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Abstract

This report details the work performed over five months for a bachelor’s
thesis at the Technical University of Denmark (DTU). The project presents
an obstacle avoidance plug-in module for a laser scanner application. A
common wavefront algorithm is used for path planning and a fixed cell size
grid map is used for the internal representation of the environment. The
fundamental parts of the obstacle avoidance functionality are first tested
in simulated environments, and ultimately the entire system is tested on
a differential-drive robot mounted with a laser scanner, in three different
scenarios. The report concludes that, under the given conditions, the plug-
in proves to effectively complete the proposed test missions while avoiding
obstacles.





Summary

Mobile robots are complex systems comprised of numerous sub-technologies,
many of which still have a lot of potential for improvement. Navigation and
mission planning, which are some of the most critical aspects of a mobile
robot, are the primary subjects of this thesis.

Using a small differential-drive robot, mounted with a laser scanner, this
project seeks to implement an obstacle avoidance system and validate its ef-
fectiveness through different test scenarios. For this purpose the two aspects
of greatest importance are the internal representation of the surroundings
and the search algorithm with which to plan a collision-free route.

The data received from the laser scanner is transformed and mapped into
an internal fixed cell size grid map. From this map a modified wavefront
algorithm is used to plan a safe path for the robot. Other functionality such
as relocating the goal when it is unreachable, and resetting the map for long
missions is implemented to increase the number of scenarios the plug-in can
handle.

The obstacle avoidance system is tested on different platforms throughout
the development. It is first partially simulated and tested in MatLab and
then in C. Finally the whole program is implemented as a plug-in for the
laser scanner in C++.

The entire system is tested as a plug-in on the mobile robot in three scenarios
including a custom one-way maze and a long obstacle-filled hallway. Missions
of up to 10 meters have been completed in this way.

In conclusion, the fundamental parts of the plug-in work perfectly under
ideal conditions and can navigate a mobile robot through many types of
environments. However because the plug-in is sensitive to robot odometry,
and because the world can present many more scenarios than tested in the
project, there is much potential for future work.
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Chapter 1

Introduction

Mobile robots have until recently primarily been used in industrial pro-
duction and for military operations. Nowadays however the technology is
progressing towards so-called service robots, intended to assist humans in
everyday life. These type of robots have been in development for years and
will soon influence many aspects of our lives.

Autonomous navigation in obstacle filled environments has always presented
a considerable challenge. Solving this problem would allow mobile robots to
move about and complete tasks such as cleaning rooms, assisting disabled
people and many other missions, without the risk of damaging themselves
or their environment.

To navigate effectively the robot must be able to perceive and map the
surrounding world accurately. It is also absolutely critical for mission success
that the robot successfully identifies all obstacles around it. In this project
the sensor used for these tasks is a 240◦ laser scanner mounted on a small
differential-drive mobile robot.

1.1 Thesis Statement

The aim of the project is for an autonomous mobile robot to successfully
navigate in a completely unknown indoor environment. Success criteria
include, but are not limited to

• A forward velocity of at least 0.2 m/s.
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• No practical restrictions on how far away the robot’s goal can be lo-
cated in relation to the starting point.

• Real-time stability.

• Plug-in functionality.

• No collisions with obstacles.

Using the data collected from the laser scanner and the robot’s odometry, the
project seeks to implement an internal grid-based map and use a wavefront
path planning algorithm to succesfully avoid all obstacles.

The system in its entirety is to be written in C/C++ and used as a plug-in
by the robot’s internal laser scanner server, thereby eliminating most of the
delay associated with wireless communication.

Also, all fundamental parts of the plug-in are to be designed in modules so
that the plug-in can be used as an open library for future use.

1.2 Work by Others

Several of the points outlined in section 1.1 have been addressed by others,
notably in (Galve, 2008). The work in this project is based on (Galve, 2008)
— notably the theory behind coordinate transformations and map represen-
tation methods. However, Galve’s project is implemented in MatLab, and
as such is not particularly optimized for processing speed. This is evident
from the slow movement of the robot during execution.

The actual control of the robot is interfaced by the MRC program, developed
by Associate Professor Nils A. Andersen. The communication with the robot
is handled by the ulmsserver application, developed by Assistant Professor
Jens Christian Andersen.



Chapter 2

The SMR Platform

2.1 The Small Mobile Robot

For the practical implementation of the obstacle avoidance system in this
project, the Small Mobile Robot (SMR) platform is used. These robots were
developed by DTU, using mostly off-the-shelf components, and are highly
customizable and versatile. For real time stability each robot runs a version
of Linux installed with RTAI (RealTime Application Interface)1.

Interfacing the SMR’s hardware is done through the MRC and ulmsserver
applications. MRC provides a way to control the movement of the wheels
and measure the robot’s pose in (x; y; θ)-format, along with measurements
of the various sensors, which are of less importance to this project.

To control the SMR movement, a language called SMR-CL developed by
(Andersen and Ravn, 2004) is used. SMR-CL is an intuitive script language
intended for the real-time control of the SMR without sacrificing capability.

A 240◦ laser scanner is mounted at the front of the robot. A server used
to access the laser scanner, the ulmsserver application mentioned before, is
run locally on the SMR. It provides measurements from the laser scanner in
a XML-based format, each measurement also includes the odometry of the
robot at the time the measurement was made.

1http://www.rtai.org/
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2.2 Laser Scanner

The scanner is a Hokuyo URG-04LX and has a scanning angle of up to
240◦. In short, the scanner is both a light source, emitting laser light into
a rotating mirror, and a sensor. After leaving the mirror, the laser light is
reflected off of objects around the scanner and returned.

The scanner has a maximum measuring range of up to 4 meters. It has an
angular resolution of ∆θ = 0.352◦, and a range accuracy of r = 10 mm within
1 m. The accuracy is however inversely proportional to the measurement
distance, which means that from 1 m–4 m the accuracy is 1% (Hokuyo, July
2005). When a scan is made, it becomes available through the ulmsserver
application. An example of a scan is seen in figure 2.1. Note that when a
measurement has data where no reflection was measured, due to no obstacles
being within maximum measuring range, that data is set to 4 meters.

Although the scanner has a field of view of 240◦, only the middle 180◦ are
considered. Using the extra 30◦ on both sides would in some cases give a
slightly better view, but they are often blocked by the front wheels if the
robot has been turning. Therefore the extra data is discarded, in order to
avoid misleading measurements.

Figure 2.1: Laser scanner example. Left: Photograph of setup. Right: Plot of
laserscan data in MatLab.



Chapter 3

Map Building

In order to adequately process the environment around the robot, an effective
internal representation of the environment is needed. The success criteria
for our representation are both a high accuracy and a low execution time.
Since the robot at hand only moves in two dimensions, the entire process
can be simplified to a representation of the two dimensional planar world
around the robot. Because robot technology aims to minimize workload
and hardware requirements, numerous solutions to this problem have been
developed over the years (Siegwart and Nourbakhsh, 2004), two of which
are discussed in this chapter.

3.1 Map Representations

By approximating objects in the real world with square cells in a large
map, it is possible to find a balance between workload and accuracy so that
execution time is low and the path planned still is safe. A first intuitive idea
is to represent a large obstacle with large squares within its boundaries and
then use smaller squares to approximate the rest, as seen in figure 3.1.

In programming languages however, it is quite difficult to represent this
type of variable cell sized map. A fixed cell size map, on the other hand, can
be implemented using a simple 2D matrix of numbers, where each number
in the matrix corresponds to a cell of fixed resolution in the real world.
With a low computational time, resulting in a high update frequency, and
a laser scanner, this method of map representation can even correct errors
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Figure 3.1: Left: Simulated obstacle as would be seen by laser scanner. Right:
Varible cell size grid map representation of the obstacle.

made from previous scans. The downside is not being able to map the
environment with more precision than given by the map resolution. It also
increases memory usage, as the variable map in figure 3.1 has about 120
cells, while the fixed map in figure 3.2 has 1024 cells.

In this project a map resolution of 5 cm is chosen since anything smaller has
been seen to result in large odometry errors (Galve, 2008). This means that
the largest possible error in the internal map is 2.5 cm.

3.2 Fixed Cell Size Grid Map

Figure 3.2 shows a fixed grid map, where the black cells are objects that the
laser scanner has detected, while grey cells indicates a clear area and white
cells indicates an unknown area. In order to keep the internal map static
with regard to orientation, there is a need for a transformation matrix from
laser scanner coordinates to map coordinates (Galve, 2008).cos(θ) − sin(θ) Oxl

sin(θ) cos(θ) Oyl

0 0 1

 Xs

Ys

1

 =

Xm

Ym

1

 . (3.1)

In equation 3.1 θ is the orientation of the scanner in the global coordinate
system and (Oxs ;Oys) are the coordinates of the scanner’s coordinate system
in respect to the robot’s local coordinate system. By using this transforma-
tion it is easy to convert between coordinates expressed in laser coordinates
(Xs;Ys) and map coordinates (Xm;Ym).
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Figure 3.2: Fixed cell size grid map representation of the obstacle in figure 3.1.

3.3 Bresenham Line Algorithm

When a laser scan consisting of angle/distance pairs has been transformed
into the correct (x, y) coordinates, the corresponding cells in the internal
map are marked to represent obstacles. It is also necessary to mark as clear
all the cells between the obstacles and the robot along the measurement
path, so that the robot knows these cells are traversable. This is done with
the Bresenham Line Algorithm (Bresenham, January, 1965). This algorithm
determines which points need to be painted in order to achieve a good ap-
proximation to a line between two given points. However, given that the
laser scans have a finite angular resolution, there is a tendency to be un-
painted areas between each measurement. To avoid this, each point from
the Bresenham algorithm is dilated into a 5-cell cross as seen in figure 3.3.

Figure 3.3: Example of two points and the bresenham line that connects them.
The lighter grey cells are part of the line due to 5-cell dilation. All
gray cells will be painted.
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3.4 Map Dilation

When planning a path for a robot to follow, one would intuitively consider
every single point containing the robot and assert that none of those points
collide with the environment. However, keeping track of all the points at
once and planning a route based on them is neither effective nor easy to do.
An easy solution to this problem is representing the robot as a single point
in the grid map. Safe route planning is then achieved using map dilation
(Jazayeri et al., March 2006).

Map dilation is the process in which every single cell classified as part of an
obstacle, is dilated with a certain amount so that the robot’s size effectively
is represented as a portion of the obstacles. This way the path planner need
not consider the size of the robot in its calculations.

There are two methods of performing the dilation. The dilation can either
be done by adding a square or a circle around each obstacle point. The first
method seems intuitively correct since the robot itself is square, but this
type of dilation is inaccurate since the robot’s orientation cannot be forseen
near a given point. Performing the dilation with a circle on the other hand,
eliminates all orientation considerations.

There are other advantages to this general approach as well. The most
noticeable is the averaging of measurement points. Since every single point
is dilated with a relatively large area, the accuracy of the laser scanner
becomes less of an issue, because most of the points’ dilation overlap. This
is seen in figure 3.4, where the distant measurements to the right still produce
an even dilated area.

Figure 3.4: Scattered meassuring points from a laser scan (black) and the sur-
rounding dilation cells (grey).
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3.5 Map Reset

Because the internal map has a finite size and the universe does not, a
problem arises whenever the position of the goal is outside the boundaries
of the internal map. There are a few solutions to this problem: Either create
multiple connected maps, dynamically expand the internal map or reset the
internal map during the mission. With the two first solutions the robot
would need to allocate relatively large amounts of memory during execution
and that would be against real-time guidelines. Instead, the last option is
chosen. Every time the robot is within 0.5 m of any of the edges of the
internal map, the map is reset and the robot is placed in the middle of the
new map. This ensures that the robot is never out of bounds and that the
current provisional goal can be placed on the current internal map. In this
manner, the robot’s travelling distance is not limited by programming.
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Path Planning

4.1 Types of Path Planning

There are several ways to plan a movement path from a fixed-cell grid map,
but among the simplest algorithms are the wavefront planner and the A*
search algorithm (Galve, 2008). A* is computationally faster, but has a more
complex implementation. For the sake of this project, the simpler wavefront
planner is used. This can be justified by the fact that the searches can be
executed extremely fast in C. While execution time was a major factor in
Galve’s selection of A*, this project is more focused on the implementation
as a plug-in, and can later be expanded with a more thorough or faster path
planning algorithm.

The path planning is implemented as two seperate functions, one that maps
the distance associated with each cell, and one that calculates the actual
path from this map. This modular structure allows for easy modification
or replacement of the two algorithms independently of each other, but the
primary advantage is in code maintainability.

4.2 Goal Location

Before the actual wavefront expansion can begin, as described in section 4.3
it is necessary to consider the location of the goal. At the start of a run,
and every time the map is reset, the user defined goal (from here on referred
to as the absolute goal) is examined. If it is inside the the borders of the
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current grid map, a provisional goal is placed at the exact same coordinates,
and the planning begins. If however the absolute goal is outside the map,
the provisional goal is placed at the edge of the map, as close as possible to
the absolute goal.

Until the next reset of the map occurs, the absolute goal is only considered
when evaluating if the robot has reached the goal or not. For the rest of the
planning, the provisional goal is used. This ensures that the goal used in
the planning process is always located on the map.

The first location of the goal after a map reset, is calculated regardless of
whether the goal is in an unknown or cleared area, as the entire map is
unknown at this point.

If however this provisional goal is located in a cell that is marked as an
obstacle on the dilated map, it will be necessary to relocate the provisional
goal. If the absolute goal is located outside the map, a primary concern is
that this new provisional goal is located at the border, so the map can be
reset properly, as described in section 3.5.

Regardless of whether the absolute goal is outside the map, the new provi-
sional goal should also be as close to the previous provisional goal as possible.
It should also be placed in a cell that is known to be cleared, for two rea-
sons: To make sure that the new goal can be reached physically, and to
hopefully prevent the necessesity of relocating the goal again, thus saving
some computation time.

If the new provisional goal is allowed to be located in any cell that is not
obstructed, there is a considerable risk that this new goal is located on the
far side of the obstacle, resulting in a route that is impossible to reach.
Forcing it to be in a cleared area ensures that the SMR has had this point
in its line of sight earlier.

If the new goal is placed in an unknown area, there is a risk of it needing to
be relocated again, namely if the SMR discovers that this new area is also
obstructed. This could go on for several iterations of the run and result in
a higher execution time.

Note that it is not a problem that the first provisional goal is in an unknown
area, as the wavefront expansion happens in both known and unknown areas.

4.3 The Wavefront Planner

The wavefront planner (also known as grassfire) is a simple and effective
way to plan the shortest possible path on a grid map (Andersen, 2008). By
marking every cell’s distance to the goal, the shortest path between the goal
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and the robot can be found.

The algorithm is simple to implement. It starts at the goal cell and marks
each adjacent cell with the distance to the current goal. Using 8-point
connectivity, each cell has up to eight adjacent cells, with the diagonal cells
having a distance of

√
2 ≈ 1.4 to the curent cell. The remaining cells each

have a distance of 1. This process is then repeated for each cell, continously
marking neighbouring cells, until the robot position has been reached. Cells
defined as obstacles1 after dilation are ignored.

The algorithm has been implemented in such a way that it avoids any cell
that is marked as an obstacle in the dilated grid map. It is free to plan in
all remaining cells, known and unknown alike. This makes it easier to plan
the route, as it is no longer necessary to place the provisional goal at the
edge of known areas for every new plan.

If the wavefront expansion runs out of neighbouring cells before reaching the
robot, it means that the marked goal and the robot are completely seperated
by obstacles. However, there is another possibility: That the robot is in a
dilated area. This can happen if the robot drives too close to a dilated
obstacle or if a newly discovered obstacle is dilated into the robot’s position.
To remedy this situation, the immediate area around the robot2 will be
cleared in the dilated grid map for the purpose of the current path planning
process. This clearing will however not permanently influence the internal
map. A demonstration of this is shown in figure 4.1.

While this circle may seem like a rather large area to clear, it serves several
purposes. Only clearing a rectangle with size and pose matching the robot,
would ensure that a true obstacle never gets cleared. This is not necessary
since the current radius is not large enough to clear both sides of an obstacle
such as a wall. Furthermore the circular clearing results in a route that
always will be planned away from the obstacle, into the cleared area. Using
a larger circle helps ensure that this path is smooth and that the robot will
have a way out, in the forward direction, instead of back the way it came.

However, an unwanted situation can arise if the goal and the robot are near
the same obstacle. If the area around the robot were to be indiscriminately
cleared, it is quite possible that a direct line between the two would be seen,
with the unfortunate result that the planned path would have robot drive
towards the goal, without regard for the obstacles. Therefore, the area is
not cleared if the robot is too close to the goal.

There is an obscure situation, where the goal and the robot are close to

1Or outside the map entirely.
2A circle with a diameter of 55 cm.
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Figure 4.1: An example of how the area is cleared, where the robot actually was
inside the dilated area. The black dot marks the position of the
wheels, while the actual clearing is done from the physical center
of the robot. Fortunately, there are no circumstances where the path
planner will have the robot move closer to the dilated obstacle.

each other3, with a wall between them and with the robot in the dilated
area. In this case, the area around the robot will not be cleared, and then
no path can be found to the robot. This will make the program stop, even
though there may be a way to get closer to the goal. This scenario is not
one that has been experienced in this project, and therefore it has not been
dealt with in the program. A possible solution is to find the provisional goal
before clearing the area.

4.4 Planning The Route

After a distance map has been made, it is possible to find the shortest route.
Starting at the robot, every adjacent cell is examined, and the cell with the
lowest distance value will be a part of the correct path. Following this
algorithm until the goal is reached will result in a list of cells, given in map
coordinates, each being a part of the final route.

However, if the next cell — in the path from the robot to the goal — takes
the robot into an unknown area, there could be an undiscovered obstacle
blocking the path. In order to avoid potentionally hazardous situations,
the movement stops when such a situation arises, forcing an update of the
environment when the robot has reached the edge of the unknown area.

3Within 27.5 cm — the clearing radius.
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Every time the internal map is reset4 the robot has to perform an initial scan
of the surroundings. In this first scan it cannot see any potential obstacles
behind itself. Because the map is reset, the path planner is unaware that
the robot may already have travelled there, or that a path behind the robot
might be blocked. To solve this problem the reset map function can insert a
hollow circular artificial obstacle, 1 m in diameter, around the robot in the
internal grid map.

Upon conducting its first scan the mapping function will clear the artificial
obstacle where it is confirmed to not exist. As long as there are no real
obstacles co-located with the artificial one, the first scan would thus clear
the artificial obstacle in the entire 180◦ scan area while keeping the half-circle
behind the robot intact.

This way the path planner is forced to believe that the path behind itself is
blocked. This is particularly useful in large one-way maze setups where the
robot should not backtrack. An example can be seen in figure 4.2.

Figure 4.2: Left: A scan of the beginning of a maze as it would be if no artificial
circle were added. The path planner would perceive an optional path
behind the robot. Right: The same maze but this time a circle has
been placed around the robot first, effectively blocking the area behind
it. The path planner perceives a blocked route behind the robot.

4.5 Line Finder

Sending a long list of cell coordinates that the SMR should travel, will
result in bad performance for two reasons. First of all, with the chosen
communication method, it is only possible to send at most two coordinate
pairs at a time. As a path can easily contain several dozen points, this
will result in a lot of overhead. The second reason is that the SMR drives
more smoothly if it receives a coordinate located farther away from the

4Which is at the beginning of every new mission and every time the robot is within 0.5
meters of the edges of the internal map.
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robot, thereby giving the internal regulator more time to adjust. This was
especially evident when the robot and grid map were tested with a cell size
less than 5 cm. This made the internal regulator in the SMR unstable, and
made it impossible to control the robot.

To alleviate this, a method to “compress” all the points on a single line was
implemented. Taking the difference between the path points results in a list
of small increments, of up to one cell width in each direction. This makes
it easy to find any line segments along the path, which can then be added
together, resulting in a node at the end of every segment.

Consider a goal position lying 2 meters in front of the robot, with an internal
map resolution of 0.05 m/cell, resulting in 40 points. As all the points lie on
the same line, the path can be compressed into a single (40; 0) coordinate.
The same idea can be used on a more varied path, as seen in table 4.1.

Path coordinates Difference New path
(38; 43)
(38; 44) (0; 1)
(38; 45) (0; 1)
(38; 46) (0; 1) (0; 3)
(39; 47) (1; 1)
(40; 48) (1; 1) (2; 2)

Table 4.1: Example of how the line finder compresses six coordinate pairs into
two. (38; 43) is the robot’s current position.

As the robot only performs a new mapping of the surroundings at every
node, it was decided to limit the lines to a maximum length of 2 m.

Note that when using relative coordinates, it is necessary to also communi-
cate the pose from which the path was planned, as the internal odometry
may have changed in the meantime. Not doing this would result in an offset
error, unless the robot is brought to a complete stop before planning every
path.
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Program Structure

5.1 Program Structure

The most common architecture of mobile robots divides mission control
into several phases. Traditionally these phases are perception, planning and
execution, as seen in figure 5.1, (Siegwart and Nourbakhsh, 2004). In the
perception phase, the robot gathers data about the environment with its
sensors and stores it. Based on the data collected, as well as any previous
data, the robot will make decisions in the planning phase. In the execution
phase the robot will execute these plans and complete its mission in the end.

Map building

Path execution

Path planning

Localisation

Perception

Figure 5.1: General program architecture used for control of the SMR.
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The object of this project is the development of the path planning plug-in
module, named Laseravoid, for the laser scanner server and an SMR-CL
script for MRC. The laser server manages all laser scans and all plug-ins
for the robot. The path planning plug-in uses a large open source library
associated with the laser server, and only communicates with MRC through
a set of XML variables.

A brief flowchart of how the plug-in interacts and performs with the SMR-
CL script is seen in figure 5.3.

The plug-in is a passive element and is controlled entirely by the SMR-
CL script. All perception, localisation, map building and path planning is
handled by the plug-in.

As seen by the temporal diagram in figure 5.2, the different parts of the
navigation system run at different speeds. To keep the execution time as low
as possible the plug-in has an initialisation functionality that pre-allocates all
significant memory needed to run. In this way additional delays are avoided
during the runs. Even the types of data structures have been chosen to
maximise performance.

Perception & map building

Path planning
(varies greatly)

Path post processing

Laser scanner

Speed control

Initialisation 10-20 ms

20-90 ms

70-150 ms

< 10 ms

100 ms

0.01 ms

Figure 5.2: Temporal diagram.

By implementing the plug-in in C instead of MatLab, it is possible to run the
program directly on the robot hardware instead of having to communicate
wirelessly with a host computer running MatLab, as seen in other projects
like (Galve, 2008).
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Start (MRC)

Start (Laseravoid)

Perception
Localisation

Goal reached? Stop (MRC)

NO

END

Robot near 
map edge? Reset mapYES

Build map

NO

Is goal 
obstructed?

Perception
Localisation

Plan new 
provisionary goalYES

Plan path

NO

Path found?Path execution

YES

YES NO

Stop (Laseravoid)

Perception
Localisation

Figure 5.3: Flowchart diagram of the obstacle avoidance plug-in working together
with the SMR-CL script.
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5.2 SMRCL Drive

As it is not possible to control the movement of the robot from ulmsserver,
it is necessary to have an SMR-CL script that handles all movement, and
tells the server when to perform path planning, when to scan, and so on.

This will necessarily involve two separate applications, and therefore some
issues with synchronisation of data exchange can arise. In order to prevent
these issues, a counter flag has been added. When a command with data
output is executed in the ulmsserver plug-in, the counter is incremented by
one. The script receiving the data then performs a check, and delays further
execution until it has verified that the counter has been incremented. This
increment implies that new data has been received.

When the data is received and verified, path execution can begin. When
the robot arrives a node, a new laser scan is made1 in order to get a more
accurate map of the surroundings.

The robot’s move command is implemented with a controller described
briefly in (Andersen and Ravn, 2004). Given a line defined by a point (x; y)
and a direction θ, the controller will move the robot along the line until the
robot has reached a line through (x; y) perpendicurlar to θ.

The script used for the development of the plugin can be seen in appendix
C, and a further usage guide can be seen in appendix B.

1And mapped to the gridmap, but not dilated.



Chapter 6

Results

In the following chapter all the implemented functionality is tested in both
simulated environments and in real scenarios with the SMR. The first two
simulations demonstrate that the two fundamental parts of the obstacle
avoidance plug-in work when given simulated data. Then, the two same
parts are tested given real data from the laser scanner in a simple setup. The
three next tests are example scenarios that serve to describe the strengths
and weaknesses of the chosen solutions. Finally a series of repeated runs are
performed and the results are compared.

All runs are performed with the desired forward velocity of 0.2 m/s.

6.1 Simulations

6.1.1 Testing the Grid Map and Dilated Map

In order to test that the dilation function works properly, a test case can
be made where various obstacles are placed on the grid map, and then
dilated. First of all this will prove that the implementation works with
default parameters, and that all sides of an obstructed point are dilated by
an equal (and adequate) amount. Figure 6.1 shows an example of this.

Along the vertical parts of the border, the dilated area extends by 6 cells to
either side. With the default resolution of 0.05 m/cell, this is equivalent to
30 cm. This is as expected, as it is slightly larger than the required 27.5 cm.
The difference is due to rounding, but neglible. The same tendency can be
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Figure 6.1: Simulated environment mapped into a grid map with a dilated map
as an overlay. The black cells are the actual obstacles, the grey cells
show the dilated areas and the white cells show the known cleared
area. The figure to the right show the resulting wavefront expansion.
Robot position is the red marker and goal is the blue marker. The
darker the cells are, the farther away from the goal position they are.

seen at the horizontal parts of the border, and along the edges of the large
box.

Since circular dilation is used, the corners of all dilated points will be
rounded. With these examples the dilation only results in a small (and
aliased) rounding of the corners, due to the low resolution used with the
SMR. As expected, the farthest dilated point is at least 6.4 cells away away
from an obstacle’s corner.

The openings in the borders demonstrate that line endings are handled prop-
erly, meaning the dilation radius is correct. Finally, the large box shows that
the dilation algorithm can handle neighbouring obstructed cells properly,
without overwriting existing obstacles.

6.1.2 Testing the Wavefront Planner

The second simulation is to show that the wavefront algorithm works as
expected. By taking the dilated map from the previous simulation and
performing the wavefront expansion, the resulting wave map is as seen to
the right in figure 6.1.

As expected, the wavefront algorithm starts at the goal position, avoids all
dilated areas, and succesfully reaches the robot’s position.
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These results prove that the two most fundamental parts of the laser-based
object avoidance system function under ideal conditions.

6.2 Practical Tests

6.2.1 Laser Scan to Grid Map

Figure 6.2 shows the relationship between raw measurement data from the
laser scanner, and the internal grid map generated by the program. The
robot was at (x; y; θ) = (0; 0; 0) as indicated on the raw plot on the left.

As can be seen, the algorithm plots the data fairly accurately, although
measurement noise from the laser scanner and rounding errors from the grid
map transformation detract a bit of the “neatness”. Some of these artifacts
stem from the cross-painting done by the map updater as described in section
3.3.

When measuring the number of cells from the edge of the visible area there
are 16 cells(0.8 m) to the middle obstacle, and 30 cells(1.5 m) to the back
wall. Both these measurements match the distances reported by the laser
scanner, as seen on the axes of the MatLab plot. The entire grid map is
61 cells from top to bottom, this is equal to 3.05 m and also matches the
scan.

Figure 6.2: Left: A polar plot of a laserscan from the robot. Right: The same
laserscan data transformed and mapped in a grid map. Note that in
this case, the grey areas represent cells that are known to be clear,
while white cells represent the unknown area.
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6.2.2 Plan Path from Dilated Map

To ensure that the path planning algorithms also work on real data and
not just on simulated walls, a scan was made and dilated, and is shown in
figure 6.3. As expected, the obstacles are dilated normally. Even though the
robot is within line of sight of the goal point, the dilated obstacles result in
a necessary “slalom”. The planned path has also been added to this map,
and it shows that the path planning algorithm prefers to make turns as soon
as possible, instead of driving forward.

On the right half of the figure, a view of the corresponding wavefront map is
shown. This case is a somewhat inefficient one, where the algorithm explores
the area above and below the obstacles before finally reaching the robot’s
position. This behaviour is an artifact of the order in which the neighbouring
points are visited.

As with the simulated results, the bright spot is the goal position, and the
path line matches the shortest route possible, as reported by the wavefront
map. In reality, there are several other possible equidistant routes, such as
having the robot drive forward before turning.

Figure 6.3: Left: A dilated gridmap with path Right: A wavefront expansion
performed on the same map.

6.2.3 Scenario: Simple Avoidance with a Few Boxes

The first real test of the object avoidance is done in the simplest of all
possible relevant scenarios. The robot has to navigate diagonally across an
enclosed square area populated by 3 objects of various shapes and sizes, as
seen on figure 6.4.

The area’s dimensions are roughly 2 by 2 meters and it has underlying
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Figure 6.4: Photograph of the simple avoidance setup. For the first test the robot
started in the opposite corner of where it is on the above photograph.

sheets of hardboard to minimize the robot’s wheel spin. After completing
the mission, the internal grid map, dilated map as well as the actual followed
path were drawn in figure 6.5.

Figure 6.5: Grid map with dilated map as an overlay together with the SMR’s
followed path. The dots represent nodes where laser scans were made.

As expected the robot avoids all obstacles while planning the shortest route
possible. Unfortunately round obstacles with a relatively small diameter
have a tendency to be mapped with lower accuracy due to the size of the
cells.

Also, straight lines parallel to either the internal x- or y-axis will always be
mapped more precisely due to the square shaped cells in the map represen-
tation. This is best seen in figure 6.6 where the same course is run with the
robot’s initial orientation not being orthogonal to any of the course’s sides.
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Figure 6.6: Grid map and dilated map of setup with non-orthogonal orientation
relative to surrounding walls.

Another important difference between the first run and second run is that the
second time, the goal is intentionally placed inside the dilation radius of an
obstacle. As anticipated, the wavefront planner acknowledges the problem
and changes the goal to a reachable point as close to the original goal as
possible, as seen in figure 6.6.

6.2.4 Scenario: Maze

The second test performed is done in a classical one-directional maze as seen
in figure 6.7.

Figure 6.7: Photograph of maze setup. The beginning is in the bottom left-hand
corner and the finish is in the lower middle part.
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To reach its goal, the robot has to plan a path that initially leads it away
from the end of the maze, but as expected it still reaches the goal in the
end. The final grid map with the dilated map as an overlay, is shown in
figure 6.8.

Figure 6.8: Combined grid map and dilated map from a test run through maze.

As long as the internal grid map is accurate as above, it is possible for the
robot to navigate narrower mazes, as seen by the ample amount of cleared
space on the map. However due to the way the robot movement controller
works1, it is hard to implement 180◦ turns from a path planning point of
view. This means that although it is possible to plan a route if a dead end
is found, it requires a lot of space to turn around.

Unfortunately in setups such as this maze, where there can be many small
turns, the internal map becomes very sensitive to odometry inaccuracies. As
seen on the grid map from the test run, the further along the maze the robot
is, the more crooked the walls are. In this case it is due to accumulated
odometry errors, primarily associated with small turns, possibly because
they are not completed entirely. Errors such as these can result in the robot
driving into walls when trying to navigate as close to them as possible.

In conclusion the robot confirmed its ability to perform independently and
proved that the robot would be able to navigate any kind of one-directional
maze without any prior knowledge of its layout.

6.2.5 Scenario: Hallway

The third and final test is performed in the institute’s hallway, cluttered
with obstacles as seen in figure 6.9.

In this setup the robot is planned to move 10 meters in the hallway, and

1As explained in section 5.2.
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Figure 6.9: Photograph of hallway setup seen from beginning position during a
run.

given the dimensions of the internal map, this means that the map will have
to reset itself at least three times. This course is therefore a good indicator
of how the robot handles long distance missions.

As with the maze example, the robot’s performance is sensitive to initial
orientation as well as odometry errors. Even more so because the goal is
given in absolute coordinates relative to the start position. However given
relatively accurate odometry, the robot completed the course and avoided
all obstacles on the way. The three internal maps are shown in figure 6.10.

Figure 6.10: Three generated internal maps from driving down a hallway. Note
how on the first two maps the clearing of dilated area around the
robot is visible as round indentations near some obstacles. Above
the upper wall several misreadings are visible as cleared areas behind
the wall.

The maps clearly illustrate the ability to automatically reset the internal
map when needed while retaining track of both odometry and the position
of the goal.

The walls of the hallway are unfortunately built in such a way that the
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laserscanner gets misleading reads more often than with other types of walls.
There are false negativs, i.e. “missed targets”, as well as false positives, “false
targets”, on all three maps. Together with the accumulation of odometry
errors, this can lead to a situation where the goal internally is located in
a wall. When this happens the natural reaction is to relocate the goal to
the nearest known point to the original goal, as described in section 4.2.
A problem arises when the laser scanner has made an errornous reading
through a wall, leading the path planner to believing that it can“see”behind
a wall. In this case the planner will place the new goal behind the wall.
As there is no reliable way to differentiate between misreadings and actual
readings, this very specific problem remains unsolved.

6.2.6 Repeated Runs

To examine how robust the obstacle avoidance system is, a series of runs are
made on the two last scenarios above. The results are shown in table 6.1.

Scenario Total Runs Completed Runs Failed Runs % Completed
Maze 45 36 9 80%

Hallway 25 21 4 80%

Table 6.1: Results of repeated runs in different scenarios.

A few more details on the runs can be found in appendix D. Successful
completion is in both cases defined as the robot reaching the set goal. Given
this criterion the maze setup proved to be the hardest because both scenarios
had an average success rate of 80%, but in the maze there were significantly
more brief grazings.

During the runs in the maze the robot showed a tendency to navigate too
close to the walls and would some times briefly graze a wall while turning.
However, when the robot was intially placed at an angle, relative to the
maze’s walls, the robot ran the course 10 times without once grazing the
walls. This can be due to the walls being approximated internally by jagged
lines. The wavefront planner will avoid some of the “indents” in the walls
and thereby create an additional small margin between the robot and the
walls. This indicates a general problem regarding the obstacles’ dilation
radius not being large enough.

As mentioned earlier the robot was very sensitive to its inital pose in the
hallway example. Placing a goal 10 meters ahead of the robot meant that
pointing the robot in the right direction was crucial to its success. Two of
the failed attempts at navigating the hallway were due to misreadings of the
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wall, as mentioned earlier. Two more were due to motor errors where the
robot did not turn much as expected (or not at all). Taking those factors
into consideration, the plug-in is capable of navigating the hallway with a
high success rate.

In both scenarios expanding the dilation radius seems like a plausible solu-
tion to some of the problems encountered. Expanding the dilation radius
would however create further requirements for how large obstacle-free areas
the robot would need to be able to navigate. For this project the smallest
theoretical necessary dilation radius has been chosen to enable path planning
in narrow spaces. An alternative solution, implementing a gradient map, is
discussed in chapter 7.1.



Chapter 7

Conclusion

In this thesis an object avoidance system designed for, and implemented
on, a small differential robot was presented. For accurate perception of the
environment, the robot was mounted with a 240◦ laser scanner.

A fixed cell size grid map was used to represent the environment as accu-
rately as possible without sacrificing computational performance. Using a
wavefront algorithm, together with intuitive goal tracking and relocation,
enabled the path planner to successfully generate collision free routes. Both
modules were successfully tested individually in simulated environments.

By choosing appropriate data types in the final implementation and refrain-
ing from allocating memory during missions, the program ended up following
the real time stability guidelines as required.

The two modules were partially tested together on different platforms, and
finally tested as a plug-in for the laser scanner in C++. Given three test
scenarios, a simple obstacle filled room, a maze and a long obstacle filled
hallway, the capabilities of the implemented solutions were demonstrated.

The obstacle filled room proved the basic functionality of the obstacle avoid-
ance, by showing that the robot could navigate an open area without col-
lisions. In the maze the system proved capable of navigating through a
completely unknown course and finding the goal. Finally the hallway tested
how well the robot handled courses where the internal map needed to be
reset in order to cover long distances.

The robot could complete all three scenarios with the required forward ve-
locity, and proved that the obstacle avoidance is not limited by goal location
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or length of the course.

With a successrate of 80% for both the maze and the hallway scenario the
plug-in proved to work with a relatively high success rate. There is however
room for improvement, especially in regards to which routes to prioritize
when navigating.

The laser based avoidance was however found to be very sensitive to odome-
try inaccuracies and performed much worse when navigating an uncalibrated
mobile robot.

The successful use of the plug-in by the small mobile robot has shown the
usabilty and versatility of the implemented system. That being said the
subject of navigation and obstacle avoidance clearly remains material for
research in the next many years.

7.1 Future Work

In this project a number of source blocks have been designed in the area
of navigation and obstacle avoidance. There are several ways these blocks
could be used or improved. Some of these are discussed in the following
section.

7.1.1 Implementation in Autonomous Tractor

Assistant Professor Jens Christian Andersen has expressed interest in us-
ing an obstacle avoidance system for use in an autonomous robot in an
orchard. The robot navigates with the help of GPS localisation through
rows of trees in the field. GPS loclisation contains no information about
obstacles, which is why an obstacle avoidance system could assist the robot
in moving properly, without colliding with objects. Refer to (Hansen et al.,
2009) for relevant information.

7.1.2 Gradient Map

In order to achieve a more robust route through for example, a maze, the
dilation functionality can be expanded. Instead of just using a binary map-
ping of obstacles and their dilation width, a gradient dilation could be added.
With this type of map it would be possible to define zones that the robot ab-
solutely must not drive into, and another type of area that the robot should
avoid, e.g. close to the wall, but could move through without problems.

This approach would tend to make the robot drive centered between the
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maze’s walls instead of trying to plan a path as close to the walls as possi-
ble. Driving farther from the walls would result in a route with less risk of
accidentally driving into an obstacle. This is in contrast to the current path
planner, which prefers to stay as close to a straight line towards the goal as
possible.

7.1.3 Odometry Correction Using Pattern Recognition

A major problem in the hallway scenario is the fact that a relatively small
drift in odometry quickly can result in a rotational error. This error can re-
sult in the path planner placing the original goal inside a wall in the internal
map. Likewise, a navigation system that only relies on surrounding walls for
navigation, may have problems avoiding random obstacles in its path. Com-
bining the two, or creating a secondary system that makes use of landmarks
to correct odometry, could improve the robustness of the navigation.

7.1.4 Obstacle Tracking

Implementing obstacle tracking would achieve a better representation of the
environment by refining the internal map using previous scan data, instead
of simply overwriting the old data. A more accurate and refined internal
map could be utilised to achieve the following improvements:

• Accuracy of obstacle location.

• Elimination of misreadings from the laserscan.

• Provide data for odometry correction.

• Allow avoidance of moving obstacles.
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Appendix A

Command Reference for
SMR-CL

Command laseravoid start

Required parameters
double gx
double gy

Optional parameters
double res = 0.05
int mapx = 8
int mapy = 8
int maze = 0

Return value void
Description Initialises arrays for maps and so on. gx

and gy refer to the goal position, relative
to the current position (not pose). gx =
5 and gy = 0 means that the goal is 5
meters in front of the robot, compared to
the original reference grid. Map size is in
meters, resolution is in meters per cell.
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Command laseravoid stop
Required parameters void
Optional parameters void
Return value void
Description Stops all calculations and frees up memory

taken by maps. Used as a final command
to clean up.

Command laseravoid updatemap
Required parameters void
Optional parameters void
Return value void
Description Updates the internal map and odometry.

Never resets the map, because it does not
have to (a path will never be planned out-
side the map).

Command laseravoid planpath
Required parameters void
Optional parameters void
Return value void
Description Plans a new path, and saves it in an inter-

nal queue.

Command laseravoid getnext
Required parameters double gx

double gy
Optional parameters int n = 2

Return values

l0 int atGoal / Counter — -1 if at goal,
else loop counter
l1 int Number of coordinates sent [0;2]
l2-l4 double (x; y; θ) – The robot pose the
route is planned from
(l5-l6) double (x1; y2) – The first set of
coordinates to move to
(l7-l8) double (x2; y2) – The second set of
coordinates to move to

Description Returns up to two sets of coordinates
(x; y; θ), along with a counter value, so the
script can synchronise.
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User Manual

This is a short section that describes the general intended usage of the plug-
in as well as how to setup the SMR for runs. All code can be found in the
CD attached to the report.

To work with the SMR the user has to start ulmsserver locally on the robot
and load the shared object file “aulaseravoid.so.0”. To test single commands
to the plug-in the user can write “laser command” in the ulmsserver window
directly. Refer to apendix A for details on all the commands for the plug-
in. In order for the MRC application to communicate with ulmsserver it is
important that the server port is set to 24919.

To succesfully make the SMR use the plug-in during runs, the SMR-CL
script should be built up like drive.smrcl on the CD. Like the ulmsserver
application, the SMR-CL script should also be run locally on the SMR.

In general it is important to issue the start command to intialize the plug-
in and the stop command to stop it – regardless of usage. Afterwards the
updatemap should be used frequently to keep an up-to-date version of the
robot’s surroundings in the internal map.
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Appendix C

Example SMR-CL script

Save the script to a folder on the SMR, and run mrc scriptname.

1 % Specify the goal and run type

2 goalx = 2

3 goaly = 0

4 maze = 0

5

6 % Initialize variables

7 x=$odox

8 y=$odoy

9 th=$odoth

10 $l0=0

11 $l1=0

12 $l2=0

13 $l3=0

14 $l4=0

15 $l5=0

16 $l6=0

17 $l7=0

18 $l8=0

19 $l9=0

20

21 counter = 1

22 stepno = 0

23 array "dx" 5

24 array "dy" 5

25

26 % Send start command to plugin

27 stringcat "<laseravoid start gx=’" goalx "’ gy=’" goaly "’ maze=’

" maze "’/>"

28 laser "$string"
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29

30 % Main loop starts here

31 label "loop"

32 laser "<laseravoid planpath/>"

33 laser "<laseravoid getnext/>"

34

35 % Recieve data

36 label "counter"

37 wait 0.05

38 if ($l0 < -0.05) "finished" % If £l0 (atGoal) is -1, we’re done.

39 if (counter > $l0) "counter" % As long as our counter is higher

than the plugin ’s, wait some more for an update

40 counter = $l0 + 0.5 % Increase our counter. Add 0.5 to ensure

that it is > £l0.

41 if ($l1 < -0.05) "loop" % If coord count is negative , start

over.

42

43 % Load coordinates

44 x=$l2

45 y=$l3

46 th=$l4

47 dx[1] = $l5

48 dy[1] = $l6

49 dx[2] = $l7

50 dy[2] = $l8

51 stepno = 0

52

53 if ($l1 < 0.005) "loop" % If number coordinates is 0 or

negative , start over

54

55 label "driveloop"

56 call "move" % Drive to the next coordinates

57 laser "<laseravoid updatemap />" % Update the map with the

latest scan

58 wait 0.05

59 if (stepno < $l1) "driveloop" % Repeat the last few steps if

there are more coordinates

60 stop % Make sure the robot halts between calculations. This

is hardly noticeable , and improves performance.

61 goto "loop"

62

63 label "move" % Function to actually move

64 stepno = stepno + 1

65 x = x + dx[stepno]

66 y = y + dy[stepno]

67 th = atan2(dy[stepno], dx[stepno ])

68 ignoreobstacles

69 drive x y th "rad": ($targetdist < 0)

70 return

71

72 label "finished"

73 laser "<laseravoid stop/>" % Stop the plugin after a run

74 stop
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Results from repeated runs

Type Completed Failed Grazed Obstacles Success Rate
Maze Normal Initial Pose 25 9 Avg. 1 per run 74.3%
Maze Angled Initial Pose 10 0 None 100%

Hallway 21 4 Two in total 80%

Table D.1: Results from repeated runs of the scenarios.
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Run # Completed Notes
1 3

2 3

3 8 Drove too close to wall after first turn and
got stuck.

4 3

5 3

6 3

7 3

8 3

9 3

10 8 Drove too close to wall after first turn and
got stuck.

11 3

12 3

13 3

14 8 Drove too close to last wall before last turn
and got stuck.

15 3

16 8 Drove too close to wall after first turn and
got stuck.

17 3

18 3

19 8 Drove too close to last wall before last turn
and got stuck.

20 8 Drove too close to last wall before last turn
and got stuck.

21 3

22 3

23 8 Drove too close to wall after first turn and
got stuck.

24 8 Drove too close to last wall before last turn
and got stuck.

25 3

26 3

27 3

28 3

29 3

30 3

31 3

32 8 Drove too close to wall after first turn and
got stuck.

33 3

34 3

35 3

Table D.2: Results from repeated runs of the maze with initial pose of the robot
being orthogonal to the walls.
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Run # Completed Notes
1 3

2 3

3 3

4 3

5 3

6 3

7 3

8 3

9 3

10 3 None of the runs grazed the walls or failed.

Table D.3: Results from repeated runs of the maze with initial pose of the robot
being at an angle relative to the walls.
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Run # Completed Notes
1 3

2 3

3 3

4 3

5 3

6 3

7 3

8 8 Misreading through wall caused goal loca-
tion failure.

9 3

10 3

11 3

12 3

13 3

14 8 Incomplete turn resulted in collision with
wall.

15 3

16 3

17 3 Incomplete turn resulted in collision with
wall.

18 3

19 3

20 3

21 8 Misreading through wall caused goal loca-
tion failure.

22 3

23 3

24 3

25 8 Collision with obstacle.

Table D.4: Results from repeated runs of the hallway with initial pose of the robot
being orthogonal to the walls.
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