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Abstract

Due to its fairly formal nature, the teaching of the subject of Computation Theory often

presents itself as a major obstacle for Computer Science students in general. To combat

this, there have been developed many tools for the teaching of Formal Languages and

Automata Theory (FLAT). Despite the considerable number of them, occasionally a new

tool emerges that contributes with something new.

It was with this objective that we developed a library of OCaml functions that support

various concepts of FLAT, namely the definition of finite automata, regular expressions

and context-free grammars. Our implementation of these concepts closely follows their

classical formalisation. We chose to implement this project using the OCaml language

as it would allow us to write code according to the functional programming paradigm,

which would better help us reach our defined goals.

In this report, to better contextualize the reader on the challenges and results of

our project, we start by giving an overview of the properties of functional languages.

Next, we give a small introduction to the FLAT concepts and discuss issues about their

implementation. We then review the existing FLAT pedagogical tools.

After establishing our knowledge base, we discuss the architecture of our program.

Next, we discuss the various FLAT algorithms and operations we implemented in our pro-

gram, giving detailed insight on the decisions behind our implementations, as well as on

solutions we found for the various technical difficulties such as guaranteeing termination

of our algorithms, dealing with the nondeterminism of many concepts and catering to an

extensible design. For our last topic, we discuss the top-level functionalities provided in

our program.

We conclude that the usage of the functional programming paradigm, in combination

with our adherence to the specified formalisms, allowed us to program our tool in a

manner that made it viable for use in courses that teach FLAT concepts according to the

classical definitions.

Keywords: Formal Language And Automata Theory, Functional Programming, OCaml

Language, Pedagogical Tools
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Resumo

Devido à sua natureza bastante formal, o ensino da disciplina de Teoria da Com-

putação tende a apresentar-se como um obstáculo considerável para a generalidade dos

estudantes de Ciências da Computação. Para combater isto, têm sido desenvolvidas várias

ferramentas para o ensino de Teoria de Linguagens Formais e Autómatos (FLAT). Apesar

do seu considerável número, ocasionalmente surge uma nova ferramenta que contribui

com algo novo.

Foi com este objetivo que desenvolvemos uma biblioteca de funções OCaml de suporte

a vários conceitos de FLAT, nomeadamente a definição de autómatos finitos, expressões

regulares e gramáticas livres de contexto. A nossa implementação destes conceitos é

fidedigna à sua formalização clássica. A linguagem OCaml foi escolhida para este projecto

pois permitir-nos-ia escrever código no estilo de programação funcional, contribuindo

assim a melhor alcançar os nossos objectivos definidos.

Neste relatório, para contextualizar o nosso trabalho, começamos por fazer um resumo

das propriedades das linguagens funcionais. Depois, fazemos uma pequena introdução

sobre os conceitos de FLAT e discutimos algumas questões sobre a sua implementação.

Em seguida revemos as ferramentas pedagógicas de FLAT existentes.

Estabelecida a base de conhecimento, discutimos a arquitetura do nosso programa. De-

pois, discutimos os vários algoritmos e operações de FLAT que implementámos no nosso

projecto, fornecendo uma perspetiva detalhada sobre as decisões para as nossas imple-

mentações, bem como para as soluções encontradas para vários problemas técnicos como

garantir a terminação dos nossos algoritmos, lidar com o não-determinismo de vários

conceitos e escrever código extensível. Para o tópico final, discutimos as funcionalidades

do domínio de topo do nosso programa.

Concluímos que o paradigma de programação funcional, em combinação com a nossa

aderência aos formalismos especificados, permitiram-nos programar uma ferramenta

viável para uso no ensino de conceitos de FLAT de acordo com as definições clássicas.

Palavras-chave: Teoria das Linguagens Formais e Autómatos, Programação Funcional,

Linguagem OCaml, Ferramentas Pedagógicas
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1
Introduction

The FACTOR (Functional ApproaCh Teaching pOrtuguese couRses) project is intended

to promote the usage of OCaml in the portuguese speaking academic community, par-

ticularly through the development of pedagogical tools for the subjects in areas of Com-

putational Logic and Fundamentals of Computing. One of such is the subject of Formal

Language and Automata Theory (FLAT).

The teaching of FLAT is a staple of most Computer Science curriculums due to both its

importance for direct application of the taught concepts in a professional setting that may

require using those concepts, and its utility in moulding the minds of students to better

critically think on how to solve the Computer Science related problems that may occur

during their academic and professional careers [1]. As such, there exists a continuous

need for better methods of teaching these concepts. In response to this need, we can look

to both new technologies and old methodologies to better understand how to contribute

with new exciting solutions that can make FLAT more accessible to future students.

In the context of the FACTOR project and the teaching of FLAT, this MSc thesis

consisted on developing the OCaml-Flat library, a pedagogical tool for support in the

teaching of FLAT. The project repository can be accessed through the following url:

https://gitlab.com/releaselab/factor/OCamlFlat.

1.1 Context

Historically, for a long time, the academic community has realized the utility in develop-

ing and using helper tools for teaching FLAT, and during the years it has been shown that

students tend to fare better when they actively use these tools as opposed to not being

given the opportunity to use them. As such, a diverse pool of pedagogical tools has been

developed over the years [2] in hopes of contributing to the cause, but curiously it has

1
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CHAPTER 1. INTRODUCTION

been observed that while some tools offer a very complete range of functionalities, it is

when using a variety of different tools with even a few key distinguishing features that

students obtain greater insight into the fundamentals of the subject [3].

This MSc thesis consisted on the development of a pedagogical tool, using the OCaml

language, called OCaml-Flat. It is a library of types and functions that can be used as

a tool for aiding students in their studies, for the integration in a testing environment

(Mooshak) with various exercises for both in-class and home study, and for integration

with a WEB application with interactive graphics.

The main objective for this program was for its code to be written in a manner that the

students can read it and be able to identify the concepts as defined in the class materials.

To achieve this, a certain amount of sophistication was needed for the implementation

of computable and legible versions of these definitions. The main challenge was to find

ways to deal with non-determinism and guaranteeing termination of our algorithms.

The functional paradigm was chosen for the implementation of this project because

code written in this style is often very legible, concise and easy to understand without

much mental fortitude, all properties that are heavily desired if one of the objectives is

for the students to read and understand the code.

The tool is planned to be used in future editions of the discipline of Computation

Theory from the Nova School of Science and Technology[4]. As such it will be developed

following the formalisms adopted in the discipline as faithfully as possible.

1.2 Contributions

The main expectations for our project are as follows:

• A very clear implementation in OCaml of a set of generators and language recog-

nizers.

• Whenever possible, the code should closely follow the formalization of the concepts

as studied by the students. The intent here is for the students to be able to read the

code and identify the concepts as they are defined in the source material.

• Cater for an extensible design. It is important to identify shared features among the

mechanisms and to factorize the corresponding code.

• Find reasonable ways to deal with the nondeterminism and nontermination of some

operations.

• The toolkit should present itself as an OCaml module, intended to be used in the

context of the OCaml interpreter. Developing a graphical interactive environment

is outside the scope of this project.

1.3 Document Structure

This document is organized in the following chapters:
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1.3. DOCUMENT STRUCTURE

Chapter 1 - Introduction to the problem, its context, the proposed solution and the

expected contributions.

Chapter 2 - Detailed presentation of what is functional programming, explaining key

aspects such as its history, characteristics, advantages, disadvantages and examples of

how it is used to solve problems.

Chapter 3 - Small introduction to the main concepts of FLAT, and discussion of some

issues about their implementation.

Chapter 4 - Survey on the existing pedagogical tools, their utility, their characteristics

and history.

Chapter 5 - Detailed explanation on the chosen architecture for our program.

Chapter 6 - Analysis and discussion of the implementation strategy used in this

project.

Chapter 7 - An in-depth discussion of the implementation of our chosen FLAT con-

cepts and algorithms, including an analysis on our solutions for technical problems such

as non-determinism and non-termination of some algorithms.

Chapter 8 - A manual for all the top-level functions of our tool.

Chapter 9 - Conclusion and future work.
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Functional Programming

The functional programming style was born from the acknowledgement that it is possible

to express computation by only resorting to mathematical functions, applying functions

to arguments and evaluating expressions [5]. In this programming style, functions play a

central role, being treated as first-class values, as we will explain.

Regardless of their simplicity, functional languages help programmers in expressing

ideas with better clarity and certainty than with other programming styles, such as the

imperative style for example. This is due to several properties of the functional paradigm

that allows us to expresses the logic of how to transform our given arguments into our

desired outcome, rather than describing a sequence of instructions.

In this chapter, we give a brief introduction to the history of the functional paradigm,

followed by an exposition on some of its main properties, and ending on a discussion

between its advantages and disadvantages.

2.1 History

In the early 1930s, even before the invention of what is widely considered as the first

programmable computer, mathematician Alonzo Church introduced what could be con-

sidered the first functional language, the Lambda-Calculus [6]. During his research in

foundations of mathematics, Church was investigating a way of defining a different basis

for mathematics built on functions, rather than sets, as a way of expressing the computa-

tional aspect of functions. Its influence on functional programming has had such impact,

it most often represents the bases for modern functional languages.

In 1958 John McCarthy, during his work in MIT, gave origin to what is widely consid-

ered the first ever functional programming language, Lisp. According to “Conception,

Evolution, and Application of Functional Programming Languages” by Paul Hudak[7],
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even though Lambda-Calculus did not actually influence Lisp much, both McCarthy and

Hudak made use of Church’s lambda notation [6]; beyond that not much similarities are

found between the two languages. The project’s aim was for programming symbolic data

computation.

During the years that would follow, the functional programming community would

continue to grow, and many new functional languages would be developed, which would

push the understanding of functional concepts. Some of these new languages would

include IPL, APL, ML (which would later originate OCaml), SASL, KRC, and Miranda.

It was around the 1980s that two of the most important functional languages of today

were born – OCaml and Haskell. The former language uses strict evaluation while the

latter uses non-strict evaluation. In the case of OCaml, its origins are found in Robin

Miller’s LCF test system, which dates from 1962. The language began to be used as an

autonomous programming language from 1981 onwards, having evolved and gained new

implementations. OCaml began to gain popularity and attract many programmers in

the late 1990s. In the case of Haskell it was created in a rather deliberate way through a

committee with the mission of creating a common language for the non-strict functional

programming community [8].

Since then, new functional languages have been developed; many of them, like Scala or

F], support not just the functional paradigm, but also other paradigms, mainly imperative

and object-oriented; some languages, like Pearl and PHP, while not designed specifically

for the functional paradigm, support functional mechanisms.

Even though its beginnings are rooted in the academic, and with the imperative

paradigm remaining as the principle way in which most programmers today code [9],

functional programming has been rising in mainstream popularity in the industry and

commercial settings, with many famous applications such as Facebook, WhatsApp and

Twitter running functional code, especially in their server side.

2.2 Characteristics

Functional programming displays several distinctive core characteristics, namely:

2.2.1 High-order functions

One useful mechanism that is essential to functional programming is high-order func-

tions. High-order functions can receive functions as arguments and may also return new

dynamically generated functions. A great example of this is the map function that applies

a function to each element of a list.

Listing 2.1: map function in the functional style

1 let rec map f l =

2 match l with

3 [] -> []
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4 | x::xs -> ( f x )::map f xs

In Listing 2.1, the recursive function map receives as arguments a function f and a

list l, and applies f to each element of l.

Listing 2.2: map function in the imperative style

5 map l =

6 for(int i = 0; i < l.size; i++)

7 l[i] = f (l[i])

In Listing 2.2, we have the same map function but implemented in an imperative

style. Notice that since the function f is not an argument of map, f would have to be

declared somewhere in the same scope as map.

Comparing the imperative implementation with the functional implementation, we

observe that the usage of high-order functions gives us more flexibility in how we manage

functions in our programs.

Being able to program well in the functional style involves knowing how to use high-

order functions and in particular, recognizing good opportunities for using library de-

fined high-order functions, such as map, flatMap, filter, exists, partition and others.

2.2.2 First-class functions

A programming language is said to have first-class functions if the functions have a status

as important as the other predefined types, such as integer or real numbers. First-class

functions are a requirement for functional languages.

Concretely, in a functional language the functions can: (1) be passed as an argument

for other functions; (2) be returned by other functions; (3) be used as constituent elements

of data structures; (4) have specific literals for representing anonymous functions. Points

(1) and (2) show that without first-class functions we could not have high-order functions,

for these pass the others as arguments and results.

Permitting to treat functions as normal data has positive consequences at the level

of program sophistication and the ideas that can be expressed in a natural way. In this

first simple example, we have a function that implements function composition – a new

function is generated using two existenting functions.

Listing 2.3: compose function function

9 let compose f g = fun x -> f (g x)

10 compose : (’a -> ’b) -> (’b -> ’c) -> (’a -> ’c)

In this second example, we show a classic representation of sets using only functions.

It is known that a set is an identity whose main characteristic is the possibility of knowing

if a value belongs to it or not. Thus, we can represent each set with a Boolean function

that when applied to a value produces true if the value belongs to the set and false if it

does not. It is known as the feature function of the set:

7
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Listing 2.4: Empty set function

11 let set0 = fun x -> false

Listing 2.5: Universal set function

12 let setu = fun x -> true

Singular set constructor. Notice that we are representing an infinite set without any

problems:

Listing 2.6: Set function

13 let set1 x = fun y -> y = x

Listing 2.7: Belongs to set function

14 let belongs v s = s v

Listing 2.8: Set union function

15 let union s1 s2 = fun x -> s1 x || s2 x

2.2.3 Referential transparency

Pure functional programs are referentially transparent, meaning that everything which

happens during the execution of a program literally depends on the text of the program,

and there is no hidden entity (e.g. the imperative state) to influence the execution of the

programs.

Referential transparency is a property that allows replacing, in the text of the program,

an expression for any other expression that evaluates to the same result, without changing

the behaviour of the program. Referential transparency is an important principle in

mathematics, very much implicitly used in demonstrations.

Without referential transparency, it is very hard to be sure that an expression can be

replaced by another. To give an example, in general the following two expressions cannot

be considered as equivalent:

f () + f () (2.1)

2× f () (2.2)

With referential transparency, a function does not produce side-effects and returns

always the same result for the same inputs. This property also helps immensely if we

need to parallelize our programs.
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2.2.4 Recursion

In the functional world, the repeated application of expressions is expressed using recur-

sion [10], as opposed to the imperative world where repetition is expressed with iteration.

In functional languages, programmers who pay special attention to code clarity and

legibility, use recursion as base for a programming technique which involves reducing

each problem to a simpler version of the same problem. It is thus an inductive technique

and the resulting functions are inductive. Here is a known example of an inductive

function:

Listing 2.9: factorial function

16 let rec fact n = if n = 0 then 1 else n * fact (n-1)

In any case, functional languages can also use recursion to simulate iteration. Sim-

ulated iteration forces the reader of the code to think in a way that is considered less

human-like and more machine-like, but which allows for better efficiency, if it is strictly

necessary. The gain in efficiency results from the fact that the generality of functional

languages being able to optimize the simulated iteration without consuming execution

stack (tail recursion optimization).

Example:

Listing 2.10: optimized factorial function

17 let rec factX n r =

18 if n = 0 then r else factX (n-1) (r*n)

19 let fact n = factX n 1

To better contrast the difference between actual iteration and simulated iteration, we

can analyse the example in Listing 2.11.

Listing 2.11: imperative factorial function

20 int fact n =

21 int res = 1;

22 for(int i = n; i > 0; i--){

23 res = res * i;

24 }

25 return res;

Compared to the implementation using recursion, the implementation using iteration

requires the reader to mentally execute the written code as to understand the objective

of the function, while the recursive implementation can be understood more intuitively.

2.2.5 Declarativity

The philosophy behind declarative programming is to provide an abstraction with which

programmers could write and/or read code and understand it’s goal without the need to

“run the algorithm in their heads”, but rather to express the essence of what that code

9
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is trying to achieve, almost as if the programmers were “telling the program what they

want it to do, without step-by-step instructions”.

The first version of the fact function from the previous is declarative. The function

expresses a truth fact n = n × fact (n− 1) that the machine uses to produce the correct

results.

The second version of the function is not declarative because it describes with minute-

ness, step-by-step, a process of calculating the result. Notice however that it is possible

to mathematically prove that both versions of the function are equivalent and from the

mathematical viewpoint it may not be of much relevance distinguishing the two forms.

However, for a human, the declarative form is relevant: functions become simpler to in-

vent, to understand, and it becomes simpler to intuitively argument over the correctness

of functions.

There is a diverse category of languages that support declarative languages (e.g. log-

ical languages, restriction languages, etc), with the functional languages category also

included in this group. This aspect is widely considered to provide clear, simple to read

code that we think makes functional programming the paradigm of choice for the imple-

mentation of our project.

2.2.6 Static typing

The process of verifying the type safety of a program (that is, if it has any type errors in

its code), is called type checking, and it can be classified as either static or dynamic. Static

type checking is when the process happens at compile time, while dynamic type checking

is when the process happens at run-time. A language has static typing if it performs static

type checking and has dynamic typing if it performs dynamic type checking.

There are functional languages with dynamic typing (List, Scheme, Lua) and there are

functional languages with static typing (OCaml, Scala, Haskell). In the case of languages

with static typing, the generality supports type inference, with each declaring the type of

the argument as being optional.

2.2.7 Evaluation strategy

Functional languages can be divided into those who use strict evaluation and those who

use non-strict evaluation. The difference is that with strict evaluation, for each function

call, the arguments are always evaluated before the call is executed. With non-strict

evaluation however, the arguments are always passed unevaluated, and are evaluated

inside the function only when their values are needed.

Haskell is an example of a functional language that uses non-strict evaluation. OCaml

uses strict evaluation, albeit there are available non-strict mechanism in the data type

Stream and the lazy module.

10



2.2. CHARACTERISTICS

2.2.8 Algebraic data types and pattern-matching

Most functional languages, such as OCaml, support the definition of Algebraic Data Type

(AlgDT), which are made from diverse variants. For example, the next type, which defines

lists of values, possesses two variants: Nil for empty lists and Cons for non-empty lists.

Listing 2.12: list function

26 type ’a list = Nil | Cons of ’a * ’a list

It is normal for the existence of operations that only apply to values of certain variants.

For example, for lists, the operation for obtaining the tail only applies to non-empty lists.

The mechanism of pattern-matching allows for dealing with the various variants of an

AlgDT in a practical, elegant and type-safe matter. The mechanism is quite sophisticated:

To start with, it introduces a notion of pattern – a pattern is a special expression with

intuitive syntax that represents a set of values. When we verify pairing between a value

and a pattern, some of the value’s components become immediately available through

the pattern’s variables. Human beings are accustomed in using patterns in its interaction

with the real world. The patterns of functional languages help in turning programs more

legible and easier to write.

In the case of OCaml, pattern pairing is implemented in the construction of “match”.

In Listing 2.13 we have a small example, where only two patterns are used (occurring to

the left of the arrow). The function tests if the letter ‘a’ occurs in a list of characters.

Listing 2.13: contains function

27 let containsA list =

28 match list with

29 Nil -> false

30 | Cons(x,xs) -> x = ’a’ || containsA xs

The example in Listing 2.14 displays the same function containsA but implemented

in an imperative style.

Notice how the use of pattern matching in Listing 2.13 makes the function more

compact and readable compared to its imperative counterpart.

Listing 2.14: contains function

31 bool containsA list =

32 bool res = false;

33 for(int i = 0; i < list.size; i++){

34 if (list[i] == ’a’){

35 res = true;

36 }

37 }

38 return res;
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2.2.9 Imperative mechanisms

It may seem strange, but the generality of functional languages are not pure, which

means that they include imperative mechanisms, including state. In the world of func-

tional programming, programs are mostly written in a functional manner, but imperative

mechanisms are used in specific, well justified situations.

For example, if the problem involves state, it is best to deal with it using interactive

mechanisms, as opposed to trying to simulate them with functional mechanisms. Think

of a calculator with registers: it is best to represent the registers using a set of mutable

cells. If a language provides appropriate linguistic mechanism to deal directly with the

situation, then it is best to use those mechanisms.

Another situation: there are certain operations that are inefficient in their functional

way and it may be worthwhile to think of imperative alternatives. For example, adding a

value to the end of a list, causes implicit duplication of that list. In the case of an absurdly

grand list, it may be advised to think twice.

2.3 Advantages

Compared to imperative programming, the functional paradigm displays properties that

provide certain advantages [11].

Pure functional programming precludes the notion of state, as such it only really

receives an input and produces an output. This can be of great help in a variety of aspects,

including legibility, parallelization and special techniques such as currying.

Since a functional program doesn’t have mutable variables or state, and with the

added characteristics of higher-order functions and declarativity, it is possible to write

code that is considerably more succinct and legible compared to other paradigms; because

there are no variables or side-effects one must keep track of while mentally thinking of

the code’s execution, this allows the programmer to better concentrate on what they want

to compute instead of how they will compute it, which will lead to safer code with less

bugs.

Another interesting advantage granted by the lack of states and side-effects, and the

irrelevance of the order in which a program executes its functions for the computing

of its output, is that it allows for easier program parallelization, since the possibility

of a function interfering with the output of another function running concurrently is

inexistent.

Thanks to considering all functions as first-class (that is, they can be passed as argu-

ments to other functions, including themselves), functional programming allows for the

use of certain coding techniques such as currying, a technique that allows programmers

to work with functions that take multiple arguments, and use them in settings where

functions might only take one argument. This allows not only for better code legibility,

but in some cases, code that is more efficient.

12
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Higher order functions capture generic code patterns (e.g. map, filter, etc.), which

help program in a concise way, without constant repetition of the same formulas.

2.4 Disadvantages

Although many benefits are to be gained from using the functional paradigm, it isn’t

without its flaws [11].

The real world is imperative, and the notion of state is useful to better express various

real-world problems in code, such as a calculator with memory registers or accessing an

external database. While most functional languages (even pure ones) allow for methods

to simulate states, these can often-times break legibility and conciseness of the code, thus

losing the benefits of not using state.

Another problem is the typically less efficient use of CPU and memory management,

in large part due to the lack of mutable data structures whose implementations translates

better into various hardware. Not only that, but the lack of state forces us to continually

create new objects instead of assigning new values to already existing ones. Fortunately,

the fact that the data is read-only, provides the implementation with more opportunities

to freely share data, instead of copying it.
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3
Formal language and automata theory

For this project, we will be adhering to the formalisms and naming conventions adopted

in the Theory of Computation class of the Computer Science engineering course at the

NOVA School of Science and Technology. This is important because it will allow us to

maintain coherence between what the students learn during the class and what they

might learn or revise using our toolkit, minimizing the student’s efforts in adapting their

knowledge from the classes to their usage of our toolkit in an attempt to advance their

understanding of FLAT.

Theory of Computation is a branch of Computer Science and Mathematics that studies

the properties of computation. Among other aspects, it also studies which problems can

be solved by a computer and among these which can be programmed efficiently.

In his book “Introduction to the theory of computation”, Michael Sipser [1] divides

the subject into three main branches: automata and languages, computability theory and

complexity theory. Due to the objectives of our project, we only wish to elaborate on the

automata and languages branch.

3.1 Chomsky Hierarchy

Before explaining the main FLAT concepts we will discuss for our project, we think it is

of interest to present the following concept, the Chomsky hierarchy [1].

In FLAT, a formal grammar is a set of rules for producing strings in a formal language.

According to Chomsky, we can divide these grammars into four groups based on the type

of languages they can generate. Note that the levels with the lowest number identifier

represent the languages that require more capable recognition mechanisms and have

more general generation rules.
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The hierarchy is as follows: Type 0 grammars generate recursively enumerable lan-

guages, that is, languages whose words can be generated by a computationally univer-

sal machine; Type 1 grammars generate context-sensitive languages; Type 2 generates

context-free languages; Type 3 generates regular languages. Every regular language is

context-free, every context-free language is context-sensitive, every context-sensitive lan-

guage is recursively enumerable.

Not all context-free languages are regular, and the same logic could be expressed to

the rest of the discussed languages.

The following section will describe the key FLAT concepts we pretend to cover with

our project, as well as establish the terminology used throughout the framework.

3.2 FLAT concepts covered in the project

3.2.1 Regular expressions

Regular expressions are special expressions which represent languages whose words have

a simple structure. By starting with a finite number of words and then applying reg-

ular operations such as union, catenation and iteration closure, we can define regular

expressions. They can be seen as language generators but are less expressive than CFGs.

An example of a regular expression could be a(a + b)*, which denotes the language of

all the words over the alphabet a, b starting with an “a”.

In the real world, regular expressions are used in search engines, lexical analysis, word

processors, text editors and others; many programming languages even provide regular

expression capabilities.

3.2.2 Finite automata

Finite Automata (FA) are a simple mathematical model of computation that can be used

to specify languages. The expressive power of the model is relatively weak and is only

capable of describing languages with very regular structure. Nevertheless, it is a useful

model with many theoretical and practical applications.

In this model, the specification of each language is accomplished via recognition. Each

particular FA recognizes some language in the sense that the FLAT checks whether a word

belongs or does not belong to the language.

FA are formally defined by the following 6-tuplet: a finite set of states; a finite set of

symbols (an alphabet); a list of transitions where each transition describes the progression

between two states by consuming a symbol; one initial state; and zero or more accepted

states (states that symbolize the success of a computation).

FA are regular language recognizers, as they are able to recognize all languages that

can be obtained from a regular expression and are less capable than pushdown automata.

For example, the automaton in Figure3.1 recognizes the previously discussed language

denoted by all words over a, b starting with an a.
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Figure 3.1: Deterministic Finite Automaton

These automata can be either deterministic or non-deterministic, where determinism

in this context means that for each state a symbol can only transition to one state, whereas

in non-determinism, transitions can happen from a state to one or more states using the

same symbol, and some states can also transition to another state without consuming any

symbol. In this project we will be working with both DFA and NFA.

As contrast to the previous example which was deterministic, here is an example of

aNFA:

Figure 3.2: Non-Deterministic Finite Automaton

Notice how the automaton can transition from state 2 to 3 without consuming any

symbol, thus making it a NFA.

FA are widely used in software engineering, compilers, network protocols, as well as

in other areas not strictly to due with computer science, such as philosophy, biology and

linguistics.

3.2.3 Context-free grammars

Context-free Grammars (CFGs) are a type of formal grammars used to describe all possi-

ble strings in a specified formal language, more precisely, they are context-free language

generators, and are represented as the following 4-tuplet: a non-empty finite set of non-

terminal symbols, each representing a part of a sentence; a set of terminals different from

the first set, that defines the alphabet of the language; a set of rules composed of a charac-

ter and a string of characters and terminals; and the start symbol, an element of the first
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set that represents the entire sentence.

Here is an example of a CFG that generates the language of all words over the alphabet

a, b that have an equal number of both letters a and b, and where all occurrences of “a”

are at the left of all occurrences of “b”:

P → ε | aP b (3.1)

Notice how P calls itself, indeed recursion plays an important role in defining a CFG.

CFGs are mainly used for describing structures for programming languages and are

also used in linguistics to describe the structure of sentences and words in natural lan-

guages.

CFGs correspond to a more powerful mechanism of generating languages than that of

regular expressions. There is no regular expression equivalent to the previous grammar.
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4
Pedagogical Tools

The study of FLAT presents the computer science student with the opportunity to better

understand the context and fundamentals behind some problems they might face during

their future professional careers, which in turn will allow them to better think of the pos-

sible solutions and make the better decisions, thus contributing to improved productivity

and work quality.

While the subject proves to be indispensable for any computer science curriculum, its

sometimes abstract and mathematical nature presents an added challenge for the student

to fully grasp its essence. As such, many teachers have found that the use of both visual

and non-visual auxiliary learning tools, which provide a more concrete foundation on

the topic, appear to improve the student’s understanding of the taught concepts, thus

facilitating both the teaching and learning of this subject.

Since the early 1960s, many learning tools have been developed, most of them would

distinguish themselves from the competition by focusing on a certain niche or character-

istic that the other tools didn’t support; eventually, during the years some have become

more popular than others.

According to “Fifty Years of Automata Simulation: A Review” [2], these tools could

be divided into two main groups: one represents the text-based tools that use a collection

of symbols to form a language, which we then use to write the definition of an automata,

which is then processed using either compilers or interpreters; the second represents

the tools that accept an automata specification (either in a structured or diagrammatic

form) and then simulates its behaviour in a graphical environment, often with the added

implementation of animations.

The following section will aim at describing the state of the current landscape per-

taining to these tools.
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4.1 Classification and characteristics

Some like “Online Turing Machine Simulator” [12], an online Turing machine simulator,

allow the user to define a Turing machine using the tool’s syntax, and then write and

input for the program to validate. The user can also select from a collection of pre-defined

examples, view tutorials and even define the speed at which the simulation runs.

Others, such as “Abstract Machine Simulator” provide a module for generating words

accepted by the automata being tested.

Some also allow the user to draw their own automata for all testing purposes, using

drag and drop styled interfaces, one criticism these sometimes face is how disorganized

and confusing writing bigger, more complex automata can become with these tools.

There are also various tools that allow for the conversion of nondeterministic automata

into deterministic automaton, and then into a Turing machine.

Here is a list of most of these tools one might find while exploring the subject.

In 1963, Coffin et all published a paper entitled “Simulation of Turing machine on a

digital computer” [13], which was perhaps the first ever automata simulator study, in it

the authors describe the tool being text-based and adopting the classical Turing machine

representation of quintuplet for each transition.

In 1972, on what would probably be the first graphic-based tool, Gilbert and Cohen

published the paper “A simple hardware model of a Turing machine: its educational

use” [14] where they describe a Turing machine simulator and its utility for teaching

programming fundamentals.

Most tools until 1992 would then only support either Turing machines or Finite and

pushdown automata, such as “Turing Machine Simulator” [15], “Tutor – A Turing Ma-

chine Simulator” [2] and “Turing’s World” [16]; only in 1992 with “Hypercard Automata

Simulation” [17] by Hannai et al did a tool support all 3 types, and in 1993, the c++ “For-

mal Language and Automata Package” [18] (the precursor to JFLAP) not only supported

the 3 types mention, but also non-determinism.

In 1997, Head et al developed “A Simple Simulator for State Transitions” [2], which

had support for a finite state machine simulator, a nondeterministic pushdown automaton

simulator and a Turing machine simulator, all based on notational languages with rigid

formats.

New tools have been developed since, other similar to the ones discussed so far include

“Language Emulator” [19] by Vieira et al, “Automata en Java” [2] by Dominguez, “Turing

Building Blocks” [20] by Luce and Rodger, a Java computability toolkit by Robinson et al

[21], “PetC” by Bergström [22], “Thoth” by García-Osorio

4.2 Noteworthy tools

The following tools deserve a more profound introduction due to either their popularity,

concept or availability.
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For each tool we will also analyse, in the context of the defined goals for this project,

their advantages and disadvantages compared to our own tool OCaml-Flat.

4.2.1 Automata Tutor v2.0

Automata Tutor [23] is a web-browser application for users to test their knowledge on

DFA, NFA, NFA to DFA conversion and regular expression constructions by providing

exercises in which the user must use a drag and drop styled graphics tool to create the

requested automata, or input the correct regular expression in a more text-based window.

Once submitted the answer, the site will calculate a score from 0 to 10 based on how

closed the input is to the desired solution and provide feedback on how to improve the

answer.

In the paper “Automated Grading of DFA Constructions” [24], Rajeev Alur et al ex-

plain that the grading of the exercises is done through the conversion of DFAs into a

MOSEL formula and vice-versa, which allows for a method of evaluating the answer; the

actual grading is achieved with an algorithm that divides all errors into 3 common types,

them being an attempt to provide a solution to a different problem, the lack of a transition

or final state, and an error on a small part of the answer string.

In the paper, the authors also concluded after testing for comparison between the

gradings of the site and those of actual instructors, that the tool was able to provide a

quality of grading equivalent to that of human graders.

Possibly the greatest advantage of this tool is its simplicity, as any student can easily

apply their theoretical knowledge of FLAT concepts to the resolution of various practical

exercises. However, some of its disadvantages to other tools include the lack of options

for adding more exercises, which can be quite negative considering it offers a small

compendium of problems to solve.

4.2.2 Racso

Racso [25] is a web-browser application created in 2012 by Carles Creus and Guillem

Godoy of Polytechnic University of Catalonia, with the objective of providing their stu-

dents with exercises on FLAT, specifically CFGs, it is entirely text-based. According to

their paper “Automatic Evaluation of Context-Free Grammars (System Description)”, the

tool consists of multiple exercises on FLAT concepts such as DFA, CFGs, push-down au-

tomata, reductions between undecidable problems and reductions between NP-complete

problems. The idea is that for every exercise describing a specific language, the student

as to solve it by providing a (sometimes unambiguous) grammar that generates that lan-

guage, the correctness of the answer is achieved by comparing the student’s grammar with

the professor’s known-to-be-correct grammar to see if they generate the same language.

Since equivalence of CFGs is an undecidable problem, the work-around is to define a

length L and test if there is a word with length lesser or equal then L that can be gener-

ated by only one of the two grammars, if such word exists, either both grammars are not
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equivalent (thus the answer is wrong) or the value of L was too low. The reason this works

is due to the academic nature of the exercises, both grammars and L will almost always

be of sufficiently small size for the comparison to behave adequately. The comparison

itself is based on hashing, SAT and automata.

To use this tool as of this writing, the user must visit the site https://racso.cs.upc.

edu/juezwsgi/index where they may choose from a plethora of representative exercises,

divided into various classifications according to their specific topic, most noticeably ex-

ercises on DFA, CFG, regular and context-free operations. After selecting the exercise, a

window with some instructions and a small text console will display and allow the user to

input their solution, once submitted the site will display whether the answer was correct

or not.

The site also allows the user to create an account which they can then use to gain

access to a collection of exams on the subject of the exercises.

When analysing the advantages and disadvantages of RACSO, we can observe that it

is very similar to Automata Tutor. Both are very easy to use, and both suffer from a lack

of extensibility. RACSO however has an advantage over Automata Tutor in the form of a

wider selection of available exercises.

4.2.3 JFLAT

Perhaps the most popular and well-documented tool, JFLAP [26] is a Java implemented

toolkit that, according to Susan Rodger et al in “A Hands-on Approach to FLA with

JFLAP” began in 1990 as a collection of c++ and x windows tools called NPDA, when

professor Susan Rodger of at the time Rensselaer Polytechnic Institute began teaching a

FLAT course and found that students requested further counselling and feedback on their

understanding of the subject. By 1993 the program already had support for simulating

non-deterministic push-down automata, deterministic push-down automata and Turing

machines with building blocks. In 1996 the tool switched to Java and in 2001 to Swing,

suffering a complete rewrite and even saw a change in some of the algorithms. During

the initial years, various FLAT concepts and tools have been implemented, such as L-

systems in 1993, pumping lemma in 1996, a brute-force parser, LL parser and SLR parser

between 1996 and 1997, and regular expressions in 1999. Some of the more recent

additions include Moore and Mealy machines, Batch grading, regular pumping lemma

proof, context-free lemma proof and various preference settings such as defining the

empty string (epsilon or lambda).

To use the tool as of this writing, a user must go to the JFLAT official website http:

//www.jflap.org and fill in a form on why they are interested on the program, as well

as country and faculty where they come from. Afterwards, they will be allowed to down-

load an executable jar file which comprises of the JFLAT toolkit. The site also features a

plethora of tutorials and even video instructions on how to use most of JFLAP’s function-

alities, and how instructors can use them to better explain the subject.
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The main features of JFLAT allows the user to create various types of automata and

regular languages; convert NFA into regular grammar or expressions; create context-free

languages such as push-down automata or CFG, as well as to exert transformations on

them; define Turing machines (either multi-tape or building blocks based) and create/ren-

der L-systems. The tool provides a drag and drop interface which allows the user to define

a FA, then by entering a test word (various words can also be tested in simultaneous), the

program can either compute whether the string is accepted, generate a diagram showing

the behaviour of the automata for a word up to a specific symbol, or analyze the con-

sumption of its symbols one by one. One interesting functionality is the ability to show

in parallel the possible transitions and state of NFA for an input word. The tool also

supports the ability to analyze certain properties and identify them for the student to

better grasp them, like highlighting lambda-transitions or non-deterministic states. For

pumping lemma, the tool implements an interface where you “play a game” against the

computer, where each side will decide on an input until the end of the proof is reached,

the interface allows the user to click a button that displays an explanation of the problem’s

context.

The popularity of JFLAP is widely considered unparalleled compared to other FLAT

tools; according to the JFLAP website, from 2004 to 2008 the tool had seen over 64.000

downloads in 161 different countries, and as of this date the site lists over 10 books that

mention the usage of JFLAP, and over 30 published papers that reported having used,

or even modifying JFLAP. One could argue that these numbers alone would suffice as

testament to the importance of the tool’s role in helping teach FLAT, but in "Increasing

Engagement in Automata Theory with JFLAP, "Susan Rodgers et al conducted a 2 year

study to see the responses of students from over 10 faculties when using JFLAP for their

FLAT courses, and the results showed that more than half the enquired students admitted

that the usage of the tool had either made learning the subject easier or more engaging.

JFLAT is possibly the most complete out of all our noteworthy tools. It has many ad-

vantages such as the implementation of various algorithms for a vast number of different

FLAT mechanisms, a compendium of textual and video tutorials on how to correctly use

this tool, etc. Its biggest disadvantage however lies in the initial difficulty some students

may experience in both installing and using JFLAP.

4.2.4 PFLAT

PFLAT [27] is a text-based SWI-Prolog implemented tool from 2005, which focuses on

providing a library of Prolog predicates that map the concepts of formal language and

automata theory as closely as possible to their respective mathematical and formal defi-

nition. The tool provides the source code as to better help students grasp the intricacies

of the subject. The tool allows for the instructors to adapt its definitions and namings to

those they prefer and provides both student and teacher with the ability to extend the

library with their own implementations of further concepts from the subject. To facilitate
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its usage, PFLAT also allows for various operators on words, regular languages and au-

tomata, such as concatenation, union, closure, and which ever possible operator its user

might want to implement.

In “A Prolog Toolkit for Formal Languages and Automata“, the authors describe some

of the functionalities and concepts and how they are implemented in PFLAT, and provide

as example the definition of all binary words with an even number of 1’s. In PFLAT, an

alphabet can be defined and checked against the computation of the set of symbols of a

random set expression; a user can check for declaration errors and even have them shown

on screen as error messages; words can be represented, with operations for concatenation

and N-th power already available; predicates on words for checking if they belong to a

specific alphabet, to generate all words over an alphabet, or to compare to another word

and conclude if they respect a certain lexical order, for dealing with prefix, suffix and

sub-word, and with the possibility to change/add predicates; operands for languages

including literal sets of words, names of alphabets and language definitions, as well

as operators for set, Kleene star, positive closure, product and power; defining regular

language with regular expressions or finite automata; expressions can be build over finite

automata, with the latter having support for the union, complement, intersection, closure,

minimization and determinization operators; and few more features.

As of its debut, the tool only had support for regular languages and pushdown-

automata. Later versions of the system have received support for all the other classic

mechanisms.

It is interesting to note that the advantages of PFLAT are similar to those of our own

tool, with its biggest disadvantage being that it has since been discontinued.

4.2.5 FAdo

The FAdo [28] system is an open source software library for manipulation of finite au-

tomata, regular expressions and other FLAT mechanisms.

While its focus lies mainly in its usage for theoretical and experimental research, it is

also foreseen to be used as a pedagogical tool.

It features a plethora of standard operations for the manipulation of regular languages,

which are mainly represented as FA and regular expressions. These representations are

implemented as Python classes.

Besides the elementary operations over regular languages such as union, intersection

and concatenation, the library also contains the implementation of various conversions

between FLAT models. Some operations such as the conversion from regular expres-

sion to NFA have multiple implemented versions using different approaches such as the

Thompson methods, the Glushkov method, the Brzozowski methods, amongst others.

Other operations, such as DFA minimization, are implemented using various algorithms,

some of which are written in C.
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FAdo has been used by its developer team to produce over ten pieces of scientific

literature in the area of FLAT. Some of their research includes the implementation of

code properties via transducers[29], enumeration and generation of initially connected

DFA[30], etc.

The biggest advantage of FAdo, besides its extensibility and its implementation of

a generous amount of operations and algorithms, is that its source code is available for

its users to incorporate in their study of FLAT. Its biggest disadvantage however is that

its code does not follow the classic definition (the definition we base our solution on) as

closely as we desired for our project.

As a complement to the library, the FAdo team has also developed other tools to

enhance the FAdo user experience, namely GUItar[31] and I-LaSer[31]. GUItar is a vi-

sualization tool for various types of automata, its features include diagram drawing,

animation of algorithms, etc. I-LaSer is a system for answering questions pertaining to

regular languages.

As of this date, FAdo is available for download at their official website http://fado.

dcc.fc.up.pt/ as either a tar.gz file or as a pip installation.

4.3 Conclusion

It is interesting to note that, even though FLAT as been stabilized for some years, the

advent of these learning tools has introduced new interesting challenges for the field of

computation theory.

An observation one could draw from the analysis of the history of FLAT tools, is that

most of them were, in the early years, mostly textual, and as time passed, more graphics-

based tools were being made; a possible reason for this shift could be attributed simply to

the evolution of more powerful, easy to use frameworks and mechanisms that facilitated

the appearance of such tools.

Each tool referenced in chapter 4.2 has its own set of advantages and disadvantages

that seem to effectively complement each other. However, for this project we wanted to

devise an OCaml tool using the functional style as to try and produce code that would

follow the intended definitions as closely as possible, while simultaneously being easy to

understand by the future users of our tool.

Furthermore, while there already exists a great number of different tools for helping

in the teaching of FLAT, it is the belief of the community that the welcoming of further

tools with different interpretations and concepts will help complement already existing

ones and provide both student and teacher with often new functionalities to apply to

their learning and teaching respectively.
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5
Program Architecture

The program is organized as a set of three libraries, each presented as a coherent logical

unit, and will allow for the creation and usage of examples of FLAT mechanisms. It will

be accompanied by a collection of examples which we consider of interest to illustrate the

properties of their respective mechanisms, most of which are directly referenced in the

source material of the course. The examples consist of json files that the program will be

able to parse and interpret as FLAT mechanisms, allowing for a user to define their own

examples and exercises.

5.1 Overall program organization

The first library “OCamlFlat” consists of all the logic behind the manipulation of our ab-

stract concept models, this includes implementation of both their in-code representation

and their various operations.

The second library “OCamlFlatSupport” contains all support functions that are needed

for the first library, but whose logic is not directly related to the logic of the FLAT concepts

themselves. These include the functions for the parsing of regular expressions and CFGs.

By placing the referred functions in this second library instead of the first, we allow for a

better organization and readability of both libraries.

The third library “OCamlFlatTop” contains the top-level interface functions to be

used in the context of an OCaml interpreter.

The purpose of this organization was to facilitate in the understanding of the pro-

gram’s functionalities, as writing everything in the same library would clearly make the

code too convoluted, and thus less accessible to future users.
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5.2 Modules

In this project, we will need to implement various abstract concepts, each with their own

set of functions and parameters. It would go against our main goal of producing elegant

and easy to read declarative code, without a good organization of these concepts and their

properties, thus our code is divided into modules, where each module contains only the

logic directly pertaining to its associated abstract concept. The following architecture

allows for clear logical organization and future extensibility of our program.

5.2.1 Error

The Error module serves as a way of registering all errors that may be detected during

the validation of the models.

5.2.2 Util

The Util module contains all functions not directly related to any other module, but that

are needed in the rest of the program, such as various type conversions and file loading

functions. This eliminates the need of duplicated code and allows for an overall better

read of the other functions.

5.2.3 Set

The Set module contains all functions needed for the usage of sets in our program, as set

theory plays a vital role in all our FLAT mechanisms.

5.2.4 Json

The Json module contains all functions necessary to manipulate Json files in our program.

5.2.5 RegExpSyntax

The RegExpSyntax module is used to parse regular expressions. Since parsing is not

part of the concept itself, we separate these functions from those that directly pertain to

regular expressions.

5.2.6 CFGSyntax

The CFGSyntax module is used to parse CFGs. Like with regular expressions, we separate

the parsing functions from those directly pertaining to the concept itself.

5.2.7 Entity

The Entity module is used to represent every abstract concept we will manipulate in our

program. Various properties such as name and description, which are common in all
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our abstractions, are defined in this module, as such all the other modules pertaining to

specific concepts will thus inherit from this module.

5.2.8 Exercise

This module allows for the creation of exercises through the partial definition of lan-

guages. The user is given a description of a pretended language, as well as a set of words

that belong to said language, and a second set of words that do not belong to it. The

goal is for the user to try and define an example of a mechanism (depending on what the

exercise specifies) where the language it defines is the same as the language defined in

the exercises. The two sets of words can then be used to test if the example is correct. If

the exercise is defined properly, the example can be considered correct if all words of the

first set are accepted by the example, and if no word of the second set is accepted.

5.2.9 Model

The Model module inherits from Entity and is used to represent all FLAT mechanisms.

Every function that is common amongst all mechanisms is defined in this module.

5.2.10 FiniteAutomaton

The FiniteAutomaton module is used to define FA. All elements of an automaton, as well

as every function where we directly manipulate the mechanism itself, are defined and

implemented within this module.

5.2.11 RegularExpression

The RegularExpression module is used to define regular expressions. All elements of a

regular expression, as well as every function where we directly manipulate the mecha-

nism itself, are defined and implemented within this module.

5.2.12 ContextFreeGrammar

The ContextFreeGrammar module is used to define CFGs. All elements of a CFG, as well

as every function where we directly manipulate the mechanism itself, are defined and

implemented within this module.
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6
Implementation strategy

During the preparation phase of our project, before initiating the development phase,

there was an analysis on what would be the best implementation strategy for our project,

given our set of goals.

There would be various properties we wished for our end product to possess. The

most important aspect of our code would be for it to, whenever possible, be as legible,

intuitive and faithful to the formalisms adopted by the Computation Theory class, even

if it meant sacrificing some efficiency.

In this chapter, we aim to guide the reader through the though process that lead us to

the implementation strategy on which we eventually settled.

To do this, we will start by discussing the first approach we thought of, which com-

prised of using explicit depth-first and breath-first exploration as the basis of our strategy.

Then, after analysing the shortcomings of the previous approach, we will discuss the

strategy based on set and closure operations that we ultimately decided on using for our

project.

For both these strategies, we will use as an example the problem of testing the accep-

tance of a word in a FA. This will establish a commonality between the two approaches

that will allow the reader a better understanding on our analysis.

6.1 Initial strategy using depth and breath-first exploration

For some problems the most natural translation of its solution into functional code would

produce the desired outcomes and be very easy to understand. But there are other prob-

lems where the natural solution could enter an infinite cycle, and so we would need to

write less institutive code using special techniques.

The solution we found involve the usage of depth and breadth-first exploration. To
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better illustrate these concepts applied to our program, we must first demonstrate how

they can be used in a functional context. To do this, we will start by implementing a

simpler example than our FLAT problems, we will demonstrate depth and breadth-first

applied to a binary search tree algorithm.

6.1.1 Binary search tree example using depth-first

In OCaml, we can define a binary tree [32] using the following ADT:

1 Type α tree = Nil | Node of α * α tree * α tree

Listing 6.1: binary tree ADT

In the example below, belongs1 is a function that receives a value “val” and a binary

tree “tree”, and checks if there is a node in the “tree” whose value equals val. This function

was written using intuition and aiming for simplicity. Not surprisingly, in the end we

verify that the function implements a depth-first algorithm [33].

1 rec belongs1 val tree =

2 match tree with

3 Nil -> false

4 | Node(x,left,right) -> val = x || belongs1 val left || belongs1 val right

Listing 6.2: depth-first binary tree search

Notice how the function is declarative. What this code affirms is the following: (1) the

value cannot occur in an empty tree; (2) for the value to occur in a non-empty tree, either

it occurs at the root, or at the left sub-tree, or at the right sub-tree. If we wish to analyze

the operational effects of this function’s execution, we see that first we test if the value

occurs at the root; if not then we search for the value in all of the left sub-tree; only if the

value was not found until this point do search in the right tree. Thus, we show how the

function is depth-first.

6.1.2 Binary search tree example using breadth-first

The following example resolves the same problem as “belongs1” but now using a breadth-

first strategy. In breadth-first, the search works on the nodes of the tree at each horizontal

level at a time, starting on the root, only moving to the next level if the value is not found

in the previous level. The presented solution has a certain degree of artificiality because

it is necessary for a way of representing the notion of horizontal level. To represent each

horizontal level, we use a list of trees, and even in the first call we need to pass the original

tree inside a list.

1 rec belongs2 val Level =

2 match level with

3 [] -> false

32



6.1. INITIAL STRATEGY USING DEPTH AND BREATH-FIRST EXPLORATION

4 | Nil::ls -> belongs2 val ls

5 | Node(x,l,r)::ls -> x = val || belongs2 val (ls@[l,r])

Listing 6.3: breadth-first binary tree search

It is pertinent to consider three cases relative to the first argument: (1) if the list is

empty, certainly the value does not occur; (2) if the NIL tree is at the head of the list, that

tree can be ignored for not having any element; (3) if a non-empty tree is at the head of

the list, if the value occurs at the root of that first tree the value is considered found, if it

does not occur then it is necessary to check if it occurs in the rest of the list with the two

sub-trees added at the end.

Since in the third case the node’s successors are added to the end of the list instead of

the start, the function evaluates the tree in breadth-first.

Now that we introduced the concepts of depth-first and breadth-first in a functional

context, we can discuss how we initially envisioned to implement our program with this

strategy.

6.1.3 Deterministic Finite Automata accept example using depth-first

Before jumping to the main problem, we will need a function that, given a state, a symbol

and a set of transitions, will give us all the states for which we can transition to. Here is

the code of said function.

1 nextStates sy st t =

2 let n = filter (fun (a,b,c) -> st = a && sy = b) t in

3 map (fun (_,_,d) -> d) n

Listing 6.4: next states function

In the first solution we will attempt to use the definitions of the documentation as

straightforward as possible, and we reach the following function:

1 rec accept1 w st t sta =

2 match w with

3 [] -> isMember st sta

4 | x::xs -> let n = nextStates x st t in

5 exists (fun c -> accept1 xs c t sta) n

Listing 6.5: accept function

The function receives as arguments a word, a current state, a list of the transitions of

an automaton and the list of its accepted states. The first call passes the full word, the

initial state, the transitions and the accepted states. Notice that it has a similar structure

to the belongs1 function previously presented in chapter 2.

The function analyses a word which we pretend to verify. In the case of the empty

word, it is accepted by the automaton only if the current state is of acceptance. If the word
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displays the form x::xs, it is necessary to consider every state to where we can transition

with the symbol x and check if from any of those states the sub-word xs can be accepted.

This is a typical inductive form of reasoning. The high-order function exists deals with a

variable number of recursive calls and tests if any of those calls guarantee acceptance.

This implementation is depth-first because each call inside exists is evaluated until

de end. This function makes sense only for DFAs because otherwise the analysis could

become trapped in an unproductive path.

Note that to simplify we assumed that the automaton does not contain any empty

transitions.

6.1.4 Non-deterministic Finite Automata accept example using depth-first

The previous solution easily enters in infinite loops because the automaton can contain

loops. It is necessary to devise a sophisticated and less intuitive solution using breadth-

first.

The function receives the list of transitions and accepted states, but its first argument

is a list of pairs (state, word), as explained below. The initial call passes the pair (initial

state, word), and both transitions and accepted states lists.

Listing 6.6: accept2 function

1 rec accept2 cf t sta =

2 match cf with

3 [] -> false

4 | (st, [])::ls -> isMember st sta || acc ls t sta

5 | (st,x::xs)::ls -> let n = nextStates x st t in

6 let cfn = map(fun c -> (c,xs)) n in

7 accept2 (ls@cfn) t sta

The function has three branches, just as the function belongs2. The hardest part to

explain is the fact that the arguments w and st of the function accept1 now appear in the

form of a list of configurations which are ordered pairs containing a state and a word.

In reality, the function uses a breadth-first strategy to go through an implicit search tree

which may be infinite.

Each ramification of that implicit tree is determined by the state from which we want

to perform recognition and the word we want to recognize.

Thus, if the list of configurations is empty, we can then decide that the word is not

accepted. If the list is not empty and the first configuration of the list has an empty word,

then that word is only accepted if the state of the same configuration is of acceptance;

otherwise it is necessary to analyse the remaining configurations. If the list is not empty

and the first configuration of the list has a non-empty word x::xs, it is necessary to consider

all the states to where we can transition using the symbol x and create new configurations

with the sub-word xs to be analysed in the future.
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This is breadth-first because when consuming the symbol x, we add new configura-

tions to the end of the list (as expressed by ls@cfn), thus assuring that we first analyse the

configurations that are waiting longer.

If the word belongs to the language accepted by the automata, then the function will

eventually terminate and produce the result true. If the word does not belong to the lan-

guage recognized by the automata, then the function can terminate with the result false,

or it may never terminate, originating uncertainty over the real result. We are present

before a semi-decidable algorithm. If we want to deal the problem of non-termination,

we have to limit in some way the depth of the search over the implicit tree where the

function accept2 traverses.

6.2 Finite Automata accept example using set and closure

operations

As seen in the previous example, if we were to use our initial strategy, we would also

have to implement a mechanism for detection of duplicate configurations. This way, we

could ascertain the termination of our algorithms with greater confidence, as the identifi-

cation of said duplicates would allow us to not explore the respective configuration, thus

avoiding an infinite loop without compromising our results.

However, while this approach would theoretically lead to correct results, it did not

follow the adopted formalisms as closely as we desired.

Upon realising this, we decided to re-analyse our source material, with the intention

of attempting to conceive a different strategy that would better cater to our goals.

The resulting solution to our accept problem was an algorithm that, instead of config-

urations, would receive a set of current states sts and a word w. The idea would that be

that, by traversing the set of transitions of the automaton according to w, we could obtain

the set of states reachable from any state in sts through the word w. For each symbol of w,

the transition would be effectuated on all states of the set before proceeding to the next

symbol, unlike our depth-first approach which would apply the transitions through w

one state at a time.

The following chapter will discuss in detail the various FLAT algorithms and their

implementation. Since the accept problem is included in that discussion, we decided to

omit certain implementation details in our following analysis.

Listing 6.7: apply transitions function

1 applyTransitions sts sy t =

2 flatMap (fun st -> nextStates st sy t) sts

The applyTransitions function produces, for every state in sts, the set of states reach-

able from the state st through the symbol sy according to the set of transitions t.
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Listing 6.8: inductive accept function

1 rec acceptX sts w t =

2 match w with

3 [] -> (inter sts acceptStates) <> empty

4 |x::xs -> let nextSts = applyTransitions sts x t in

5 nextSts <> empty && acceptX nextSts xs t

The acceptX function uses the logic expressed in applyTransitions to produce the set

of states reachable from any state in a set sts through a word w according to a transition

set t. If the resulting set contains at least one acceptance state, then we can assert that w

is accepted by the automaton in question. This is thus a relatively direct translation of

our previously defined solution.

For automaton without ε-transitions, this solution thus far is enough to give us con-

fidence in the termination of our algorithm, due to the decrease of the argument w with

every consecutive recursive call.

Notice however that, if the automaton were to have ε-transitions, the above solution

can produce incorrect results.

To remedy this, and following the logic of our strategy so far, we can implement

the ε-closure operation, which given a state st generates the set of states reachable from

st by any number of ε-transitions. This can be integrated in our solution with a slight

modification to the applyTransitions function.

Listing 6.9: closeEmpty function

1 let rec closeEmpty sts t =

2 let ns = flatMap (fun st -> nextEpsilon1 st t) sts in

3 if (subset ns sts) then ns

4 else closeEmpty (union sts ns) t

5 in

6 applyTransitions sts sy t =

7 let nsts = flatMap (fun st -> nextStates st sy t) sts in

8 union nsts (closeEmpty nsts t)

The closeEmpty function is an implementation of ε-closure applied to multiple states

at once. In this case, it is applied to nsts, the set of all states reachable by any state in sts

through a symbol sy.

Notice that the approach we used to implement the closeEmpty function was to obtain

all neighbours of any state in sts through an ε-transitions and recursively replicate the

procedure until no new state is generated, thus increasing our confidence in its termina-

tion.

With all of this, we have successfully implemented a solution whose strategy we feel

can be used to correctly implement our desired FLAT algorithms as closely to our goals

as possible.
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7
Implementation discussion

As stated previously, the main properties we wish for our program, is for its code to be as

elegant, readable and as close to the adopted formalisms as possible. It was with this goal

in mind that we chose to implement all our operations and algorithms using the strategy

previously discussed in this document.

In this chapter, we will present for all the chosen main algorithms, their definition, our

implementation, and how we tested them for correctness evaluation. We will approach

them by mechanism.

7.1 Finite Automaton

According to the source material of the courses, we define a finite automaton as a quintu-

plet A = (S,Σ, s,δ,F) , where S is the set of states, Σ is the set of symbols recognized by the

automaton (its alphabet), s ∈ S is the initial state, δ ∈ S ×Σ→ S is the transition function,

and F ⊆ S is the set of acceptance states.

7.1.1 Accept

According to the source material of the course, we can formally define when a word

is accepted by an automaton as {w ∈ Σ∗|∃t(δ∗(s,w) = t ∧ t ∈ F) }. Informally, a word

is considered accepted by an automaton if there exists a chain of transitions for which,

given the initial state and the word to be tested, the resulting set of reached states contains

at least one state belonging to the set of acceptance states.

For example, the automaton in Figure 7.1 accepts all words starting with an a followed

by a n number of b’s and all words starting with a b followed by a n number of a’s, where

n ∈ N . As an example, for the word abb, starting on state 1, we have the following
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Figure 7.1: Automaton for accept example

transition chain: (1, a) = 2; (2,b) = 2; (2,b) = 2. Since the word abb leads to the state 2,

and since 2 is an acceptance state, we prove that the automaton accepts the word abb.

By interpreting the formalism for the acceptance of a word as a mechanical procedure,

we could say that it describes a semi-algorithm. To find if a word w is accepted by an

automaton, we would have to explore all paths setting out from the initial state, disregard-

ing all states that were not reachable through any sub-word of w, until we have used the

entirety ofw, and then test if the last reached state set contains at least an acceptance state.

While it may seem that this process is guaranteed to terminate due to the reduction of

the argument (the word w) with each traversed transition, when we introduce transitions

with ε, we allow for the possibility of infinite loops while exploring these transitions, as ε

allows us to traverse states without decreasing w, which can cause non-termination when

the automaton does not actually accept w.

As an example, given an automaton with two states, each with ε-transitions to each

other, when testing for any word, the algorithm would loop endlessly between the two

states in hopes of reaching a new unexplored state that could hypothetically lead to the

acceptance of the word, not realising it had already explored both.

Our solution for this problem was to use the concept of ε-closure and follow, in a

single step, all the ε-transitions we come across. When exploring the paths leading from

any state st through a symbol sy ofw, if we first apply ε-closure to st, then simultaneously

explore all resulting states for transitions with sy and to those reached states also apply

ε-closure, we can then ignore ε-transitions when exploring states without affecting the

correctness of our result. Finally, by being able to circumvent the ε-transitions, we can

guarantee that w will always decrease for each step of our algorithm, thus guaranteeing

termination.

This functionality was implemented as a method that receives as arguments a word

(which in our program is a list of characters) and tests its acceptance. Before explaining

the main code, we first must clarify the following functions.

Listing 7.1: ApplyTransitions function
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1 let applyTransitions sts sy t =

2 let nsts = flatMap (fun st -> nextStates st sy t) sts in

3 union nsts (closeEmpty nsts t)

The applyT ransitions function receives a set of states sts, a symbol sy and a set of

transitions t; its result is the set of all states reached by any state of sts through, firstly,

exactly one sy-transition; after that, possibly, multiple ε-transitions.

The nextStates function receives a state st, a symbol sy and a set of transitions t; its

result is the set of all states reachable from st through transitions of t with symbol sy.

The closeEmpty function receives a set of states nsts and a set of transitions t; its result

is the set of all states reached by any state of nsts through ε-transitions (we represent

these transitions with the help of a special “empty symbol”). This is our implementation

of ε-closure applied to multiple states; we will use ε-closure repeatedly throughout the

other automata operations.

Listing 7.2: Accept function

1 let rec acceptX sts w t =

2 match w with

3 [] -> (inter sts acceptStates) <> empty

4 |x::xs -> let nextSts = applyTransitions sts x t in

5 nextSts <> empty && acceptX nextSts xs t

6 in

7

8 method accept (w: word): bool =

9 let i = closeEmpty (Set[initialState]) transitions in

10 acceptX i w transitions

The central function is the acceptX function. It receives as arguments the current set

of states sts, the word to be tested w and the set of the transitions t. Its result is true if

the word leads to a state of acceptance and false otherwise. The code is quite clear in this

function. For its base case, the empty word argument means that the result is only true if

sts contains at least one state of acceptance. When w is a non-empty word, the result is

true if, for the first symbol, the set of reached states can transition through the rest of the

word to a state of acceptance. Note that, given the way this function was implemented, for

the method to give correct results, the first call of the acceptX function needs to receive

as its first argument, the result of the closeEmpty function for the initial state.

To better illustrate our implementation, for the automaton in Figure 7.2, if we were to

test the acceptance of the word a, it would return as true. The reason is that for state 1, we

obtain its ε-closure which results in the set of states 1, 2 and 4; since there is a transition

through a from state 2 to the acceptance state 3, we thus prove that the automaton accepts

word a. Notice how the ε-transition from state 1 to itself, which could lead to an infinite

loop if the accept algorithm were to be implemented with a naïve depth-first strategy, does

not present itself as an obstacle to the correctness and termination of our implemented

strategy, due to how the ε-closure operates.
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Figure 7.2: Automaton for second accept example

As previously explained, the termination of this algorithm is guaranteed by the de-

crease of our argument (the word) with each consecutive call of our recursive function,

due to our use of the closure function applied to sets of states. For extra reassurance,

we developed several unit tests. We verified the results of various automata for certain

properties such as non-determinism, transitions through an empty symbol, transitions

from and to the same state and cycles (when there exist two states that are both reachable

from one another).

7.1.2 Generate

According to the source material of the course, the formal definition of the language of

an automaton is the set of all accepted words, defined by {w ∈ Σ∗|∃t(δ∗(s,w) = t ∧ t ∈ F) }.
Informally, the language is the set of all words w where there is at least one transition

chain using w to reach an acceptance state from the initial state.

Figure 7.3: Automaton for generate example

As an example, the language of the automaton in Figure 7.3 is the set containing all

words with an odd number of a’s. Notice how the language is infinite, and thus generating

the set of all words of the language would naturally never terminate.

To combat this, we needed to establish an artificial termination point, which in our

implementation was to impose a maximum length for the generated words.

The generate operation produces all words belonging to the language recognized by

the automaton up to a specified size.

Listing 7.3: Generate function
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1 let rec gen n st trns accSts =

2 let clsEmpty = (closeEmpty (Set [st]) trns) in

3 if n = 0 then

4 if hasAcceptState clsEmpty accSts then Set [[]] else emptySet

5 else

6 let trnsSet = Set.flatMap (fun st -> nxtNonEmptyTrns st trns ) clsEmpty in

7 let genX sy st l = addSyToRWords sy (gen (l-1) st trns accSts) in

8 let lenOneOrMore = flatMap (fun (_,sy,st) -> genX sy st n) trnsSet in

9 let lenZero = if hasAcceptState clsEmpty accSts then Set.make [[]] else Set.empty in

10 Set.union lenOneOrMore lenZero

11 in

12

13 method generate (length: int): words =

14 gen length initialState transitions acceptStates

The generate method receives as argument the maximum length for all generated

words and produces the set off all words recognized by the automaton whose length does

not exceed that length.

The main function is the gen function that receives an integer n, a state st, the set

of transitions trns and the set of acceptance states accSts, it returns the set of generated

words. Our base case is if n is zero, we consider the result to be the empty word, only if the

set of states obtained from the ε-closure of st contains a state of acceptance, otherwise the

result is the empty set. If n is greater than zero, for ε-closure of st the function produces

all neighbour states, and concatenates each symbol (from the transitions that produced

the neighbour states) to the result of the gen function applied to the obtained states, all

while accumulating the remaining words accepted by the automaton. The result of the

gen function is thus the set of all words recognized by the automaton with length not

greater than the given maximum.

Again, if we observe the automaton in Figure 7.3, the result of our generate method

for n = 3 for example, would be the set of words a and aaa.

The termination of this algorithm is guaranteed by the decrease of the argument n

with each consecutive recursive call of the gen function.

7.1.3 IsDeterministic

According to the source material of the course, a non-deterministic finite automaton

(NFA) can be defined in the same way as a deterministic one, with the exception of its

transition set that becomes δ ∈ S × (Σ∪ ε) → P (S) where P (S) is the power set of the set

of states of the automaton. What is introduced are ε-transitions and multiple transitions

for the symbol coming from the same state.

The above formalism defines the syntactic concept of what is a NFA, note however

that by the definition, a DFA will always be a NFA (all DFAs are NFAs but not all NFAs

are DFAs). What we want however, is to verify if the automaton, be it a DFA or an NFA,

has a deterministic behaviour.
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(a) NFA with deterministic behaviour (b) NFA with non-deterministic behaviour

Figure 7.4: Comparison between deterministic and non-deterministic NFA

To better illustrate the difference between syntactic and semantic determinism, lets

observe the automata in Figure 7.4. While both can be classified as an NFA, due to

both having a transition involving ε, we can see that the automaton in Subfigure 7.4a

is deterministic, while the automaton in Subfigure 7.4b is non-deterministic. This is

because the transition function of the automaton in 7.4a affirms that while state 1 can

transition to state 2 through ε, it will only transition to one state for either symbols a

or b, respectively states 3 and 2. If we then observe the automaton in 7.4b, it is non-

deterministic not because of its ε-transition, but due to the fact that, unlike in 7.4a, its

state 1 can transition to either states 2 or 3 through exactly the same symbol a.

To correctly infer if a given automaton displays deterministic or non-deterministic

behaviour, we must resort to an analysis of the semantic concept behind the definition of

non-determinism.

Since the definition of a deterministic automaton states that its set of transitions

describes a partial function, that is, for every pair (state, symbol) of a deterministic au-

tomaton must correspond no more than one state, then we can infer that an automaton is

non-deterministic when its transition set does not describe a function.

This means that, by verifying if there exists a state from which more than one state can

be reached through the same symbol of its alphabet, we can deduce that the automaton

is non-deterministic. If no such state exists, it is deterministic.

This can be achieved using the following algorithm: For every state n, obtain the set

s = ε-closure(n) and test if there are two or more transitions from any state of s with the

same symbol.

If there is at least one state of the automaton for which the previous predicate wields

true, then the automaton is non-deterministic, otherwise it is deterministic.

Listing 7.4: IsDeterministic function

1 let isDeter st ts =

2 let allSts = closeEmpty (Set[st]) ts in

3 let allTs = flatMap (fun st -> trnsFromSt st ts) allSts in
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4 let sys = transitionGetSymbol allTs in

5 size allTs = size sys

6 in

7

8 method isDeterministic: bool =

9 exists (fun st -> not (isDeter st transitions)) allStates

If we were to apply our algorithm to the automata in Figure 7.4, the results would

be that the automaton in 7.4b is deterministic while the one in 7.4a is non-deterministic.

Since for both automata the algorithm applies the ε-closure to state 1, states 1 and 2 are

treated as the same state when analysing if the transition set describes a function or a

relation. Since in 7.4b each pair (state, symbol) has only one output state in its transition

function, the automaton is deterministic, while in 7.4a the transition relation states that

the pair ( 1, a) can produce as output states 2 and 3, thus making the automaton in 7.4a

non-deterministic.

Our implementation is thus a relatively direct translation of the defined algorithm,

guaranteeing termination due to the non-recursive nature of our functions and our usage

of library functions over sets that we know to always terminate.

7.1.4 Determinization

The chosen algorithm for conversion of non-deterministic to deterministic finite automa-

ton is the one used in the course, the “Rabin-Scott powerset construction”[34]. According

to the source material of the course, the formal definition of this algorithm is as follows:

given the automatonA = {SA,ΣA,sA,∆A,FA}we obtain the DFAD = {SA,ΣD,sD,δD,FD}
in the following way:

• SD = ℘(SA) .

• ΣD = ΣA

• sD = closeempty( {sA})
• δD = {(s,a) → s′ ∈ SD ×ΣD × SD |s = closeempty(move( {s}, a) ) }
• FD = {s ∈ SD |s∩FA = ∅}
Where closeempty ⊆ ℘(S) → ℘(S) , closeempty = {U → V |V = {s|∃t.t ∈ U ∧ ( t,ε, s) ∈

∆∗A}} and move ⊆ ℘(S) ×Σ→ ℘(S) , move = {U × a→ V |V = {s|∃t.t ∈U ∧ ( t,a, s) ∈ ∆A}}.
Informally, the algorithm explores all non-deterministic transitions (either ε-transitions

or transition starting on the same state for different symbols) and replaces individual

states for the set of states that, along with adjusting the transition set and the acceptance

states accordingly, preserves the language of the automaton while simultaneously turning

it deterministic.

As an example, in Figure 7.5 we have the NFA in Figure 7.5a and its equivalent

DFA in 7.5b. In 7.5b, the state “2,3,4” originates from exploring all non-deterministic

transitions starting from state 1 and acknowledging that they can be all replaced by a

single transition through the symbol 1 to a state representative of states 2, 3 and 4 (the
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(a) Before determinization (b) After determinization

Figure 7.5: Example of determinization

states reachable from all non-deterministic transitions starting in state 1). Notice how

the language accepted by each of the automata in Figure 7.5 is identical.

Listing 7.5: Deter function

1 let rec deter stsD rD trnsD alph =

2 let nxtTs = flatMap (fun stSet -> newTrns stSet ) rD in

3 let nxtRs = map (fun (_,_,z) -> z) nxtTs in

4 let newRs = filter (fun r ->

5 not (belongs r stsD)) nxtRs in

6 if newRs = emptySet then (union trnsD nxtTs) else

7 deter (union newRs stsD) newRs (union trnsD nxtTs) alph

The deter function closely follows the fourth rule of the formal definition, as it pro-

duces the set of transitions for the new deterministic automaton. This is the main function

of our implementation of the determinization algorithm; the rest of the deterministic au-

tomaton (its new states, initial state and acceptance states) is extrapolated through a

logical analysis of the resulting transitions. We believe in the termination of the algo-

rithm due to the implementation being a relatively direct translation of the presented

formal definition.

We believe in the termination of the algorithm due to the implementation being a

relatively direct translation of the presented formal definition.

7.1.5 Minimization

The minimization algorithm makes use of various concepts whose formal definitions are

as follows:

A state t ∈ S is considered accessible when there is a word w ∈ Σ such that δ∗(s,w) = t;

that is, if it there exists a chain of transitions to t from the initial state.

A state t ∈ S is considered productive when there is a word w ∈ Σ∗ such that δ∗( t,w) ∈
F; that is, if there exists a chain of transitions from t to an acceptance state.
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A state is considered useful if it is simultaneously accessible and productive.

Figure 7.6: Automaton with two non-useful states

As an example, if we observe the automaton in 7.6, we see that state 2 is not considered

productive, state 4 is not considered accessible and both states 2 and 4 are not considered

useful. Only states 1, 3 and 4 are considered useful, as they are both accessible and

productive.

Given a pair of states a and b, they are considered equivalent when for any w ∈
Σ∗,δ∗(a,w) ∈ F only if δ∗(v,w) ∈ F. The intuition is that merging states a and b, as well as

their transitions, do not modify the language identified by their automaton.

Two states are considered distinguishable if they are not equivalent.

The minimization algorithm is applied to deterministic automaton, it consists of:

• removing all useless states;

• identifying equivalent states through discovering the set of all pairs of distinguished

states ;

• fusing equivalent states and adjusting the transitions accordingly.

According to the source material of the course, considering the automaton D =

{S,Σ,δ, s,F} with two distinct equivalent states u and v where u , s, we could define

the result of the minimization of D as the automaton D ′ = {S ′ ,Σ,δ′ , s,F′} where:

• S ′ = S {u} • ∆′ ⊆ S ′ ×Σ→ S ′, with o δ′(r,a) = v, if δ(r,a) = u o δ′(r,a) = δ(r,a) , if

δ(r,a) ∈ S ′ o δ′(r,a) =⊥, if δ(r,a) =⊥ • F′ = F {u}
What the previous definition intuitively means is that, by removing either states u or

v and adjusting transitions accordingly, we successfully minimize the automaton.

The complex part of this operation lies on finding the set of all pairs of distinguished

states. We can define the algorithm for finding distinguishable states as Dist = APED( I∪
A) , where:

• I = {(u,v) ∈ S × S |u ∈ F ∧ v < F} ∪ {(u,v) ∈ S × S |∃a.δ(u,a) ∈ S ∧ δ(v,a) =⊥}
• A = {(u,v) ∈ S × S |(u,v) < I ∧∃a.(δ(u,a) ,δ(v,a) ) ∈ I}
• APED(P ,Q) = P ∪Q , if P ∪Q = S × S ∨Q = ∅; APED(P ,Q) = APED(P ∪Q,Q∪R)

otherwise, where R = {(u,v) ∈ S × S |(u,v) < P ∧∃a.(δ(u,a) ,δ(v,a) ) ∈Q}
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The general idea behind the algorithm is as follows. We first start by defining the

initial arguments. I is the union of the set of all pairs of states where one is of acceptance

and the other is not, with the set of all pairs where one state has a transition for a given

symbol and the other state does not. A is the set of all state pairs (a,b) not belonging to I ,

where there exists a symbol that transitions (a,b) to a pair (u,v) belonging to I .

APED starts with Dist = I ∪A; it is the iterative process of adding to Dist the rest of

all pairs of distinguishable states by adding the pairs (a,b) not belonging to Dist, where

there exists a symbol that transitions (a,b) to a pair (u,v) belonging to Dist. The process

terminates when no new pair is added to Dist.

(a) Before minimization (b) After minimization

Figure 7.7: Example of automata minimization

As an example, by analysing the minimization of the automaton in Subfigure 7.7a

resulting in the automaton in Subfigure 7.7b, we can see that by applying the algorithm

for distinguishable state identification, the results would show that states 2 and 3 are

equivalent, and thus the minimization operation eliminates one of them (in this case state

3), modifying the transition function in order to maintain the language recognized by the

automaton.

Notice that the definition of the minimization algorithm terminates by design. As

such, since our implementation of the minimization operation is a relatively direct trans-

lation of the aforementioned definitions, we believe in the termination of our algorithm,

as well as its correctness, assuming the formal definition of the algorithm also guarantees

correctness.

7.1.6 To Regular Expression

The implemented algorithm for conversion of deterministic finite automata into regular

expressions was the transitive closure method[34].

According to the source material of the course, given the expression Rij denoting

the set of words that lead from state i to state j, we can define the following recursive

function:

R0
ij =


a if i , j ∧ δ( i,a) = j

a+ ε if i = j ∧ δ( i,a) = j

∅ if otherwise

(7.1)
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Rnij = Rn−1
ij +Rn−1

ik (Rn−1
kk )∗Rn−1

kj (7.2)

In this function, the maximum value of n is equal to the number of the states of the

automaton, thus guaranteeing termination of the algorithm.

The regular expression resulting from the conversion can be obtained by summing all

Rsf where s is the initial state and f is a state of acceptance.

Figure 7.8: Automaton for example of conversion to regular expression

As an example, by strictly applying our algorithm to the automaton in Figure 7.8,

we would get in return a very convoluted regular expression, that nonetheless would be

equal to the regular expression 1∗0(0 + 1) ∗. Naturally, without minimizing the output,

the resulting regular expression can wield to be fairly complex, redundant and long.

Our implementation of this algorithm is a relatively direct translation of the definition

presented, so we believe in the termination and correctness of our method. Of course the

code was thoroughly checked using unit tests.

7.2 Regular expression

According to the source material, given the alphabet Σ, we can define a regular expression

as the set RegExp(Σ) where:

• ∅ ∈ RegExp(Σ)

• ε ∈ RegExp(Σ)

• a ∈ Σ⇒ a ∈ RegExp(Σ)

• E ∈ RegExp(Σ) ∧F ∈ RegExp(Σ) ⇒ (EF) ∈ RegExp(Σ)

• E ∈ RegExp(Σ) ∧F ∈ RegExp(Σ) ⇒ (E +F) ∈ RegExp(Σ)

• E ∈ RegExp(Σ) ⇒ (E∗) ∈ RegExp(Σ)

7.2.1 Accept

The easiest and most efficient way to test if a given word is accepted by a regular expres-

sion would be to convert the regular expression to its equivalent automaton and then test

the word. This is the traditional approach, used by real-world tools such as Lex of Linux,

for example. Furthermore, this approach is available in our system, anyway.
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However, given our main goal of following the course as closely as possible, we also

provide a relatively direct implementation of the definition.

To define said algorithm, we must first start with its base cases. According to the

source material of the course, for a word w and a regular expression Re over the alphabet

Σ:

• Re = ∅⇒ w < L(Re)

• Re = ε∧w ∈ L(Re) ⇒ w = ε

• Re = a ∈ Σ∧w ∈ L(Re) ⇒ w = a

• Re = E1E2∧w ∈ L(Re) ⇒ w = w1w2∧w1 ∈ L(E1) ∧w2 ∈ L(E2)

• Re = E1 +E2∧w ∈ L(Re) ⇒ w ∈ L(E1) ∨w ∈ L(E2)

• Re = E∗ ∧w ∈ L(Re) ⇒ w ∈ Ln(F) ∧n ∈N
Intuitively, the above formalism specifies the following cases:

If the regular expression Re is empty, then its language is also empty, thus no word

can belong to its language; if Re is ε, then the empty word belongs to its language; if Re is

a symbol a of its alphabet, then the word a belongs to its language; if Re is the sequence

of two regular expressions E1 and E2, and w belongs to language of Re, then there is a

decomposition w1w2 of w, where w1 belongs to the language of E1 and w2 belongs to

the language of E2; if Re is the alternation of expressions E1 and E2, and if w belongs to

the language of Re, then w belongs to either the language of E1, E2 or both; if Re is the

Kleene star of expression E, and w belongs to the language of Re, then there is a word,

formed by concatenating n times arbitrary words of F, that is equal to w.

By analysing the above definition, we can identify two obstacles to our algorithm.

The first obstacle is the implicit non-determinism of finding the correct decomposition

of a word w that justifies w being accepted by the sequence of two regular expressions.

The second obstacle lies in the definition for the acceptance of a word when the regular

expression involves the Kleene star, as the definition does not describe either an algorithm

or a semi-algorithm, which complicates our implementation of said case.

The solution for our first problem was simple, we simply obtain all possible decom-

positions in two parts of our given word and test if any of them justify that w is accepted

by the regular expression. This brute-force approach is a consequence of following the

direct definition.

For example, if we were to test if the wordw = 01 is accepted by the regular expression

r = 01, we would decompose w in the set of pairs ("ε","01"), ("0","1") and ("01", "ε"). Since

r is the sequence of regular expressions r0 = 0 and r1 = 1, we can deduce that 0 ∈ L(r0)

and 1 ∈ L(r1) , and so the second pair of the decomposition of w proves that the word is

accepted by r.

The solution to our second problem starts by acknowledging that the regular expres-

sion e∗ can be rewritten as ε+ ee∗; so, we will try to reduce the e∗ case to the concatenation

case.

We can then develop the following algorithm: Given a word w and a regular expres-

sion e∗, w is accepted by e∗ when w = ε or when there exists a decomposition w1w2 of w
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for which w1 is accepted by e and w2 is accepted by e∗, with this last case being recursive.

As an example, if we take the word w = “0101” and the regular expression r = (01) ∗,

our algorithm would find that r can be rewritten as r2 = ε + 01r. Since w can be decom-

posed as (“01”,”01”), we can see that for r2 we have that 01∈ L(01) and “01”∈ L(( (01) ∗) .

Then, for “01”∈ L( (01) ∗) , through the decomposition (“01”,” ε”) of “01”, we would see

that “01” ∈ L( (01) ∗) is true because of “01”∈ L(01) and “ε”∈ L( (01) ∗) . Thus, the algo-

rithm would indicate that the word w would be accepted by r.

Listing 7.6: accept function

1 let rec acc rep w =

2 match rep with

3 | Plus(l, r) -> (acc l w) || (acc r w)

4 | Seq(l, r) -> let wpl = partition w in

5 exists (fun (wp1,wp2) ->

6 (acc l wp1) && (acc r wp2)) wpl

7 | Star(re) -> w = [] ||

8 (let wpl = remove ([],w) (partition w) in

9 exists (fun (wp1,wp2) ->

10 (acc re wp1) && (acc (Star re) wp2)) wpl)

11 | Symb(c) -> w = [c]

12 | Empty -> w = []

13 | Zero -> false

14 in

15

16 method accept (w: word): bool =

17 acc regExpression w

The acc function is a relatively direct translation of the accept algorithm as we de-

scribed in this section. Notice however that for the case of the Kleene star, when obtaining

the set of all partitions of w to test its acceptance, we discard the particular decompo-

sition (ε,w) . This is because when testing (ε,w) , we are passing the unchanged w as

the argument of the recursive call; since the argument w does not decrease, we cannot

ascertain termination for our function.

Since the set of decompositions of w already contains the particular decomposition

(w,ε) , note with ε in the second half, we can discard the problematic case (ε,w) because

the regular expression ee∗ is equivalent to e∗e and because the two decompositions (ε,w) ,

(w,ε) represent the same word.

We thus believe in the termination of our algorithm due to the decrease of the ar-

gument w with each successive recursive call, as well as the realisation of various unit

tests.

7.2.2 Generate

According to the source material of the course, given a regular expression E ∈ RegExp(Σ) ,

we can formally define the language L(E) as follows:
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• L(∅) = ∅

• L(ε) = {ε}
• a ∈ Σ⇒ L(a) = {a}
• L(E) = LE ∧L(F) = LF⇒ L(EF) = LELF

• L(E) = LE ∧L(F) = LF⇒ L(E +F) = LE ∪LF
• L(E) = LE⇒ L(E∗) = (LE) ∗

Intuitively, this states that:

The language of an empty expression is empty; the language of the expression ε is

the set containing only the empty word ε; the language of the expression a is the set

containing only the word a; the language of the sequence of expressions E and F are the

set of words resulting from concatenating each word of L(E) with each word of L(F) ; the

language of the alternation of the expressions E and F is the set containing all words of

L(E) and L(F) ; the language of the Kleene star of expression E is the set of word ε and all

words formed through concatenating words of L(E) a finite number of times.

Notice that this formalism explicitly describes a semi-algorithm. The reason is that it

guarantees termination for all cases except for the Kleene star.

Our solution is to limit the length of the generated words by passing a maximum size

as the argument of our function, this way we guarantee termination for the case of the

Kleene star operation.

Listing 7.7: Generate function

1 let rec gen rep ln =

2 match rep with

3 |Plus(l, r) -> Set.union (lang l ln) (lang r ln)

4 |Seq(l, r) -> let left = lang l ln in

5 let rigth w = lang r (ln - (length w)) in

6 let conc w = concatAll w (rigth w) in

7 flatMap (fun lw -> (conc lw)) left

8 | Star r -> let exp = lang r ln in

9 star exp ln

10 | Symb(c) -> if ln > 0 then Set[c] else emptySet

11 | Empty -> Set[[]]

12 | Zero -> emptySet

13 in

14

15 method generate (length: int): words =

16 gen regExpression length

The generate method is a relatively direct implementation of the presented formalisms,

with the incorporation of our solution in the form of controlling the lengths of our gener-

ated words.

As an example, if we were to apply our algorithm to the regular expression r = 0 + 1∗

for the maximum size n = 3, the resulting set of words would be “ε “, “0”, “1”, “11” and

“111”.
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We thus believe in the termination of our algorithm since we limit the Kleene star

operation to stop when it could only produce words which would exceed the imposed

limit.

7.2.3 To Finite Automaton

According to the source material of the course, given a regular expression E, we can

formally define the compile(E) function for conversion of E into a finite automaton A =

(S,Σ, s,δ,F) as follows:

• Compile(∅) = {{1},∅,1,∅,∅}
• Compile(ε) = {{1},∅,1,∅, {1}}
• Compile(a) = {{1,2}, {a},1, {(1, a) → 2}, {2}}
• Compile(EF) = {SE ∪ SF, {ε} ∪ΣE ∪ΣF,sE,δε∪ δE ∪ δF,FF} where δε = {(f E,ε) →

sF|f E ∈ FE} and SE ∩ SF = ∅

• Compile(E + F) = {{i} ∪ SE ∪ SF,ΣE ∪ΣF, i,∆ε∪∆E ∪∆F,FE ∪ FF} where ( i < SE ∪
SF) ∧ (SE ∩ SF = ∅) and ∆ε = {( i,ε, sE) , ( i,ε, sF) }

•Compile(E∗) = {{i}∪SE,ΣE, i,∆ε∪∆E, {i}}when i < SE and∆ε = {( i,ε, sE) }∪{(f ,ε, i) |f ∈
SF}

Intuitively, this states that:

The empty regular expression can be converted into the finite automaton with only

one initial state and no transitions nor acceptance states; the ε regular expression can

be converted into the finite automaton with no transitions and only one state 1 that is

both the initial and an acceptance state; the regular expression consisting only of one

symbol a can be converted into the finite automaton with two states 1 and 2, where 1 is

the initial state and 2 is the acceptance state, and the transition (1, a) → 2; the regular

expression consisting of the sequence of two regular expressions E and F can be converted

into the automaton with all states and transitions of E and F, where its initial state is the

initial state of E, its acceptance states are the acceptance states of F, and that foreach

acceptance state of E has a ε-transition to the initial state of F; the regular expression

consisting of the alternation of E and F can be converted into the automaton with all

states, acceptance states and transitions of E and F, whose new initial state is a state i

and with two ε-transitions from i to the initial states of E and F; the regular expression

consisting of the Kleene star of E can be converted into the automaton with all states

and transitions of E but whose initial state and single acceptance state are now the state

i, with a ε-transition from i to the initial state of E and with a ε-transition from each

acceptance state of E to the state i.

For example, the finite automata in figures 7.9a, 7.9b and 7.9c are the result of apply-

ing the compile function to regular expressions r1 = ab, r2 = a+b and r3 = a∗,respectively.

The defined formalism essentially describes an algorithm, which naturally guaran-

tees termination. As such, our implementation of the regular expression to automaton

conversion is a relatively direct translation of the defined algorithm.
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(a) converted from "ab" (b) converted from "a+b"

(c) converted from "a*"

Figure 7.9: Automata for conversion from regular expression example

7.2.4 To regular grammar

The conversion of regular expressions to regular grammars is an algorithm that is not

discussed in the materials of the course, nevertheless we decided that it would be of

interest to implement it in our program. The formalisms we based our solution on can be

found in the book “introdução à teoria da computação” by Cristina Sernadas[35].

We can formally define the function compile(E) for conversion of a regular expression

E to the regular grammar G = {V ,T ,P ,S}, as follows:

First, we define our base cases.

• Compile(∅) = {{A,B},∅, {A→ B,B→ A},A}
• Compile(ε) = {{A},∅, {A→ ε},A}
• Compile(a) = {{A}, {a}, {A→ a},A}
Intuitively, this states that:

The empty regular expression can be converted to a regular grammar with no alphabet;

the ε regular expression can be converted into the regular grammar with an initial variable

A and with a single rule (A→ ε) ; the regular expression consisting of a single symbol

a can be converted into the regular grammar with an initial variable A, the alphabet

consisting only of a and the rule (A→ a) .

Then, given two regular expressions E and F, for compile(E) = {V 1,T 1, P 1,S1} and
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compile(F) = {V 2,T 2, P 2,S2}, we can define the remaining cases.

• Compile(EF) = {V 1∪V 2,T 1∪ T 2, P s,S1} where P s = {A→ a : A→ a < T 1, a < ε} ∪
{A→ aS2 : A→ a ∈ P 1, a ∈ T 1} ∪ {A→ a : A→ a ∈ P 2} ∪ {A→ a : S2→ a ∈ P 2,A→ ε ∈ P 1}

• Compile(E+F) = {(V 1∪V 2∪S) ˘{S1,S2},T 1∪T 2, P 1∪P 2∪P s,S} where P s = {S− >
S1} ∪ {S→ S2}

• Compile(E∗) = {V 1,T 1, P s,S1} where P s = {A→ a : A→ a ∈ P 1} ∪ {A→ aS : A→ a ∈
P 1, a ∈ T 1} ∪ {S→ ε} ∪ {A→ a : A→ ε ∈ P 1,S1→ a ∈ P 1}

Intuitively, for G1 = compile(E) and G2 = compile(F) , we can interpret this definition

as follows:

The sequence of the regular expressions E and F can be converted into the regular

grammar whose variables and alphabet are the union of the variables and the union of

the alphabets of both G1 and G2, with the initial variable of G1, and whose rules are the

union of the rules of G1 and G2 where all rules (A→ a) of G1 are replaced by (A→ aS2) ,

where S2 is the initial state of G2; the alternation of the regular expressions E and F can

be converted into the regular grammar whose variables and alphabet are the union of

the variables and alphabets of both G1 and G2, whose initial variable is a new variable

S, and whose rules are the union of the rules of G1 and G2 with the addition of the rules

{S− > S1} and {S− > S2} ; the Kleene star of regular expression E can be converted into

the regular grammar that is equal to G1 except that for every rule of G1 with the format

(A→ a) we add the rule (A→ aS) where S is the initial variable of G, as well as adding

the rule (A→ ε) .

For example, the regular expressions r1 = ab, r2 = a+b and r3 = a∗ can be respectively

converted by the above algorithm to the context-free grammars cf g1 = {{S,A}, {a,b}, {S− >
aA,A− > b},S}, cf g2 = {{S}, {a,b}, {S− > a,S− > b},S} and cf g3 = {{S}, {a}, {S− > aS,S− >
ε},S}.

The described formalism essentially describes an algorithm, which naturally guar-

antees termination. As such, our implementation of the regular expression to regular

grammar conversion is a relatively direct translation of the defined algorithm.

7.3 Context-free grammar

According to the source material of the course, we can define a context-free grammar

(CFG) as a quadruplet G = {V ,T ,P ,S}, where V is the set of variables, T is the alphabet,

P is the set of rules where P ⊆ V × (V ∪ T ) ∗, and S is the initial variable.

For the rules of a context-free grammar, we refer to the variable as the head and its

possible substitution as the body.

7.3.1 Accept

Informally, we can define an algorithm for testing the acceptance of a word w as follows:
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We first define the function nextGeneration, which receives set of pseudo-words (a list

of symbols from either the alphabet or variable set of the grammar) as an argument. Then,

it generates the set of all pseudo-words obtained from applying all valid combinations of

rules to each pseudo-word of the argument. After generating the new set of pseudo-words,

we then filter each pseudo-word whose number of symbols from the alphabet exceeds the

length of w. The function is concluded by filtering the resulting pseudo-words based on

their prefix and suffix (respectively, their sub-words to the left and to the right of their

left-most variable and their right-most variable) compared to the word w.

The accept method is thus the implementation of the nextGeneration function ap-

plied recursively to each new output. Termination occurs when no new pseudo-word is

generated, and w is considered accept if it occurs in the output set of our function.

Listing 7.8: Accept function

1 method accept (testWord:word) : bool =

2 let nextGeneration pws =

3 let npws = flatMap (fun w -> subVar w vs rs) pws in

4 let npws = filter (fun w -> not (exceedsMaxLen w l alph)) npws in

5 filter (fun w -> toKeep w testWord ) npws

6 in

7 let res = historicalFixedPoint nextGeneration set[initialVariable] in

8 exists (fun x -> x = testWord ) res

The accept function is a relatively direct translation of the presented definitions.

7.3.2 Generate

We can formally define the language generated by the context-free grammar G as L(G) =

{w ∈ T ∗|S⇒ G∗w} where⇒ G∗ is the reflexive and transitive closure of⇒ G.

Informally, this states that the language of G is the set of all words obtained by con-

secutively applying the possible rules of G, starting on its initial variable.

By interpreting this definition as a mechanical procedure, we could say that it de-

scribes a semi-algorithm, as the language defined by G could be infinite, thus our algo-

rithm could never terminate.

To guarantee termination, we impose that our algorithm will only generate words up

to a given length n.

Listing 7.9: Generate function

1 method generate (length:int) : words =

2 let nextGeneration pws =

3 let npws = Set.flatMap (fun w -> subVar w vs rs) pws in

4 filter (fun w -> not (exceedsMaxLen w length alph)) npws

5 in

6 historicalFixedPoint nextGeneration set[initialVariable]
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As an example, if we were to generate all words up to length 3 for the context-free

grammar {{S,A}, {a,b,c}, {S− > a,S− > bA,A− > c,A− > cS},S}, the result would be the set

of words a, bc and bca.

The generate function is a relatively direct translation of the presented definition.

7.3.3 To Finite Automaton

By analysing the formal definition of context-free grammars and comparing it to the

formal definition of finite automaton, we observe that they are very similar.

To better explain the entire conversion algorithm, we must first define the function

ruleT oT rans, which transforms the rules of a right-linear grammar into transitions of an

equivalent automaton.

Listing 7.10: RuleToTransition function

1 ruleToTrans rh rb =

2 match rb with

3 |[c;v] when belongs c alp && belongs v vrs -> Set[(rh,c,v)]

4 |[v] when belongs v vrs -> Set[(rh,epsilon,v)]

5 |[c] when belongs c alp -> Set[(rh,c,accSt)]

6 |[e] when e = epsilon -> Set[(rh,epsilon,accSt)]

Given a rule r consisting of the head rh and the body rb, where v is a variable and c is

a symbol of the alphabet, we define ruleT oT rans as follows:

When r is in the form (v1− > cv2) , we can convert r into the transition δ(v1, c) = v2;

when r is in the form (v1− > v2) , we can convert r into the transition δ(v1, ε) = v2; when

r is in the form (v− > c) , we can convert r into the transition δ(v,c) = S, where S is the

acceptance state of our pretended automaton; when r is in the form (v1− > ε) , we can

convert r into the transition δ(v,ε) = S.

We can thus informally define the function convert for conversion of a right-linear

grammar G to a finite automaton A as follows:

The states of A will consist of the variables of G plus the new acceptance state S; the

alphabet of A will simply be the alphabet of G; the acceptance state of A will be the new

state S; the initial state of A will be the initial variable of G; the transitions of A will be

based on the transformation of the rules of G according to our function ruleT oT rans.

Figure 7.10: Automaton for example of conversion from CFG
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As an example, given the regular grammar G = {{A,B,C}, {a,b}, {A− > ε,A− > aB,B− >
C,C− > b},A}, the automaton in Figure 7.10 would be the resulting automaton of our

algorithm applied to G.

Our implementation of the conversion of a right-linear grammar to its equivalent

finite automaton is a relatively direct translation of the defined algorithm.

7.4 Exercises

In our program, we also allow for a partial definition of languages through the module

exercises. Essentially, an exercise consists of two sets of words denominated inside and

outside. All words from inside belong to the language partially defined by the exercise,

while for outside, none of its words belongs to said language.

The purpose of this module is to proportionate classes with an interactive process of

effectuating exercises over the various studied FLAT mechanism.

7.4.1 CheckExercise

All other mechanisms inherit the method checkExercise, which basically, given an exercise

e tests if all words of inside are accepted by the mechanism and if no word from outside

is accepted by the mechanism. If the predicate fails, we can say that, if the exercise was

well made, that the language of the mechanism in question is not equal to the language

defined by e.

We achieve this by simply calling the accept method of the pretended mechanism for

all words of the exercise.

As an example, given an exercise Ex where inside = {“a”,”ab”,”abb”} and outside =

{“b”,”aba”,”ε”}, when tested for the regular expression Re = ab∗, the results would be that

all words of inside are accepted by Re, while no word from outside is accepted by Re.

This would thus indicate that the language partially defined by ex is part of the language

of Re.
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8
Interactive command-line interface

The OCaml-Flat tool is planned to be used in conjunction with a graphical interface that

is outside the scope of our project. However, one of our main goals for our program was

for it to be usable in the context of an OCaml interpreter. This way, the tool could be used

as a stand-alone program with which users can manipulate our various FLAT concepts

according to their interests.

As such, we implemented an interface for the usage of our program at the top-level.

The following is a list of execution examples for each of the implemented functions,

accompanied by their respective description.

The reader can find a manual of all the implemented functions in the appendix.

8.1 Finite Automaton

8.1.1 Function fa_load

The fa_load function receives as argument a Json file and returns the finite automaton

defined in said file.

Listing 8.1: fa_load example

1 # let fa = fa_load "fa_example.json";;

2 val fa : finiteAutomaton =

3 {alphabet = [’a’; ’b’; ’c’]; allStates = ["A"; "B"; "START"; "SUCCESS"];

4 initialState = "START";

5 transitions =

6 [("A", ’a’, "A"); ("A", ’c’, "SUCCESS"); ("B", ’b’, "B");

7 ("B", ’c’, "SUCCESS"); ("START", ’a’, "A"); ("START", ’b’, "B");

8 ("SUCCESS", ’a’, "START")];

9 acceptStates = ["SUCCESS"]}
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8.1.2 Function fa_accept

The fa_accept function receives as arguments a finite automaton and a String represent-

ing a word. It is used to test if the word belongs to the language defined by the given

automaton.

Listing 8.2: fa_accept example

1 # let fa = fa_load "fa_example.json";;

2 val fa : finiteAutomaton =

3 {alphabet = [’a’; ’b’]; allStates = ["START"; "SUCCESS"];

4 initialState = "START";

5 transitions = [("START", ’a’, "START"); ("START", ’b’, "SUCCESS")];

6 acceptStates = ["SUCCESS"]}

7

8 # fa_accept fa "aab";;

9 - : bool = true

8.1.3 Function fa_traceAccept

The fa_traceAccept function receives as arguments a finite automaton and a String rep-

resenting a word. It is used to trace the rationale behind the conclusion of whether the

word is accepted by the automaton or not.

Listing 8.3: fa_traceAccept example

1 # let fa = fa_load "fa_example.json";;

2 val fa : finiteAutomaton =

3 {alphabet = [’a’; ’b’]; allStates = ["A"; "B"; "START"; "SUCCESS"];

4 initialState = "START";

5 transitions =

6 [("A", ’b’, "SUCCESS"); ("START", ’a’, "A"); ("START", ’b’, "B")];

7 acceptStates = ["SUCCESS"]}

8

9 # fa_traceAccept fa "ab";;

10 (’ab’,[START;]);(’b’,[A;B;]);(’’,[SUCCESS;]);

11 - : unit = ()

8.1.4 Function fa_generate

The fa_generate function receives as arguments a finite automaton and an integer n. It

produces the set of all words with the maximum size of n that belong to the language of

the automaton.

Listing 8.4: fa_generate example

1 # let fa = fa_load "fa_example.json";;

2 val fa : finiteAutomaton =

3 {alphabet = [’a’; ’b’]; allStates = ["START"; "SUCCESS"];

4 initialState = "START";
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5 transitions = [("START", ’a’, "START"); ("START", ’b’, "SUCCESS")];

6 acceptStates = ["SUCCESS"]}

7

8 # fa_generate fa 4;;

9 - : string list = ["b"; "ab"; "aab"; "aaab"]

8.1.5 Function fa_reachable

The fa_reachable function receives as argument a finite automaton f a. It produces the

set of all reachable states of f a.

Listing 8.5: fa_reachable example

1 # let fa = fa_load "fa_example.json";;

2 val fa : finiteAutomaton =

3 {alphabet = [’a’; ’b’]; allStates = ["A"; "B"; "START"; "SUCCESS"];

4 initialState = "START";

5 transitions = [("START", ’b’, "A"); ("START", ’b’, "SUCCESS")];

6 acceptStates = ["SUCCESS"]}

7

8 # fa_reachable fa;;

9 - : state list = ["A"; "START"; "SUCCESS"]

8.1.6 Function fa_productive

The fa_productive function receives as argument a finite automaton f a. It produces the

set of all productive states of the automaton f a.

Listing 8.6: fa_productive example

1 # let fa = fa_load "fa_example.json";;

2 val fa : finiteAutomaton =

3 {alphabet = [’a’; ’b’]; allStates = ["A"; "B"; "START"; "SUCCESS"];

4 initialState = "START";

5 transitions = [("START", ’b’, "A"); ("START", ’b’, "SUCCESS")];

6 acceptStates = ["SUCCESS"]}

7

8 # fa_productive fa;;

9 - : state list = ["START"; "SUCCESS"]

8.1.7 Function fa_clean

The fa_clean function receives as argument a finite automaton f a. It produces the au-

tomaton resulting from eliminating all non-useful states of f a.

Listing 8.7: fa_clean example

1 # let fa = fa_load "fa_example.json";;

2 val fa : finiteAutomaton =
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3 {alphabet = [’a’; ’b’]; allStates = ["A"; "B"; "START"; "SUCCESS"];

4 initialState = "START";

5 transitions = [("START", ’b’, "A"); ("START", ’b’, "SUCCESS")];

6 acceptStates = ["SUCCESS"]}

7

8 # fa_clean fa;;

9 - : finiteAutomaton =

10 {alphabet = [’b’]; allStates = ["START"; "SUCCESS"]; initialState = "START";

11 transitions = [("START", ’b’, "SUCCESS")]; acceptStates = ["SUCCESS"]}

8.1.8 Function fa_toDeter

The fa_toDeter function receives as argument a finite automaton f a. It produces the

automaton resulting from the determinization of f a.

Listing 8.8: fa_ToDeter example

1 # let fa = fa_load "fa_example.json";;

2 val fa : finiteAutomaton =

3 {alphabet = [’a’; ’b’; ’c’]; allStates = ["A"; "B"; "START"; "SUCCESS"];

4 initialState = "START";

5 transitions =

6 [("A", ’a’, "SUCCESS"); ("B", ’b’, "SUCCESS"); ("START", ’c’, "A");

7 ("START", ’c’, "B")];

8 acceptStates = ["SUCCESS"]}

9

10 # fa_toDeter fa;;

11 - : finiteAutomaton =

12 {alphabet = [’a’; ’b’; ’c’]; allStates = ["A_B"; "START"; "SUCCESS"];

13 initialState = "START";

14 transitions =

15 [("A_B", ’a’, "SUCCESS"); ("A_B", ’b’, "SUCCESS"); ("START", ’c’, "A_B")];

16 acceptStates = ["SUCCESS"]}

8.1.9 Function fa_isDeter

The fa_isDeter function receives as argument a finite automaton f a. It verifies if f a is

deterministic or not.

Listing 8.9: fa_isDeter example

1 # let fa = fa_load "fa_example.json";;

2 val fa : finiteAutomaton =

3 {alphabet = [’a’; ’b’]; allStates = ["A"; "B"; "START"; "SUCCESS"];

4 initialState = "START";

5 transitions =

6 [("A", ’a’, "B"); ("B", ’b’, "SUCCESS"); ("START", ’b’, "A");

7 ("START", ’b’, "B")];

8 acceptStates = ["SUCCESS"]}

9
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10 # fa_isDeter fa;;

11 - : bool = false

8.1.10 Function fa_minimize

The fa_minimize function receives as argument a finite automaton f a. It produces the

automaton resulting from the minimization of f a.

Listing 8.10: fa_minimize example

1 # let fa = fa_load "fa_example.json";;

2 val fa : finiteAutomaton =

3 {alphabet = [’a’; ’b’]; allStates = ["S1"; "S2"; "S3"; "S4"; "S5"];

4 initialState = "S1";

5 transitions =

6 [("S1", ’a’, "S2"); ("S1", ’b’, "S3"); ("S2", ’a’, "S3");

7 ("S2", ’b’, "S4"); ("S3", ’a’, "S2"); ("S3", ’b’, "S4");

8 ("S4", ’a’, "S2"); ("S4", ’a’, "S5"); ("S4", ’b’, "S3")];

9 acceptStates = ["S4"]}

10

11 # fa_minimize fa;;

12 - : finiteAutomaton =

13 {alphabet = [’a’; ’b’]; allStates = ["S1"; "S2"; "S4"]; initialState = "S1";

14 transitions =

15 [("S1", ’a’, "S2"); ("S1", ’b’, "S2"); ("S2", ’a’, "S2");

16 ("S2", ’b’, "S4"); ("S4", ’a’, "S2"); ("S4", ’b’, "S2")];

17 acceptStates = ["S4"]}

8.1.11 Function fa_toRegex

The fa_toRegex function receives as argument a finite automaton f a. It produces the

regular expression equivalent to f a.

Listing 8.11: fa_toRegex example

1 # let fa = fa_load "fa_example.json";;

2 val fa : finiteAutomaton =

3 {alphabet = [’a’; ’b’; ’c’]; allStates = ["A"; "B"; "START"; "SUCCESS"];

4 initialState = "START"; transitions = [("START", ’b’, "SUCCESS")];

5 acceptStates = ["SUCCESS"]}

6

7 # fa_toRegex fa;;

8 - : regularExpression =

9 "b+!!*b+b!*!+(!+!!*!+b!*!)(!+!!*!+b!*!)*(b+!!*b+b!*!)+(b+!!*b+b!*!)(!+!!*!+!!*b)

↪→ *(!+!!*!+!!*b)"
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8.2 Regular Expression

8.2.1 Function re_load

The re_load function receives as argument a Json file and returns the regular expression

defined in said file.

Listing 8.12: re_load example

1 # let re = re_load "re_example.json";;

2 val re : regularExpression = "a*+bc"

8.2.2 Function re_alphabet

The re_load function receives as argument a regular expression and returns its alphabet.

Listing 8.13: re_alphabet example

1 # let re = re_load "re_example.json";;

2 val re : regularExpression = "a*+bc"

3

4 # re_alphabet re;;

5 - : symbol list = [’a’; ’b’; ’c’]

8.2.3 Function re_accept

The re_accept function receives as arguments a regular expression re and a string repre-

senting a word. It verifies if the word belongs to the language of re.

Listing 8.14: re_accept example

1 # let re = re_load "re_example.json";;

2 val re : regularExpression = "a*+bc"

3

4 # re_accept re "aa";;

5 - : bool = true

8.2.4 Function re_trace

The re_trace function receives as arguments a regular expression re and a string repre-

senting a word. It is used to trace the rationale behind the conclusion of whether the

word is accepted by re or not.

Listing 8.15: re_trace example

1 # let re = re_load "re_example.json";;

2 val re : regularExpression = "a*+bc"

3

4 # re_trace re "bc";;

5 bc -> a*+bc
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6 bc -> bc

7 b -> b

8 c -> c

9 - : unit = ()

8.2.5 Function re_generate

The re_generate function receives as arguments a regular expression re and an integer n.

It produces the set of all words with the maximum size of n that belong to the language

of re.

Listing 8.16: re_generate example

1 # let re = re_load "re_example.json";;

2 val re : regularExpression = "a*+bc"

3

4 # re_generate re 3;;

5 - : string list = [""; "a"; "aa"; "aaa"; "bc"]

8.2.6 Function re_simplify

The re_simplify function receives as argument a regular expression re. It produces a

simplified regular expression equivalent to re.

Listing 8.17: re_simplify example

1 # let re = re_load "re_example.json";;

2 val re : regularExpression = "a+a*"

3

4 # re_simplify re;;

5 - : regularExpression = "a*"

8.2.7 Function re_toFa

The re_simplify function receives as argument a regular expression re. It produces the

automaton equivalent to re.

Listing 8.18: re_toFA example

1 # let re = re_load "re_example.json";;

2 val re : regularExpression = "a*+bc"

3

4 # re_toFA re;;

5 - : finiteAutomaton =

6 {alphabet = [’a’; ’b’; ’c’];

7 allStates =

8 ["new_St00"; "new_St01"; "new_St02"; "new_St03"; "new_St04"; "new_St05";

9 "new_St06"; "new_St07"];

10 initialState = "new_St07";
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11 transitions =

12 [("new_St00", ’a’, "new_St01"); ("new_St01", ’~’, "new_St02");

13 ("new_St02", ’~’, "new_St00"); ("new_St03", ’b’, "new_St04");

14 ("new_St04", ’~’, "new_St05"); ("new_St05", ’c’, "new_St06");

15 ("new_St07", ’~’, "new_St02"); ("new_St07", ’~’, "new_St03")];

16 acceptStates = ["new_St02"; "new_St06"]}

8.3 Context-Free Grammar

8.3.1 Function cfg_load

The cfg_load function receives as argument a Json file and returns the context free gram-

mar it defines.

Listing 8.19: cfg_load example

1 # let cfg = cfg_load "cfg_example.json";;

2 val cfg : contextFreeGrammar =

3 {alphabet = [’0’; ’1’]; variables = [’F’; ’P’; ’S’]; initial = ’S’;

4 rules = ["F�->�1"; "F�->�1F"; "P�->�0"; "S�->�0F"; "S�->�0P"]}

8.3.2 Function cfg_accept

The cfg_accept function receives as arguments a CFG and a string representing a word.

It verifies if the word belongs to the language of the CFG.

Listing 8.20: cfg_accept example

1 # let cfg = cfg_load "cfg_example.json";;

2 val cfg : contextFreeGrammar =

3 {alphabet = [’0’; ’1’]; variables = [’F’; ’P’; ’S’]; initial = ’S’;

4 rules = ["F�->�1"; "F�->�1F"; "P�->�0"; "S�->�0F"; "S�->�0P"]}
5

6 # cfg_accept cfg "011";;

7 - : bool = true

8.3.3 Function cfg_trace

The cfg_trace function receives as arguments a CFG and a string representing a word. It

is used to trace the rationale behind the conclusion of whether the word is accepted by

the CFG or not.

Listing 8.21: cfg_trace example

1 # let cfg = cfg_load "cfg_example.json";;

2 val cfg : contextFreeGrammar =

3 {alphabet = [’0’; ’1’]; variables = [’F’; ’P’; ’S’]; initial = ’S’;

4 rules = ["F�->�1"; "F�->�1F"; "P�->�0"; "S�->�0F"; "S�->�0P"]}
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5

6 # cfg_trace cfg "011";;

7 [S;]

8 [0F;0P;]

9 [01F;]

10 [011;011F;]

11 - : unit = ()

8.3.4 Function cfg_generate

The cfg_trace function receives as arguments a CFG and an integer n. It produces the set

of all words with the maximum size of n that belong to the language of the CFG.

Listing 8.22: cfg_generate example

1 # let cfg = cfg_load "cfg_example.json";;

2 val cfg : contextFreeGrammar =

3 {alphabet = [’0’; ’1’]; variables = [’F’; ’P’; ’S’]; initial = ’S’;

4 rules = ["F�->�1"; "F�->�1F"; "P�->�0"; "S�->�0F"; "S�->�0P"]}
5

6 # cfg_generate cfg 3;;

7 - : string list = ["00"; "01"; "011"]

8.3.5 Function cfg_toFA

The cfg_toFA function receives as argument a CFG. It produces the automaton equivalent

to the CFG.

Listing 8.23: cfg_toFA example

1 # let cfg = cfg_load "cfg_example.json";;

2 val cfg : contextFreeGrammar =

3 {alphabet = [’0’; ’1’]; variables = [’F’; ’P’; ’S’]; initial = ’S’;

4 rules = ["F�->�1"; "F�->�1F"; "P�->�0"; "S�->�0F"; "S�->�0P"]}
5

6 # cfg_toFA cfg;;

7 - : finiteAutomaton =

8 {alphabet = [’0’; ’1’]; allStates = ["AccSt"; "F"; "P"; "S"];

9 initialState = "S";

10 transitions =

11 [("F", ’1’, "AccSt"); ("F", ’1’, "F"); ("P", ’0’, "AccSt");

12 ("S", ’0’, "F"); ("S", ’0’, "P")];

13 acceptStates = ["AccSt"]}

8.3.6 Function cfg_toRe

The cfg_toRe function receives as argument a CFG. It produces the regular expression

equivalent to the CFG.
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Listing 8.24: cfg_toRe example

1 # let cfg = cfg_load "cfg_example.json";;

2 val cfg : contextFreeGrammar =

3 {alphabet = [’0’; ’1’]; variables = [’F’; ’S’]; initial = ’S’;

4 rules = ["F�->�1"; "S�->�0F"]}
5

6 # cfg_toRe cfg;;

7 - : regularExpression =

8 "!+!!*!+0!*1+(!+!!*!+0!*!)(!+!!*!+0!*!)*(!+!!*!+0!*1)+(!+!!*!+0!*1)(!+!!*!+!!*1)

↪→ *(!+!!*!+!!*1)+(0+!!*!+!!*0+0!*!)(!+!!*!+!!*0+1!*!)*(1+!!*!+!!*1+1!*!)

↪→ +(!+!!*!+0!*!+(!+!!*!+0!*!)(!+!!*!+0!*!)*(!+!!*!+0!*!)+(!+!!*!+0!*1)(!+!!*!+!!*1)

↪→ *(!+!!*!)+(0+!!*!+!!*0+0!*!)(!+!!*!+!!*0+1!*!)*(!+!!*!+1!*!))(!+!!*!"... (* string

↪→ length 1509; truncated *)

8.4 Exercise

8.4.1 Function exer_load

The exer_load function receives as argument a Json file and returns its defined exercise.

Listing 8.25: exer_load example

1 # let ex = exer_load "enum_example.json";;

2 val ex : exercise =

3 {inside = [""; "a"; "b"; "bb"; "bbbb"]; outside = ["aa"; "ab"; "bba"; "c"]}

8.4.2 Function exer_testFA

The exer_testFA function receives as arguments an exercise e and a finite automaton f a.

It verifies if the language of e is compatible with the language of f a.

Listing 8.26: exer_testFA example

1 # let ex = exer_load "enum_example.json";;

2 val ex : exercise =

3 {inside = [""; "a"; "b"; "bb"; "bbbb"]; outside = ["aa"; "ab"; "bba"; "c"]}

4

5 # let fa = fa_load "fa_example.json";;

6 val fa : finiteAutomaton =

7 {alphabet = [’a’; ’b’; ’c’]; allStates = ["A"; "B"; "START"; "SUCCESS"];

8 initialState = "START";

9 transitions =

10 [("A", ’a’, "SUCCESS"); ("B", ’b’, "SUCCESS"); ("START", ’c’, "A");

11 ("START", ’c’, "B")];

12 acceptStates = ["SUCCESS"]}

13

14 # exer_testFA ex fa;;

15 - : bool = false
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8.4.3 Function exer_testFAFailures

The exer_testFAFailures function receives as arguments an exercise e and a finite automa-

ton f a. It produces all words of e that make its language incompatible with the language

of f a.

Listing 8.27: exer_testFAFailures example

1 # let ex = exer_load "enum_example.json";;

2 val ex : exercise =

3 {inside = [""; "a"; "b"; "bb"; "bbbb"]; outside = ["aa"; "ab"; "bba"; "c"]}

4

5 # let fa = fa_load "fa_example.json";;

6 val fa : finiteAutomaton =

7 {alphabet = [’a’; ’b’; ’c’]; allStates = ["A"; "B"; "START"; "SUCCESS"];

8 initialState = "START";

9 transitions =

10 [("A", ’a’, "SUCCESS"); ("B", ’b’, "SUCCESS"); ("START", ’c’, "A");

11 ("START", ’c’, "B")];

12 acceptStates = ["SUCCESS"]}

13

14 # exer_testFAFailures ex fa;;

15 - : string list * string list = ([""; "a"; "b"; "bb"; "bbbb"], [])

8.4.4 Function exer_testRe

The exer_testRe function receives as arguments an exercise e and a regular expression re.

It verifies if the language of e is compatible with the language of re.

Listing 8.28: exer_testRe example

1 # let ex = exer_load "sss.json";;

2 val ex : exercise =

3 {inside = [""; "a"; "b"; "bb"; "bbbb"]; outside = ["aa"; "ab"; "bba"; "c"]}

4

5 # let re = re_load "re_abc.json";;

6 val re : regularExpression = "a*+bc"

7

8 # exer_testRe ex re;;

9 - : bool = false

8.4.5 Function exer_testReFailures

The exer_testReFailures function receives as arguments an exercise e and a regular expres-

sion re. It produces all words of e that make its language incompatible with the language

of re.

Listing 8.29: exer_testReFailures

1 # let ex = exer_load "sss.json";;
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2 val ex : exercise =

3 {inside = [""; "a"; "b"; "bb"; "bbbb"]; outside = ["aa"; "ab"; "bba"; "c"]}

4

5 # let re = re_load "re_abc.json";;

6 val re : regularExpression = "a*+bc"

7

8 # exer_testReFailures ex re;;

9 - : string list * string list = (["b"; "bb"; "bbbb"], ["aa"])

8.4.6 Function exer_testCFG

The exer_testCFG function receives as arguments an exercise e and a CFG. It verifies if

the language of e is compatible with the language of the CFG.

Listing 8.30: exer_testCfg

1 # let ex = exer_load "sss.json";;

2 val ex : exercise =

3 {inside = [""; "a"; "b"; "bb"; "bbbb"]; outside = ["aa"; "ab"; "bba"; "c"]}

4

5 # let cfg = cfg_load "cfg_abc.json";;

6 val cfg : contextFreeGrammar =

7 {alphabet = [’0’; ’1’]; variables = [’F’; ’S’]; initial = ’S’;

8 rules = ["S�->�01"]}
9

10 # exer_testCfg ex cfg;;

11 - : bool = false

8.4.7 Function exer_testCfgFailures

The exer_testCfgFailures function receives as arguments an exercise e and a CFG. It

produces all words of e that make its language incompatible with the language of the

CFG.

Listing 8.31: exer_testCfgFailures

1 # let ex = exer_load "sss.json";;

2 val ex : exercise =

3 {inside = [""; "a"; "b"; "bb"; "bbbb"]; outside = ["aa"; "ab"; "bba"; "c"]}

4

5 # let cfg = cfg_load "cfg_abc.json";;

6 val cfg : contextFreeGrammar =

7 {alphabet = [’0’; ’1’]; variables = [’F’; ’S’]; initial = ’S’;

8 rules = ["S�->�01"]}
9

10 # exer_testCfgFailures ex cfg;;

11 - : string list * string list = ([""; "a"; "b"; "bb"; "bbbb"], [])
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9
Conclusion

For this dissertation, we proposed to develop an OCaml library of types and functions

for the manipulation of various FLAT concepts. This library could then be used as a

pedagogical tool for the teaching of FLAT.

9.1 Summary

In the first half of this document, we explained our reasoning for using the functional

programming style in the implementation of our tool, we discussed the importance of

the materials of FLAT in the learning of the computer science students, and we compared

our solution to the already existing body of pedagogical tools in the area of FLAT. In the

second half, we explained the architecture of our solution, followed by a discussion and

analysis on the various algorithms that were part of our program, focusing greatly on the

implementation of said algorithms compared to their formal definitions. The algorithms

implemented consisted on those referring to FA, regular expressions and CFGs.

9.2 End Results

The end result of this dissertation was a pedagogical tool whose implementation of the

various CFG concepts closely followed the formal definitions presented in the materials

of the computation theory course in our faculty. This proximity was further accentuated

by our usage of the OCaml language following the functional programming style. To

reassure correctness and termination of our algorithms, various unit tests were conducted

during the development of this project, which in conjunction with the proximity to the

source materials, allowed us for a greater confidence in our results.
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9.3 Future Work

Since in this dissertation we ultimately focused on implementing algorithms of only the

three previously referred FLAT mechanisms, an obvious possibility for the extension of

our program would be for the integration of the remaining FLAT concepts taught in the

course, namely push-down automata and Turing machines. Another possible worthwhile

addition to our tool could be the implementation other FLAT operations that are not

covered in the materials of the course. Finally, seeing as this tool is intended for use in

future editions of the Theory of Computation course in our faculty, it would be interesting

to conduct an enquiry on the students, asking them on their opinions and experience

when given the option of aiding their learning process with our tool. This could allow us

to better gauge the impact our tool could have in helping students to better learn OCaml.
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A.1 Top-level manual

fa_load f ile

Creates a new automaton based on the given file
Parameters:

f ile (String) – name of the file containing the information on the automaton

Returns:

(finiteAutomaton) – the new automaton

fa_accept f a w

Tests if the automaton fa accepts word w
Parameters:

f a (finiteAutomaton) – the loaded automaton;

w (String) – string of word to be tested

Returns:

(finiteAutomaton) – the new automaton

fa_traceAccept f a w

Traces the acceptance of the word w by the automaton f a
Parameters:

f a (finiteAutomaton) – the loaded automaton;

w (String) – string of word to be tested

Returns:

(unit) – the process of automaton f a accepting the word w

fa_generate f a l

Generates the set of word with a maximum length of l recognized by the automaton f a
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Parameters:

f a (finiteAutomaton) – the loaded automaton;

l (int) – maximum length of the generated words

Returns:

(String list) - the set of generated words

fa_reachable f a

Produces the set of all reachable states of the automaton f a
Parameters:

f a (finiteAutomaton) – the loaded automaton

Returns:

(String list) - the set of reachable states

fa_productive f a

Produces the set of all productive states of the automaton f a
Parameters:

f a (finiteAutomaton) – the loaded automaton

Returns:

(String list) - the set of productive states

fa_clean f a

Eliminates all non-useful states and their transitions from f a

Parameters:

f a (finiteAutomaton) – the loaded automaton

Returns:

(finiteAutomaton) - the new automaton

fa_toDeter f a

Converts the automaton f a into its equivalent deterministic automaton
Parameters:

f a (finiteAutomaton) – the loaded automaton

Returns:

(finiteAutomaton) - the new automaton

fa_isDeter f a

Verifies if the automaton f a is deterministic
Parameters:

f a (finiteAutomaton) – the loaded automaton

Returns:

(bool) – if f a is deterministic

fa_minimize f a

Minimizes the automaton f a
Parameters:
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f a (finiteAutomaton) – the loaded automaton

Returns:

(finiteAutomaton) – the minimized automaton

fa_toRegex f a

Converts the automaton f a to its equivalent regular expression
Parameters:

f a (finiteAutomaton) – the loaded automaton

Returns:

(String) – the minimized automaton

re_load f ile

Creates a new regular expression based on the given file
Parameters:

f ile (String) – name of the file containing the information on the regular expres-

sion

Returns:

(string) – the new regular expression

re_alphabet re

Produces the alphabet of regular expression re
Parameters:

re (String) – loaded regular expression

Returns:

(char list) – the alphabet of re

re_accept re w

Verifies if the regular expression re accepts the word w
Parameters:

re (String) – loaded regular expression;

w (String) – word to be tested

Returns:

(bool) – if re accepts w

re_trace re w

Shows the derivation tree for the acceptance of w by re
Parameters:

re (String) – loaded regular expression;

w (String) – word to be tested

Returns:

(unit) – the derivation tree

re_generate re l
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Generates the set of word with a maximum length of l recognized by the regular expression
re

Parameters:

re (string) – the loaded regular expression;

l (int) – maximum length of the generated words

Returns:

(String list) - the set of generated words

re_simplify re

Simplifies the regular expression re
Parameters:

re (string) – the loaded regular expression

Returns:

(String) – the simplified regular expression

re_toFA re

Converts the regular expression re to its equivalent automaton
Parameters:

re (string) – the loaded regular expression

Returns:

(finiteAutomaton) – the resulting finite automaton

cfg_load f ile

Creates a new context-free grammar based on the given file
Parameters:

f ile (String) – name of the file containing the information on the context-free

grammar

Returns:

(contextFreeGrammar) – the new context-free grammar

cfg_accept cf g w

Verifies if the grammar cf g accepts the word w
Parameters:

cf g (contextFreeGrammar) – loaded grammar;

w (String) – word to be tested

Returns:

(bool) – if cfg accepts w

cfg_trace cf g w

Traces the acceptance of the word w by the grammar cf g
Parameters:

cf g (contextFreeGrammar) – loaded grammar;
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w (String) – string of word to be tested

Returns:

(unit) – the process of grammar cf g accepting the word w

cfg_generate cf g l

Generates the set of word with a maximum length of l recognized by the grammar cf g
Parameters:

cf g (contextFreeGrammar) – the loaded grammar;

l (int) – maximum length of the generated words

Returns:

(String list) - the set of generated words

cfg_toFA cf g

Converts the grammar cf g to its equivalent finite automaton
Parameters:

cf g (contextFreeGrammar) – the loaded grammar

Returns:

(finiteAutomaton) – the resulting finite automaton

cfg_toRe cf g

Converts the grammar cf g to its equivalent regular expression
Parameters:

cf g (contextFreeGrammar) – the loaded grammar

Returns:

(string) – the resulting regular expression

exer_load f ile

Creates a new exercise based on the given file
Parameters:

f ile (String) – name of the file containing the information on the context-free

grammar

Returns:

(exercise) – the new exercise

exer_testFA exer f a

Tests if the language partially defined in exer is part of the language of f a
Parameters:

exer (exercise) – the loaded exercise;

f a (finiteAutomaton) – the loaded automaton

Returns:

(boolean) – if exer was correct

exer_testFAFailures exer f a
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Produces the words which caused exer to be incorrect
Parameters:

exer (exercise) – the loaded exercise;

f a (finiteAutomaton) – the loaded automaton

Returns:

( (String list)∗(String list) ) – the pair containing the list of words which failed to

be accepted and list of words which failed to be rejected

exer_testRe exer re

Tests if the language partially defined in exer is part of the language of re
Parameters:

exer (exercise) – the loaded exercise;

re (string) – the loaded regular expression

Returns:

(boolean) – if exer was correct

exer_testReFailures exer re

Produces the words which caused exer to be incorrect
Parameters:

exer (exercise) – the loaded exercise;

re (string) – the loaded regular expression

Returns:

( (String list)∗(String list) ) – the pair containing the list of words which failed to

be accepted and list of words which failed to be rejected

exer_testCfg exer cf g

Tests if the language partially defined in exer is part of the language of cf g
Parameters:

exer (exercise) – the loaded exercise;

cf g (contextFreeGrammar) – the loaded grammar

Returns:

(boolean) – if exer was correct

exer_testCfgFailures exer cf g

Produces the words which caused exer to be incorrect
Parameters:

exer (exercise) – the loaded exercise;

cf g (contextFreeGrammar) – the loaded grammar

Returns:

( (String list)∗(String list) ) – the pair containing the list of words which failed to

be accepted and list of words which failed to be rejected
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