
1

Project Number: YR-11E1

Obstacle Avoidance Robot

A Major Qualifying Project Report

Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for

The Degree of Bachelor of Science Date:

2011-8-3

WPI Project Team

Paul Kinsky

Quan Zhou

Advisor: Professor YimingRong

HUST Project Team

Zhaoliang Yang

Min Li

Weijie Zhang

Advisor: Professor Lingsong He

Co-Advisor: Michael A. Gennert

2

Abstract

A robot using computer vision to avoid obstacles was built for Depush, a

Chinese company specializing in educational robotics. We used the Open

Computer Vision library to implement stereo vision for obstacle detection. We

then sent commands to the motors using a microcontroller. This robot

successfully detected and avoided different kinds of obstacles such as bottles,

chairs and walls.

3

Acknowledgements

Professor Rong: For setting up the MQP in China and making sure that we were

taken care of every step of the way. Nice comments of our work and necessary

meetings during the process.

Professor He: For helping us to work with the HUST facilities and enthusiastically

supporting our work

Professor Michael A. Gennert: For helping us with computer vision.

Mr. Zhang of Depush: For financial support and manufacturing our components

Lei Bei: helped us a lot from the beginning to the end of this project.

Yiming Wu: For help testing the microcontroller

Fengjin Chai For assistance with motor control programming

East 3 Lab: For providing us a place to work with air-conditioning in the summer.

East 1 Manufacturing Facility: For manufacturing our components

4

Table of Contents

Abstract

Acknowledgements

Table of Contents

Chapter1: Introduction

Chapter2: Background

Chapter3: Methodology

Chapter4: Findings and results

Chapter5: Conclusion

Chapter6: Discussion

Chapter 7: Appendices

Chapter 8: References

5

List of Figures

FIGURE 1: Mechanical design process

FIGURE 2: Popularity of different laptop sizes

FIGURE 3: Sizes of laptops by ratio and diagonal length

6

List of Tables

TABLE 1: Products of Depush

TABLE 2: A comparison of sensors for obstacle avoidance

7

Chapter 1: Introduction

Robotics is a growing field. This has caused many universities to offer

classes and programs in the field of robotics that combine elements of

electrical engineering, mechanical engineering and computer science.

Additionally, project-based learning is an important part of learning an

engineering discipline.

For that reason, many of these schools use educational robots as

experimental platforms. These robots are built to perform basic functions

such as line following and obstacle avoidance. Students can then program

them to perform tasks such as collecting small balls or travelling from one

area to another. The concepts behind a robot that carries radioactive fuel rods

and one that carries red Ping-Pong balls are very similar.

Our sponsor Depush is a relatively young engineering educational

platform supplier. They offer a range of educational robotics platforms.

Depush wants to add robots that use Computer Vision to their products.

Computer vision is the area of computer science that tries to let computers

see.

8

Objective 1: Provide Depush with a project that shows the potential of

OpenCV and computer vision

Computer vision is the science of interpreting images and video with

computers. The potential functions of OpenCV include tracking the position of

objects and detecting obstacles in a scene.

Objective 2: Develop a program in OpenCV that can detect different types of

obstacles using video captured by webcams

Although the control part of different robots might be different, the vision

part and decision-making part could be compatible with any other kind of

robot. We endeavor to develop a program with universality which could be

taken advantage by different robots.

Objective 3: Build a robot that can use this program to avoid different types of

obstacles

The different types of obstacles include chairs, desks, bottles, walls etc.

Despite their differentappearances, the principles of their detection with

stereo vision are the same.

9

Depush currently has no experience with OpenCV. This project gives them

a demonstration of some uses of computer vision in the field of robotics. Our

can react rapidly to navigate from one point to another point with no touch of

any of the obstacles we set out.

Our robot

10

Chapter 2: Background

Depush

 Our sponsor Depush is a relatively young engineering educational supplier

for which is founded in 2001. Currently, they have headquarters in

ShenzhengFutian District and a subsidiary company in Wuhan. As a pioneer in

this market, the average age of their engineers and technical employees is 27

years old. This gives them a great deal of flexibility and energy. As a new entry

into their market, their plan is to be a creative engineering education supplier

with new methods and innovative experimental platforms.

From the birth of the company, they have been dedicated to exploring

new methods for higher engineering education. They absorbed the advanced

education concepts from the USA and Hong Kong and developed Prof. Jiang’s

theory of “process-based teaching method” into an objective-based method.

11

Most products of Depush have a magnificent reputation in the market as a

result of this objective-based method. To get practical skills and

comprehensive quality in the courses, engineering students usually need real

objectives to study and operate on. Depush's products let them work on real

projects, with real objectives.

 Over 300 colleges and universities purchase their products and solutions

for engineering courses on the mainland. As time goes by, more and more

schools cooperate with Depush to chase after the steps of advanced

techniques.

Products of Depush

Depush’s products can be categorized into two categories: one is

measurement and control experiment product series; the other is Depush

educational robotic product series. Our work is about educational robots and

Depush has four kinds of educational robots, namely elementary educational

robots, professional educational robots, innovative research-based robots and

robot extension series.

Table 1: Products of Depush

12

technology name function

MCU Servos/mot

or control

sensors

Walk by shifting

weight center

Walking

robot

Turn by sliding

feet

BS

microcontroller

teaching board

2 servo

motors

IR sensors

Draw the track it

passes

Graffiti robot

Light following;

obstacle

avoidance &

detection; track

guidance

BASIC STAMP

microcontroller

2 DC

motors

2 IR sensors

BoeBot-C51/

BS2/AVR

version

Obstacle

avoidance; track

guidance

BS

microcontroller

teaching board;

AT89S52

microcontroller

2 imported

successivel

y turning

servo

motors

IR sensor;

light

dependent

resistor;

whisker

sensor

Elementary

educational

robots

Sumo robot Used in contest BS 2 imported QTI line

13

 Detect

opponent/bound

ary; push

opponent out

microcontroller

teaching board;

BS2

microcontroller

successivel

y turning

servo

motors

following

sensor; IR

sensor

Bionic robot’s

behavior control

and gait research

Outdoor

heavy-load

armor robot

Complex

electromechanic

al system control

study

BS

microcontroller

teaching board; 2

PSC motors

controller

18 servo

motors

IR distance

detection

suite

Mechanical hand

control and

research

5 degrees of

freedom

mechanical

hand-BS2

version

Complex

electromechanic

al system control

study

BS

microcontroller

teaching board; 1

PSC motor

controller

5 servo

motors

IR distance

detection

suite

Bionic robot’s

behavior control

and gait research

Professiona

l

educational

robots

Hexcrawler

robot

Complex

BS

microcontroller

teaching board

12 servo

motors

IR distance

detection

suite

14

 electromechanic

al system control

study

Bionic robot’s

behavior control

and gait research

Quadcrawler

robot

Complex

electromechanic

al system control

study

BS

microcontroller

teaching board

8 servo

motors

IR distance

detection

suite

Bionic robot’s

behavior control

and gait research

Outdoor

heavy-load

armor

robot-BS2

version

Complex

electromechanic

al system control

study

BS

microcontroller

teaching board; 2

PSC motor

controllers

18 servo

motors

IR distance

detection

suite

Bionic robot’s

behavior control

and gait research

Hexcrawler

columnar

armor

robot-BS2

version

Complex

electromechanic

BS

microcontroller

teaching board;

1PSC motor

controller

12 servo

motors

IR distance

detection

suite

15

 al system control

study

Bionic robot’s

behavior control

and gait research

Quadcrawler

columnar

armor

robot-BS2

version

Complex

electromechanic

al system control

study

BS

microcontroller

teaching board;

1PSC motor

controller

8 servo

motors

IR distance

detection

suite

Walk like humans Humanoid

robot
Imitate humans’

highly difficult

movements

MR-C3024

robotic control

board

16 servo

motors

Bionic robot’s

behavior control

and gait research

6 degrees of

freedom

mechanical

hand-BS2

version

Complex

electromechanic

al system control

study

BS

microcontroller

teaching board;

1PSC motor

controller

6 servo

motors

IR distance

detection

suite

Innovative

research-ba

Medium

sized football

Used in football It has been sold out

16

sed robots robot robot contest

Some conclusions about Depush’s products:

1. Most of Depush’s products focus on microcontroller and motor control

2. Depush’s products do not use cameras as sensors, thus OpenCV

technology is useful for Depush

3. Depush does not have products to train students to program using Python

language

OpenCV

OpenCV (Open Computer Vision) is a library that implements many

algorithms commonly used in the field of computer vision. Computer vision is

the area of computer science that focuses on extracting structured

information from images. Images as they are stored on computers are large,

unstructured, two dimensional arrays of pixels. Computer vision techniques

can also be applied to videos, which are stored as sequences of images.

OpenCV provides algorithms that can be used for tasks such as locating faces

in an image, recognizing predefined objects and shapes and detecting

movement in a video. OpenCV also provides the infrastructure necessary for

17

working with images and videos. OpenCV is regularly updated, with

documentation in several languages including English and Chinese.[5]

Applications

Many computer vision algorithms are implemented by OpenCV, with a

wide range of applications. Instead of attempting to list every algorithm and

give a detailed technical explanation, we will list some common computer

vision problems that OpenCV can be used to solve.

OpenCV provides many functions useful for recognizing objects within an

image. These range from the simple task of finding an object of one color

against a background of another to the more complicated process of finding

the faces of people in an image. OpenCV also provides algorithms for machine

learning, where the program is shown a very large set of images of one type of

object and uses this information to detect instances of this object in other

images. For example, a program can be trained to recognize letters and

numbers in an image. Such a program could then be used to transform the

scanned pages of a book into text files.

OpenCV also provides functions for analyzing motion between frames of a

video. These functions are mostly concerned with determining which parts of

the image moved between frames, as well as the direction and distance of this

18

movement. One application of these functions is separating those parts of an

image that are in motion from those that are not. This has applications in

automated security – a camera could be programmed to send an alert only

after it detects motion past a certain threshold.

OpenCV can also be used to extract three-dimensional information from

two or more views of an object. This technique is called stereo vision when

used with two cameras. This is useful for mobile robots, which often must

navigate an unknown environment. Several NASA rovers, for example, have

used stereo vision to navigate the unknown surface of other planets.

OpenCV also provides the infrastructure necessary for working with

images. It provides code objects for handling image capture from webcams,

images, and matrices. It also provides functions that implement common

operations such as inverting and smoothing images. OpenCV was originally

written in C, a commonly used low-level programming language. It can also be

used with Python and Java, two commonly used high-level programming

languages.[5]

Python

19

Python is a high-level programming language. In this context, high level

means that it handles many of the tasks that programmers need to handle in

low-level languages such as C. This makes is much easier to for beginners to

write code for, because it does not require them to learn the details of the

computer architecture. Python also has many modules available that deal with

tasks ranging from analyzing images to programming video games. This lets

programmers focus on the problem they are trying to solve instead of forcing

them to reinvent the wheel.

For an example of the differences between high and low level languages, a

C programmer working with an array would first declare a variable. Then he

would need to allocate memory, and then write more code to iterate over the

array if to perform an operation on each of its members. If he forgot to

deallocate the memory when he was done using the array, it would cause

errors with his program. In Python, creating and allocating the memory for an

array takes one line of code. The Python equivalent of an array is called a list,

and it comes with built-in functions for sorting, removing or adding items.

However, there is a tradeoff. Low-level languages allow the programmer to

customize details such as when and how memory is allocated and deallocated.

This lets them write code that takes less time and system resources to run.

However, high-level languages like Python generally consume more system

resources but free programmers from having to consider time-consuming

20

tasks such as memory management. This can save hours of time. It also lets

programmers write more concise, readable code. Both high and low-level

languages are widely used for different applications.

Another benefit of Python is that it has a very large number of

open-source modules. These modules can be freely downloaded and used,

and provide functions for applications ranging from reading and writing CAD

files (dxf-reader), to writing video games (pygame), to interpreting and

analyzing images (OpenCV). Web pages can also be written in Python

(Django). Python itself is also open-source, meaning that it can be freely used

without payment of licensing fees. These modules, combined with the

flexibility of Python, let programmers use it for a wide range of applications.

They also hide many of the complicated details behind layers of abstraction.

For example, one does not need to know precisely how shapes are stored in a

CAD file to output in that format.

Because of Python’s ease of use it is gaining wide acceptance in industry.

For example, Google is powered by Python. Google has even hired the creator

of the programming language as part of a team dedicated to improving the

language. This shows that Python is a major programming language with a

large user base. It also shows that Python will almost certainly continue to be

updated and supported for the foreseeable future.

21

Value to Depush

Depush aims to be a comprehensive server for innovative engineering

education. Until now, its products have mainly focused on micro controllers

and motor control. As computer vision is expanding very quickly in many fields

and becoming widely taught in engineering education, Depush is becoming

more interested in developing computer vision products. OpenCV technology

is widely used to process the images sent by cameras. At the same time,

obstacle avoidance is one of the most important applications of computer

vision, thus our core work—OpenCV and obstacle avoidance—is quite

significant for Depush in the market. By the way, we are the first users of

Depush’s newly developed teaching board and we can provide experience and

formal instructions on how to use it.

In conclusion, computer vision/image processing is a relatively new field

and is going to play an important role in Depush’s future market. Computer

22

vision and OpenCV technology is new to Depush and thus our work is valuable

to Depush.

The application of this robot is to teach basic engineering knowledge in a

way that is applicable to real-world problems. For the mechanical part, small

changes could be made by them to previous work to complete more

functions. However, the core value for them is to study the programming of

both the software and hardware.

For software, we take advantage of Keil4 to program the micro-controller

and OpenCV to handle the image processing. Our product has the advantage

that it is simple enough for beginners to study the AT89S52 chip with basic

knowledge of the C language which is a freshman course in most engineering

schools.

About the OpenCV part, students are strongly recommended to have a

background of image processing with python. Even though some people will

analyze the picture with C++, we choose to program with Python which is

23

more concise. This whole part is a combination of many functions in OpenCV

which could be modified with new functions to get a better effect.

For hardware, students can learn the interface and electrical schematic

with the documentation of the development board. The interpretation of

every program sentence could be made to clarify the control methods of the

motors. Based on this, students can change the PWM duty ratio or try to

control the speed based on their requirements.

Obstacle avoidance techniques

Two categories of obstacle avoidance technique were considered for this

project. In the first category are monocular techniques. These techniques

require only a single camera, and work by analyzing the image and dividing it

into regions. The second category is stereo techniques. These techniques work

by comparing images from multiple cameras with different viewpoints, and

attempting to recreate the geometry of the scene from these images.

24

For all of these techniques, two types of possible error are considered.

The first is false positives. A false positive is when a technique labels an area

that is not an obstacle as an obstacle. The second type of error is false

negatives. This type of error occurs when the technique fails to detect an

obstacle and labels an obstacle as free space.

Monocular Techniques

Two monocular techniques were considered, an edge based technique

and a color based technique.

The first technique worked by analyzing edges found in an image. For this

technique, the camera would be pointed forwards and down. The area at the

bottom of the image would be assumed to be the floor, and any edges found

would be assumed to be the bottom edges of obstacles.

This technique made two assumptions. First, it assumed that edges

correspond to obstacles, and only to obstacles. This caused it to fail in several

situations. For example, it produced false positives when the floor was

scratched or dirty or when the floor was made out of light colored tiles with

dark lines between them. This caused it to fail in many real-world situations.

25

Second, this technique assumed that the area at the bottom of the image

was part of the floor. This caused it to produce false negatives when an

obstacle was close enough to the robot that the robot could not see the floor.

It would then assume that the obstacle was the floor.

The second technique attempted to segment the image into the floor area

and everything else. It worked by starting with a seed region at the bottom of

the image that was assumed to be part of the floor. It would then attempt to

grow this region, adding any pixels with a color similar to the average color of

the seed region to that region, repeating this process until (hopefully) the

region covered the part of the image corresponding to the floor.

This technique made two assumptions. First, it assumed that obstacles

were a different color from the floor. This caused it to fail in several situations.

For example, it produced false negatives when obstacles were the same color

as the floor. It also produced false positives when the floor was composed of

areas with sufficiently different color values.

26

Second, it assumed that the region at the bottom of the image was part of

the floor. This could cause it to produce false negatives when an obstacle

blocked the robot’s view of this region. It would then label that obstacle as the

floor.

Stereo techniques

Stereo vision works by comparing two or more views of the same scene

taken from different perspectives. Objects that are close to the cameras have

a large difference in position between the two views. Objects that are further

away have smaller differences in position. With this technique, the actual

distance of objects from the cameras can be detected. There are two

techniques for implementing stereo vision.

27

Two points as seen by two cameras

Point 2 is further from the cameras. It therefore has a lower disparity between

camera views.

The first technique, dense stereo matching, attempts to match every pixel

in the left camera view to a corresponding pixel in the right camera view. It

28

then assigns every pixel a distance based on the disparity between its

positions in the two camera views. This technique is computationally

intensive, but produces more detailed distance maps.

The second technique is called sparse stereo matching. It works by finding

feature points in one of the two images. In this context, features are areas

that are visually distinctive. The algorithm then attempts to find these feature

points in the other image. It then computes the distance to those feature

points based on the disparity between their positions in the two camera

views. This technique is less computationally intensive than dense stereo

matching, but produces less complete distance maps.

With either technique, the output can then be analyzed to separate the

ground from obstacles. This requires (for the technique used in this project)

making the further assumption that the ground is flat. The first step of this

process is finding the ground plane. The second step is calculating the distance

from the ground plane to each point or area with a known distance. Then,

anything with a height more than a set amount above the ground can be

tagged as an obstacle. This assumption, that the ground is flat, can cause false

negatives or positives when the ground dips or rises in front of the robot.

29

This technique also makes the assumption that obstacles will have enough

surface detail to match them between camera views. This can cause it to

produce false negatives in cases where obstacles do not have enough surface

detail to be matched.[5]

Importance of Obstacle Avoidance

In scientific exploration and emergency rescue, there may be places that

are dangerous for humans or even impossible for humans to reach directly,

then we should use robots to help us. In those challenging environments, the

robots need to gather information about their surroundings to avoid

obstacles. For outer space exploring robots this is even more important

because there can be a delay of seconds or minutes between the control

station on earth and the robot.. Nowadays, even in ordinary environments,

people also require that robots can detect and avoid obstacles. For example,

an industrial robot in a factory is expected to avoid workers so that it won’t

hurt them. In conclusion, obstacle avoidance is widely researched and applied

in the world, and it is probable that most robots in the future should have

obstacle avoidance function.

30

Sensors for Obstacle Avoidance

A variety of sensor types can be used to detect obstacles. Among them,

cameras occupy a middle ground. They provide a large amount of information,

as opposed to cheaper options such as infrared sensors which only provide

the distance of objects directly in front of the sensor beam. However, they

provide much less accuracy and detail than costly options such as LIDAR,

which can directly measure the distance of thousands to hundreds of

thousands of points in its field of view. USB cameras have become increasingly

common in the last decade, making them an attractive option for obstacle

detection applications.

Table 2: A comparison of sensors for obstacle avoidance

Sensor Type Cost Information

Gathered

Issues

Infrared ~20$ Distance of objects

directly in front of

sensor (thin beam

width)

Interference between

multiple IR sensors

Sonar ~30$ Distance of nearest

object within viewing

Interference between

multiple sonar sensors.

31

angle Errors depending on

surface properties of object

and angle of object to

sensor

Camera

(monocular)

(after

processing)

~40$ (depends

on camera)

Areas of color

thought to

correspond to floor

Requires good lighting

Assumes floor to be one

color

Assumes obstacles to be a

different color from the

floor

Camera

(stereo)

(after

processing)

~80$ (depends

on camera)

Distance of objects

from cameras

Requires good lighting

Requires objects with

sufficient surface detail

LIDAR ~6000$ Distance of

thousands of points

in field of view with

millimeter accuracy

High cost

32

Camera Selection

Existing products in the market[7]

Two dimensional drawing of existing product[7]

33

We find in the market that many companies already have mature

products for vision calibration. As an example, the cameras above have been

assembled precisely to make sure both cameras point in exactly the same

direction. Apart from that, most of them have integrated to control the

cameras and process the images.

We considered taking advantage of these cameras directly. However, the

high price prevents our application because we need to get a relatively

high-value and low-cost design. And the ports are not usually USB which

needs to adapt the communication methods. Actually, after a manual work to

adjust the cameras, the precision of our work is equal to the obstacle

avoidance. The program for calibration and image processing is the most

challenging part that should be done by us.

34

Chapter 3: Methodology

 The image below shows the information flow of our robot. The images

taken by the cameras are sent to the laptop where the images are processed

and decisions are made. The laptop then sends commands such as moving

forward, turning left or right to the micro controller. The micro controller then

sends commands to the motors to make the robot move forward, turn left or

turn right.

Information flow of our robot

35

Computer Vision

The computer vision section of this project is required to analyze images

using OpenCV and output the location of obstacles. It should also be usable by

students and others with general technical backgrounds that do not have any

experience with computer vision. Because of this, this section was written in

Python, a widely used high level programming language that automatically

handles tricky low-level tasks such as memory allocation. The benefits of

Python for novice programmers are discussed more in detail in the

background.

1. Collect Images: The first module has a simple purpose. It takes as input

the IDs of the two cameras used and outputs frames from them. It also

provides information about the images gathered, such as the size of the

images.

2. Get Stereo Calibration: this module is used to collect a series of images of

a calibration patterns, in this case a 9x6 chessboard. OpenCV supports

chessboard patterns as calibration patterns, and provides several

functions specifically for extracting points from images of chessboards and

36

working with those points. This module takes as input pairs of left and

right images and saves them to disk for use in the Stereo Rectification

module. This module only needs to be used when the position of the

cameras relative to each other changes.

A pair images used for stereo calibration

3. Stereo Rectification: this module has two possible inputs. First, it takes as

input a set of stereo calibration images, as produced by the Get Stereo

Calibration module. From these it calculates the necessary transforms to

stereo rectify a pair of images. This requires correcting for the intrinsic

distortion of the cameras and aligning the images such that features in

each image have the same height. OpenCV provides functions that handle

the complicated math and matrix operations. After this is completed, it

can take as input a pair of left and right images and applies the previously

37

calculated transforms to them. It then outputs a pair of stereo rectified

images.

4. Sparse Stereo: This module takes as input a pair of stereo rectified left and

right images. It then finds features in the left image and attempts to find

the position of the corresponding features in the right image. It then uses

the X and Y position of these points, as well their disparity, to map them

into points in three-dimensional space. These points are the output of this

module. OpenCV provides function for finding points and tracking them

between images, specifically GoodFeaturesToTrack and

CalcOpticalFlowPyrLK.

A side view of the points found in the previous step

38

5. Find Plane: This module takes as input a pair of stereo rectified left and

right images. It searches those two images for the same 9x6 chessboard

pattern used in the Stereo Rectification module and matches points

between the two images. It then uses the same technique as the Sparse

Stereo module to map these points to three-dimensional space. Finally, it

uses a linear least squares approach to fit a plane to those points. The

object representing this plane is the output of this module. This module

only needs to be used when the position of the cameras relative to the

ground changes.

6. Find Obstacle Points: This module takes as input the set of

three-dimensional points output by the Sparse Stereo module and the

ground plane outputted by the Find Plane module. It compares those

points to the plane and outputs all those points that are more than a

preset distance above the ground plane as obstacle points.

39

The black line is the ground plane; the grey rectangle is the area above the

ground plane where points are still not classified as obstacles. Blue points are

obstacle points.

7. Find Obstacle Bounds: This module takes as input the set of

three-dimensional obstacle points output by the Find Obstacle Points

module. It then attempts to group them into clusters, where each cluster

corresponds to one obstacle, and the obstacle that cluster corresponds

with is within the bounds of that cluster. This module then outputs the

bounds of these clusters. Points are grouped into clusters using a

hierarchical approach: each point starts as its own cluster, and the closest

clusters are repeatedly merged.

40

The obstacle points are grouped into clusters

8. Serial Communication: This module takes as input the bounds of the

obstacles found by Find Obstacle Bounds. It then interprets this data and

sends commands to the microcontroller that tell it to turn left, turn right,

stop, or go forward. These commands are then sent to the robot using a

USB-to-Serial adapter.

41

Because the distance to each point is known, the distance to each cluster can

be calculated

Control system design process

Requirements for control system:

(1) We can control the speed and direction of the motors by change the pulse width

(2) The microcontroller turns the signals into PWM wave when receive the laptop

input and control the movement of the robot.

Principle of control system:

Laptop sends motion commands to microcontroller, and then the microcontroller

sends out a PWM pulsecorresponding to the motion commands via p1.1 which will

drive the motors by the HB-25,then the robot will realize the corresponding

motion.The following flow chart shows the diagram of hardware design:

Systematic block diagram of hardware

laptop microcontroller motor drive chip motors

42

Mechanical Design Process

Figure 1: Mechanical design process

From detailed design of elements to assemble, the detailed procedures should

be like this:

Overall, the mechanical design has two parts

� Laptop holder

� Camera holder

Each part will be executed in this order:

Function of the robot

43

1. Talk with Paul and learn about his requirements for mechanical part

� We need to document his requirement and his justification for the

requirement

2. Try all means to design suitable mechanism

� Search information online and from text books

� Think by ourselves

3. Draw rough design on a piece of paper and explain that to Paul to see if it

fits his requirements well enough. If not, re-design

4. Do a rough feasibility analysis on the design

5. Draw three dimensional models on Pro/e. During this process, some

elements need to be bought online, then we should search for enough

information about those elements such as the dimensions, prices and

important parameters

6. Do detailed analysis to our design

� First think of what analysis is necessary and list them in a word

document

� Then think of the solutions to each item of analysis

� Seek for help if any of the analysis is beyond us

44

7. Draw two dimensional designs for each element.

8. Send two and three dimensional designs to Depush and get feedbacks

from Depush

9. Do some modifications according to Depush

10. Take two dimensional designs to machine shop for manufacturing

� Maybe we still need to modify our designs so that it is easier to

manufacture

� Depush may help manufacture some elements

� Other elements may be bought from the market

11. Stay in contact with machine shops and urge them to manufacture as

quickly as possible

12. Assemble the elements and modify when necessary

13. Work together with Control group and Stereo vision group to make the

whole robot perform well

45

Motor Calculations

About the calculation of motors: the parameters we need to know about

the motors are minimum torque, maximum revolving speed, voltage and

power.

1. Minimum torque minT : the minimum torque should be able to rotate the

wheels when the robot is on the ground. The weight of the robot 0G can

be estimated, and the friction coefficient between the wheels and the

ground µ can be known through table of friction coefficient. The

maximum speed maxv and maximum acceleration maxa can be certified by

the experiment that the images of the cameras won’t blur and laptop has

enough time to deal with each image. According to Newton’s Second

Law 0
0

0
min2 a

g

G
G

r

T ×=×−× µ , r is the radius of the wheel

2. Maximum revolving speed: The maximum speed of the robot maxv can be

certified by the experiment that the images of the cameras won’t blur.

Then the maximum revolving speed of the motors is
r

v
n

⋅
⋅=

π
max30

.

3. Voltage: the voltage of motors is usually 12V or 24V. They are both

acceptable

4. Power: the energy of motors equals the kinetic energy the robot gains

within one second plus friction loss within one second.

46

About the calculation of battery: the parameters we need to know about

battery are voltage and current. The voltage and current of battery should be

no bigger than the maximum voltage and current the motors can stand.

Another important parameter of battery is that battery capacity as it

determines how long the battery can work at a certain current.

47

Chapter 4 Findings and results

Obstacle Detection Evaluation

An obstacle detection algorithm needs to satisfy two criteria to be

successful. First, it has to detect obstacles when they are present. Second, it

has to avoid falsely labeling areas that are not obstacles as obstacles.

Our algorithm’s performance under the first criteria was determined by

showing it a set of obstacles with different characteristics at several different

distances from the front of the robot.

Obstacles and free space. (White boxes shown surrounding obstacles)

48

Observed indoors, under fluorescent lighting:

1. Two different kinds of plastic bottle with wrapper: these obstacles are

partially transparent

2. Computer case from the back, showing I/O ports and ventilation grating: a

large, rectangular obstacle with a large amount of surface detail

a) Computer case from the side (One solid color): a large, rectangular

obstacle with very little surface detail

3. Styrofoam packing material: a large object of the same color as the floor

4. Hot water jug: a non-rectangular obstacle of one color with minimal

surface detail

5. A chair: an obstacle with more complex geometry (thin legs)

6. Webcam packaging: a small cardboard box with medium surface detail

These obstacles were observed at distances of 2 feet, 4 feet, 6 feet and 8

feet from the front of the robot. The algorithm successfully detected all

obstacles except for the solid-color side of the computer case. In that case,

the algorithm could not find any features to track. The point clusters

representing the boundaries of some of the smaller obstacles, such as the

49

water bottles, merged with the point clouds of nearby obstacles when viewed

at a distance of 8 feet.

Of particular note is the algorithm’s success in detecting the Styrofoam

packing material. Its color (white) was only slightly different from that of the

floor in the lab (off-white).

The algorithm’s performance under the second criteria was determined by

showing it a set of non-obstacles that could be falsely labeled as obstacles,

again at several different distances. Some examples of these non-obstacles

are a piece of paper lying flat on the ground and a reflective floor.

Observed indoors, under fluorescent lighting:

50

1. An empty shopping bag

2. An empty shopping bag made of thick paper

3. A large sheet of cloth

4. A piece of paper with dark black lines drawn on it

5. An area of floor in which the reflections of objects where visible

The non-obstacles were viewed in various positions between 1 and 6 feet

from the robot, at various positions in the left, right and center of the robots

view. The algorithm correctly identified all of these non-obstacles, using the

same settings that were used to detect the obstacles in the previous tests.

51

Of particular note is the algorithm’s success in recognizing the large cloth

sheet as part of the floor, even when it was bunched up so that parts of it

formed small ridges.

The speed of the algorithm was also analyzed. Mobile robots require

real-time detection of obstacles, which in turn requires algorithms that run at

reasonable speeds. First, the speed at which our algorithm runs is bounded by

the available processor resources. The computer we used to control the robot

for our tests had a 1.66 Gigahertz processor and 2.0 Gigabytes of RAM. With

these resources, the algorithm runs in approximately 0.3 seconds. It takes less

time when presented with a scene with a small amount of features.

Testing with the robot has shown this to be sufficient to detect and avoid

obstacles.

Algorithms Used

Two algorithms do the majority of the work in the computer vision portion

of this project. First, it uses the Shi-Tomasi corner detection algorithm to find

features in one of the two images. Second, it uses the sparse version of the

52

Lucas-Kanade optical flow algorithm to find the location of these features in

the second image.

The Shi-Tomasi corner detector works by finding areas within an image

that, if moved, produce a large variation. It's called a corner detector because

these areas are often corners. [6]

An example of a “good feature to track”

The Lucas-Kanade algorithm takes as input two images and features found

in the first of these images via the previously mentioned algorithm. It then

attempts to match these features (technically the area around the location of

these features in the first image) with the corresponding area in the second

images. It is a pyramidal implementation of the algorithm, meaning that it

53

runs repeatedly on the input images at different resolutions. For example, an

image pyramid with n levels would have at the top an image of size (width =

original width/(2^n), height = original height/(2^n)). The image below that

one in the pyramid would have size (width = original width/(2^(n-1)), height =

original height/(2^(n-1)), and so on.[7]

An image pyramid with three levels

The settings used by both of these algorithms were chosen with speed in

mind. The program as a whole needed to run at a reasonable. The definition

of reasonable speed depends on the speed the robot moves – three cycles per

second was chosen based on experimentation. Window sizes and minimum

allowable errors were chosen that would allow the algorithm to run at this

speed without failing to correctly find and match features.

54

Control Section Results

1. The design of the hardware system

1.1 Introduction

We take the STC89C58RD+ microcontroller as the core of the system design.

After the input of the laptop, the microcontroller can send signals to control

the motors’ states which determine the movement of the robot. In this

design, the PWM modulation technology is adopted for the motor controlling,

which adjust the speed precisely by calculating the duty ratio.

1.2Control Principle

The DC motor PWM speed regulation system is constructed by single chip, and

the core part consists of minimum system, power source module (12V 5V),

motor driving chip and DC motors. We use HB-25 motor controller as the main

loop of PWM pulse to drive DC motors. Microcontroller outputs PWM signals,

realizing the speed control of DC motors and achieving good both static and

dynamic performance. As this system has high property and price ration and

simple structure, it has high application value and deserves to be widely

promoted.

Stereo vision gets environment information which is then sent to laptop to

proceed. The OpenCV program in the laptop can detect whether there are

55

obstacles around and the position of the obstacles. According to particular

strategies of avoiding obstacles, the laptop makes the decision about how the

robot moves, and then sends commands to microcontroller through serial

communication. Figure 1-1 shows graph of the DC motors control system with

STC89C58RD+ microcontroller as the core. Microcontroller receives

commands and then changes the commands into PWM signals and sends the

PWM signals out by P1.0, through HB-25 motor controller into 2 DC motors,

thus control the motors to get or lose power, realizing the corresponding

movements of the robot.

1.3Motor Speed Regulation Module

1.3.1 Solution Choice

Solution 1: use resistance network or digital potentiometer to adjust the

partial voltage of motors to achieve the goal of regulating speed. However,

resistance network can only realize step speed regulation and digital

resistance element is relatively expensive. What’s more important, common

motors have very small resistance but very big current; partial voltage will not

only lower efficiency but also be hard to realize.

Solution 2: use electric relay to control motors to be open or close, and

regulate the speed of motors by switchover. The advantage of this solution is

56

that it has simple circuits and the disadvantage is that electric relay responds

slowly, has relatively short span, are not highly reliable and its mechanical

structures are easy to break.

Solution 3: use HB-25 motor controller to drive DC motors, as the peripheral

circuits of HB-25 produced by Parallax are simple, and H bridge circuits have

good drive capability and the HB-25 itself has heat dissipation equipment. So

we use Solution 3.

As unipolar duty cycles have lower percentages of AC in their voltage wave

than bipolar duty, and unipolar duty’s maximum current fluctuation is smaller

than that of bipolar duty, thus we choose unipolar duty.

1.3.2 Approaches to Regulate Frequency Range of

PWM

There are three ways to regulate frequency range: fix frequency and regulate

range, fix range and adjust frequency and regulate both frequency and range.

We choose the approach of fixing frequency and regulating range because the

motors run relatively smoothly by this approach; and this approach makes it

convenient to produce the PWM pulse with programming on microcontrollers.

1.4Systematic Analysis and Hardware Design

57

Laptop sends motion commands to microcontroller, and then the

microcontroller sends out a PWM pulsecorresponding to the motion

commands via p1.1 which will drive the motors by the HB-25,then the robot

will realize the corresponding motion.The following flow chart shows the

diagram of hardware design:

Systematic block diagram of hardware

1.4.1 Design of Microcontroller’s Minimum System

The microcontroller receives commands of movement from laptop, then

change the commands into PWM pulse to control the revolving of two

motors. To realize the above functions, we just need 3 I/O ports, 3Kb storage

for programming, 1 timer and 1 serial cable.Therefore almost all

microcontrollers can meet our requirements. With comprehensive

consideration about price and company needs, we finally choose the

STC89C58RD+.

The STC89C58RD+ 8 bits microcontroller is a strengthened type of 51

microcontroller developed by the American company STC based on standard

core structure of 8051 microcontroller. This STC microcontroller has the

following advantages:

laptop microcontroller motor drive chip motors

58

� High encryption

� Super resistance to interference

� Three measures to decrease the radiation of microcontroller to the

outside

� ALE outputs are forbidden

� If 6 clock or machine cycle is chosen, frequency of outside clock can

decrease one half

� The transmission gain of microcontroller’s clock oscillator can be set

to 1/2 gain.

� Super low power consumption

� Can be programmed right in systems, programmer is not needed, can be

remote upgraded

� Can be sent to STC-ISP, 10 thousand chips per person per day

According to different requirements in different cases, this type of

microcontroller provides different kinds of packaging. Actually minimum

system sometimes needs to change microcontroller and thus we use the

DIP-40 packaging, as is shown in the following figure.

59

Minimum system

In addition, it sometimes occurs that programming flies while the system

is running, then people have to reset by hand. Therefore in this design we

reset by hand.

1.4.2 Power Source Circuits Design

Power circuits

60

This power source circuits use LM1084-5 low voltage gap, linear regulated

voltage integrated circuits. The input voltage is 6-9V, and the gap between

input voltage and output voltage is lowered to 1.5V, and the output

current is 5A. LM1084-5 specifically outputs 5V, operation temperature

ranges from −40°C to 125°C, can limit current and protect itself when it is

over heated, has simple hardware circuits, relatively fixed methods to use.

1.4.3 USB Serial Switch Circuits Design

Laptop communicates with microcontroller through serial communication.

Usually laptop has no serial ports but only USB ports, so USB serial switch

circuits are designed to realize the communication between laptop and

microcontroller. The USB serial switch circuits are shown in the

followingfigure.

61

USB serial switch circuits

The FT232BM is a USB to serial UART interface. The USB to RS232 converter

provided by FT232BM sets up a reliable connection between the USB port and

the RS232 port. The “hot plug and play” of USB port makes peripheral

equipment of RS232 easy to use.

1.4.3 DC Motor Drive Chip

PARALLAX has produced DC motor drive chips—

—HB-25 that match the DC motors we have sel

ected. The website of PARALLAX has provided t

he instruction of the HB-25. The below is just a

simple introduction

62

Note that we need 2 HB-25 to drive 2 DC motors. We should wiring between

the 2 HB-25 as shown in the following figure. So only then unit 1 will be

connected to the single chip.

The connection between the 2 HB-25

Independentcontrol ofboth HB-25 units through a single I/O line is accomplish

ed by sending two sequentialpulses with a pause of 1.1 ms between them. Th

eHB-25 looks for two sequential pulses and only responds to the second one.

In reference to the diagram in the following FigureUnit 1 would respond to Pul

se #1, and Unit 2 would respond to Pulse #2.Unit 2 looks for Pulse #1, pauses f

or a 1 ms hold-off time, then looks for Pulse #2. Therefore, the timing betwee

n Pulse #1 and Pulse #2 is important, and there should be a minimum of 1.1 m

s between pulses. What is more, a single pulse is required to set motor speed.

63

 Dual Mode Communication

2.Systematic Software Design

After powering on the single chip, the system enters the ready condition and

the serial communication is initialized. Press the start button and the HB-25 is

initialized. Then the single chip will wait for receiving the motion commands. If

the single chip receives a motion command, the receive interrupt zone bit TI

will be set to 1 and the single chip will switch to execute the serial interrupt

program. In the serial interrupt program, the single chip send out a PWM

pulse corresponding to the motion commands via p1.1 which will drive the

motors by the HB-25,then the robot will realize the corresponding motion.

2.1 Strategy for Obstacle Avoidance

As shown in figuresA and B,there is only an obstacle in front of the robot. In

figure A,if the obstacle is in the left side,the robot will keep turning right until

there are no obstacles in front. Then the robot will go forward. In figure B,if

the obstacle is in the right side,the robot will keep turning left until there are

no obstacles in front. Then the robot will go forward.As shown in figure

64

C,there are 2 obstacles in front of the robot. The robot first detects the

obstacle 1 and turns right for a certain angle, then it will detect if there are

obstacles in front again. If no, the robot will go forward. If yes, no matter the

obstacle is in the left side or in the right side, the robot will continue turning

right until there are no obstacles in front. Then the robot will go forward.

obstacle

robot
Figure A

Figure B

Figure C

1

2 1

1

2 2

65

The above is the basic obstacle avoidance rule of the robot. If the robot is

under other conditions, it will avoid the obstacles according to the rule. The

flow chart of obstacle avoidance is shown in the following figure.

Y

N N

Y Y

N

obstacle� obstacle�

turn turn

left�

Start

Obstacles?

Y

Judge the position

N

66

2.2Flow Chart of Main Program

Source Program����

See appendix for source code

Wait

Initial

Move according to the

command

If laptop sends a

command

Start

N

Y

67

Mechanical Section Results

Selection of motors & battery:

� Minimum torque minT : 0
0

0
min2 a

g

G
G

r

T ×=×−× µ , kgm 80 = , so

NG 4.888.980 =×= ;
2

0 /1 sma = , mr 075.0= , all the above three

parameters are estimated; 2.0=µ , so according to the equation,

mmNT ⋅= 963min

� The estimated maximum speed that can keep images from blurring

is smv /5.0max = , so the maximum revolving speed

is sr
r

v
n /66.63

075.014.3
5.03030 max =

×
×=

⋅
⋅=

π . Actually the maximum revolving

speed of the motors can be higher, but in order to let the robot work well,

the revolving speed should be no bigger than sr /66.63 .

� The kinetic energy change is Wmvk 4118
2
1

0
2
1 2

0 =×××=−=∆ , 0v is the

speed the robot gains within 1 second at an acceleration of 2/1 sm . The

friction loss is WSGQ 84.85.02.04.880 =××=⋅⋅= µ , suppose the

efficiency 8.0=η , then the power of one motor is W
Qk

P 025.8
2

=+∆=
η

68

� The voltage of batter depends on the voltage of motors, and when the

motors are selected, the battery’s current should correspond to the

current of motors. It is best that our batter can work successively for more

than two hours.

Laptop holder results

Function requirements:

� hold laptops of different sizes (different users may have laptops of

different sizes)

� shouldn’t harm the laptops

Here are the results of my design process

1. after we think the design works, I ensure the exact dimensions of the

laptop holder

69

Figure 2: Popularity of different laptop sizes

One survey about Chinese people’s preferences to the sizes of laptop

computers [6]

2. The above survey shows that only less than 6% people prefer laptops that

are bigger than 15 inches. Therefore it is reasonable that we only allow our

laptop holder to hold laptops smaller than 15.6 inches. Depending on

Laptop sizes people in China prefer

13 inches

13.46%

12 inches

21.15%

>15 inches

5.77% 15 inches

14.74%

14 inches

44.87%
Totally 156 people are surveyed

Survey done in China

70

different ratios of length and width, the same diagonal dimension may

have different sizes of laptops, and the following is the table in which I

calculate the length and width of laptops.

Figure 3: Sizes of laptops by ratio and diagonal length

diagonal\rati

o

4:3 16:9 16:10

12.1 24.6/18.4 26.7/15 26/16.3

13.3 27/20.3 29.4/16.5 28.6/17.9

14.1 28.7/21.5 31.1/17.5 30.3/18.9

15 30.5/22.9 33.2/18.7 32.3/20.2

15.6 31.7/23.8 34.6/19.4 33.6/21.0

Diagonal Units: Inches

Length/Width Units: Centimeters

Matrix about width and length of different sizes of laptop computers at

different ratios

3. So the length of grooves in width is 5cm, ranging from 7.5cm to 12.5cm

from the center; the length of grooves in length is 6cm, ranging from 12cm

to 18cm; In addition, as our time is limited, we have to use the original

71

chassis of Depush with motors. Thus the width of laptop holder is

determined by the chassis, namely 260mm. The grooves are just 5mm

from the edge of laptop holder, so I make the grooves all to the edges,

meaning the grooves range from 7.5cm to 13cm from the center. The

width of the grooves is 6.5mm because the holes of the chassis are 6mm

and a wider groove width makes it easier from screws to get in. The length

of laptop holder is 400mm, leaving some distance from the grooves to the

edges.

4. According the above dimensional determination, we have the following

laptop holder design:

Two dimensional drawing of laptop holder [1][2][3]

72

In addition, the chamfers in the left side are made just to fit the chassis

because the chassis has such chamfers too.

5. some calculations to justify that the laptop holder is strong enough to hold

laptops:

In material dynamics classes, we learn to need to check bending normal stress

& bending tangential stress to make sure it is strong enough. By the way, the

thickness of the laptop holder is 5mm.

Equations used to calculate bending normal stress:

Schematic diagram of bent beam. [4]

[]

[] []

[] []4140

4

4

max

max

MPaσ

σ
W

M
σ

I

My
σ

z

Z

=

≤

=

=

Equation for bent beam. [4]

73

Actually, detailed and exact calculation is not only difficult but also not

necessary. So we use order of Magnitude Estimation to estimate.

� The magnitude of M is 310 −

� The magnitude of zW is 910 −

� According to the definition of Mand zW and the weight of a laptop is

usually less than 25.4N. It is quite reasonable that][140max σσ ⋅≤ .

It is the same with bending tangential stress that it is also within an allowed

amount. In conclusion, theoretically the laptop holder is strong enough to

hold the laptops.

6. Angle aluminum is used to be fixed onto the laptop holder to prevent

laptops moving around. And chemical foam is glued to angle aluminum to

protect the laptop. The chemical foam is made by us. The height of the

aluminum is 40mm which is the thickness of most laptops. The hole of

angle aluminum is also 6.5mm. the two dimensional drawing of angle

aluminum is as follows:

74

Two dimensional drawing of aluminum alloy [1][2]

7. Then we should calculate to justify the friction provided by angle

aluminum and laptop holder is enough to fix the laptop at a certain

acceleration of the robot:

The motors are also provided by Depush and the parameters are known

through the instructions provided by the supplier. The revolving speed of the

motors is 150r/m, @12V, 1.5A, no load; the diameter of the wheels is 154mm,

so the maximum speed of robot is 1.2m/s. The maximum acceleration of the

robot is estimated to be 1m/s 2 and the friction coefficient between aluminum

and aluminum is 1.05 to 1.35, or just use the average 2.1=µ . Usually the mass

of laptops is about 2.5kg, when acceleration
2

max /1 sma = . The friction should

75

be Namf 5.215.2max =×=⋅= . Thus the tension of screws or the pressure

of laptop holder is N
f

F 08.2
2.1

5.2 ===
µ . The diameter of screws here is 6mm.

Thus the normal stress of screws is][0957.0
3.14

2 σ
π

σ ≤=
⋅

⋅×= Mpa
d

F
. Obviously,

screws can stand such little normal stress, or in other words, angle aluminum

can provide enough friction to prevent the laptop from moving around.

8. About the material of the of the laptop holder, two kinds of material are

considered: one is aluminum alloy and the other organic glass. The

following matrix shows how I make the decision to use aluminum alloy:

 Aspect & weight\material Aluminum Alloy Organic glass

Cost 0.1 4 6

Machinability 0.1 8 6

Strength 0.5 8 0

Density 0.3 3 7

Total 6.1 3.3

Table 6: comparison of laptop holder materials [3]

76

In the above matrix analysis, I consider four aspects, namely cost,

machinability, strength and density. Strength is the key factor that determines

which material we will use, thus I give strength weighting factor of 0.5.

Organic glass’s density is only the 43% of that of aluminum alloy, and less

density is good for the robot, so density here is also considered and it has a

weighting factor of 0.3. As a mechanical element, machinability should also be

considered. In the end, cost should never be ignored. The scale is from 0 to 10

and more marks mean better performance. You may notice that organic glass

only get 0 in strength and that is due to the fact that organic glass is easy to

break along notches, which is called notch sensitivity. The following image

shows the risky notches of our laptop holder:

Risky notches of laptop holder [2] [3]

77

Obviously, aluminum alloy get 6.1 marks while organic glass get 3.3 marks, so

we choose aluminum alloy.

Results of camera holder

Blue view of camera holder on the robot

Function requirements

As a component to detect the obstacles and the ground, we have to fasten

two cameras which can imitate human eyes on the robot car. To solve this

problem, we need to consider the basic mechanical requirements and its

compatibility with the computer vision system and control system.

78

As for the mechanical properties, we measure the weight of the cameras

and discover that it is light enough to be attached to aluminum panel without

much vibration. A detailed analysis of the stability will be presented later.

As for the integration function with the other two systems, there is not

much relationship with the control system. However, how and where the

cameras are placed will have great influence on the detection of the obstacles

and the stereo vision system. To find out a right place, we need a through

calculation of the height and the distance of two cameras.

In all, the requirements are as follows,

1.Stable

2.Cameras are at same height

3.Largefield of View

Stability analysis

79

In the process of movement of the car, we demand that the cameras

should be fixed well with no vibration. For this reason, we tested the

maximum acceleration of the car and calculate the possible force that could

move the camera holder and the cameras respectively.

How camera holder is fixed onto chassis

To fix the camera holder on the car, we use two screws of 5mm every side

to avoid the back and forth movement. We control the width of the board as

30mm in case that it is too heavy for the screws to bear or too wide for the

cameras to be put on. For the hole on the panel, we keep it symmetric with

the other holes on the sideboard.

80

To avoid the up and down movement, the panel should not be too thick

and high. The thickness determine for the aluminum board is 1.5mm which

makes it common to press out. The ideal height will be determined later with

the stereo vision system. For better manufacturing characteristics, we give

two stamping bends to the panel each side to make the mechanical properties

good enough in case that it is easily broken.

Apart from the camera holder part, it is of the same importance that the

cameras should be attached to it stably. We have three methods in

consideration, namely, clamps, screws and tape.

As the first idea, it will be very easy to adjust the position of the cameras if

we use clamps. However, the problems come from the clamps as well. First,

the clamps themselves will bring more weight and affect the stability of the

camera holder. Second, how the clamps are fixed on the board will affect the

functions of the cameras. Usually, we need screws then bring more errors into

the position. Third, even if we can fix the clamps well, we have to fix the

cameras again which makes the problem complex.

Then we think of fixing the cameras to the board directly without too

many media components. After we observe a screw on the back of the

camera, the idea to fix the cameras on the board with screws is very

spontaneous. However, this solution might not work because of two

81

problems. First, the screw is very small with a diameter of 2mm which makes

it easily broken and very hard to drill holes on the board. Second, even if it is

mechanically feasible, there is only one hole on the camera which requires us

to drill another hole on the camera. Nevertheless, the plastic camera is so

fragile that a small hole will bring too much stress on the seam. The easiest

way is tape which is retractable and repeatable if there is any problem. The

only worry is that the camera might be shaking when the car is moving

because it is not strong enough. However, we have glue, seccotine and wide

tape which will provide great force and stability.

How cameras are fixed onto camera holder

Camera Position

To help and simplify the CV calibration part, we require that the two

cameras are basically at the same height from the ground. The errors of the

82

obstacle in the two pictures will result in a contradictory and ambiguous

consequence which will make trouble for the control part.

For two cameras we used, the errors in the picture come from two places:

1. The mechanical error from the cameras because they are intrinsically

different;

To solve this problem, we choose two cameras from the same type at the

same price to avoid possible large camera errors. We take two Logitech C170s

to reduce the error but cannot eliminate it.

2. The manufacturing errors and assembly errors of the components; for

another consideration, even if the two cameras are the same, the heights

of their respective places are different from each other. These errors come

from the manufacturing and assembly errors of the camera holder. Thus,

we choose only a panel as the only one component to meet all needs

which limits possible large errors.

83

Large field of View

Schematic diagram showing blind spot and effective area

We first put the holder in the back of the robot because the view will be

larger than in the front. Apart from that, cameras in the front will be easily

hurt by the obstacle or wall in the process of test at the beginning. However, if

we put the cameras too back of the robot, too much redundant information

will be received which will affect the decision making process. As a result, a

compromise could be made that we put the cameras at the place 120mm

distance from the front which is symmetric to the other two holes on the side

board.

The cooperation of the cameras and the computer vision demand an ideal

height where we can achieve as large view and small blind spot as possible.

84

We first need to measure the view angle of the camera and then calculate the

height of the cameras with similar triangles.

The vertical distance from the bottom of the laptop to the ground is

roughly 90mm.

The horizontal distance from the front of the robot to the camera holder

is about 120mm.

We have tested the cameras before, so the vertical and horizontal

distance of the cameras could be measured as well. Compared to the camera

holder, the vertical distance from the eye of the camera to holder board is

3mm. Horizontal 15mm. We finally determined the height of the camera

holder as

The position of cameras on the robot

85

To limit the blind spot in the area of the robot itself, we need to adjust the

distance between the two cameras and the depression angle many times until

we can see in the picture that the laptop holder would not block the view and

that we can see things far enough in two views.

When we manufacture all the components and assembly them on the car,

we discover that even if we put the two cameras next to each other with no

marginal place between each other, the position are rather good to take a

view with nothing of the laptop holder and a view far enough for obstacle

detection.

Keep the effective area away from the aluminum alloy

86

Chapter 5 Conclusion

The purpose of our project was to create an inexpensive and high-efficient

obstacle avoidance robot for education and orientation use. In the conclusion

of this report, the robot was able to display to us its turning strategy within a

speed range.

The specific work we have finished are as follows:

� We successfully modified the robot with a few mechanical components to

add two more functions to the main body, namely the laptop holder and

the camera holder.

� We tested and optimized the AT89S52 development board designed and

produced by Depush in a large scale, which was used to control the

motors smoothly.

87

� We choose the cameras with great value at a relatively low cost, fixed

them and adjusted them on the camera holder for good calibration of the

computer vision system.

� After attaching the cameras, we successfully developed the software to

detect the obstacles and send out signals to control the motors with

OpenCV in Python.

� We establish the serial communication method between the upper laptop

and the lower development board with USB port. The laptop will send out

a signal of the motor condition to the development board. After receiving

the signal

88

Chapter 6 Discussion

In order to optimize the movement of the robot, we have many

considerations for improvement. However, most of these ideas will cost more

money and time as well.

� For the choice of cameras, it is better to get CCD or industrial use ones to

get clear and fast pictures. Even the ones we mentioned in the camera

holder part will be better because of the special software. In the process

of modification, we discover that the speed of the cameras is a problem

because low frame rate will result in a slow picture output.

� For the computer vision part, it will be better if we have a more optimized

program that could process the signals faster, which could let the robot

respond to obstacles more quickly

89

� For the choice of motors and motor chips, we recommend that students

should try to take advantage of a feedback loop. This would allow the

robot to move more precisely.

� The computer vision part can provide more detailed information than left

and right. With more precise motor control, it could choose specific paths

instead of just turning away from obstacles.

� For the choice of development board, a faster and more efficient board

will be more challenging. We suggest that students could learn to program

for AVR, ARM and DSP on their own.

90

Chapter 7: Appendices

Control Section source code:

main.c����

#include<BoeBot.h>

#include<uart.h>

#define HB_25 P1_1

voidFor_Ward(void);

voidLeft_Turn(void);

voidRight_Turn(void);

void Stop(void);

voidBack_Ward(void);

void HB25Initial(void);

void main(void)

{

uart_Init();//initialize the serial communication

HB25Initial();//initialize the HB-25 motor controller

while(1);

}

void UART_SER (void) interrupt 4 // program of serial interrupt service

91

{

unsigned char Temp; //define a temporary variable

if(RI) //judge if the send interrupt emerges

 {

 RI=0; //clear the zonebit

 Temp=SBUF; //read the buffer

 switch(Temp)

 {

 case 'L':

 Left_Turn(); //turn left for a certain angle

 Stop(); //stop

 SBUF=Temp; //send the laptop an ‘L’

 break;

 case 'R':Right_Turn(); // turn right for a certain angle

 Stop(); //stop

 SBUF=Temp; // send the laptop an ‘R’

 break;

 case 'F':For_Ward();break; //go forward

 case 'B':Back_Ward();break; //go back

 case 'S':Stop();break; //stop

92

 }

 }

 if(TI)

 TI=0;

}

voidFor_Ward(void) //go forward

{

 HB_25=1;

delay_nus(1700);

 HB_25=0;

delay_nus(1100);

 HB_25=1;

delay_nus(1685);

 HB_25=0;

delay_nus(5250);

}

voidLeft_Turn(void) //turn left for a certain angle

{

 HB_25=1;

delay_nus(1300);

93

 HB_25=0;

delay_nus(1100);

 HB_25=1;

delay_nus(1685);

 HB_25=0;

delay_nms(400); //400 decide the angle for turning left

}

voidRight_Turn(void) //turn right for a certain angle

{

 HB_25=1;

delay_nus(1705);

 HB_25=0;

delay_nus(1100);

 HB_25=1;

delay_nus(1305);

 HB_25=0;

delay_nms(400); //400 decide the angle for turning right

}

void Stop(void) //stop

{

 HB_25=1;

94

delay_nus(1500);

 HB_25=0;

delay_nus(1100);

 HB_25=1;

delay_nus(1500);

 HB_25=0;

 }

voidBack_Ward(void) // go back

{

 HB_25=1;

delay_nus(1300);

 HB_25=0;

delay_nus(1100);

 HB_25=1;

delay_nus(1305);

 HB_25=0;

 }

void HB25Initial(void)

{

 while (!HB_25);

 HB_25=0;

95

 delay_nus(5250);

 HB_25=1;

 delay_nus(1500);

 HB_25=0;

 delay_nus(1100);

 HB_25=1;

 delay_nus(1500);

 HB_25=0;

 delay_nus(5250);

}

BoeBot.h����

voiddelay_nus(unsigned inti) // delay I us,i>=12

{

i=i/10;

while(--i);

}

voiddelay_nms(unsigned int n) // delay n ms

{

 n=n+1;

while(--n)

96

delay_nus(900); //delay 1ms,and compensate

}

uart.h����

/*--

 8051 serial interrupt driver

--*/

#include <AT89X52.h>

#include <stdio.h>

#define XTAL 11059200

#define baudrate 9600

#define OLEN 8 //the size of the send buffer

unsigned char ostart; // the starting index of the end buffer

unsigned char oend; // the end index of the send buffer

charidataoutbuf[OLEN]; //the storage array of the send buffer

#define ILEN 8 // the size of the receive buffer

unsigned char istart; // the starting index of the receive buffer

unsigned char iend; // the end index of the receive buffer

charidatainbuf[ILEN]; // the storage array of the receive buffer

97

bitbdatasendfull; //the mark of the full buffer

bitbdatasendactive; //the mark of the effective sending

/*the program of serial interrupt service */

static void com_isr(void) interrupt 4 using 1 //the serial interrupt

{

 //------------- the interrupt for receiving datas --------------

char c;

if(RI)

 {

 c=SBUF; //read the the character

 RI=0; // clear the zonebit

if(istart+ILEN!=iend)

 {

inbuf[iend++&(ILEN-1)]=c; //the buffer receives datas

 }

 }

 //-------------the interrupt for sending datas--------------

if(TI)

 {

 TI=0; //clear the zonebit

98

if(ostart!=oend)

 {

 SBUF=outbuf[ostart++&(OLEN-1)];// Transmit characters to the send

buffer

sendfull=0; //set the mark of the full buffer

 }

else

 {

sendactive=0; //set the sending is invalid

 }

 }

}

//PUTBUF: write characters to SBUF or the send buffer

voidputbuf(char c)

{

if(!sendfull) //send if the buffer is not full

 {

if(!sendactive)

 {

sendactive=1; //send a character directly

99

 SBUF=c; //write to the SBUF start buffer

 }

else

 {

 ES=0; //close the serial interrupt temporarily

outbuf[oend++&(OLEN-1)]=c; //Transmit characters to the send buffer

if(((oend^ostart)&(OLEN-1))==0)

{ sendfull=1;} //set the mark of the full buffer

 ES=1; //open the serial interrupt

 }

 }

}

charputchar (char c)

{

if (c=='\n') //increase a new row

 {

while(sendfull); //wait until the send buffer is null

putbuf(0x0D); //before LF send the new row CR

 }

while(sendfull);

putbuf(c);

100

return(c);

}

//getchar and gets function use _getkey

char _getkey(void)

{

char c;

while(iend==istart) //judge if the starting index of the receive buffer

equals the end index

 {;}

 ES=0;

 c=inbuf[istart++&(ILEN-1)];

 ES=1;

return(c);

}

/*the function for initializing the serial communication and the baud rate

of UART */

voidcom_initialize(void)

{

istart=0;

iend=0;

101

ostart=0;

oend=0;

sendactive=0;

sendfull=0;

 TMOD |=0x20; //set the mode of the timers

 SCON=0x50; //set the mode of serial communication

 TH1=0xfd; // the baud rate is 9600

 TL1=0xfd;

 TR1=1; //start the timer

 ES=1; //open the serial interrupt

}

voiduart_Init()

{

com_initialize();

 EA=1; //CPU opens the total interrupt

}

102

Object Detection Source Code:

See attached files

103

Chapter 8: References

[1] YifangZhong, Changlin Wu, Zhengbao Tang, Mechanical and Machine

Design(� � � �) , 2 ed. Huazhong University of Science and Technology press,

2006

[2] Ming Chang, Descriptive Geometry and Engineering Graphics (� � � � � �

� � �), 3 ed. Huazhong University of Science and Technology press, 2004

[3] Shiquan Zhou, Fundamentals for Mechanical Manufacturing Process (� � �

� � � � �), Huazhong University of Science and Technology press, 2005

[4] Jiao Ni, Guoqing Li, Qin Qian, Mechanical of Materials,(� � � �), Huazhong

University of Science and Technology press, 2006

[5] Bradski, Gary , and Adrian Kaehler. Learning OpenCV: Computer Vision

with the OpenCVLibrary.O'Reilly Media, 2008. Print.

[6] Jianbo Shi, Tomasi, C., "Good features to track," Computer Vision and

Pattern Recognition, 1994. Proceedings CVPR '94., 1994 IEEE Computer

Society Conference on , vol., no., pp.593-600, 21-23 Jun 1994

104

[7] Bouguet, Jean-Yves. "Pyramidal Implementation of the Lucas Kanade

Feature Tracker Description of the algorithm." Print.

