Occupation measures and semi-definite relaxations for optimal control

Mathieu Claeys, Dep. Engineering, Cambridge U. Former advisors: Didier Henrion et Jean-Bernard Lasserre

November 19, 2013

Table of contents

(1) Introduction
(2) Impulsive linear systems
(3) Non-linear impulsive systems

4 Switched systems
(5) Perspectives

Optimal control

$$
\begin{aligned}
J=\inf _{u} & \int_{0}^{T} h(t, x(t), u(t)) d t \\
\text { t.q. } & \dot{x}(t)=f(t, x(t), u(t)) \\
& x(0)=x_{0}, \quad x(T)=x_{T}
\end{aligned}
$$

Some difficulties

- ∞-dim decision variable
- Local optimality
- Non smooth behaviors
- State constraints
- Practical implementation

The moment approach (1/2)

The moment approach (2/2)

Optimization problem

The moment approach (2/2)

Optimization problem

Semi-definite
relaxation(s)

The moment approach (2/2)

The moment approach (2/2)

Table of contents

(1) Introduction
(2) Impulsive linear systems
(3) Non-linear impulsive systems

4 Switched systems
(5) Perspectives

The control problem

$$
\begin{aligned}
& J=\inf _{u} \int_{0}^{T}|u(t)| d t \\
& \text { s.t. } \dot{x}(t)=A(t) x(t)+B(t) u(t) \\
& x(0)=x_{0}, \quad x(T)=x_{T} \\
& u(t) \in L^{1}\left([0, T] ; \mathbb{R}^{m}\right)
\end{aligned}
$$

The control problem

$$
\begin{aligned}
& J=\inf _{u} \int_{0}^{T}|u(t)| d t \\
& \text { s.t. } \dot{x}(t)=A(t) x(t)+B(t) u(t) \\
& x(0)=x_{0}, \quad x(T)=x_{T} \\
& u(t) \in L^{1}\left([0, T] ; \mathbb{R}^{m}\right)
\end{aligned}
$$

The moment approach

Towards a generalized moment problem

Approach [Neustadt, Luenberger, ...] :

(1) ODE integration:

Towards a generalized moment problem

Approach [Neustadt, Luenberger, ...] :
(1) ODE integration:

$$
\underbrace{\Phi^{-1}(T) x(T)-\Phi^{-1}(0) x(0)}_{c}=\int_{0}^{T} \underbrace{\Phi^{-1}(s) B(s)}_{F(s)} u(s) d s
$$

Towards a generalized moment problem

Approach [Neustadt, Luenberger, ...] :
(1) ODE integration:

$$
\underbrace{\Phi^{-1}(T) x(T)-\Phi^{-1}(0) x(0)}_{c}=\int_{0}^{T} \underbrace{\Phi^{-1}(s) B(s)}_{F(s)} u(s) d s
$$

(2) Yields:

$$
\begin{aligned}
J= & \inf _{u(t)}\|u\| \\
& \text { t.q. } \int_{0}^{T} F(t) u(t) d t=c
\end{aligned}
$$

Towards a generalized moment problem

Approach [Neustadt, Luenberger, ...] :
(1) ODE integration:

$$
\underbrace{\Phi^{-1}(T) x(T)-\Phi^{-1}(0) x(0)}_{c}=\int_{0}^{T} \underbrace{\Phi^{-1}(s) B(s)}_{F(s)} u(s) d s
$$

(2) Yields:

$$
\begin{aligned}
J= & \inf _{u(t)}\|u\| \\
& \quad \text { t.q. } \int_{0}^{T} F(t) u(t) d t=c
\end{aligned}
$$

(3) Appropriate $u(t) \in E$

Measures in \mathbb{R}^{n}

Finite, Borel measures on $\mathbf{X} \subset \mathbb{R}^{n}$:

$$
\mathcal{M}(\mathbf{X})
$$

Theorem (Riesz)

$$
[C(\mathbf{X})]^{*} \text { isomorphic to } \mathcal{M}(\mathbf{X})
$$

Measures: examples

- $\mu \ll \lambda_{[a, b]}$:

$$
\mu([a, t]):=\int_{a}^{t} u(s) d s, \quad a \leq t \leq b
$$

Measures: examples

- $\mu \ll \lambda_{[a, b]}$:

$$
\begin{gathered}
\mu([a, t]):=\int_{a}^{t} u(s) d s, \quad a \leq t \leq b \\
\langle v, \lambda\rangle=\int_{a}^{b} v(s) u(s) d s
\end{gathered}
$$

Measures: examples

- $\mu \ll \lambda_{[a, b]}:$

$$
\begin{gathered}
\mu([a, t]):=\int_{a}^{t} u(s) d s, \quad a \leq t \leq b \\
\langle v, \lambda\rangle=\int_{a}^{b} v(s) u(s) d s
\end{gathered}
$$

- Dirac measure δ :

$$
\delta_{y}(\mathbf{B})= \begin{cases}1 & \text { if } y \in \mathbf{B} \\ 0 & \text { otherwise }\end{cases}
$$

Measures: examples

- $\mu \ll \lambda_{[a, b]}:$

$$
\begin{gathered}
\mu([a, t]):=\int_{a}^{t} u(s) d s, \quad a \leq t \leq b \\
\langle v, \lambda\rangle=\int_{a}^{b} v(s) u(s) d s
\end{gathered}
$$

- Dirac measure δ :

$$
\begin{gathered}
\delta_{y}(\mathbf{B})= \begin{cases}1 & \text { if } y \in \mathbf{B} \\
0 & \text { otherwise }\end{cases} \\
\left\langle v, \delta_{y}\right\rangle=v(y)
\end{gathered}
$$

The generalized moment problem

$$
\int_{0}^{t} u(s) d s \quad \longrightarrow \quad \mu([0, t])
$$

The generalized moment problem

$$
\int_{0}^{t} u(s) d s \quad \longrightarrow \quad \mu([0, t])
$$

$$
\begin{array}{ll}
\inf _{u}\|u\| & \min _{\mu}\|\mu\| \\
\text { s.t. } & \int_{0}^{T} F(t) u(t) d t=c \\
& \\
u \in L^{1}\left([0, T] ; R^{m}\right) & \\
& \\
& \\
& \\
\text { s.t. }\langle F, \mu\rangle=c \\
& \\
\hline
\end{array}\left([0, T] ; R^{m}\right)
$$

The generalized moment problem

$$
\int_{0}^{t} u(s) d s \quad \longrightarrow \quad \mu([0, t])
$$

$$
\begin{array}{ll}
\inf _{u}\|u\| & \min _{\mu}\|\mu\| \\
\text { s.t. } & \int_{0}^{T} F(t) u(t) d t=c \\
& \longrightarrow
\end{array} \quad \text { s.t. }\langle F, \mu\rangle=c
$$

Theorem (Neustadt)

No relaxation gap.

The generalized moment problem

$$
\int_{0}^{t} u(s) d s \quad \longrightarrow \quad \mu([0, t])
$$

$$
\begin{array}{ll}
\inf _{u}\|u\| & \min _{\mu}\|\mu\| \\
\text { s.t. } & \int_{0}^{T} F(t) u(t) d t=c \\
& \longrightarrow
\end{array} \quad \text { s.t. }\langle F, \mu\rangle=c
$$

Theorem (Neustadt)

No relaxation gap.

Theorem

\exists admissible $\mu \Longrightarrow \exists$ n-atomic optimal solution.

The moment approach

Moments

- Moments: $y_{\alpha}=\left\langle x^{\alpha}, \mu\right\rangle$

Theorem (Putinar)

Moments

- Moments: $y_{\alpha}=\left\langle x^{\alpha}, \mu\right\rangle$
- Moment matrix: $M(y)=\left[\begin{array}{cccc}y_{0} & y_{1} & y_{2} & \cdots \\ y_{1} & y_{2} & y_{3} & \\ y_{2} & y_{3} & y_{4} & \\ \vdots & & & \ddots\end{array}\right]$
- Let $\mathbf{X}:=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, \quad i=1, \ldots, m\right\}$

Moments

- Moments: $y_{\alpha}=\left\langle x^{\alpha}, \mu\right\rangle$
- Moment matrix: $M(y)=\left[\begin{array}{cccc}y_{0} & y_{1} & y_{2} & \cdots \\ y_{1} & y_{2} & y_{3} & \\ y_{2} & y_{3} & y_{4} & \\ \vdots & & & \ddots\end{array}\right]$
- Let $\mathbf{X}:=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, \quad i=1, \ldots, m\right\}$

Theorem (Putinar)

$$
\begin{gathered}
\mu \in \mathcal{M}^{+}(\mathbf{X}) \text { iff: } \\
M(y) \succeq 0, \quad M\left(g_{i} * y\right) \succeq 0 \quad \forall i
\end{gathered}
$$

The moment approach

Semi-definite relaxations

Use only $\left(y_{\alpha}\right)_{|\alpha| \leq 2 r}$.

Theorem (Lasserre)

Theorem

Semi-definite relaxations

Use only $\left(y_{\alpha}\right)_{|\alpha| \leq 2 r}$.

Theorem (Lasserre)

$$
J_{\text {mom }}^{r} \uparrow J_{\text {meas }}
$$

Semi-definite relaxations

Use only $\left(y_{\alpha}\right)_{|\alpha| \leq 2 r}$.

Theorem (Lasserre)

$$
J_{\text {mom }}^{r} \uparrow J_{\text {meas }}
$$

Theorem

If $\operatorname{rank}\left(M_{j-1}\right)=\operatorname{rank}\left(M_{j}\right)=k, \exists k$-atomic optimal measure.

Particular case: if $n=1$, first relaxation is necessary and sufficient

Semi-definite relaxations

Use only $\left(y_{\alpha}\right)_{|\alpha| \leq 2 r}$.

Theorem (Lasserre)

$$
J_{\text {mom }}^{r} \uparrow J_{\text {meas }}
$$

Theorem

If $\operatorname{rank}\left(M_{j-1}\right)=\operatorname{rank}\left(M_{j}\right)=k, \exists k$-atomic optimal measure.

Particular case: if $n=1$, first relaxation is necessary and sufficient.

Polynomial approximations

- $\|F-\tilde{F}\|=\epsilon$
- Application to orbital RDV:
- Polynomials of degree 100
- Computation time: 1.1 seconde
- Direct LP method: 0.4 seconde

Polynomial approximations

- $\|F-\tilde{F}\|=\epsilon$

$$
\begin{array}{ll}
\min _{\mu}\|\mu\| \\
\text { s.t. }\langle F, \mu\rangle=c & \min _{\mu}\|\mu\| \\
\text { s.t. }|\langle\tilde{F}, \mu\rangle-c| \leq \epsilon\|\mu\|
\end{array}
$$

- Application to orbital RDV:
 - Polynomials of degree 100
 - Computation time: 11 seconde
 - Direct LP method: 0.4 seconde
 - [C., Arzelier, Henrion, Lasserre: CDC'13]

Polynomial approximations

- $\|F-\tilde{F}\|=\epsilon$

$$
\begin{array}{ll}
\min _{\mu}\|\mu\| & \min _{\mu}\|\mu\| \\
\text { s.t. }\langle F, \mu\rangle=c
\end{array} \quad \longrightarrow \quad \text { s.t. }|\langle\tilde{F}, \mu\rangle-c| \leq \epsilon\|\mu\|
$$

- Application to orbital RDV:
- Polynomials of degree 100
- Computation time: 1.1 seconde
- Direct LP method: 0.4 seconde
- [C., Arzelier, Henrion, Lasserre: CDC'13]

Polynomial approximations

- $\|F-\tilde{F}\|=\epsilon$

$$
\begin{array}{ll}
\min _{\mu}\|\mu\| \\
\text { s.t. }\langle F, \mu\rangle=c & \min _{\mu}\|\mu\| \\
& \text { s.t. }|\langle\tilde{F}, \mu\rangle-c| \leq \epsilon\|\mu\|
\end{array}
$$

- Application to orbital RDV:
- Polynomials of degree 100
- Computation time: 1.1 seconde
- Direct LP method: 0.4 seconde
- [C., Arzelier, Henrion, Lasserre: CDC'13]

Table of contents

(1) Introduction
(2) Impulsive linear systems
(3) Non-linear impulsive systems

4 Switched systems
(5) Perspectives

Non-linear impulsive problems

$$
\begin{gathered}
J=\inf _{u(t)} \int_{0}^{T}(h(t, x(t))+H(t, x(t)) u(t)) d t \\
\text { s.t. } \dot{x}(t)=f(t, x(t))+G(t, x(t)) u(t) \\
x(0)=x_{0}, \quad x(T)=x_{T} \\
x(t) \in \mathbf{X}, \quad u(t) \in L^{1}\left([0, T] ; \mathbb{R}^{m}\right)
\end{gathered}
$$

The moment approach

Procedure

(1) Extended concept of $u(t)$

(2) Weak integration of ODE

Procedure

(1) Extended concept of $u(t)$
\rightarrow "Strong" problem, compact.

(2) Weak integration of ODE

Procedure

(1) Extended concept of $u(t)$
\rightarrow "Strong" problem, compact.
(2) Weak integration of ODE
\qquad

Procedure

(1) Extended concept of $u(t)$
\rightarrow "Strong" problem, compact.
(2) Weak integration of ODE
\rightarrow "Weak" problem, a GMP

Procedure

(1) Extended concept of $u(t)$
\rightarrow "Strong" problem, compact.
(2) Weak integration of ODE
\rightarrow "Weak" problem, a GMP
(3) Solve GMP!

Measure driven ODE

- Generalization of

$$
d x(t)=f(t, x(t)) d t+G(t, x(t)) u(t) d t
$$

into

$$
d x(t)=f(t, x(t)) d t+G(t, x(t)) \nu(d t)
$$

-
- [Bressan et Rampazzo]: $G(t, x)$.

"Strong" form

- Decompose $\nu=\nu^{C}+\nu^{D}$

- Concept of solution:

"Strong" form

- Decompose $\nu=\nu^{C}+\nu^{D}$
- For each t_{j}, associate $z(\theta)$:

"Strong" form

- Decompose $\nu=\nu^{C}+\nu^{D}$
- For each t_{j}, associate $z(\theta)$:

- Concept of solution:

$$
x\left(t^{+}\right)=x\left(0^{-}\right)+\int_{0}^{t} f(s, x(s)) d s+\int_{0}^{t} G\left(s, x^{C}(s)\right) \nu^{C}(d s)+\sum_{t_{i} \in \mathbf{S}, t_{i} \leq t}\left(x\left(t_{i}^{+}\right)-x\left(t_{i}^{-}\right)\right)
$$

"Weak" form

- Occupation measure μ et ω :

[^0]- [C, Arzelier, Henrion, Lasserre: ACC'12]

"Weak" form

- Occupation measure μ et ω :

Proposition

μ, ω satisfy $[v(\cdot, x(\cdot))]_{0}^{T}=\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} f, \mu\right\rangle+\left\langle\frac{\partial v}{\partial x} G, \omega\right\rangle$

- [C, Arzelier, Henrion, Lasserre: ACC'12]

"Weak" form

- Occupation measure μ et ω :

Proposition

μ, ω satisfy $[v(\cdot, x(\cdot))]_{0}^{T}=\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} f, \mu\right\rangle+\left\langle\frac{\partial v}{\partial x} G, \omega\right\rangle$

- [C, Arzelier, Henrion, Lasserre: ACC'12]

Table of contents

(1) Introduction
(2) Impulsive linear systems
(3) Non-linear impulsive systems

4 Switched systems
(5) Perspectives

Switched systems

- Control-affine problems \rightarrow control measures ?
- Switched systems:

Switched systems

- Control-affine problems \rightarrow control measures ?
- Switched systems:

$$
\begin{gathered}
\dot{x}=\sum_{j=1}^{m} f_{j}(t, x(t)) u_{j}(t) \\
u(t) \in\left\{\underline{u} \in\{0,1\}^{m}: \sum_{j=1}^{m} \underline{u}_{j}=1\right\} .
\end{gathered}
$$

Procedure

(1) Extended concept of $u(t)$

(2) Weak integration of ODE

Procedure

(1) Extended concept of $u(t)$

Young measure: $g(u(t)) \rightarrow\langle g(s), \nu(d s)\rangle, \quad \nu \in \mathcal{P}(U)$.

(2) Weak integration of ODE

Procedure

(1) Extended concept of $u(t)$

Young measure: $g(u(t)) \rightarrow\langle g(s), \nu(d s)\rangle, \quad \nu \in \mathcal{P}(U)$.
(2) Weak integration of ODE (3) Solve GMP: [Lasserre, Henrion, Prieur, Trélat]

Procedure

(1) Extended concept of $u(t)$

Young measure: $g(u(t)) \rightarrow\langle g(s), \nu(d s)\rangle, \quad \nu \in \mathcal{P}(U)$.
(2) Weak integration of ODE
$\rightarrow\left[\right.$ Rubio, Lewis, Vinter]: $[v(\cdot, x(\cdot))]_{0}^{T}=\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} f, \mu\right\rangle$

Procedure

(1) Extended concept of $u(t)$

Young measure: $g(u(t)) \rightarrow\langle g(s), \nu(d s)\rangle, \quad \nu \in \mathcal{P}(U)$.
(2) Weak integration of ODE
$\rightarrow\left[\right.$ Rubio, Lewis, Vinter]: $[v(\cdot, x(\cdot))]_{0}^{T}=\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} f, \mu\right\rangle$
(3) Solve GMP: [Lasserre, Henrion, Prieur, Trélat]

Compactification?

- Consider

$$
\begin{array}{ll}
\text { inf } & \int_{0}^{1} x^{2} d t \\
\text { s.t. } & \dot{x}=u \\
& u \in\{-1,1\}
\end{array}
$$

Compactification?

- Consider

$$
\begin{aligned}
& \text { inf } \int_{0}^{1} x^{2} d t \\
& \text { s.t. } \dot{x}=u \\
& \qquad u \in\{-1,1\}
\end{aligned}
$$

- Minimizing sequence:

Compactification?

- Consider

$$
\begin{aligned}
& \text { inf } \int_{0}^{1} x^{2} d t \\
& \text { s.t. } \dot{x}=u \\
& \qquad u \in\{-1,1\}
\end{aligned}
$$

- Minimizing sequence:

- $\nu^{*}(d u \mid t)=\frac{1}{2} \delta_{-1}(d u)+\frac{1}{2} \delta_{1}(d u)$

Compactification?

- Consider

$$
\begin{aligned}
& \text { inf } \int_{0}^{1} x^{2} d t \\
& \text { s.t. } \dot{x}=u \\
& \quad u \in\{-1,1\}
\end{aligned}
$$

- Minimizing sequence:

- $\nu^{*}(d u \mid t)=\frac{1}{2} \delta_{-1}(d u)+\frac{1}{2} \delta_{1}(d u) \rightarrow \dot{x}=\int u d \nu^{*}(d u \mid t)=0$

Modal occupation measures

Proposition

$$
\begin{gathered}
{[v(\cdot, x(\cdot))]_{0}^{T}=\left\langle\frac{\partial v}{\partial t}+\sum_{j=1}^{m} \frac{\partial v}{\partial x} f_{j} u_{j}, \mu(d t, d x, d u)\right\rangle} \\
\text { iff } \\
{[v(\cdot, x(\cdot))]_{0}^{T}=\sum_{j=1}^{m}\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} f_{j}, \mu_{j}(d t, d x)\right\rangle}
\end{gathered}
$$

Modal occupation measures

Proposition

$$
\begin{gathered}
{[v(\cdot, x(\cdot))]_{0}^{T}=\left\langle\frac{\partial v}{\partial t}+\sum_{j=1}^{m} \frac{\partial v}{\partial x} f_{j} u_{j}, \mu(d t, d x, d u)\right\rangle} \\
\text { iff } \\
{[v(\cdot, x(\cdot))]_{0}^{T}=\sum_{j=1}^{m}\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} f_{j}, \mu_{j}(d t, d x)\right\rangle}
\end{gathered}
$$

- $\Rightarrow: \mu_{j}(\mathbf{A} \times \mathbf{B}):=\int_{\mathbf{A} \times \mathbf{B} \times \mathbf{U}} u_{j} d \mu$
- $\Leftarrow: \tilde{\mu}=\sum_{j=1 \ldots m} \mu_{j}$, then $\mu_{j} \ll \tilde{\mu}$
- [Henrion, C., Daafouz : CDC'13]

Modal occupation measures

Proposition

$$
\begin{gathered}
{[v(\cdot, x(\cdot))]_{0}^{T}=\left\langle\frac{\partial v}{\partial t}+\sum_{j=1}^{m} \frac{\partial v}{\partial x} f_{j} u_{j}, \mu(d t, d x, d u)\right\rangle} \\
\text { iff } \\
{[v(\cdot, x(\cdot))]_{0}^{T}=\sum_{j=1}^{m}\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} f_{j}, \mu_{j}(d t, d x)\right\rangle}
\end{gathered}
$$

- $\Rightarrow: \mu_{j}(\mathbf{A} \times \mathbf{B}):=\int_{\mathbf{A} \times \mathbf{B} \times \mathbf{U}} u_{j} d \mu$
- $\Leftarrow: \tilde{\mu}=\sum_{j=1 \ldots m} \mu_{j}$, then $\mu_{j} \ll \tilde{\mu}$
- Henrion, C., Daafouz: CDC'13]

Modal occupation measures

Proposition

$$
\begin{gathered}
{[v(\cdot, x(\cdot))]_{0}^{T}=\left\langle\frac{\partial v}{\partial t}+\sum_{j=1}^{m} \frac{\partial v}{\partial x} f_{j} u_{j}, \mu(d t, d x, d u)\right\rangle} \\
\text { iff } \\
{[v(\cdot, x(\cdot))]_{0}^{T}=\sum_{j=1}^{m}\left\langle\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} f_{j}, \mu_{j}(d t, d x)\right\rangle}
\end{gathered}
$$

- $\Rightarrow: \mu_{j}(\mathbf{A} \times \mathbf{B}):=\int_{\mathbf{A} \times \mathbf{B} \times \mathbf{U}} u_{j} d \mu$
- $\Leftarrow: \tilde{\mu}=\sum_{j=1 \ldots m} \mu_{j}$, then $\mu_{j} \ll \tilde{\mu}$
- [Henrion, C., Daafouz : CDC'13]

Example: contrast problem (1/2)

- [Bonnard, C., Cots, Martinon: CDC'13]

Example: contrast problem (1/2)

- [Bonnard, C., Cots, Martinon: CDC'13]

$$
\begin{aligned}
& \inf -x_{3}^{2}(T)-x_{4}^{2}(T) \\
& \text { s.t. } \quad \dot{x}_{1}=-\Gamma_{1} x_{1}-x_{2} u \\
& \qquad \begin{aligned}
\dot{x}_{2} & =\gamma_{1}\left(1-x_{2}\right)+x_{1} u \\
\dot{x}_{3} & =-\Gamma_{2} x_{3}-x_{4} u \\
\dot{x}_{4} & =\gamma_{2}\left(1-x_{4}\right)+x_{3} u,
\end{aligned}
\end{aligned}
$$

Example: contrast problem (2/2)

Example: contrast problem (2/2)

	Measured control		Control measure	
r	$\sqrt{-J_{M}^{r}}$	t_{r}	$\sqrt{-J_{M}^{r}}$	t_{r}
1	1.000	1	0.9827	0.6
2	0.8984	2	0.8756	1.0
3	0.8707	9	0.8599	6.6
4	0.8256	265	0.7973	113
5	0.7881	5147	0.7891	1298
6	0.7867	50027	0.7871	10831

Example: electric motorbike (1/2)

- [C., Sager, Messine]

$$
\begin{aligned}
& \inf _{u(t)} \int_{0}^{10}\left(V_{\text {alim }} x_{1} u+R_{b a t} x_{1}^{2}\right) d t \\
& \text { s.t. } \dot{x}_{1}=-\frac{R_{m}}{L_{m}} x_{1}-\frac{K_{m}}{L_{m}} x_{2}+\frac{V_{a l i m}}{L_{m}} u, \\
& \quad \dot{x}_{2}=\frac{K_{m}}{J} x_{1}-\frac{r M g K_{f}}{J K_{r}}-\frac{r^{3} \rho S C_{x}}{2 J K_{r}^{3}} x_{2}^{2}, \\
& \dot{x}_{3}=\frac{r}{K_{r}} x_{2}, \\
& u(t) \in\{-1,+1\}, \\
& x_{3}(10)-x_{3}(0)=100 .
\end{aligned}
$$

Example: electric motorbike (1/2)

- [C., Sager, Messine]

Example: electric motorbike (2/2)

- [C., Sager, Messine]

Example: electric motorbike (2/2)

- [C., Sager, Messine]

$$
\begin{aligned}
& \inf _{u(t)} \int_{0}^{10}\left(V_{\text {alim }} x_{1} u+R_{b a t} x_{1}^{2}\right) d t \\
& \text { s.t. } \dot{x}_{1}=-\frac{R_{m}}{L_{m}} x_{1}-\frac{K_{m}}{L_{m}} x_{2}+\frac{V_{\text {alim }}}{L_{m}} u, \\
& \quad \dot{x}_{2}=\frac{K_{m}}{J} x_{1}-\frac{r M g K_{f}}{J K_{r}}-\frac{r^{3} \rho S C_{x}}{2 J K_{r}^{3}} x_{2}^{2}, \\
& \dot{x}_{3}=\frac{r}{K_{r}} x_{2}, \\
& u(t) \in\{-1,+1\}, \\
& x_{3}(10)-x_{3}(0)=100 .
\end{aligned}
$$

Example: electric motorbike (2/2)

- [C., Sager, Messine]

$$
\begin{aligned}
& \inf _{u(t)} \int_{0}^{10}\left(V_{\text {alim }} x_{1} u+R_{\text {bat }} x_{1}^{2}\right) d t \\
& \text { s.t. } \dot{x}_{1}=-\frac{R_{m}}{L_{m}} x_{1}-\frac{K_{m}}{L_{m}} x_{2}+\frac{V_{\text {alim }}}{L_{m}} u, \\
& \dot{x}_{2}=\frac{K_{m}}{J} x_{1}-\frac{r M g K_{f}}{J K_{r}}-\frac{r^{3} \rho S C_{x}}{2 J K_{r}^{3}} x_{2}^{2}, \\
& \dot{x}_{3}=\frac{r}{K_{r}} x_{2}, \\
& \\
& u(t) \in\{-1,+1\}, \\
& x_{3}(10)-x_{3}(0)=100 .
\end{aligned}
$$

Table of contents

(1) Introduction
(2) Impulsive linear systems
(3) Non-linear impulsive systems

4 Switched systems
(5) Perspectives

The moment approach

Some difficulties

- ∞-dim decision variable
- Local optimality
- Non smooth behaviors
- State constraints
- Practical implementation

Perspectives

- Relaxation gap?

- Controls L^{p} ? [C., Kružík, Henrion]

Perspectives

- Relaxation gap?
- Controls L^{p} ? [C., Kružík, Henrion]
- Inverse problem?

Perspectives

- Relaxation gap?
- Controls L^{p} ? [C., Kružík, Henrion]
- Inverse problem?

Perspectives

- Relaxation gap?
- Controls L^{p} ? [C., Kružík, Henrion]
- Inverse problem?
- Sparsity structure?

Thanks!

And happy birthday Jean-Bernard!

[^0]: Proposition

