
Obstacles Avoidance with Machine Learning Control Methods in

Flappy Birds Setting

Yi Shu∗1, Ludong Sun†1, Miao Yan‡1, and Zhijie Zhu§1

1Department of Mechanical Engineering, Stanford Univerisity

December 12, 2014

Abstract

Object avoidance is an important topic in control
theory. Various traditional control methods can
be applied to achieve control of object path such
as PID, Bang-Bang control, sliding mode con-
trol. Given a known and simple dynamic system,
those classical controls method work pretty well.
However, controls of complex, multi degree of
freedom systems or controls of systems with un-
known dynamics have been pushing the limit of
traditional control laws. This report adopts ma-
chining learning methods of Support Vector Ma-
chine(SVM) with linear kernels and reinforce-
ment learning using value iteration to solve con-
trol problems in the game ‘Flappy Bird’ without
understanding the dynamics of the problem. For
comparison purposes, Bang-Bang control is also
implemented and described in the report. The
game is also modified to increase difficulty for
further comparison.

The machine learning methods are shown to
significantly improve the results got from Bang-
Bang Control. In the modified game version
with moving pipes, Reinforcement Learning is
more feasible than SVM. Detailed implemen-
tation of and comparison among each methods
are discussed in this report.

Keywords:Machine Learning, Controls, Obsta-
cles Avoidance

∗yishu@stanford.edu
†ldsun@stanford.edu
‡miaoy@stanford.edu
§zhuzj@stanford.edu

1 Introduction

With the increasing popularity of autonomous vehicle,
unmanned aerial vehicle, humanoid robots and etc., new
methods of controlling complex system to avoid object
are points of interests among control engineers. Many
classical control methods are based on accurate models
or concrete knowledge to derive dynamics of systems
and corresponding control laws. For complicated or
unknown dynamics systems, classical control methods
are not very efficient and new systematic methods are
needed to solve such problems. Machine learning draws
much attention in last decades and is well applied in
many areas such as shopping recommendation systems,
computer vision, speech recognitions and etc. Applying
Machine learning to solve complicated control problems
is investigated in this paper.

Games are ideal environments for developing, im-
plementing and testing Machine Learning algorithm.
“Flappy Bird” system is chosen to compare control
methods and machine learning methods in general and
also compare different machine learning algorithms.

The game “Flappy Bird” is a side-scrolling mobile game,
which was a very popular in early 2014. The objective is
to direct a flying bird, named “Faby”, which moves con-
tinuously to the right between sets of pipes. If “Faby”
touches the pipes, the game ends. Each time the player
taps the screen, the bird briefly flaps upwards; if the
screen is not tapped, the bird falls to the ground due
to gravity, which also ends the game. The game has all
necessary features: a moving object and obstacles. The
game itself is repetitive, hard and addictive. The goal
is to achieve autonomous flying of birds travelling be-
tween pipes. When and whether to flap is determined
by control methods and Machine Learning algorithms.

1

2 Problem Formulation

There are two different scenarios. The first scenario
is the standard Flappy Bird. For the second one, to
raise the difficulty of the game, the pipes are changed
to be able to move upwards and downwards at a specific
speed.

The decision will be based on the relative and absolute
parameters of the pipes and the bird. As Fig.1 shows,
there is a multi-dimensional attribute space consisting
of:

• V - bird speed in vertical direction

• ∆x - axis distance relative to the front of next pipe

• ∆y - axis distance relative to the bottom of next
pipe

• Vpipe - Pipes’ velocity (modified version)

• Ypipe - Pipes’ position (modified version)

(a) First Situation (b) Second Siutation

Figure 1: Bird’s feature selection

3 Proposed Solutions

It is natural to implement the SVM and Reinforcement
Learning. This is a classification problem with discretiz-
able continuous features, so SVM is chosen. When the
complexity of the task increases, for instance, the ob-
stacle is moving in a random pattern, it will be hard for
human to supervise the learning process and to generate
training sets. Thus Reinforcement Learning is applied
as an implicit supervised learning algorithm.

3.1 Bang-Bang control

From years’ experience in classical control, by analyz-
ing the game’s source code, we consider that Bang-
Bang control is one of the most effective classical control
methods that comes to our mind and expect Bang-Bang
control to at least help birds go through a few tubes. So
just for comparison purpose, simple Bang-Bang control
is implemented by using only one feature ∆y. The bird
only takes action on the basis whether it is above the
tip of next pipe.

3.2 SVM

The SVM is applied in the first scenario, so the first
three of attributes are considered. The training set of
the problem is not linearly separable in the feature space
of raw data. The SVM maps the input vectors into high-
dimensional feature space and gives the maximum mar-
gin hyper plane. SVM with a linear kernel is adopted
and liblinear library[2] is used to implement SVM al-
gorithm. The problem is constructed in the following
way.

minγ,w,b
1

2
||w||2

s.t. y(i)T
(
wTx(i) + b

)
≥ 1, i = 1...n

Data:

The SVM is implemented in a static pipe setting. For
simplicity, only the first pipe ahead of the bird is taken
into consideration.

The training set is generated by several trials of human.
If human gives the command to flap, the current state is
labeled as 1, otherwise current state is labeled as -1. At
every sampling step, a current state x(i) = [∆x,∆y, V]
and related label y(i) ∈ {−1, 1} are recorded in the
training set.

As illustrated in Fig.2, the training set generated by
human in the original state space is not linearly separa-
ble. In Fig.2, red crosses and circles represent training
points labeled with flapping and not flapping respec-
tively. Thus, a high-dimension feature space is chosen.
Nine features from fundamental analysis are selected.
The dimension of the data is increased by adding sec-
ond and third order of the feature. In Fig.2, blue crosses
and circles represent testing result labeled with flapping
and not flapping respectively.

Φ =
[
∆x ∆y V ∆x2 ∆y2 V 2 ∆x3 ∆y3 V 3

]
2

Figure 2: SVM Training Result

k (x, z) = ΦTΦ

3.3 Reinforcement Learning

The Markov decision processes (MDP) settings of the
reinforcement learning will be presented in details be-
low.

A. States

There are four states contributing to the control of the
bird: ∆x,∆y, Vb p, yp.

Definitions of ∆x and ∆y are the same as mentioned
in last section of SVM. Vb p = Vb − Vp denotes the ver-
tical velocity difference between the bird and the pipe,
because the movement of the pipe is also considered in
this section. yp denotes the pipe’s position in y direc-
tion.

In the fixed obstacle case, state vector s = [∆x,∆y, Vb p]
is applied, which is chosen by the intuition of the spe-
cific physical system. In the moving obstacle case, state
vector s = [∆x,∆y, Vb p, yp] is applied. The reason why
yp is added is that the movement of pipes is nonlinear.
The y position of the pipes has upper and lower bound-
aries, so that a feasible solution for the bird’s trajectory
exists. The pipe will reverse when reaching the upper or
lower boundary, so yp will be necessary for the learning
algorithm to determine future movement of the pipe.

Due to the program implementation of the game,
∆x,∆y, Vb p, yp are naturally discretized. However, due
to ‘the curse of dimensionality’, the computation load
for reinforcement learning is incredibly large with the
four dimension state space. Thus, for computational
cost concerns, the state space is divided to coarser grids.
The discretization is illustrated in Fig.3 below. Areas
further from the pipe gap are discretized with coarser
grids, since the control decision is more natural in the
area.

B. Action

Figure 3: RL State Discrete

Action taken at every state is binary: flap or not flap,
represented by a = 1 and a = 0 in the program. At
every time step the program will read the current state
of the bird and generate an action based on the learning
result from last iteration.

C. Rewards

At every iteration, if the bird is in collision with a pipe,
we set the reward of last state:

Rt (s, a) = −100, t = T

All the states before collision are rewarded with:

Rt (s, a) = 1, t = 1, 2, . . . , T − 1

The total reward for state s and action a is updated at
every time step:

Rtotalt+1 (s, a) = Rtotalt (s, a) +Rt(s, a)

After every iteration is terminated by the collision, the
actual reward for every state is calculated by (if the
state has been visited):

R (s, a) =
total reward in state s with action a

#times we took action a in state s

D. State Transition

According to the known dynamics of bird, it seems that
Psa (s′) denoting the state transition probability from
state s to s′ with action a is deterministic and can be
computed explicitly as a priori. However, due to the
switching of target pipe when the bird is going out from

3

last pipe and checking for a new pipe, the state transi-
tion at this point is not ‘continuous’ as the case of tar-
geting the same pipe. Randomness appears in the state
transition because the relative position of the new pipe
is unpredictable given the state relative to last pipe.
Thus, we are unable to compute transition probability
matrix Psa with only the knowledge of bird dynamics.
Psa is computed ‘on line’ during every iteration of re-
inforcement learning, according to the equation below:
Psa (s′) =

#times we took action a from state s to state s′

#times we took action a in state s

With increasing quantity of data collected in iterations,
Psa (s′) will finally converge to the real value.

E. Optimization Algorithm

Due to discretization, the size of state space is limited
to the level of two thousand. For small MDPs, value
iteration is often very fast and converges with a small
number of iterations. Thus, we use value iteration to
find the value function.

The value iteration is processed as follows:
For each state, initialize V (s) := 0.
Repeat until converge
{ For every state, update:

V (s) = R (s) + max
a∈A

γΣs′Psa(s′)V (s′)

}

γis set 0.95 which reflects the effect of future actions on
current decision.

After several iterations, V (s) and Psa are well learnt by
the algorithm. To apply the control law given by the
learning algorithm given a state s, the control input is
given by:

a∗ = max
a∈A

Psa(s′)V (s)

4 Simulation Results and Disscu-
sion

The criterion to compare different methods is the num-
ber of pipes the birds can fly through before the end
of the game. The x axis is the number of iteration the
game played. The y axis is logarithm of the times the
birds fly through pipes successfully in each round.

Fig.4 shows the results when the standard game is
played. The methods are compared. The blue line and

Figure 4: Learning Process of Reinforcement Learning
for fixed pipes

Figure 5: Learning Process of Reinforcement Learning
for moving pipes

pink line show the average results of Bang-Bang Con-
trol and SVM, respectively. Moving average of Rein-
forcement Learning results are shown in the red line. It
is clear that Machine Learning methods generate better
results than the classical control law. In a short period
(less than two hours), SVM is significantly better than
reinforcement learning. The video link-1 is the game
played under SVM. It is worth noting that there is an
up-going trend of results of Reinforcement Learning. It
has been proven that Reinforcement Learning can help
birds perform better than SVM (Video-Link 2).

Fig.5 shows the results of modified game. The pipes
are moving randomly. The game is so hard that scor-
ing more than five is very challenging for humans. In
this case, Bang-Bang control still works but with lower
scores. SVM is not feasible due to the lack of enough
data. The powerful of reinforcement learning comes into
play. Reinforcement learning is obviously better than
Bang-Bang Control. After training overnight, it looks
like moving pipe is not a big problem and the results got
from reinforcement learning in moving case are as good
as the standard case. Link-3 shows the game (mov-
ing pipe case) was played under reinforcement learning.
The reason why reinforcement learning performs well is
that the policy we generated can determine the right
action in a specific state, which is hard to find using
traditional control law.

4

Video Link-1 (SVM in standard game)

https://www.youtube.com/watch?v=cYFeI9eFaBY

Video Link-2 (Reinforcement Learning in standard
game)

https://www.youtube.com/watch?v=UwfnUNhkcCg

Video Link-3 (Reinforcement Learning in modified
game)

https://www.youtube.com/watch?v=UM9B2iHIMCw

5 Future Development

In the evaluation of reinforcement learning, it has been
found that a more refined space of data and longer train-
ing time will enhance the performance of the learning
algorithm. With limitation of laptop, the full potential
of a refined data space and long training time has yet
to be explored.

However, when discretization of the states is refined,
data storage and iteration speed become issues. A pos-
sible way to resolve this might be adopting sparse ma-
trix to store state transition data in that some states do
not transit to ‘remote’ states. Another option is to find
the smart way to discrete the states in the reinforce-
ment learning, e.g.,applying sampling-based method to
extract states from the original continuous space.

Another future improvement of our work is incorporat-
ing more complex dynamic models of the birds to the
learning algorithm. The reinforcement learning deals
with the control of the bird without knowing the dy-
namics of the bird. However, the dynamics of the ‘bird’
in the game is merely a simplified version of projectile
motion. In reality, the ‘bird’ might be a real vehicle that
has various available control inputs and a constraint of
fuel consumption. The vehicle can decide to ascend, de-
scend, accelerate and decelerate. Besides, uncertainty
of the environment and dynamic system, such as wind
disturbance and modeling error of the dynamics, also af-
fect the decision model in the learning algorithm. These
factors might bring new challenges to the current imple-
mentation of reinforcement learning algorithm.

6 Conclusion

This report focused on applying Machine Learning to
solve control related problems. The game ‘Flappy Bird’

is used to test different algorithms. Distance in x and
y, bird’s velocity were chosen as standard features. For
the modified version adding moving pipes, two addi-
tion features (pipes’ velocity and pipes’ position) were
added. Bang-Bang control, SVM and Reinforcement
Learning were applied to both standard game and mod-
ified Flappy Bird with moving tubes. It turns out
that Machine Learning is immensely useful for control-
ling complicated system or system without known dy-
namics. Comparing between SVM and Reinforcement
Learning, for fixed pipes, the SVM and reinforcement
learning generally perform similarly. SVM is much bet-
ter because it has a much higher data space. For mov-
ing pipes, it is almost not possible for human to play
smoothly and generate enough data so SVM is not fea-
sible due to the lack of training data. Reinforcement
learning still works very well.

To be clear, Table 1 below summarizes the advantages
and disadvantages of each methods.

Table 1: Comparsions of three methods

Bang-Bang
Control

SVM Reinforcement
Learning

PRO Easy to imple-
ment; Fast Com-
puting

Relatively less
computing time;
work well in
standard situa-
tions

Robust in
different circum-
stances

CON Inaccurate; Lim-
ited

Un-robust in
complicated
situation

Expensive com-
puting; Long
training period

7 Acknowledgement

We want to thank Professor Ng and CS229 TAs for
teaching this wonderful course. We learned a lot in this
quarter. We also would like to thank Mingjing Zhang
for providing Flappy Bird source code so that we can
modify and add Machine Learning components into it.

References

[1] Andrew Ng “CS229 Machine Learn-
ing Course Materials”, [online] 2014,
http://cs229.stanford.edu/materials.html 2014.

[2] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. LIBLINEAR: A Library for Large
Linear Classification, Journal of Machine Learning
Research 9(2008), 1871-1874. Software available at
http://www.csie.ntu.edu.tw/ cjlin/liblinear

5

https://www.youtube.com/watch?v=cYFeI9eFaBY
https://www.youtube.com/watch?v=UwfnUNhkcCg
https://www.youtube.com/watch?v=UM9B2iHIMCw

	Introduction
	Problem Formulation
	Proposed Solutions
	Bang-Bang control
	SVM
	Reinforcement Learning

	Simulation Results and Disscusion
	Future Development
	Conclusion
	Acknowledgement

