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ABSTRACT

Aims. An observation of a coronal loop standing kink mode is analysed to search for higher harmonics, aiming to reveal the relation
between different harmonics’ quality factors.
Methods. Observations of a coronal loop were taken by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory
(SDO). The loop’s axis was tracked at many spatial positions along the loop to generate time series data.
Results. The distribution of spectral power of the oscillatory transverse displacements throughout the loop reveals the presence of
two harmonics, a fundamental at a period of ∼8 min and its third harmonic at ∼2.6 min. The node of the third harmonic is seen at
approximately a third of the way along the length of the loop, and cross correlations between the oscillatory motion on opposing
sides of the node show a change in phase behaviour. The ratio of periods P1/3P3 was found to be ∼0.87, indicating a non-uniform
distribution of kink speed through the loop. The quality factor for the fundamental mode of oscillation was measured to be ∼3.4. The
quality factor of the third harmonic was measured for each spatial location and, where data was reliable, yielded a value of ∼3.6.
For all locations, the quality factors for the two harmonics were found to agree within error as expected from 1d resonant absorption
theory. This is the first time a measurement of the signal quality for a higher harmonic of a kink oscillation has been reported with
spatially resolved data.

Key words. magnetohydrodynamics (MHD) – Sun: corona – Sun: magnetic fields – Sun: oscillations – waves

1. Introduction
Coronal seismology uses the modelling of magnetohydrody-
namic (MHD) waves in plasma structures and the compari-
son with observations for the diagnostics of the plasma (see
reviews by Nakariakov et al. 2016; De Moortel & Nakariakov
2012; Andries et al. 2009, and references therein). The inter-
pretation of observations of transversely oscillating coronal
loops as fast kink modes is one commonly performed exam-
ple (Nakariakov et al. 1999), which relies on the theory of the
eigenmodes in a magnetic cylinder (Zaitsev & Stepanov 1982;
Edwin & Roberts 1983). These well-used models for linear
waves are described by dispersion relations obtained for uni-
form, equilibrium models of very thin, axisymmetric, long, and
straight tubes. Often the approximations considered are good
enough to extract useful information about the plasma via seis-
mology, particularly when estimating the physical parameters
averaged across the entire loop.

Standing kink oscillations in coronal loops have been exten-
sively observed with a typical period, Pkink, of several minutes
(c.f. statistical studies by Goddard et al. 2016; Nechaeva et al.
2019); both period and damping time have been observed to
scale linearly with the loop length L. Through these observa-
tions the seismological estimation of the (local) magnetic field
can be made, which is often difficult to determine directly
(Nakariakov & Ofman 2001). However this magnetic field value
relies on estimates of the density and a spatial average of Alfvén
speed along the entire loop.

The use of multiple harmonics (fundamental and its over-
tones) can provide more information for seismology thus allow-
ing one to match the observed dispersion with that predicted
by theory (Andries et al. 2009). Further, it is natural to expect
the occurrence of higher parallel harmonics when a kink oscil-
lation is impulsively excited, as is predominantly the case
(Zimovets & Nakariakov 2015). In principle, by observing mul-
tiple different harmonics the dispersion relation used for seis-
mological inversion can be verified. Conversely if the theoretical
dispersion relation is assumed to be correct, one can attribute any
observational departure from the theoretical dispersion relation
to modifications, such as density stratification. In practice, this
is often done through the comparison of the measured harmonic
periods P1/nPn, that is, the ratio of the fundamental period P1 to
n times that of the nth harmonic, Pn. For a dispersionless oscil-
lation (i.e. when each harmonic has the same phase speed Ckink),
the ratio P1/nPn is unity for all n. Any departure from unity pro-
vides information about dispersion along the loop. This disper-
sion is assumed to be from the spatial variation of kink speed
along the loop, which can be used to probe the plasma structure
(Jain & Hindman 2012).

The comparison of different wave modes to provide
further seismological information was first demonstrated in
Andries et al. (2005) by using observations of a loop arcade
hosting higher harmonics as reported in Verwichte et al. (2004).
The detected departure from unity of P1/2P2 was attributed
to the density stratification along the coronal loop and a value
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for the density scale height was determined; the process is
also analytically described in McEwan et al. (2006, 2008). More
recently, Guo et al. (2015) and Pascoe et al. (2016a) both spa-
tially resolved the fundamental and second harmonic of two
distinct standing kink oscillations using observations with the
Atmospheric Imaging Assembly (AIA) on board the Solar
Dynamics Observatory (SDO), utilising spectral techniques
and comparing oscillation phase behaviour of the loop legs.
Kupriyanova et al. (2013) detected multiple periodicities in a
flaring loop’s microwave emission, and they used a compari-
son with the dispersion equation for oscillation eigenmodes in a
straight homogeneous cylinder and further spatial information to
support the conclusion of a multi-harmonic standing kink mode.
Similar conclusions were reached for a flaring loop seen in the
hard X-ray and microwave wavelengths in Inglis & Nakariakov
(2009). In both cases the mechanism for how kink modes mod-
ulate microwave emission is non-trivial, making it difficult to
perform seismology confidently.

Additional information for the determination of plasma
parameters from seismology has been shown to reside in the
oscillation damping profile (Aschwanden et al. 2003). The main
mechanism by which trapped kink modes are thought to damp
away is resonant absorption (Ruderman & Roberts 2002). Kink
modes couple to torsional, incompressible Alfvén modes that
reside in a resonant shell within the cylinder, transferring energy
from the transverse motion of the cylinder into plasma motions
within. In this model for the damping, the damping time τn
is proportional to the period Pn (Ofman & Aschwanden 2002).
Thus the quality factor (signal quality) of the oscillation τ/P is
the same for each harmonic n, which is determined by the phys-
ical properties of the loop including its transverse density profile
(c.f. Eq. (1), Pascoe et al. 2016a). This should hold true regard-
less of dispersion modifying the period of the nth harmonic from
its expected value P1/n, since the damping time should change
accordingly.

In this paper we present the first measurement of the period
ratio to the fundamental and the damping behaviour of a kink
oscillation’s third harmonic. The coronal loop kink oscillation is
described in Sect. 2. The co-existence of the fundamental and
third harmonic standing modes is verified by using their spatial
and phase distributions, as explained in Sect. 3, and by employ-
ing a bandpass filter to separate the third harmonic signal. The
separate components are independently fitted by damped sinu-
soids, and their resulting parameter values through the loop are
explored in Sect. 4. In Sect. 5 the period ratio between and qual-
ity factors of the two harmonics is compared. The discussions
and conclusions are presented in Sect. 6.

2. Observation

This work is motivated by Pascoe et al. (2016b, 2017) in which
the event used for the following analysis is referred to as Loop
#2. The coronal loop of interest was observed on 26 May 2012
off the north easterly limb of the Sun in SDO/AIA EUV 171 Å,
using data with cadence 12 s and AIA pixel size of 0.6 arcsec.
The loop is associated with NOAA active region 11484, which
by this time has rotated out of view. The loop is observed from
side-on, such that the plane of the loop is perpendicular to the
plane of sky. Another well-contrasted loop is seen perpendicular
to the loop of interest, apparently crossing (in the field of view)
about half-way up the loop of interest’s leg, meaning data from
this region is unavailable. The loop of interest in Fig. 1 has its
axis approximately denoted by the dashed line. Its length is esti-
mated as 162± 3 Mm. At approximately 20:38 UT the bundle of
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Fig. 1. SDO/AIA 171 Å image of the loop, 2012 May 26 20:50 UT.
Every other slit location used to extract time-distance data from is indi-
cated. The slit nearest the limb is indexed 1, the slit nearest the apex
is indexed 60, as indicated by the labelled slits with thicker lines. The
white hashed areas denote noisy slits where data was not good enough
to get reliable time series.

loops (of which this loop is part) is restructured. This appears
to coincide with the emanation of a blast wave visible in 171 Å.
As part of this restructuring, one footpoint of the loop of interest
appears to “jump” from approximately (890, 320) arcsec to (900,
290) arcsec, although the precise locations of the footpoint are
subjective. Consequently the loop sways about its (new) equi-
librium position with decaying amplitude for about one hour,
after which the loop disappears out of the 171 Å passband. This
event constitutes a standing kink oscillation, referenced in the
kink oscillation catalogue compiled in Nechaeva et al. (2019) as
Event 27 Loop 1.

For the loop of interest, data can only be obtained for one
loop leg. Therefore 70 straight slits with a length of 100 pixels
were created perpendicular to the loop plane – these are denoted
by solid black lines in Fig. 1. To reduce noise, each slit is aver-
aged over a 5 pixel width perpendicular to the slit. Slits indexed
16 to 59 were of good enough quality to take into further anal-
ysis. For later plots, the slit index value is understood to be a
spatial coordinate, ranging from just above the limb (on the loop
leg near the footpoint) at slit 16, up to the loop apex which corre-
sponds to slit 59. For each usable slit, time-distance maps were
generated, some examples of which may be seen in Fig. 2. The
start and end times for these plots are 20:34 UT and 21:42 UT
respectively. For each time-distance map, the loop axis was fit-
ted at each instance of time to yield time series data following the
procedure outlined in Pascoe et al. (2016b). Slits 27, 28, 29, and
34 were too noisy to take into further analysis, predominantly
caused by signal from the edges of another loop overlapping the
loop of interest.

3. Verification of multiple harmonics

3.1. Spectral analysis

To investigate the loop oscillation, we first examine its spec-
trum. At each slit we consider the wavelet transform of its time
series. Figure 3 shows one such wavelet power spectrum for a slit
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Fig. 2. Example time-distance maps from slit 35 (top) situated about
half way up the loop leg, and slit 58 (bottom) near the loop apex. The
overplotted white dotted line shows the fitted time series data. Each time
distance map was averaged over 5 pixels perpendicular to the slit. The
blue vertical lines denote where data was cut before the spectral analysis
and fitting. In real time these correspond to 20:44 UT and 21:04 UT.
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Fig. 3. Left: morlet wavelet plot of the time series data corresponding
to slit 26. Middle: global wavelet spectrum, normalised to its maximum
value. The period of maximal global wavelet power for this slit’s time
series is found to be 7.28 min. Right top: SDO/AIA image, rotated for
reader’s convenience, on which the loop midplane (dashed line) and slit
position (solid line) is overlaid. Right bottom: time-distance map for this
slit (zoomed), from which the time series is extracted.

part-way up the length of the loop. The wavelet plot clearly
shows a strong spectral component between 7 and 8 min. Exam-
ining the time series further, a low amplitude departure from a
harmonic signal is seen superimposed on the first few periods.
This is realised in the wavelet plot as a feature at approximately
a minute period, lasting for the first 10 min or so and with a far
lower spectral power than the component at 8 min. This is con-
sistent with the features of a rapidly damped third harmonic, in
line with the result reported in Pascoe et al. (2016b).

It can be seen in Fig. 2 that the loop displacement at some
spatial locations appears fairly harmonic, such as near the apex,
while other locations show more anharmonic behaviour, espe-
cially in the first period of oscillation. Therefore to check if this
spectral component truly is a third harmonic, we investigate its
spatial distribution along the loop. A third harmonic would be
expected to have a node one third along the length of the loop,
a point which should be visible from the AIA camera’s perspec-
tive. To observe this node, the global wavelet spectrum (GWS)
of each time series is calculated and plotted against height
along loop (slit number) in Fig. 4. Only data between 10 and
30 min (as indicated on Fig. 2) was used for this and subsequent
analysis, motivated by the short duration of the spectral

Fig. 4. Two–dimensional distribution of spectral amplitude estimated
from the Global Wavelet Spectrum per slit against period and slit num-
ber. Top: amplitude summed across all slits shows a peak at ∼7.87 min.
The hashed regions correspond to slits where the data was not good
enough to get reliable time series, predominantly caused by an overlap-
ping loop.

component at 3 min seen in Fig. 3 and the expectation of rapid
damping. The GWS is advantageous over a traditional Fourier
decomposition due to the presence of distinct spectral compo-
nents lasting different lengths of time. The Fourier spectrum may
not show significant spectral peaks where there are overtones,
due to their limited time duration compared to the Fourier basis
vector (complex exponential). The alternative spectral decom-
position of GWS can address this shortcoming since wavelet
spectral analysis sacrifices the ability to distinguish two spec-
tral peaks at very similar frequencies (which may be resolvable
using Fourier decomposition) in order to gain information about
when the spectral components are present. The dominant period
in Fig. 4 is 7.87 min, calculated as the peak of the sum of GWS
amplitude over all slits. This periodicity exists over all slits con-
sidered but decreasing in amplitude towards the loop footpoint,
that is to say having a single antinode at the apex. This matches
expectations of the fundamental standing kink mode, and with
this interpretation for a loop of this length (162 Mm), using the
formula Ckink ≈ 2L/Pkink yields a reasonable estimate of the
averaged loop kink speed Ckink ≈ 0.69 Mm s−1.

Also visible in Fig. 4 is a band of spectral amplitude for most
slits at a period of approximately 3 min, lower amplitude than
the dominant period and with an apparent dip at approximately
slit 51. This matches expectations of a third harmonic, which is
to say having a period of approximately 7.87/3 = 2.6 min and a
node existing one third of the way along the loop’s axis. Due to
the perspective seeing the loop side on, this node would appear
at r sin(π/3)/r≈ 0.87 of total loop height r, which matches the
approximate position of slit 51/60≈ 0.85. The amplitude of the
shorter period spectral component is an order of magnitude
smaller than the fundamental, and is just discernible in the GWS.
This is consistent with the excitation of kink modes by an exter-
nal perturbation in simulations by Pascoe & De Moortel (2014,
e.g. see Fig. 2).

3.2. Phase behaviour

To investigate the phase behaviour of the short period com-
ponent, a bandpass filter is employed to separate this compo-
nent from the dominant signal. The filter used was an ideal step
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function in Fourier space allowing periods between two and four
minutes, setting all other frequencies to zero. Testing between
filtering using the Fourier transform and filtering based on the
wavelet transform showed no significant difference, so the more
widely used Fourier filter was used. Filters of different shapes –
ideal step function, Gaussian, Hanning, Hamming – were also
tested and none had any discernible advantage, and so the rect-
angular function was used to maximise spectral resolution. Zero
padding the time series prior to the Fourier transform was used
to minimise edge effects. As was the case for creating the GWS
data, the time series used here were cut to the first 20 min. This
was motivated by the short time duration of the spectral compo-
nent seen in wavelet plots such as Fig. 3.

To examine the phase behaviour along the loop, reliance on
fitting the data is not necessary. An alternative empirical method
is to calculate the correlation between a chosen slit’s time series
and all others. A positive correlation close to +1 would indi-
cate the oscillation is in phase at the spatial locations corre-
sponding to the slit indices. If the correlation is 0 this would
indicate either the oscillation is π/2 out of phase or there is no
signal amplitude at one (or both) slits. A negative correlation
close to −1 would imply the oscillation is in perfect antiphase at
the two spatial locations. Thus plotting this correlation against
slit index gives a picture of how the oscillation phase varies
across the loop, whilst the choice of reference slit location deter-
mines against which phase the others are measured. This method
makes no assumption about the precise shape or period of the
oscillatory components, making it more amenable to real data
than fitting artificially exact sinusoids. In the ideal situation,
comparison between loop legs may be performed (for example
in Duckenfield et al. 2018), however useful information can be
extracted even when considering only one loop leg.

For the fundamental mode of oscillation, the entire loop
oscillates in phase and thus a plot of correlation value against slit
number appears flat for all choices of reference slit. For the third
harmonic one expects two nodes to occur along the loop, across
which there should be a phase shift. For this observation’s point
of view, only one node would be visible. An illustrative exam-
ple for the n = 3 case is given in the top panel of Fig. 5. Data
from the same side of the node are perfectly correlated with each
other, switching to perfect anti-correlation when cross-correlated
with data from the opposite side of the node. At the node of the
third harmonic the correlations pass through zero (since there is
no oscillatory signal in one time series). The correlations with
respect to a point further down the loop leg, that is to say the
opposite side of the node at slit 51, show the same behaviour but
reflected. This pattern is seen when looking at cross correlations
with respect to the apex (black), and also for cross correlations
with respect to the apex (red) but reflected. The node position is
also obvious as the point at which both the red and black curve
intersect each other.

In the middle panel of Fig. 5, the introduction of noise and
bandpass filtering have had some effects. The cross correlations
have deviated away from +1 and −1, the swap of the red and
black curves happens over a larger number of slits, and there is
some asymmetry between them. All these features are also seen
in the real data in the bottom panel of Fig. 5. There is more slit-
to-slit variation than seen in the data, however this is probably
because the real data were averaged over 5 pixels before forming
time series. This averaging has a spatial scale of the same order
as the distance between slits (∼3 arcsec), and so overlap between
adjacent slits may act as a smoothing.

Referring to the bottom panel of Fig. 5 we can see some of
the expected phase behaviour of the filtered oscillation signal

Fig. 5. Correlation values calculated when a slit’s time series is cross
correlated with a reference slit. Cross correlation values with the ref-
erence slit near the apex (slit 59) are shown in red, and on the same
plot, the cross correlation values with the reference slit near the leg (slit
19) are shown in black. The region marked by blue highlights where
the amplitude of the third harmonic is low, and data is not trustwor-
thy. Top: expected correlations, calculated using synthetically generated
time series for a perfect third harmonic signal, incorporating the side on
perspective and only showing one leg (as is the case for the real data).
Middle: synthetically generated time series consisting of a fundamental
mode, a third harmonic and (coloured) noise. This synthetic signal also
underwent the same bandpass filter as was used on the data. Bottom:
correlation plot calculated from data. The existence of the node of the
third harmonic is clearly seen.

manifested in the cross-correlation data. There is a transition
near slit 51, where the node of the third harmonic is expected,
although this appears shifted. It is worth remembering the small-
to-non-existent signal amplitude around this location, which
means that the correlation is dominated by noise. This is com-
pounded by the fact that there is uncertainty exactly where the
node should be since we do not know exactly the loop length,
height etc, so the “true” node could lie anywhere nearby. The
most negative correlation is −0.3. For real data, correlations very
near −1 are unfeasible, and this oscillatory signal is on the edge
of detectability, with low signal to noise and additional filtering
required. Further, the side on perspective means that there are
few slits available for analysis between the third harmonic node
and the apex, all of which are potentially contaminated by addi-
tional noise, from integrating through more of the loop. Despite
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the shortcomings when applied to real data, the fact that the har-
monic node behaviour is seen in the bandpass filtered data pro-
vides evidence of the third harmonic.

4. Determining oscillation parameters

To further confirm the spectral components’ veracity as kink
oscillation harmonics n = 1 and n = 3 and to compare the two,
we consider the behaviour of the oscillation’s parameters along
the loop. The displacement of the loop at each slit location is
modelled as a damped sinuosidal function in the form

A exp
(
−

t2

2τ2

)
sin

(
2π
P

t − φ
)
· (1)

A time-dependent background trend is not included. Although
the loop displacements have a slight change in equilibrium posi-
tion between start and end, fitting this end necessarily changes
the frequency spectrum of the resultant time series in a subjec-
tive way. For this data the trend is sufficiently close to a single
mean value that useful results can be obtained without removing
the trend, even at the level of the small amplitude third harmonic.
The loop length does not visibly change within the time of inter-
est. Therefore to keep the results reproducible and reduce the
number of parameters to estimate, only a mean value is fitted to
each slit. Two example slits are shown in Fig. 6. Although the
difference between the peaks of the calculated sinusoids and the
peaks visible on the time distance maps do vary slightly with
time, these differences are indeed minor. As we see no obvious
period drift in the wavelet plots such as Fig. 3, the period is not
allowed to vary in time in the fitting, but is fitted independently
for different slit positions.

We choose to allow the amplitude to only evolve in time
through a Gaussian decaying term. It is known both Gaussian
and exponential envelopes could occur as the damping envelope
at different times and/or under different conditions. For example
an exact kink eigenmode would decay exponentially. In general
both observations and simulations indicate an oscillation damp-
ing profile may best be approximated via a switch between the
two (Pascoe et al. 2016a). For the purposes of this work how-
ever, the introduction of further free parameters to the fitting
– as would be required to include both modes of damping –
detracts from the clarity of following a single parameter along
the loop. A single damping parameter, though potentially under-
estimating the mode coupling rate, is enough to compare how
the damping is different between harmonics and between dif-
ferent spatial locations along the loop. A Gaussian decay term
is chosen because the simultaneous excitation of multiple har-
monics implies the exciter is not an exact kink eigenmode, and
supported by the results seen in Pascoe et al. (2016b, e.g. Fig. 2).

For this model, Bayesian inference and Markov chain Monte
Carlo sampling is used to determine the parameter values that
best describe the data in the same manner as described in
Pascoe et al. (2016b). As a result, in the following analysis we
consider the best fit to be that with the maximum a posteriori
probability (MAP) estimate returned for the parameters ampli-
tude A, phase φ, period P and damping time τ. Uniformly dis-
tributed priors are used, with upper and lower limits covering
the expected range of reasonable values (for example n = 3
period between two and four minutes). The MCMC sampling is
independently applied at each slit location, building a picture of
how the oscillation parameters vary along the loop. The credible
intervals, seen in Figs. 7 and 8 as grey shaded regions, are esti-
mated as the 95% confidence level of the marginalised posterior
distribution for that particular parameter.
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Fig. 6. Time distance maps overlaid with sinusoids calculated using the
MAP parameters output by the MCMC sampling for that respective slit.
The sinusoid corresponding to n = 1 is in blue, the sinusoid correspond-
ing to n = 3 is in green, and their sum is shown by the dashed black line.
The average displacement of the loop for each slit has been added so the
curves line up with time distance map behind it. Top: slit 26 as shown
in Fig. 3. The summed curve clearly deviates from a pure sinusoid as
per the time distance map behind it, as a result of the third harmonic.
Bottom: slit 59 at the apex. Despite being an antinode for the third har-
monic, the summed curve does not deviate far from a pure sinusoid due
to the large amplitude of the n = 1 component.

In this paper the oscillation parameters for the two spectral
components are fitted separately. In Pascoe et al. (2017) for each
oscillation, a single time series is tested against models com-
prised of a simultaneous fundamental mode, higher harmonics,
a trend, and a decay-less component. The relationship between
harmonics is fixed for each compared model. This approach is
not appropriate in this paper because we are interested in measur-
ing each harmonic’s oscillation parameters separately. To keep
the interpretation of our results – how an individual parame-
ter changes with spatial location – simple, we choose to keep
the number of parameters as small as possible and use Bayesian
inference to determine which set of parameters is most probable.
Therefore we use the bandpass filter and fitting to a simple model
to directly compare the harmonics, whilst employing other addi-
tional techniques to confirm the harmonics’ existence.

4.1. Parameters of the fundamental mode

To investigate the n = 1 component, the unfiltered (original) time
series data is used, as opposed to shorter signal minus filtered
data, because the amplitude of the longer period component is
so dominant that it was judged the effects of filtering would have
a more detrimental effect to the fitting than the superposition of
the shorter period component. The resulting MAP parameters
from the MCMC sampling for each slit are displayed in the left
hand column of Fig. 7.

The fitted amplitude is seen to grow steadily with slit index,
that is to say approaching the apex, as expected. The ampli-
tude of the fundamental mode is constant near the apex, as the
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Fig. 7. Resulting parameters from MCMC sampling to describe the unfiltered data (corresponding to the fundamental n = 1 mode) (left column),
and to describe the filtered data (corresponding to the third harmonic n = 3) (right column). The parameters are amplitude (top), period (middle),
and damping time (bottom). The black diamonds show the MAP parameter value from the MCMC sampling, and its credible interval is shaded
light grey for each slit. The hashed regions correspond to slits where the data was not good enough to get reliable time series, predominantly
caused by an overlapping loop. The blue region denotes the approximate node for the third harmonic, where amplitude is small and data is not to
be trusted.

dependence is sine-like. The fitted period is approximately the
same for all slits at an average of 7.8 min, although at the very
apex the fitted period drops to about 7.6 min. The damping time
is approximately the same for all slits, averaging at 26 min. There
are wide credible intervals for most slits on the damping time,
particularly down the loop leg, due to the difficulty of its esti-
mation on so few cycles and the ambiguity of the precise damp-
ing profile at work (for a detailed discussion see Pascoe et al.
2016b). In line with common sense, the credible intervals seen
on the fitted amplitude, period and damping time all decrease
with slit index. This results from the amplitude growing with
height for the fundamental mode, hence increasing the oscilla-
tion signal-to-noise. This can be seen explicitly in Fig. 6, where
the amplitude of the blue curve for slit 26 is smaller than that for
slit 59 (apex), as expected.

4.2. Parameters of the third harmonic

To investigate the n = 3 harmonic, the bandpass filtered and trun-
cated data are fitted in the same manner as before using Eq. (1),
and displayed in the right hand column of Fig. 7. This data is far
noisier with a lower signal-to noise ratio, and so fitting with such
functions everywhere is optimistic. Despite this, the amplitude
MAP values follow the pattern expected: growing amplitude
with height until about slit index 40, after which the ampli-
tude drops to near zero at slit 51 (expected node), then begin-
ning to grow again. The (initial) amplitudes are generally less
than half that for the fundamental even without accounting for

any phase shift, indicating the third harmonic has lower ampli-
tude than the fundamental. The period MAP values output by
the MCMC sampling have an average of 3.0 min, which agrees
with the period seen with enhanced spectral amplitude in Fig. 4.
Unexpectedly there appears a slight period difference between
the apex and the loop leg for the third harmonic. For an oscil-
lation satisfying a linear wave equation with no steady flows in
cylindrical coordinates, one expects the temporal behaviour to
be the same everywhere spatially, or in other words we expect
the period to be the same at the apex as down the legs. This
holds even when the wave speed (CA) is a function of space. We
are motivated to assume the wave equation dictates the observed
loop motion because of the great successes of coronal seismol-
ogy, and because the loop does not exhibit other signatures of
non-linear behaviour. It is true that a steady flow would introduce
another term in the wave equation that could introduce some
variation in temporal behaviour, however in this observation no
clear siphon flows were seen, and spectral observations of sim-
ilar coronal loops imply the flows are of insufficient velocities
to have a significant effect. Since we expect the period is con-
stant, this period difference is attributed to spurious additional
signal, be it from random noise, leakage from the filtered n = 1
signal, or some effect involving both loop legs along the line of
sight. In any case the period difference should be disregarded.
Looking at the bottom right plot of Fig. 7, the n = 3 damping
time MAP values are moderately constant, although two regions
with large credible intervals stand out – one at the node (slit 51),
and another nearest the apex. For the first, we expect the fitting
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Fig. 8. Ratio of fitted period of the fundamental to 3 times the fitted
period for the third harmonic, for each slit. Unity is marked with a
dashed grey line. The blue region denotes the approximate range in
which the n = 3 node exists. The grey region shows an estimate of
the credible intervals for this ratio. These are derived using the credible
intervals on the periods measured separately for the two harmonics, and
propagated through the formula P1/3P3 in the usual manner for errors.

on slits near the node to break down due to low amplitude and
hence signal-to-noise, as indicated by the blue region. Regarding
the second wide range of credible damping values, being near
the apex implies something else could be contaminating the sig-
nal there. A similar increase in error is visible near the apex in
the amplitude values, whilst the periods’ credible intervals are so
small they appear unaffected.

When MCMC sampling different realisations of the model
specified in Eq. (1), it is necessary to compute the phase φ. The
values calculated for the filtered (n = 3) data broadly follow
a similar shape to the correlations seen in the bottom panel of
Fig. 5, but are extremely noisy. There is leakage from the filter-
ing, in which some signal attributed to the fundamental mode
is redistributed into the filtered data. This leakage grows with
height, since its origin has a greater amplitude near the apex. The
sampling does a good job estimating the parameter values that
best describe the amplitude, period, and damping time despite
this additional noise, resulting in well confined histograms of
the samples of these parameters’ posterior probability density
functions. However the phase parameter is especially sensitive
to this noise, and reporting its MAP values would not do a good
job of demonstrating this variability. The phase behaviour for the
n = 3 data is discussed in Sect. 3.2, so in the interest of clarity
the phase MAP values are not included.

5. Comparison of harmonics

5.1. P1/3P3 ratio

A small departure from unity of the P1/3P3 ratio is seen in Fig. 8,
lying between 0.8 and 1.0 for all slits. The average value of
P1/3P3 across all slits is 0.87. It should be noted that since a
bandpass filter was applied to make visible the n = 3 signal, this
would force the ratio to lie between 0.66 and 1.27 even for no
signal. However because the ratio values calculated are far from
these boundaries the filtering is not believed to limit the results.
Separate calculations of this ratio for different spatial locations
are used as separate measurements of the same quantity, and not
to investigate how this quantity changes along the loop. Despite
this ratio being closer to 1 for positions near the apex than for
positions down the leg, we still interpret this oscillation as a col-
lective standing mode of the entire loop. The variation in fact
originates from the measure of n = 3 period described above in
Sect. 4, and is thus disregarded.

As outlined in the introduction, this departure from unity
may be attributed to the third harmonic experiencing a different
(large-scale) spatial average of kink speed to that experienced
by the fundamental, predominantly determined by the plasma
parameters at each harmonic’s antinodes (Jain & Hindman
2012). That the ratio is less than unity implies that the kink speed
experienced by the third harmonic is on average faster than that
for the fundamental.

One mechanism that could be responsible for changing kink
speed along the loop, such that it is slower at the loop apex than
further down the legs, is density stratification. If this were the
case, we could estimate the density stratification height H from
the measured departure from unity. To illustrate this, we use the
functional form of the stratification considered by Andries et al.
(2005), Safari et al. (2007) to find

P1 = Pkink

(
1 + L/(3π2H)

)−1
,

3P3 = Pkink

(
1 + L/(35π2H)

)−1
. (2)

Using the average value of the P1/3P3, measured to be 0.87, and
the loop length of L = 162 ± 3 Mm yields a reasonable value
of H = 32 Mm. This value is very sensitive to small changes in
period ratio however. To demonstrate, using the smallest mea-
sured period ratio of 0.80 coupled with L = 159 Mm yields a
lower limit of H = 18 Mm, whereas using the largest measured
period ratio of 0.97 coupled with L = 165 Mm yields an upper
limit of H = 150 Mm. Nonetheless this exercise illustrates in
principle the benefits of detecting higher harmonics.

There are other effects that may explain the departure from
unity of P1/3P3: magnetic field (cross section) variation, cur-
vature, ellipticity, or siphon flows. Discussion on these effects
may be found in Andries et al. (2009). Other more esoteric cases
such as temperature difference effects (Orza et al. 2012) could
potentially play a role. It should also not be forgotten that even
the ideal kink modes in a cylindrical geometry are slightly
dispersive due to the waveguide, though the effect should be
small (Edwin & Roberts 1983). The dispersion effect on long
wavelength modes has therefore previously been taken to be
negligible for unstratified loops (Van Doorsselaere et al. 2007;
McEwan et al. 2006). To compare the relative likelihood of
several different models explaining a non-uniform kink speed,
one may use a Bayesian statistics methodology (for example
see Arregui et al. 2013). In principle such comparative analy-
sis using information from both oscillation harmonics is appro-
priate for this sort of observation, as the Bayesian framework
allows progressively more information to be introduced through
its prior distributions, however such an analysis is not presented
here.

5.2. Comparison of quality factors

Figure 9 shows the first attempt to compare quality factors τi/Pi
for different oscillation harmonics. The average quality factor of
all slits from fitting of the original time series (taken to be the
quality factor for the fundamental harmonic n = 1) was found
to be τ1/P1 = 3.4. The credible intervals found on the qual-
ity factors for the fundamental decrease with spatial index, as
expected from higher amplitude signal nearer the loop apex hav-
ing increased signal to noise ratio.

Quality factors for the third harmonic n = 3 are estimated
from the fitting of the bandpass filtered time series with damped
sinusoids. For slits 15 to 45 along the leg, sufficiently below the
third harmonic node, the average quality factor is τ3/P3 = 3.6.
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Fig. 9. Signal quality factors calculated from fitting original (n = 1) data
for each slit (red), and from fitting the bandpass filtered data in blue
(n = 3). Diamonds show the quality factor value, and error estimates
calculated using the credible intervals for τi and Pi propagated through
standard error formula are shown in red for n = 1, and blue for n = 3.
The purple region denotes the region in which the n = 3 node lies.

The average quality factor for all slits is 5.5, however this value
is severely affected by uncertainty on the larger slit indices as
can be seen on Fig. 9. It is also clear that the uncertainty on the
quality factors for the filtered data become substantially larger
near slit 51. This also conforms to common sense, since this
is the spatial location of the node of the third harmonic. The
credible intervals reduce towards the apex, only to balloon at
the very highest locations. The quality factor itself is larger at
higher slit numbers, caused by the slight period difference mak-
ing the denominator (period) smaller. As discussed above this
effect is most likely not real. For all slits, the quality factor cal-
culated for n = 3 agrees with the quality factor for n = 1
within the levels of uncertainty. The conclusion that may be
drawn is that the quality factors for the fundamental compared to
those from the third harmonic agree within error along the whole
loop.

6. Discussion and conclusions

In this paper we have investigated the transverse oscillation of a
coronal loop and shown it to contain two periods of oscillation,
7.8 min and 3.0 min. These are attributed to be the fundamen-
tal standing kink mode and its third harmonic. Evidence for this
includes a spectral decomposition of the oscillation at all points
along the loop with the global wavelet transform, where the two
periods are seen distinctly with a period ratio of approximately
3. A node for the higher frequency component can also be seen
at the expected spatial location one third along the loop, account-
ing for line of sight. A bandpass filter – formed of an ideal step
function between two and four minutes – allows us to separate
out the signal for the third harmonic. Cross correlations of the
filtered data confirm the phase behaviour as changing across
the node as expected. Fitting the original data and the band-
pass filtered data with damped sinusoids at many points along
the loop gives estimates for the oscillation parameters through-
out the loop, for both frequency components. These also dis-
play the spatial dependence of amplitude and phase expected for
the fundamental mode of oscillation (n = 1) and its third har-
monic (n = 3). Examining the fitted parameters of period and
damping time for both harmonics, the ratio of periods P1/3P3
exhibits a slight departure from unity at 0.87, and the quality
factors for both harmonics agree within error, agreeing with res-
onant absorption theory.

It is worth noting that the period measured from the max-
imum global wavelet amplitude summed over all loops was

7.9 min, which is consistent with the value of 7.7 min measured
for the same oscillation in Pascoe et al. (2016b). We have shown
here that the period is consistent throughout the observable
length of the loop, rather than relying on fitting the oscillation
profile at a single spatial location. Only by analysing multiple
spatial positions such as in Pascoe et al. (2016a), and investigat-
ing the phase behaviours between them can claims of higher har-
monics be convincingly made. Relying on the modelling a single
time series leaves one susceptible to the choice of spatial loca-
tion, particularly with respect to observing multiple harmonics.
As an example, for this observation if one considered only slit
51 (the node for the third harmonic), one might incorrectly con-
clude the oscillation contains only one frequency. Similar cir-
cumstances would occur if only tracking a loop’s apex, since a
second harmonic would have its node there and thus presents lit-
tle signal to be analysed. The technique outlined in this work,
using information of phase and amplitude from across the whole
loop, is less susceptible to spatially local biases. This technique
would also be ideal for locating antinode positions, which has
previously been used for seismology (Guo et al. 2015).

It is interesting that the oscillation does not exhibit signatures
of the second harmonic as strongly as for the third harmonic,
which damps away faster. This absence of the second harmonic
implies the perturbation was symmetric about the apex, as in the
simulations in Pascoe & De Moortel (2014). This is in contrast
to the observation in Pascoe et al. (2016a), where the second har-
monic was excited by an eruption that clearly affected one leg
more than the other and so was strongly asymmetric. We can
be confident the third harmonic was not excited by some non-
linear cascade or evolution, because we would expect there to
be some inertial period in which the non-linearity grows, or in
other words see the amplitude grow and then decrease. Yet it
may be seen in Fig. 7 that the third harmonic has its highest
amplitude at the beginning of the oscillation, and both modes
of oscillation appear to begin at the same time. Together these
make the simultaneous excitation of the fundamental and third
harmonic the simplest explanation for the observed behaviour.
The fundamental mode being most strongly excited implies the
spatial scale of the perturbation was comparable with the loop
length, kdriver ≥ k1. Because the driver does not coincide with
the first harmonic we also get the third harmonic which is also
symmetric about the apex. It is also possible that the temporal
profile of the driver could influence the generation of higher har-
monics, since an impulsive driver localised in space and time is
broadband in k − ω space and allows a wide range of frequen-
cies to be excited. This was recently demonstrated for the case
of propagating sausage modes (Goddard et al. 2019). Either way
we might expect the fifth harmonic to also be present with an
amplitude about an order of magnitude weaker than the third
harmonic, though that would be undetectable because of its very
small period of oscillation, damping rate, and amplitude.

In this observation, it was shown that (within error) the qual-
ity factors for the third harmonic and the fundamental agree
across the whole loop. This is as expected for a loop whose
transverse density profile and density contrast does not vary
longitudinally along the loop, since resonant absorption relates
the quality factor to loop density contrast, its transverse den-
sity profile and the width of the inhomogeneous layer in which
resonant absorption is maximised (Ruderman & Roberts 2002).
It is also expected that uniform density stratification would
approximately preserve this relation between damping time and
period (Dymova & Ruderman 2006). However there is informa-
tion about different density profiles at different heights embed-
ded in the comparison of quality factors for different harmonics,
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because the damping rate is strongly dependent on transverse
density profile (Pascoe et al. 2017). If there was a longitudi-
nal variation in density profile (and/or density contrast), differ-
ent harmonics would experience different quality factors. The
fact that we do not see much difference between quality fac-
tors (within our resolution), nor does the loop cross section in
AIA appear to vary between the apex and the loop leg, implies
the loop’s density profile and density contrast are fairly constant
throughout the loop. This is believed to be the first time such
comparison has been done, so the potential of such comparisons
of quality factors is still largely unknown. This would naturally
call into question the following: whether the resonant absorption
rates would be affected differently for various types of harmon-
ics, and whether this could be observed by using similar obser-
vations as those presented in this paper.

Overall it may be seen that spatial resolution of oscillation
harmonics and their parameters may be useful for information
about the coronal loop structure. In particular the differences
between harmonics could lead to more informative comparisons
between observed dispersion and theory, potentially shedding
a light on things previously hidden such as the internal den-
sity structure of the loop. Higher harmonics are not uncommon
in solar coronal loops oscillations, and the detection of higher
harmonics in the ubiquitous decay-less oscillations also means
such seismological tools demonstrated here could be used more
widely than just flaring loops. It is imperative that more theo-
retical work is carried out to this end, particularly examination
of the effect of spatially varying transverse density profile upon
different harmonics’ resonant absorption.
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