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    25 
        -12 
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The first test method ensures that elements that can be added result in true and those that can't result in false. 
Programmers could use this to ensure the element was added or the element already existed. 
 
  @Test 
  public void testInsertDoesNotAddExistingElements() { 
    assertTrue(aBST.insert(789)); 
    assertTrue(aBST.insert(-789)); 
    assertFalse(aBST.insert(50)); 
    assertFalse(aBST.insert(61)); 
  } 
 
This test method ensures that the integers are found and that the correct value is returned.  
 
  @Test 
  public void testFindWhenInserted() { 
    assertEquals(50, aBST.find(50)); 
    assertEquals(25, aBST.find(25)); 
    assertEquals(75, aBST.find(75)); 
    assertEquals(-12,aBST.find(-12)); 
    assertEquals(36, aBST.find(36)); 
    assertEquals(57, aBST.find(57)); 
    assertEquals(90, aBST.find(90)); 
    assertEquals(52, aBST.find(52)); 
    assertEquals(61, aBST.find(61)); 
  } 
 

And this test method ensures that a few integers not inserted are also not found. 
 
  @Test 
  public void testFindWhenElementsNotInserted() { 
    assertNull(aBST.find(999)); 
    assertNull(aBST.find(0)); 
  } 
 
The search through the nodes of a aBST begins at the root of the tree. For example, to search for a node that will 
compareTo 57 equally, the method first compares 57 to the root element, which has the value of 50.  Since 57 is 
greater than 50, the search proceeds down the right subtree (recall that nodes to the right are greater). Then 57 is 
compared to 75. Since 57 is less than 75, the search proceeds down the left subtree of 75. Then 57 is compared to 
the node with 57. Since these compare equally, a reference to the element is returned to the caller. The binary 
search continues until one of these two events occur: 
 
1. The element is found 
2. There is an attempt to search an empty tree (nowhere to go -- the node is not in the tree) 
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In the first case, the reference to the data in the node is returned to the sender. In the second case, the method 
returns null to indicate that the element was not in the tree. Here is an implementation of find method.  
 
  // Return a reference to the object that will compareTo 
  // searchElement equally. Otherwise, return null. 
  public E find(E searchElement) { 
    // Begin the search at the root 
    TreeNode ref = root; 
    // Search until found or null is reached 
    while (ref != null) { 
      if (searchElement.compareTo(ref.data) == 0) 
        return ref.data; // found 
      else if (searchElement.compareTo(ref.data) < 0) 
        ref = ref.left; // go down the left subtree 
      else 
        ref = ref.right; // go down the right subtree 
    } 
    // Found an empty tree. SearchElement was not found 
    return null; 
  } 
 
The following picture shows the changing values of the external reference t as it references the three different 
nodes in its search for 57: 
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One of the reasons that binary search trees are frequently used to store collections is the speed at which elements 
can be found. In a manner similar to a binary search algorithm, half of the elements can be eliminated from the 
search in a BST at each loop iteration. When you go left from one node, you ignore all the elements to the right, 
which is usually about half of the remaining nodes. Assuming the BinarySearchTree is fairly complete, searching in 
a binary search tree is O(log n).  For example, in the previous search, t referred to only three nodes in a collection 
of size 9. A tree with 10 levels could have a maximum size of 1,024 nodes. It could take as few as 10 comparisons 
to find something on level 10. 

Efficiency 
Much of the motivation for the design of trees comes from the fact that the algorithms are more efficient than 
those with arrays or linked structures. It makes sense that the basic operations on a binary search tree should 
require O(log n) time where n is the number of elements of the tree. We know that the height of a balanced binary 
tree is log2n where n is the number elements in the tree. In this case, the cost to find the element should be on the 
order of O(log n). However, with a tree like the following one that is not balanced, runtime performance takes a 
hit.  
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If the element we were searching for was the right-most element in this tree (10), the search time would be O(n), 
the same as a singly linked structure. 
 Thus, it is very important that the tree remain balanced. If values are inserted randomly to a binary search 
tree, this condition may be met, and the tree will remain adequately balanced so that search and insertion time will 
be O(log n). 
 The study of trees has been very fruitful because of this problem. There are many variants of trees, e.g., red-
black trees, AVL trees, B-trees, that solve this problem by re-balancing the tree after operations that unbalance it 
are performed on them. Re-balancing a binary tree is a very tedious task and is beyond the scope of this book. 
However, it should be noted that having to rebalance a binary tree every now and then adds overhead to the 
runtime of a program that requires a binary search tree. But if you are mostly searching, which is often the case, 
the balanced tree might be appropriate. 
 The table below compares a binary search tree’s performance with a sorted array and singly linked structure 
(the remove method for BST is left as an exercise). 
 

 Sorted Array Singly Linked Binary Search Tree 
remove  O(n) O(n) O(log n) 

find   O(log n) O(n) O(log n) 
insert  O(n) O(n) O(log n) 

 
 
 


