
Occupational Therapy Perspective on Rehabilitation for Patient with Forearm Fracture

Ken Wong Occupational Therapist (PWH) 14/3/10

OT treatment goals in forearm fracture

1. Maximize elbow / forearm / wrist range of motion and strength

2. Minimize complications related to forearm fractures

3. Resume premorbid functional status in ADL, Work and Leisure

Common problems encountered with forearm fracture

- 1. Post traumatic swelling
- 2. Need of immobilization and controlled mobilization
- 3. Diminished range of motion and strength
- 4. Joint stiffness
- 5. Uninvolved joints stiffness
- 6. Complications associated with forearm fracture
- 7. Hypertrophic scar
- 8. ADL deficits
- 9. Impaired work capacity

(1) Post traumatic swelling

Edema control

- Elevation of hand above the level of heart
 - Use sling with caution as it promote elbow and shoulder stiffness
 - Use sling for short period only in crowded, public situation
- Active finger mobilization

 In conjunction with elevation reduce edema by the pumping action

Edema control Pressure garment

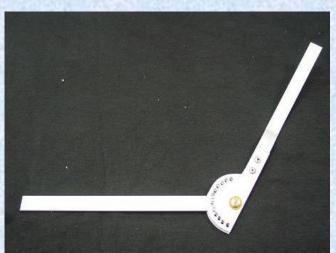
Finger stall

Glove

Arm tube

(2) Immobilization and controlled mobilization

Indication for immobilization by splintage


- 1. Conservative treatment
- 2. Post operative management
- Prevent displacement or angulations
- Maintain correct alignment
- Prevent excessive limb motion
- Control direction of movement
- Protect the healing fragments
- Pain relief

Tips on early controlled motion

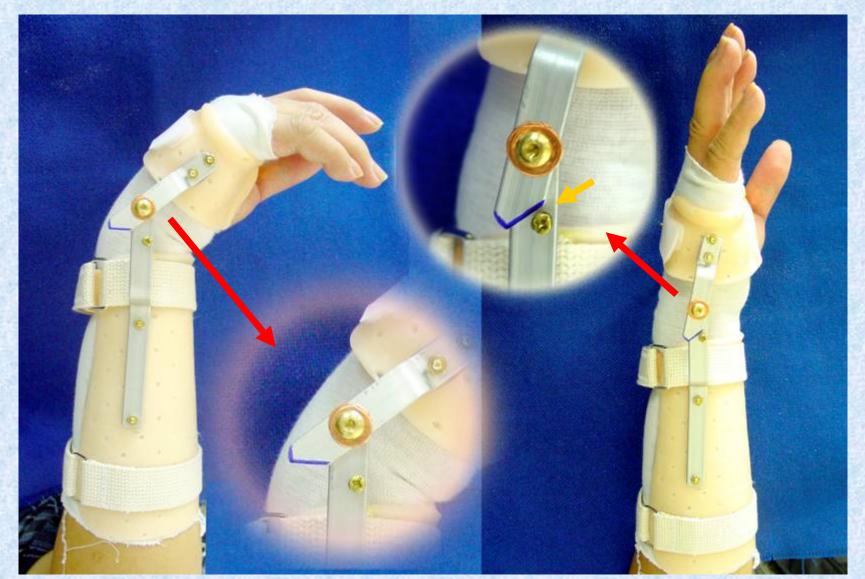
- Approximately 80% of elbow contracture occurred within the first 3 weeks (Morrey, 2009)
- Elbow exhibits a marked tendency to develop articular adhesions, therefore early controlled motion is desirable (Talyor, 2003)
- Early motion can enhance bone healing and decrease recovery time after injury or surgery (Thompson ST, Wehbe MA. 1996)

Controlled motion with LAB

Limit the elbow ROM

Lock

Supination


Distal radius fracture Forearm shaft fracture Radial head fracture Olecranon fracture Monteggia fracture Galeazzi fracture

Distal radius fracture

- Distal radius fracture occur as a result of a fall on the outstretched hand (Laseter, 2002)
- Cast for ~ 5 weeks
- Start controlled active mobilization
 - Colles' fracture with dorsal displacement of fracture fragment
 - Allow free wrist flexion with zero extension

Short arm brace with dorsal block

Controlled active mobilization

- Stable non-displaced fracture or post-operation
- Wrist resting splint

 As a bridge between total immobilization and no support (Georgiann F. Laseter, 2002)
- Encourage mobilization out of splint and put on splint for resting

Forearm fracture

- Conservative treatment of forearm shaft fractures usually results in:
 - poor functional outcome
 - exception of undisplaced & simple fracture
 - resort to operative management (Charnley, 1961)
- Functional bracing apply to:
 - non-displaced fractures
 - protective bracing in post operation (Sarmiento, 1975)
- Interosseous membrane strain
 - immobilization provide opportunity for healing (Charnley, 1961)

Forearm fracture

- Diaphyseal radial & ulnar fracture
- Result of a fall with axial loading on hand

Forearm shaft fracture

- Isolated ulna shaft fracture (nightstick #)
- Results of a direct blow on ulna in a selfdefense position

Immobilization & controlled mobilization

- 3-4/52 elbow cast in 90 with forearm in neutral position
- Then depending on # condition:
 - Hinge brace free elbow but keep forearm in neutral
 - Circumferential forearm brace
 - Forearm cast
 - Free mobilization

Radial head fracture

- Outstretched hand with elbow flexed and pronated
- Most radial head fracture is crack # without displacement

Immobilization & controlled mobilization

- ** Forearm rotation lead to radial head fragment instability
 - limit forearm rotation
- ** Radial head is one of the anatomical restraints to valgus stress at elbow (Robbin et al, 1986)
 - avoid valgus stress
- Long arm hinged brace with 30 to 100 elbow ROM and forearm in supination ~5/52

Olecranon fracture

- Fall on the olecranon process
- Undisplaced stable fracture
 → conservative Rx
- Displaced fracture
 → operative Mx

Immobilization & controlled mobilization

- ** Elbow in 90, bone fragments are held together by surrounding aponeurosis
- ** Too much elbow flexion lead to increased tension over # site by tricep muscle

1-3/52

- LAB with elbow keep in 90 and forearm in full supination / neutral
- 3-7/52 onward
 - LAB hinge brace with elbow 0-90

Monteggia / Galeazzi fracture

Monteggia fracture

Ulnar shaft fracture associated with dislocation of radial head /PRUJ

Galeazzi fracture

Radial shaft fracture associated with dislocation at DRUJ

• Fracture dislocation of the forearm results in an extremely unstable skeletal dissociation \rightarrow poor result

• Fell with outstretched hand with hyperpronated forearm / direct blow

Need operative management

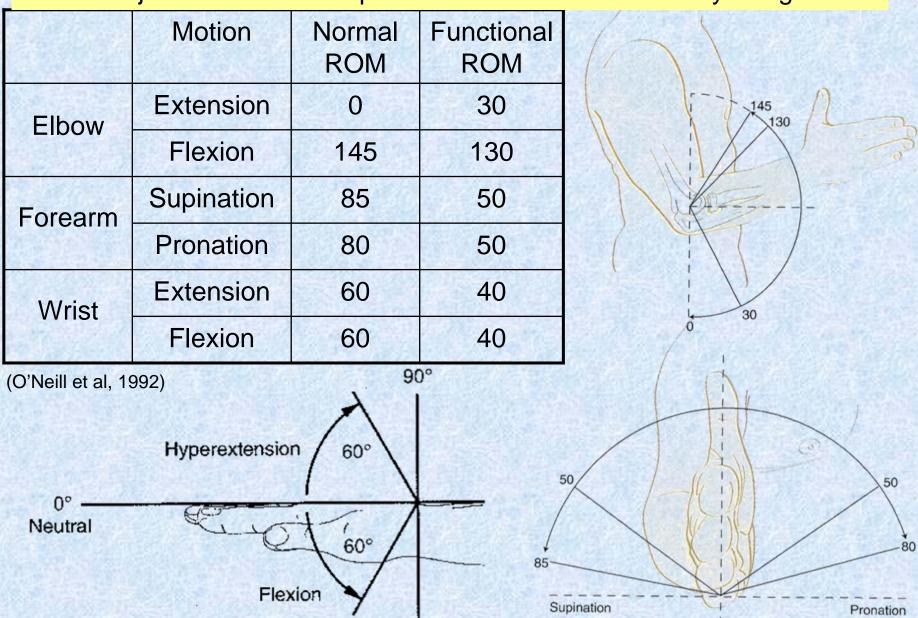
Monteggia

Immobilization & controlled mobilization

- ** Reduction of fracture dislocation
 - Difficult to maintain
 - Prone to malunion
 - Radioulnar joint incongruence

- Severe loss of forearm rotation (Reckling, 1982)

- 4-6/52
 - Long arm cast (elbow in 90, forearm in supination)
- 6/52 onward
 - Long arm hinge brace (free elbow, forearm in supination)


Rehab. is guided by the stability of PRUJ / DRUJ reduction

(3) Diminished ROM and strength

Functional ROM (Braddom R., 1996)

The joint movement required for functional use in daily living tasks

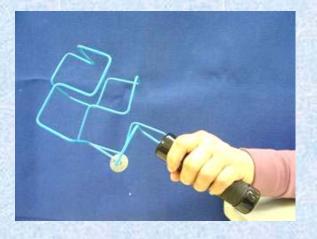
Loss of forearm rotation is extremely disabling

(Duncan, 1992)

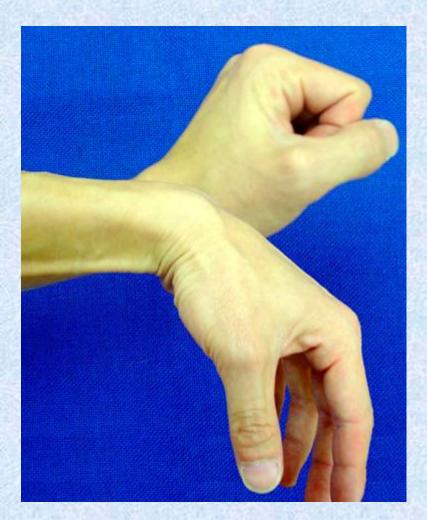
- Forearm fracture usually results in loss of forearm rotation
 - complicated dual intra-articular structures of the PRUJ / DRUJ
- Forearm rotation is one of the important features that differentiate human as the most highly developed hominids / mammals (Almquist, 1992)
 - Forearm rotation
 - Increase in brain size
 - Prehensile thumb

Regaining forearm rotation is one of our treatment focus

Forearm rotation training



Elbow & wrist mobilization Hand function training



Wrist extensor weakness x fracture DR

- Wrist extensor weakness is due to a period of immobilization in a flexed position (Stanley. B & Tribuzi M, 1992)
- Wrist extension with a substitution pattern by long finger extensor (Terri M. Skirren, 2002)
- Reestablish independent wrist extension is critical to the development of power grip and hand function (Werremeyer MM et al. 1997)

Wrist extension / flexion training

- Re-establish normal muscular balance
- Synergistic relationship
 - Wrist ext. with finger in flexion
 - Wrist flexion with finger in either extension

Strengthening

Start only when Fracture is clinically stable

Healing in progress <u>Progressive resistive</u> <u>strengthening activities</u>

Strengthening with computer machinery

(4) Joint stiffness

Corrective splintage

When to start corrective splintage?

- Joint ROM plateaus before reaching the acceptable functional ROM
- Corrective splintage applied for loss of motion related to:
 - soft tissue tightness
 - bony blockage or joint incongruence

Corrective splintage

Basic principles

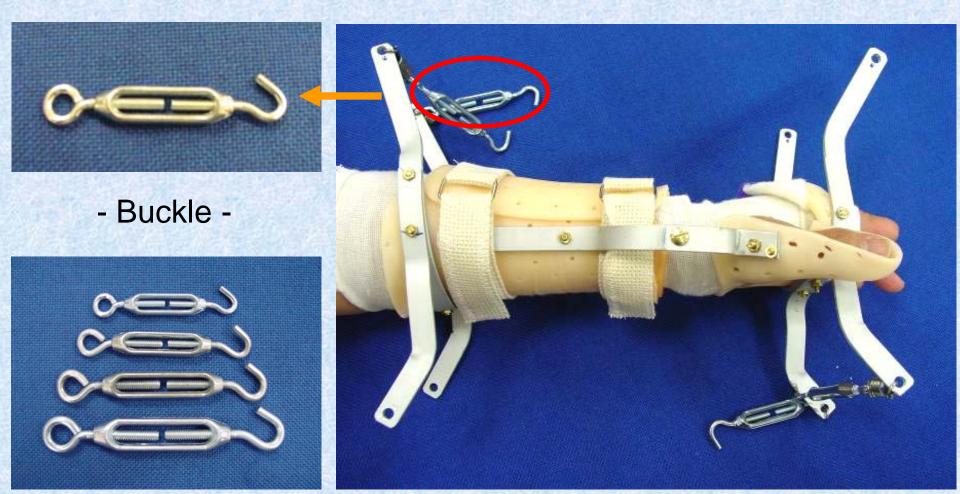
- Excessive / aggressive passive stretching lead to reactive inflammation (Richard, 1995)
- Low-load prolonged stress (LLPS) is more effective than high load brief stress (HLBS) (Flower KR & Michloritz SL, 1988)
 - 20-25 minutes alternative stretching, 5-6 times a day
- Stretch are followed by AROM to re-establish neuromuscular control within the newly obtained motion arcs (Smidt, 2002)

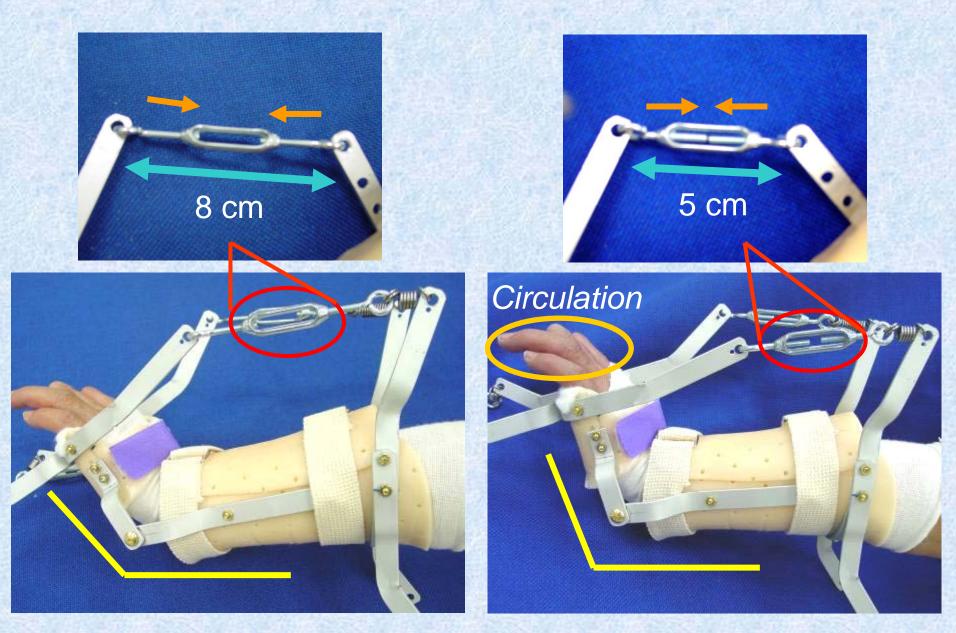
Forearm rotation brace

Provides progressive stretch to the joint capsule and soft tissues

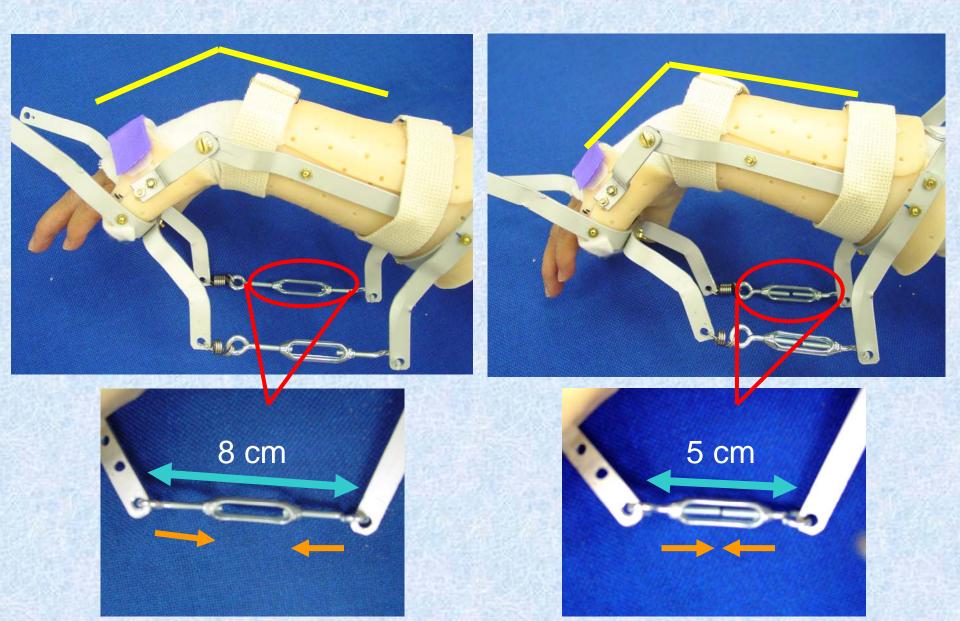
> Circumferential short arm splint can prevent torque at the wrist

Follow the axis of radioulnar joints radial head proximally to the fovea of the ulnar head distally

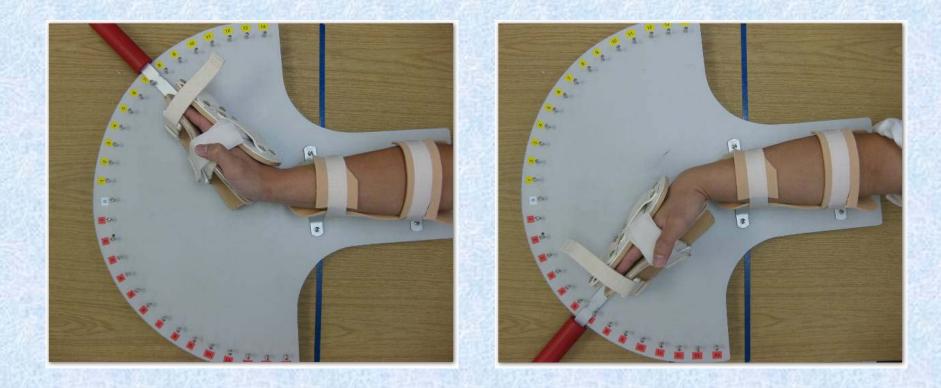




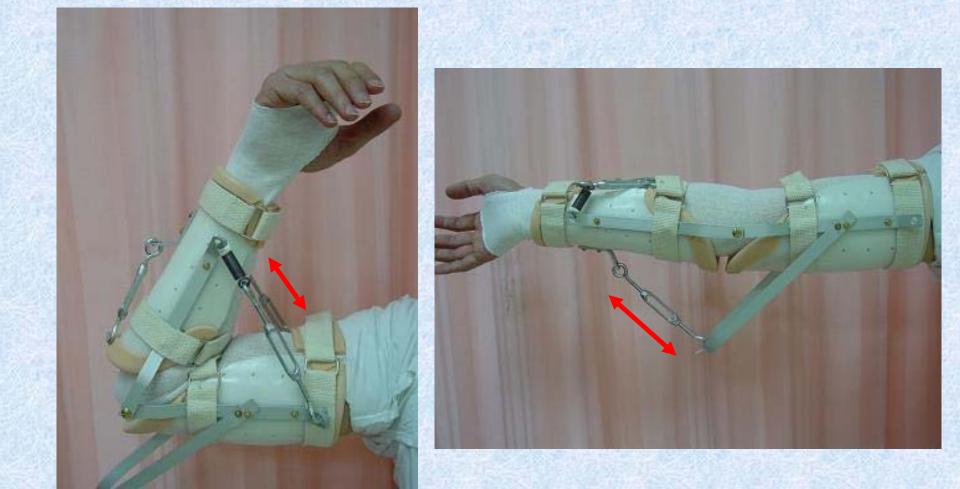
Turn buckle brace for wrist E/F


Turn buckle bracing provides progressive stretch to joint capsule and soft tissues by a serial adjustment of the buckle

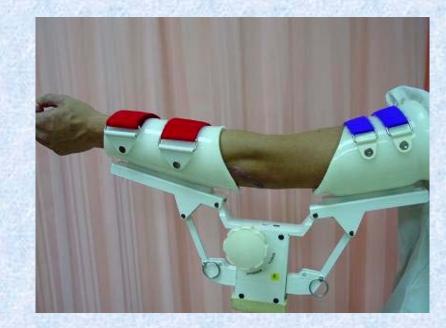
Wrist Extension



Wrist Flexion


Passive stretching device for wrist E/F

OPD training – alternative wrist E/F stretching


Turn buckle brace for elbow E/F

Turn buckle bracing provides progressive stretch to joint capsule and soft tissues by a serial adjustment of the buckle

JAS device for elbow E/F

(5) Uninvolved joints stiffness

Mobilization of uninvolved joints

Mobilization of shoulder, elbow, wrist, fingers & thumb Prevent soft tissue adhesion

Maintain joint mobility

(6) Complication associated with forearm fracture

Neuropathy

PIN (forearm shaft #) Dynamic outrigger splint

Radial n. (monteggia #) Dynamic wrist and finger outrigger splint

Sensory branch of radial n. (Galeazzi #) sensory charting + sensory reeducation

Ulnar n. (olecranon #) anti claw hand

Medial n. (DR #) wrist neutral splint

> Permanent Transient Tardive

Delay- / non- / mal- union

Common

- 1. Complicated forearm anatomical structure
- 2. Imperfect immobilization
 - rotatory shearing movement between fragments
- ** Improve compliance with immobilization and controlled mobilization program
- ** Operative management

Ulnar wrist pain

- Common in DR#
- DRUJ instability, ulnar variance
- Wrist arthroscopy
- Conservative Rx or post op rehab. program

Osteoarthritis

- Post traumatic
- Irregularity of a joint surface will accelerate the OA changes
- ** Avoid heavy weight bearing

Reflex Sympathetic Dystrophy (RSD)

- Persistent pain
- Persistent swelling
- •Joint stiffness
- •Trophic skin changes
- •**etc...** (Procacci P, 1987)

- \rightarrow Close monitoring
- → Start with gentle mobilization as tolerated
- → Pressure garment
- → Resting splint for pain relief
- → Encourage active use of hand in ADL tasks

(7) Hypertrophic scar

Scar management

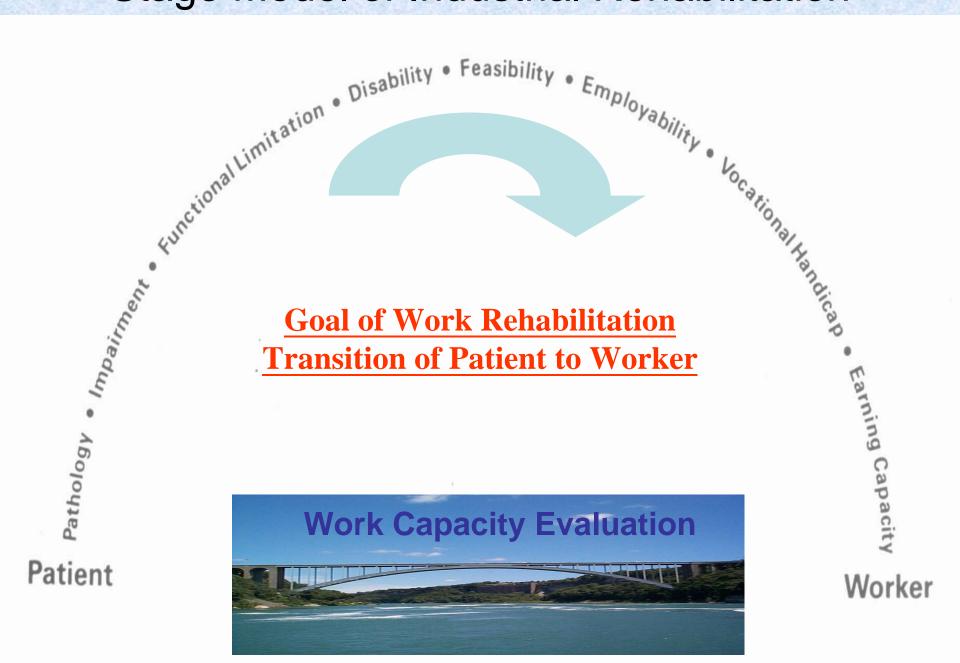
PG +/- Padding

Silicon gel

(8) ADL deficits

Encourage early involvement of affected limb in ADL tasks

ADL training and aid prescription



(9) Diminished work capacity Return to work?

Stage Model of Industrial Rehabilitation

Work Complexity / Diversity

Job Analysis

 Identify a patient's Job Demand to match with the patient's Work Capacity to determine treatment goals.

Job Demand

Physical demand
 Breakdown of tasks
 Tools and machines handling
 Physical Work environment

Work Capacity Evaluation To measure patient's work capacity

Job demand vs pt's work capacity

- Pt's work capacity > job demand
 - Return to work
- Job demand > pt's work capacity
 Start work hardening program

Work hardening program

Intensive job-specific training to improve pts' work capacity

Work hardening

Structured work simulation

Work hardening

Work Simulators

Conclusion

- Forearm fracture is a common but difficult orthopaedic condition
- Ultimate goal is to restore premorbid functional status
- Require team work in the hospital settings
 - Orthopaedic specialists
 - Nurses
 - Occupational / Physical Therapists

Reference

- Ryu JY, Cooney WP, Askew LJ, et al. Functional ranges of motion of the wrist joint. *J Hand Surg [Am]* 1991; 16: 409-419.
- Thompson ST, Wehbe MA. Early motion after wrist surgery. *Hand Clin* 1996;12:87-96.
- Brand PW. Mechanical factors in joint stiffness and tissue growth. J Hand Ther 1995;8:91-96
- Braddom R. Physical Medicine and Rehabilitation. Philadelphia: W. B. Saunders, 1996)
- Werremeyer MM, Cole KJ: Wrist action affects precision grip force, J Neurophys 78:271,1997.
- Procacci, P and Maresca, Maresca, M: Reflex sympathetic dystrophies and algodystrophies: Historical and pathogenic consideration. Pain 31: 137, 1987
- Smidt N., Assendelft W., van der Windt D.: Conticosteroid injections for lateral epicondylitis: a systematic review. Pain 2002; 96:23.
- Taylor D., Dalton J., Seaber A., Garrett Jr. W.E.: Viscoelastic properties of muscle-tendon units: the biomechanical effects of stretching. Am. J. Sports Med 1990; 18:300.
- Almquist, E.A. (1992) Evolution of the distal radioulnar joint. Clin Orthop., 275, 5-13
- Duncan, R., Geissler. W., Freeland, A.E. and Savoie, F.H. (1992) Immediate internal fixation of open fractures of the diaphysis of the forearm. J. Orthop. Trauma., 6, 22-31
- Reckling, F.W. (1982) Unstable fracture-dislocation of the forearm (Monteggia and Galeazzi lesions). J. Bone Joint Surg., 64A, 857-63
- Sarmiento, A., Cooper, J.S. and Sinclair, W.F. (1975) Forearm fracture.J. Bone Joint Surg., 57A, 297-304
- Charnley, J. (1961). Closed Treatment of Common Fractures, 3rd edn. Edinburgh: Churchill Livingstone.
- Robbin, M.L., An, K.L., Linscheid, R.L. (1986) Anatomic and kinematic analysis of the human forearm using high speed computed tomography. Med. Biol, Eng. COmput., 24, 164-168
- Masterson, E., Borton, D. and O'Brien, T. (1993) Victims of our climate. Injury, 24, 247-8
- O'Neill, O. R., Morrey, B. F., Tanaka, S., and An, K. N.: Compensatory motion in the upper extremity after elbow arthrodesis. Clin. Orthop. 281:89, 1992.