Raton Basin, Colorado

Observations of the continental K-T boundary sequence in the Raton Basin, when integrated with observations of the marine K-T boundary sequence in Haiti and elsewhere, are summarized here.

Raton Basin, Colorado

Tertiary flora and fauna

Cretaceous flora and fauna

Cretaceous-Tertiary Boundary

Tertiary flora and fauna

Thickness of basal impact ejecta layer decreases radially from the Chicxulub impact crater (and at the precise rate expected for a crater of that size)

Cretaceous flora and fauna

Photo by David A. Kring

Tertiary flora and fauna

Impact melt spherules w/ chemical composition similar to Chicxulub impact melt sheet

Thickness of basal impact ejecta layer decreases radially from the Chicxulub impact crater (and at the precise rate expected for a crater of that size)

Cretaceous flora and fauna

Photo by David A. Kring

Impact melt spherules w/ the same radiometric Ar-Ar age as Chicxulub impact melt sheet

Impact melt spherules w/ chemical composition similar to Chicxulub impact melt sheet

Thickness of basal impact ejecta layer decreases radially from the Chicxulub impact crater (and at the precise rate expected for a crater of that size)

Tertiary flora and fauna

Cretaceous flora and fauna

Photo by David A. Kring

Iridium anomaly along with PGE ratios similar to those in chondritic asteroids

Impact melt spherules w/ the same radiometric Ar-Ar age as Chicxulub impact melt sheet

Impact melt spherules w/ chemical composition similar to Chicxulub impact melt sheet

Thickness of basal impact ejecta layer decreases radially from the Chicxulub impact crater (and at the precise rate expected for a crater of that size)

Tertiary flora and fauna

Cretaceous flora and fauna

Photo by David A. Kring

Iridium anomaly along with PGE ratios similar to those in chondritic asteroids

Impact melt spherules w/ the same radiometric Ar-Ar age as Chicxulub impact melt sheet

Impact melt spherules w/ chemical composition similar to Chicxulub impact melt sheet

Thickness of basal impact ejecta layer decreases radially from the Chicxulub impact crater (and at the precise rate expected for a crater of that size)

Tertiary flora and fauna

Cretaceous flora and fauna

Photo by David A. Kring

Iridium anomaly along with PGE ratios similar to those in chondritic asteroids

Impact melt spherules w/ the same radiometric Ar-Ar age as Chicxulub impact melt sheet

Impact melt spherules w/ chemical composition similar to Chicxulub impact melt sheet

Thickness of basal impact ejecta layer decreases radially from the Chicxulub impact crater (and at the precise rate expected for a crater of that size)

Tertiary flora and fauna

Cretaceous flora and fauna

Zircon with same terrain ages as Chicxulub basement

Cretaceous-Tertiary Boundary

Iridium anomaly along with PGE ratios similar to those in chondritic asteroids

Impact melt spherules w/ the same radiometric Ar-Ar age as Chicxulub impact melt sheet

Impact melt spherules w/ chemical composition similar to Chicxulub impact melt sheet

Thickness of basal impact ejecta layer decreases radially from the Chicxulub impact crater (and at the precise rate expected for a crater of that size)

Tertiary flora and fauna

Shocked zircon with same radiometric U-Pb age as Chicxulub melt sheet

Zircon with same terrain ages as Chicxulub basement

Cretaceous-Tertiary Boundary

Iridium anomaly along with PGE ratios similar to those in chondritic asteroids

Impact melt spherules w/ the same radiometric Ar-Ar age as Chicxulub impact melt sheet

Impact melt spherules w/ chemical composition similar to Chicxulub impact melt sheet

Thickness of basal impact ejecta layer decreases radially from the Chicxulub impact crater (and at the precise rate expected for a crater of that size)

Tertiary flora and fauna

Chromite with the isotopic composition of a carbonaceous chondritic asteroid

Shocked zircon with same radiometric U-Pb age as Chicxulub melt sheet

Zircon with same terrain ages as Chicxulub basement

Photo by David A. Kring

Iridium anomaly along with PGE ratios similar to those in chondritic asteroids

Impact melt spherules w/ the same radiometric Ar-Ar age as Chicxulub impact melt sheet

Impact melt spherules w/ chemical composition similar to Chicxulub impact melt sheet

Thickness of basal impact ejecta layer decreases radially from the Chicxulub impact crater (and at the precise rate expected for a crater of that size) In an equivalent marine sequence, a fragment of a carbonaceous chondritic asteroid has been found

Chromite with the isotopic composition of a carbonaceous chondritic asteroid

Shocked zircon with same radiometric U-Pb age as Chicxulub melt sheet

Zircon with same terrain ages as Chicxulub basement

Photo by David A. Kring

Iridium anomaly along with PGE ratios similar to those in chondritic asteroids

Impact melt spherules w/ the same radiometric Ar-Ar age as Chicxulub impact melt sheet

Impact melt spherules w/ chemical composition similar to Chicxulub impact melt sheet

Thickness of basal impact ejecta layer decreases radially from the Chicxulub impact crater (and at the precise rate expected for a crater of that size) Soot, charcoal, and PAH spectrum consistent with impact-generated wildfires

In an equivalent marine sequence, a fragment of a carbonaceous chondritic asteroid has been found

Chromite with the isotopic composition of a carbonaceous chondritic asteroid

Shocked zircon with same radiometric U-Pb age as Chicxulub melt sheet

Zircon with same terrain ages as Chicxulub basement

Photo by David A. Kring

Iridium anomaly along with PGE ratios similar to those in chondritic asteroids

Impact melt spherules w/ the same radiometric Ar-Ar age as Chicxulub impact melt sheet

Impact melt spherules w/ chemical composition similar to Chicxulub impact melt sheet

Thickness of basal impact ejecta layer decreases radially from the Chicxulub impact crater (and at the precise rate expected for a crater of that size)

Palynoflora signature (e.g., fern spore spike) consistent with impact-generated wildfires

Soot, charcoal, and PAH spectrum consistent with impact-generated wildfires

In an equivalent marine sequence, a fragment of a carbonaceous chondritic asteroid has been found

Chromite with the isotopic composition of a carbonaceous chondritic asteroid

Shocked zircon with same radiometric U-Pb age as Chicxulub melt sheet

Zircon with same terrain ages as Chicxulub basement

Photo by David A. Kring

A compelling case for the impact-mass extinction hypothesis exists in the K-T boundary stratigraphic sequence

Tertiary flora and fauna

Cretaceous flora and fauna

Cretaceous-Tertiary Boundary