OCR AS Physical Education

Anatomy & Physiology

Teacher Resource File

The Skeletal and Muscular Systems Motion and Movement The Cardiovascular and Respiratory Systems in relation to performance of physical activity

> Dr Sarah Powell for

Introduction

OCR Physical Education AS – Anatomy and Physiology Teacher Resource File

Introduction

This Teacher Resource File has been designed to support teaching and learning of the AS Anatomy and Physiology section of the G451 theory unit. It has been written for PEfocus by Dr Sarah Powell who is a highly experienced teacher of A Level Physical Education whose PHd is in objective physical activity assessment and bone density in children.

On this CD/file you will find handouts, worksheets, fill-ins, match up games and various other 'masters' to photocopy and use in your classroom. Some will help students with course organisation while others can conveniently be used as warm up and plenary tasks. Some offer handy class or homework activities to check learning and others are for making resources such as cue/question cards that can be used year after year when reviewing work at test or revision time. There are often four per set to represent the four main sections of the A&P specification. A number of documents have been included to help with preparation for the extended 10-mark questions. It's not expected that you'll use everything each year with each group but will select, develop and adapt tasks to suit your needs and your learners. The aim is to provide time saving, high quality and reliable support for busy, enthusiastic teachers.

I hope that you and your students find this resource stimulating, engaging and valuable and I wish you all the very best for an enjoyable and beneficial teaching and learning experience.

araw van wel

Sarah van Wely PEfocus

Contents	Page
Introduction	2
Table of contents	3-4
The OCR A&P specification	5-6
Revision checklists	7-10
For student files and reference / awareness of required knowledge and	
understanding	
Draft scheme of work – not endorsed by an examining body	11
A draft suggestion for dividing the spec – to be adapted for individual	
centres. Based on 1x1hr session per week	
Glossary of key terms	12-16
Glossary of key terms blanks	17-24
Student reference and on-going assimilation task	
Command word chart	25
Student reference	
Levels of cognitive demand/development	26-27
Aimed at developing thinking skills/powers of analysis/evaluation –	
especially for part e questions	
Higher order thinking skills	28-32
True or false quick quiz	33
A quick and easy warm up or plenary task – answers are all true!	
Key term card match 1: musculoskeletal system	34-35
Photocopy, (laminate) and cut cards into sets. (keep sets 1-4 separate) Can	
be used in a variety of ways e.g. one set per pair. Students match definition	
to correct explanation. Or as memory game, walk around activity or 'find	
your partner' – good to warm up, cool down or 'change pace'	20.27
Key term card match 2: motion and movement	36-37
Key term card match 3: cardiovascular system	38-40
Key term card match 4: respiratory system	41-42
Key term card match 1-2 answers	43
Key term card match 3-4 answers	44
What am I describing 1: musculoskeletal system + poss clues	45-47
Photocopy, (laminate) and cut up into sets. (keep sets 1-4 separate). Can	
be played like the board game 'articulate' in pairs. Each pair has a number	
of cards face down. Player A turns over a card and by using excellent clues	
(this is the key to learning with this game) consisting of key words and	
accurate academic context tries to get Player B to say the word on the card	10.70
What am I describing 2: motion and movement + poss clues	48-50
What am I describing 3: cardiovascular system + poss clues	51-53
What am I describing 4: respiratory system + poss clues	54-56
Quick quiz 1: musculoskeletal system + answers	57-58
Quick and easy lesson/homework tasks	
Quick quiz 2: motion and movement + answers	59-60
Quick quiz 3: cardiovascular system + answers	61-62
Quick quiz 4: respiratory system + answers	63-64

Cue cards 1: musculoskeletal system + short answers	65-66	
Photocopy on to coloured card, (laminate) and cut up. Students can write		
answers/correct material on back in non-permanent pen or cards can be		
used as revision/ question cards.		
Cue cards 2: motion and movement + short answers	67-68	
Cue cards 3: cardiovascular system + short answers	69-70	
Cue cards 4: respiratory system + short answers	71-72	
Fill in the blanks 1: musculoskeletal system + answers	73-74	
Lesson/homework tasks		
Fill in the blanks 2: motion and movement + answers	75-76	
Fill in the blanks 3: cardiovascular system + answers	77-78	
Fill in the blanks 4: respiratory system + answers	79-80	
'Follow me' /domino cards 1: musculoskeletal system + answers	81-83	
Photocopy, (laminate) and cut up into sets (horizontal strips for dominoes).		
Keep sets 1-4 separate.		
Depending on class size 'players' (pairs?) can have a set to link up/follow on		
in one long line (not strictly dominoes).		
Or cards can be used as whole class 'follow me' activity. Share out cards		
among class – one player starts by stating the right side/shaded key word		
or phrase. Whoever has the follow on/answer on the left of their card (not		
shaded) reads out the answer THEN reads the right hand side of their card and so on		
'Follow me' /domino cards 2: motion and movement + answers	84-86	
'Follow me' /domino cards 3: cardiovascular system + answers	87-89	
	90-92	
'Follow me' /domino cards 4: respiratory system + answers	93-92	
Jigsaw 1: musculoskeletal system + solution		
Laminate and cut up pieces. Solve by placing key term and descriptor together		
Jigsaw 2: motion and movement + solution	97-100	
	101-106	
Jigsaw 3: cardiovascular system + solution	107-110	
Jigsaw 4: respiratory system + solution		
Quick Puzzle 1: musculoskeletal system + solution	111-112	
Starter/plenary/homework tasks		
Quick Puzzle 2: motion and movement + solution	113-114	
Quick Puzzle 3: cardiovascular system + solution	115-116	
Quick Puzzle 4: respiratory system + solution	117-118	
Extended/10 mark questions 1-4	119	
Extended/10 mark answer plans and answer schemes 1-4	120-131	
Group or individual lesson/homework tasks.		
Introductory or revision lesson	132-137	
Three tables with different activity on each. Table 1b – answers in this order		
See June 09 MS for answers to table 3 task		
Stretch and challenge tasks 1-4 (followed by brief answers)	138-149	
Group research tasks to stretch & challenge – See Jan 2010 MS for answers to N. Laws exam guestion		

Anatomy and Physiology – 'Skeleton' OCR specification The Musculoskeletal System: Movement analysis and skeletal health Movement analysis

- Wrist: flexion and extension; wrist flexors and extensors
- **Radio-ulnar**: pronation and supination, pronator teres and supinator muscle
- **Elbow**: flexion and extension, biceps brachii and triceps brachii
- Shoulder: abduction, adduction, flexion, extension, rotation, horizontal flexion, horizontal extension, circumduction, deltoid, latissimus dorsi, pectoralis major, subscapularis, infraspinatus, teres major and teres minor; trapezius, the role of the rotator cuff muscles, supraspinatus infraspinatus, teres minor and subscapularis
- Spine (cartilaginous, gliding and pivot), flexion, extension, lateral flexion, rectus abdominus, external and internal oblique and the erector spinal group, sacrospinalis (the role of the transverse abdominus and multifidus in relation to core stability)
- Hip: abduction, adduction, flexion, extension, rotation illiopsoas, gluteus maximus, medius and minimus, adductor longus, brevis and magnus
- Knee: flexion and extension, biceps femoris, semi-membranosus, semi-tendinosus, rectus femoris, vastus lateralis, vastus intermedius and vastus medialis
- Ankle: dorsi flexion, plantar flexion, tibialis anterior, gastrocnemius and soleus

Muscular contraction

- **Concentric, eccentric and isometric contraction**
- Carry out a movement analysis making reference to joint type, the type of movement produced, the agonist and antagonist muscle (or muscles) in action and the type of muscle contraction taking place
- Muscle fibre types in relation to choice of physical activity
- Structure and function of the different muscle fibre types (slow oxidative, fast oxidative, glycolytic and fast glycolytic) in relation to different types of physical activity
- Explain how an individual's mix of muscle fibre type might influence their reasons for choosing to take part in a particular type of physical activity
- Analyse the effect of a warm up and cool-down on skeletal muscle tissue in relation to the quality of performance of physical activity

Skeletal health

Evaluate critically the impact of different types of physical activity (contact sports, high impact sports and activities involving repetitive actions) on the skeletal and muscular systems (osteoporosis, osteoarthritis, growth plate, joint stability, posture and alignment) with reference to lifelong involvement in an active lifestyle

Motion and Movement: Newton's laws of motion, force and stability

Basic biomechanics

- Define Newton's Laws of Motion
- Describe the types of motion produced (linear, angular or general)
- Describe the effect of size of force, direction of the force and the position of application of force on a body,
- Define centre of mass
- Explain the effect of changes in the position of the centre of mass and the area of support when applied to practical techniques

Th	e Cardiovascular System: heart & vascular system re physical activity & health
Са	rdiac output
	Describe the link between the cardiac cycle (diastole and systole) and the
	conduction system of the heart
	Describe the relationship between stroke volume, heart rate and cardiac output and
	resting values for each and the changes during different intensities of activity
	Explain the regulation of heart rate during physical activity (to include neural,
	hormonal and intrinsic factors)
	Describe the distribution of cardiac output at rest and during exercise (the vascular
	shunt mechanism) explaining the role of the vasomotor centre and the involvement
	of arterioles and pre-capillary sphincters
Blo	bod flow regulation
	Explain how carbon dioxide and oxygen are carried within the vascular system, how
	effective transportation of carbon dioxide and oxygen within the vascular system
	aids participation in physical activity and how smoking affects the transportation of
	oxygen
	Define blood pressure and identify resting values, changes that occur during
	physical activity and hypertension
	Explain how venous return is maintained, the effects that a warm-up and cool-down
	period has on the cardiovascular system and how venous return affects the quality
	of performance
Ca	rdiac health
	Evaluate critically the impact of different types of physical activity on the CV system
	(coronary heart disease (CHD), arteriosclerosis, atherosclerosis, angina, heart
	attack) with reference to lifelong involvement in an active lifestyle
	e Respiratory System: gaseous exchange re physical activity and health
	echanics
	echanics Describe the mechanics of breathing at rest and the respiratory muscles involved
M e	Chanics Describe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles)
Me	Explain the changes in the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles) Explain the changes in the mechanics of breathing during physical activity including
M e	Describe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles) Explain the changes in the mechanics of breathing during physical activity including reference to additional muscles involved (sternocleidomastoid and pectoralis minor)
M e	Describe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles) Explain the changes in the mechanics of breathing during physical activity including reference to additional muscles involved (sternocleidomastoid and pectoralis minor) and the active nature of expiration (internal intercostals and abdominal muscles)
M e	Describe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles) Explain the changes in the mechanics of breathing during physical activity including reference to additional muscles involved (sternocleidomastoid and pectoralis minor) and the active nature of expiration (internal intercostals and abdominal muscles) Explain how changes in the mechanics of breathing during physical activity are
	Describe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles) Explain the changes in the mechanics of breathing during physical activity including reference to additional muscles involved (sternocleidomastoid and pectoralis minor) and the active nature of expiration (internal intercostals and abdominal muscles) Explain how changes in the mechanics of breathing during physical activity are regulated by the respiratory centre (both neural and chemical control) to take into
	Describe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles) Explain the changes in the mechanics of breathing during physical activity including reference to additional muscles involved (sternocleidomastoid and pectoralis minor) and the active nature of expiration (internal intercostals and abdominal muscles) Explain how changes in the mechanics of breathing during physical activity are regulated by the respiratory centre (both neural and chemical control) to take into account the demands of different intensities of physical activity
	Describe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles) Explain the changes in the mechanics of breathing during physical activity including reference to additional muscles involved (sternocleidomastoid and pectoralis minor) and the active nature of expiration (internal intercostals and abdominal muscles) Explain how changes in the mechanics of breathing during physical activity are regulated by the respiratory centre (both neural and chemical control) to take into account the demands of different intensities of physical activity seous exchange and altitude
	Describe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles) Explain the changes in the mechanics of breathing during physical activity including reference to additional muscles involved (sternocleidomastoid and pectoralis minor) and the active nature of expiration (internal intercostals and abdominal muscles) Explain how changes in the mechanics of breathing during physical activity are regulated by the respiratory centre (both neural and chemical control) to take into account the demands of different intensities of physical activity seous exchange and altitude Describe the process of gaseous exchange that takes place between the alveoli and
	echanicsDescribe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles)Explain the changes in the mechanics of breathing during physical activity including reference to additional muscles involved (sternocleidomastoid and pectoralis minor) and the active nature of expiration (internal intercostals and abdominal muscles)Explain how changes in the mechanics of breathing during physical activity are regulated by the respiratory centre (both neural and chemical control) to take into account the demands of different intensities of physical activityseous exchange and altitudeDescribe the process of gaseous exchange that takes place between the alveoli and the blood and between the blood and the tissue cells (an awareness of partial
	echanicsDescribe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles)Explain the changes in the mechanics of breathing during physical activity including reference to additional muscles involved (sternocleidomastoid and pectoralis minor) and the active nature of expiration (internal intercostals and abdominal muscles)Explain how changes in the mechanics of breathing during physical activity are regulated by the respiratory centre (both neural and chemical control) to take into account the demands of different intensities of physical activityseous exchange and altitudeDescribe the process of gaseous exchange that takes place between the alveoli and the blood and between the blood and the tissue cells (an awareness of partial pressure is required but candidates will not be expected to provide specific
	Describe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles) Explain the changes in the mechanics of breathing during physical activity including reference to additional muscles involved (sternocleidomastoid and pectoralis minor) and the active nature of expiration (internal intercostals and abdominal muscles) Explain how changes in the mechanics of breathing during physical activity are regulated by the respiratory centre (both neural and chemical control) to take into account the demands of different intensities of physical activity seous exchange and altitude Describe the process of gaseous exchange that takes place between the alveoli and the blood and between the blood and the tissue cells (an awareness of partial pressure is required but candidates will not be expected to provide specific respiratory pressures)
	echanicsDescribe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles)Explain the changes in the mechanics of breathing during physical activity including reference to additional muscles involved (sternocleidomastoid and pectoralis minor) and the active nature of expiration (internal intercostals and abdominal muscles)Explain how changes in the mechanics of breathing during physical activity are regulated by the respiratory centre (both neural and chemical control) to take into account the demands of different intensities of physical activityseous exchange and altitudeDescribe the process of gaseous exchange that takes place between the alveoli and the blood and between the blood and the tissue cells (an awareness of partial pressure is required but candidates will not be expected to provide specific respiratory pressures)Explain changes in gaseous exchange that take place between the alveoli and blood
	echanicsDescribe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles)Explain the changes in the mechanics of breathing during physical activity including reference to additional muscles involved (sternocleidomastoid and pectoralis minor) and the active nature of expiration (internal intercostals and abdominal muscles)Explain how changes in the mechanics of breathing during physical activity are regulated by the respiratory centre (both neural and chemical control) to take into account the demands of different intensities of physical activityseous exchange and altitudeDescribe the process of gaseous exchange that takes place between the alveoli and the blood and between the blood and the tissue cells (an awareness of partial pressure is required but candidates will not be expected to provide specific respiratory pressures)Explain changes in gaseous exchange that take place between the alveoli and blood and between blood and tissue cells (increased diffusion gradient and accelerated
Ga	echanicsDescribe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles)Explain the changes in the mechanics of breathing during physical activity including reference to additional muscles involved (sternocleidomastoid and pectoralis minor) and the active nature of expiration (internal intercostals and abdominal muscles)Explain how changes in the mechanics of breathing during physical activity are regulated by the respiratory centre (both neural and chemical control) to take into account the demands of different intensities of physical activityseous exchange and altitudeDescribe the process of gaseous exchange that takes place between the alveoli and the blood and between the blood and the tissue cells (an awareness of partial pressure is required but candidates will not be expected to provide specific respiratory pressures)Explain changes in gaseous exchange that take place between the alveoli and blood and between blood and tissue cells (increased diffusion gradient and accelerated dissociation of oxy-haemoglobin) as a direct result of particip ⁿ in physical activity
	echanicsDescribe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles)Explain the changes in the mechanics of breathing during physical activity including reference to additional muscles involved (sternocleidomastoid and pectoralis minor) and the active nature of expiration (internal intercostals and abdominal muscles)Explain how changes in the mechanics of breathing during physical activity are regulated by the respiratory centre (both neural and chemical control) to take into account the demands of different intensities of physical activityseous exchange and altitudeDescribe the process of gaseous exchange that takes place between the alveoli and the blood and between the blood and the tissue cells (an awareness of partial pressure is required but candidates will not be expected to provide specific respiratory pressures)Explain changes in gaseous exchange that take place between the alveoli and blood and between blood and tissue cells (increased diffusion gradient and accelerated dissociation of oxy-haemoglobin) as a direct result of particip ⁿ in physical activity Explain the effect of altitude on the respiratory system and how it influences the
	echanicsDescribe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles)Explain the changes in the mechanics of breathing during physical activity including reference to additional muscles involved (sternocleidomastoid and pectoralis minor) and the active nature of expiration (internal intercostals and abdominal muscles)Explain how changes in the mechanics of breathing during physical activity are regulated by the respiratory centre (both neural and chemical control) to take into account the demands of different intensities of physical activityBescribe the process of gaseous exchange that takes place between the alveoli and the blood and between the blood and the tissue cells (an awareness of partial pressure is required but candidates will not be expected to provide specific respiratory pressures)Explain changes in gaseous exchange that take place between the alveoli and blood and between blood and tissue cells (increased diffusion gradient and accelerated dissociation of oxy-haemoglobin) as a direct result of particip ⁿ in physical activity Explain the effect of altitude on the respiratory system and how it influences the performance of different intensities of physical activity
Ga	ExchanicsDescribe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles)Explain the changes in the mechanics of breathing during physical activity including reference to additional muscles involved (sternocleidomastoid and pectoralis minor) and the active nature of expiration (internal intercostals and abdominal muscles)Explain how changes in the mechanics of breathing during physical activity are regulated by the respiratory centre (both neural and chemical control) to take into account the demands of different intensities of physical activityIseous exchange and altitudeDescribe the process of gaseous exchange that takes place between the alveoli and the blood and between the blood and the tissue cells (an awareness of partial pressure is required but candidates will not be expected to provide specific respiratory pressures)Explain changes in gaseous exchange that take place between the alveoli and blood and between blood and tissue cells (increased diffusion gradient and accelerated dissociation of oxy-haemoglobin) as a direct result of particip ⁿ in physical activity Explain the effect of altitude on the respiratory system and how it influences the performance of different intensities of physical activity
	achanicsDescribe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles)Explain the changes in the mechanics of breathing during physical activity including reference to additional muscles involved (sternocleidomastoid and pectoralis minor) and the active nature of expiration (internal intercostals and abdominal muscles)Explain how changes in the mechanics of breathing during physical activity are regulated by the respiratory centre (both neural and chemical control) to take into account the demands of different intensities of physical activityseous exchange and altitudeDescribe the process of gaseous exchange that takes place between the alveoli and the blood and between the blood and the tissue cells (an awareness of partial pressure is required but candidates will not be expected to provide specific respiratory pressures)Explain changes in gaseous exchange that take place between the alveoli and blood and between blood and tissue cells (increased diffusion gradient and accelerated dissociation of oxy-haemoglobin) as a direct result of particip ⁿ in physical activity Explain the effect of altitude on the respiratory system and how it influences the performance of different intensities of physical activityspiratory healthEvaluate critically the impact of different types of physical activity on the respiratory
Ga	ExchanicsDescribe the mechanics of breathing at rest and the respiratory muscles involved (including the diaphragm and external intercostal muscles)Explain the changes in the mechanics of breathing during physical activity including reference to additional muscles involved (sternocleidomastoid and pectoralis minor) and the active nature of expiration (internal intercostals and abdominal muscles)Explain how changes in the mechanics of breathing during physical activity are regulated by the respiratory centre (both neural and chemical control) to take into account the demands of different intensities of physical activityIseous exchange and altitudeDescribe the process of gaseous exchange that takes place between the alveoli and the blood and between the blood and the tissue cells (an awareness of partial pressure is required but candidates will not be expected to provide specific respiratory pressures)Explain changes in gaseous exchange that take place between the alveoli and blood and between blood and tissue cells (increased diffusion gradient and accelerated dissociation of oxy-haemoglobin) as a direct result of particip ⁿ in physical activity Explain the effect of altitude on the respiratory system and how it influences the performance of different intensities of physical activity

The Musculoskeletal System		
Joint type, movement patterns, agonist and antagonist muscles for Wrist Radio-ulna Elbow Shoulder Spine Hip Knee Ankle		
Muscular contraction: concentric, eccentric, isometric		
Structure and function of muscular fibre type (slow oxidative, fast oxidative glycolytic and fast glycolytic) in relation to choice of physical activity		
Effect of warm-up and cool-down on quality of performance (speed and force of muscular contraction)		
 Impact of different types of activity Contact High impact Repetitive action With reference to: Osteoporosis Osteoarthritis Growth plate disorders Joint stability Posture and alignment 		

Motion and Movement	\checkmark
Newton's laws of motion 1. Inertia 2. Acceleration 3. Reaction	
Types of motion Linear Angular General	
Effects of Size Direction Point of application of force on a body 	
 Centre of mass Effect of changes in position of CofM and area of support with practical application 	

The Cardiovascular System	\checkmark
Cardiac cycle (diastole, atrial systole and ventricular systole) and conduction system	
Heart rate, stroke volume and cardiac output - rest and exercise	
Regulation of heart rate/cardiac control (neural, intrinsic and hormonal)	
Distribution of cardiac output at rest and during exercise (vascular shunt mechanism) and vasomotor control	
Oxygen and carbon dioxide transportation in the vascular system. How smoking effects transportation of oxygen	
Blood pressure – definition and resting values Hypertension	
Venous return mechanisms and effect on physical activity (Starling's Law) Effects of warm-up and cool-down on cardiovascular system	
Impact of different types of physical activity on CV system Coronary heart disease Arteriosclerosis Atherosclerosis Angina Heart attack 	

The Respiratory System	\checkmark
Mechanics of breathing: changes at rest and changes during physical activity (including muscles involved)	
Respiratory control (neural and chemical) of breathing rate during different intensities of physical activity	
Gaseous exchange at the external (alveoli-capillary membrane) and internal (capillary-muscle tissue membrane) sites at rest	
Response of gaseous exchange to physical activity including Increased diffusion gradient Increased dissociation of oxy-haemoglobin	
Effect of altitude on the respiratory system and its influence on the performance of physical activity	
Different types of physical activity and their effects on the respiratory system Asthma Smoking	

Draft scheme of work - 1 hr sessions - not endorsed by an examining body

1	Course	e overview
-		Introduction to healthy balanced lifestyles
2		loskeletal System
-		Joint types
		Muscle roles (agonist, antagonist and fixator)
		Contraction types (concentric, eccentric and isometric)
3		Muscle fibre types (SO, FOG and FG)
0		Warm-up and cool-down
4		Movement patterns
-		Introduction to joint analysis: ankle and wrist
5		Elbow, knee, radio-ulnar
6		Hip and shoulder
0		Joint stability (role of the rotator cuff)
7	_	Spine
1		Core stability
		Posture and alignment
8		loskeletal: health conditions
0		Osteoporosis
		Osteoarthritis
	_	Growth plate disorders etc
9		and Movement
9		Force
	_	
		Newton's Laws (inertia, acceleration and reaction)
10		Motion (linear, angular and general) Centre of mass
TO	_	Stability
11		vascular System
**		Conduction system
		Cardiac cycle (systole and diastole)
12		Heart rate
12		Stroke volume
		Cardiac output
13		Cardiac control (neural, intrinsic and hormonal)
13		Venous return mechanisms
14		
15		Warm-up and cool-down
15		Vasomotor control
16		Vascular shunt
16		Oxygen and carbon dioxide transportation
47		Effect of smoking
17		vascular system: health conditions
		Blood pressure and hypertension Arteriosclerosis and atherosclerosis
10		
18		Coronary heart disease
10	Deenir	Heart attack and angina
19	-	atory system
20		Mechanics of breathing
20		Respiratory control
21		Gaseous exchange
22		Altitude
23	-	atory system: health conditions
		Asthma
24	Revisio	on

Glossary of Key A&P Terms

A	
Abduction	Abduction of a joint makes the body part move away from the midline e.g. the
	outward phase of a star jump
Accelerator nerve	This stimulates the SA node to increase heart rate (HR) and stroke volume (SV)
Adduction	Adduction of a joint makes the body part move towards the midline e.g. the inward
	phase of a star-jump
Aerobic	Structural changes in response to aerobic training e.g. increased mitochondrial
adaptation	density
Aerobic work	Work performed with the use of oxygen - low intensity and long duration
Agonist	A muscle responsible for creating movement at a joint
Altitude training	Training in areas >1500m above sea level for a period of 4-6 weeks
Alveoli	Grape-like clusters of tiny air sacs in the lungs
Angina	Partial blockage of a coronary artery causing chest pain
Angular motion	When a body moves in a circular path about an axis of rotation
Antagonistic pair	Two (or more) muscles which work together to provide co-ordinated movement
Altitude	High altitude is an area >1500m above sea level where the partial pressure of
	oxygen in the air is lower (than at sea level)
Anaerobic work	Work performed without the use of oxygen - high intensity and short duration due
	to production of lactic acid as a by-product
Antagonist	A muscle that acts in opposition to the agonist to provide a co-ordinated
	movement
Antagonistic	When two muscles work together to produce co-ordinated movement - as one
muscle action	muscle lengthens the opposing muscle shortens
Artery	Blood vessel which transports oxygenated blood away from the heart to the
	tissues
Articular cartilage	Smooth, slightly spongy cartilage that covers the ends of bones in a joint and
	absorbs shock and prevents friction
Arteriosclerosis	Condition where walls of coronary arteries become thicker/harder/less elastic.
	Results in less efficient vasoconstriction and vasodilatation of arterioles and
Asthma	reduced efficiency of vascular shunt mechanism Reversible narrowing of the airways with symptoms of wheezing, coughing and
Asunna	breathlessness
Atherosclerosis	The accumulation of fatty deposits/cholesterol/plaque/atheroma on walls of
Ameroscierosis	coronary arteries causing a narrowing of blood vessels and a likelihood of blood
	clots. The most common cause of CHD
Atrial diastole	Relaxation of the atria
Atrial systole	Contraction of the atria which forces remaining blood into the ventricles
B	
BAHL	Balanced active, healthy lifestyle consisting of regular activity and a healthy diet
Baroreceptor	A sensory receptor responsible for sensing changes in pressure
Base of support	The area of a body in contact with the floor
Biomechanics	The study of human movement, force and its effects on the body
Blood pressure	Pressure exerted by blood against the artery walls
Blood viscosity	The resistance to blood flow
Bohr shift/effect	An increase in acidity which causes the oxygen-dissociation curve to shift to the
Bono Spure	right increasing the dissociation of O_2 from haemoglobin
Bone Spurs	Small bony projections which form around the joint surface that cause pain and limit movement. Associated with osteoarthritis
Bradycardia	A resting heart rate below 60bpm
Bursa	Flattened fibrous sac lined with synovial fluid which prevents friction at sites
Duisa	where muscles, tendons, ligaments and bones may rub together
	אחבוב התסטובס, נבותטווס, ווצמווובותס מות שטוובס וומץ ועש נטצבנוובו

С	
Capillary	A blood vessel which brings blood into direct contact with the tissues for gaseous
	exchange
Carbon monoxide	Poisonous gas inhaled when smoking.
	Haemoglobin has a higher affinity for CO than O ₂
Cardiac control	Control centre in the medulla oblongata that is primarily responsible for heart
centre (CCC)	regulation
Cardiac cycle	Events of one heart beat. The atria contract together and force blood into the
	ventricles (disastole) which then contract (systole) and force blood out of the heart
	to be pumped around the body
Cardiac	An increase in the size of the heart muscle
hypertrophy	
Cardiac output	The volume of blood ejected from the left ventricle per minute.
	$CO = HR \times SV (I/min)$
Centre of mass	The point at which the body is balanced in all directions. Point where mass
	concentrated
Chemoreceptor	Sensory receptor responsible for sensing changes in chemicals levels e.g. levels of
	lactic acid or oxygen
Cholesterol	Blood lipids that can be deposited on arterial walls leading to atherosclerosis
Circumduction	Circumduction of a joint makes the body part describe a cone shape, e.g. when
	holding a sparkler a circle is drawn when circumduction of shoulder occurs
Concentric	A type of muscle contraction in which the muscle shortens while generating
contraction	force/producing tension. It causes joint movement
Contact sports	Sporting activities where players' bodies make contact e.g. rugby
Cool-down	Light aerobic exercise and stretches that follow a session of physical activity. The
	aim is to gradually reduce heart and respiratory rates and prevent blood pooling
Coronary	Blood flow to and around the cardiac muscle
circulation	
Coronary Heart	General term for all diseases relating to the coronary blood vessels and heart
Disease (CHD)	muscle
Core stability	The ability of the trunk region to stabilise the body during physical activity. It
	allows muscles and joints to work safely and efficiently
D	
Diastole	Relaxation phase of cardiac cycle - atrial diastole and ventricular diastole
Diaphragm	A thin muscle separating the chest and the abdomen. The main muscle used in
	passive and active breathing
Diffusion gradient	The difference in partial pressures across a membrane which allows gaseous
Ū	exchange
Dorsi-flexion	Dorsi-flexion of the ankle joint makes the foot move towards the tibia e.g. when
	walking on your heels
E	
Eccentric	A type of muscle contraction in which the muscle lengthens while generating
contraction	force/producing tension. It controls joint movement
Eccentric force	A force applied outside the centre of mass causing angular motion
End-diastolic	Volume of blood remaining in the ventricles after diastole (relaxation)
volume (EDV)	
End-systolic	Volume of blood remaining in the ventricles after systole (contraction)
volume (ESV)	
Endurance	Physical activity lasting a significant period of time where the heart and respiratory
activity	rates plateau e.g. triathlon training
Enzyme	A protein produced to catalyse a reaction
Extension	Extension of a joint makes the body part move in a backwards direction e.g. the
	drawback of the leg in the preparation phase of kicking a football
External	Gaseous exchange between the alveolar air and capillaries
respiration	
	1

F	
Fast glycolytic	These muscle fibres are associated with anaerobic or explosive events e.g.
(FG) (2a)	sprinting. They have a high speed and force of contraction but fatigue very quickly.
Fast oxidative	Type 2b have the greatest anaerobic capacity and contract with the most speed
glycolytic(FOG)(2b)	and force
Flexion	Flexion of a joint makes the body part move in a forwards direction e.g. the leg in
5	the execution phase of kicking a football
Force	A push or pull that can alter the state of motion of a body, measured in Newtons
G	
Gaseous	The exchange of oxygen and carbon dioxide by diffusion across the walls of the
exchange	alveoli
General motion	A combination of linear and angular motion
Glycogen Growth Plate	Stored form of carbohydrate in the muscles and liver
	Referred to as the epiphyseal plate this is an area of growing tissue at the ends of long bones which is replaced by bone when fully mature
H	
Haemoglobin	A red blood cell (protein molecule) that transports oxygen in the bloodstream
HDLs (high density	'Scavengers' which remove cholesterol from the arterial walls
lipoproteins)	
Healthy diet	A diet containing the correct balance of carbohydrate, protein and fat, high in
Heart attack	vitamins and minerals and low in salt Total blockage of a coronary artery usually causing permanent damage
Heart Rate	The number of times the heart ventricles contract per minute (bpm)
High impact sport	Sports which include vigorous physical activity where a large force is applied to the
Ingri impact sport	skeleton e.g. rugby
Hypertension	Long-term high blood pressure >140/90 mmHg
Hyperventilation	A state of breathing faster and/or deeper than the body needs
Нурохіс	An area where the partial pressure or oxygen is significantly reduced
conditions	
1	
IMT	Inspiratory m uscle t raining - strengthening of the respiratory muscles
Internal	Gaseous exchange between the blood capillaries and muscle tissue
respiration	
Intrinsic control	Internal factors of temperature and venous return that affect HR control
Isometric	When a muscle increases in tension but there is no movement at the joint.
contraction	Also known as a static contraction
Isotonic contraction	When a muscle increases in tension with movement at the joint. Also known as a dynamic contraction
J	
Joint	The point of connection between the bones in the skeleton. Depending on
	structure joints can be classified as: ball and socket, hinge, pivot, condyloid or
	gliding
Joint stability	Resistance offered by connective tissue (muscle, ligament and tendon) around a joint
Joint trauma	An injury or dislocation of joint
	These depends howeful blood lights (shalestave) on the extended with
LDLs (low density	These deposit harmful blood lipids/cholesterol on the arterial walls
lipoproteins)	Connective tissue that joins hone to hone
Ligament Linear motion	Connective tissue that joins bone to bone Motion along a line. It can be straight e.g. tobogganing straight down a hill or
	curved e.g in the skeleton bob event. All parts move the same distance, in the
	same direction at the same speed
Line of gravity	An imaginary line extending from the centre of mass vertically down to the ground

Μ	
Mechanics of	The process of moving air into and out of the lungs that involves muscles,
breathing	movement, thoracic cavity volume, lung air pressure, inspiration and expiration.
J	Changes occur from rest to exercise
Medulla	An area of the brain containing the cardiac, vasomotor and respiratory control
oblongata	centres
Minute	The volume of air inspired or expired per minute
ventilation	
Mitochondria	The 'power house' of a cell responsible for aerobic respiration
Movement	The analysis of a movement pattern including: joint type, articulating bones,
analysis	movement patterns, agonist muscle, antagonist muscle and contraction types
Muscle tone	Continuous state of partial muscle contraction maintaining posture
Myocardial infarction	Heart attack involving a total blockage of a coronary artery
Myocardium	Cardiac muscle
Myoglobin	Red pigment found in muscle cells that stores oxygen
N	
Neural control	Sensory receptors that provide the cardiac control centre with information:
	proprio-receptors= motor activity, chemo- receptors=chemical changes,
Newton's law 1:	baro-receptors= pressure changes A body continues in a state of rest or uniform velocity unless acted upon by an
Inertia	external force
Newton's law 2:	The rate of change in momentum experienced by an object is directly proportional
Acceleration	to the size of the force applied and takes place in the same direction as the force
	applied
Newton's law 3:	For every action force there is an equal and opposite reaction force
Reaction	
0	
OBLA	Onset of blood lactate accumulation. The point at which production of lactic acid
	exceeds its removal which causes muscle fatigue
Osteoarthritis	Painful, swollen joints caused by a loss of articular cartilage at the ends of long
Ostasnarasia	bones. It can severely limit involvement in physical activity
Osteoporosis	Disorder resulting in fragile bones that are prone to fracture
Oxygen- haemoglobin	A graph showing the amount of haemoglobin saturated/associated with oxygen. During exercise the following factors shift the dissociation curve to the right:
dissociation	1. Increase in PP of CO_2
curve	2. Decrease in PP of O_2 within muscle increasing O2 diffusion gradient
	3. Increase in blood and muscle temperature
	4. Bohr effect – increase in acidity (lower pH)
Р	
Parasympathetic	System initiated by the cardiac control centre to decrease heart rate
nervous system	
Partial pressure	The pressure a gas exerts within a mixture of gases
Plantar-flexion	Plantar-flexion of the ankle joint moves the foot away from the tibia, e.g. when you
Descrit	walk on your tip-toes
Pronation	Pronation of radio-ulnar joint moves the hands & forearms so palm faces down
Proprioreceptor	A sensory receptor responsible for sensing changes in muscular movement
R	
Repetitive action	Sports which use the same movement pattern repeatedly e.g. tennis, golf,
sports	running
Resistance	Friction of blood cells against artery walls (fluid friction)
Respiratory control centre	(RCC) Control centre in the medulla oblongata that regulates pulmonary breathing
Rotation	Rotation of a joint turns the body part about its long axis. Can be medial or lateral
notation	notation of a joint turns the body part about its iong axis. Call be medial of Idteral

S				
SA node	The sino-atrial node (often termed the 'pacemaker') is responsible for initiating the cardiac impulse			
Sedentary lifestyle	An inactive lifestyle with little or no physical activity			
Slow oxidative	(Type 1) Fibre type associated with aerobic work e.g. marathon running / triathlon.			
muscle fibre (SO)	It has a low speed and force of contraction but resists fatigue well			
Smooth muscle	Involuntary muscle found in blood vessel walls			
Sprain	An injury resulting from overstretching a ligament			
Stability	The degree to which body is balanced, steady and difficult to move			
Starling's Law	Stroke volume is dependent on venous return. Any increase in venous return will			
	cause an increase in stroke volume and therefore cardiac output			
Strain	An injury resulting from overstretching a muscle or tendon			
Stress fracture	A break in a bone caused by over use rather than a specific injury			
Stroke volume (SV)	The volume of blood ejected from the left ventricle per beat (ml)			
Supination	Supination of the radio-ulnar joint moves the hands and forearms so that the palm faces upwards			
Sympathetic	System initiated by the cardiac control centre to increase heart rate			
nervous system				
Systole	Contraction phase of the cardiac cycle			
Т				
Tendon	Connective tissue that attaches skeletal muscle to bone			
Tidal volume	The volume of air inspired or expired per breath			
Triglycerides	Lipids that form much of the stored, excess body fat / calories in the body. They circulate in the blood as lipoproteins			
V				
Vascular shunt	The redistribution of cardiac output between the organs and muscles from rest to exercise			
Vagus nerve	This nerve has an inhibitory effect. It decreases SA node activity which decreases HR and SV			
Vein	A blood vessel which carries deoxygenated blood away from the tissues towards the heart			
Venous return	The return of deoxygenated blood to the heart			
Ventricular contractility	Capacity of the ventricles to contract			
Ventricular diastole	Relaxation of the ventricles			
Ventricular systole	Contraction of the cardiac ventricles forcing blood through the aorta and pulmonary artery			
Vital capacity	The maximum volume of air expired after a maximal inspiration			
VO ₂ max	Maximum volume of oxygen consumed and used during exercise			
W				
Warm-up	Light aerobic exercise, mobilisers and stretches that precede a session of physical activity. The aim is to increase heart and respiratory rate, raise temperature and prevent injury.			
WHO	The W orld H ealth O rganisation recommend how to achieve a balance active healthy lifestyle			

Glossary of Key A&P Terms

Α	
Abduction	
Accelerator nerve	
Adduction	
Aerobic adaptation	
Aerobic work	
Agonist	
Altitude	
Alveoli	
Anaerobic work	
Angina	
Angular motion	
Antagonistic pair	
Altitude training	
Antagonist	
Antagonistic muscle action	
Artery	
Articular cartilage	
Asthma	

Arteriosclerosis	
Atherosclerosis	
Atrial diastole	
Atrial systole	
Atrial Systole	
В	
BAHL	
Baroreceptor	
Base of support	
Biomechanics	
Blood pressure	
Blood viscosity	
Bohr shift/effect	
Bone Spurs	
Bradycardia	
Bursa	
С	
Capillary	
Carbon monoxide	
Cardiac control	
centre (CCC)	
Cardiac cycle	

Cardiac	
hypertrophy	
Cardiac output	
Centre of mass	
Chemoreceptor	
Chemoreceptor	
Cholesterol	
Circumduction	
Concentric	
contraction	
Contact sports	
Contact Sports	
A 1 1	
Cool-down	
Coronary	
circulation	
-	
Coronary Heart	
Disease (CHD)	
Cara stability	
Core stability	
D	
Diastole	
Diastole	
<u> </u>	
Diaphragm	
Diffusion gradient	
_	
Dorsi-flexion	
-	
E	
Eccentric	
contraction	
oondaodon	
Eccentric force	
Eccentric force	

End-diastolic	
volume (EDV)	
End-systolic	
volume (ESV)	
Endurance	
activity	
activity	
Enzyme	
LIIZYIIIC	
Extension	
External	
respiration	
F	
Fast glycolytic	
muscle fibre (FG)	
Fast oxidative	
glycolytic (FOG)	
8.900.900 (100.0)	
Flexion	
TICKIUII	
-	
Force	
Force	
G	
G Gaseous	
G	
G Gaseous exchange	
G Gaseous	
G Gaseous exchange	
G Gaseous exchange General motion	
G Gaseous exchange General motion	
G Gaseous exchange	
G Gaseous exchange General motion	
G Gaseous exchange General motion Glycogen	
G Gaseous exchange General motion	
G Gaseous exchange General motion Glycogen	
G Gaseous exchange General motion Glycogen Growth Plate	
G Gaseous exchange General motion Glycogen	
G Gaseous exchange General motion Glycogen Growth Plate	
G Gaseous exchange General motion Glycogen Growth Plate	
G Gaseous exchange General motion Glycogen Growth Plate	
GGaseous exchangeGeneral motionGlycogenGrowth PlateHHaemoglobin	
GGaseous exchangeGeneral motionGlycogenGrowth PlateHHaemoglobinHDLs (high density	
GGaseous exchangeGeneral motionGlycogenGrowth PlateHHaemoglobin	
GGaseous exchangeGeneral motionGlycogenGlycogenGrowth PlateHHaemoglobinHDLs (high density lipoproteins)	
GGaseous exchangeGeneral motionGlycogenGrowth PlateHHaemoglobinHDLs (high density	
GGaseous exchangeGeneral motionGlycogenGlycogenGrowth PlateHHaemoglobinHDLs (high density lipoproteins)	
GGaseous exchangeGeneral motionGlycogenGrowth PlateHHaemoglobinHDLs (high density lipoproteins)Healthy diet	
GGaseous exchangeGeneral motionGlycogenGlycogenGrowth PlateHHaemoglobinHDLs (high density lipoproteins)	

Heart Rate	
neart Rate	
High impact sport	
Hormonal control	
11	
Hypertension	
Hyperventilation	
Uunovio	
Hypoxic	
conditions	
IMT	
Internal	
respiration	
reepindaen	
Intrinsic control	
Isometric	
contraction	
Isotonic	
contraction	
contraction	
J	
Joint	
Joint	
Joint stability	
Joint trauma	
Joint dadina	
-	
L	
LDLs (low density	
lipoproteins)	
Ligament	
Linear motion	
Line of gravity	

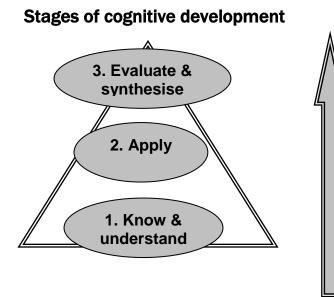
Μ	
Mechanics of	
breathing	
Medulla	
oblongata	
Minute	
ventilation	
Mitochondria	
Movement	
analysis	
Muscle tone	
Myocardial	
infarction	
Myocardium	
Myoglobin	
Ν	
Neural control	
Newton's law 1:	
Inertia	
Newton's law 2:	
Acceleration	
Newton's law 3:	
Reaction	
•	
0	
OBLA	
Opto parti ili	
Osteoarthritis	

Osteoporosis	
Oxygen-	
haemoglobin dissociation curve	
P	
Parasympathetic nervous system	
nervous system	
Partial pressure	
Plantar-flexion	
Pronation	
Proprioreceptor	
R	
Repetitive action sports	
300103	
Resistance	
.	
Respiratory control centre	
control centre	
Rotation	
S	
SA node	
Sedentary lifestyle	
litestyle	
Slow oxidative	
muscle fibre (SO)	
-	
Smooth muscle	
Sprain	
Stability	
Starling's Low	
Starling's Law	
Strain	

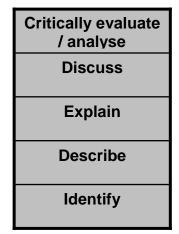
Stress fracture	
Stroke volume (SV)	
Supination	
Sympathetic nervous system	
Systole	
Т	
Tendon	
Tidal volume	
Triglycerides	
V	
Vascular shunt	
Vagus nerve	
Vein	
Venous return	
Ventricular contractility	
Ventricular diastole	
Ventricular systole	
Vital capacity	
VO ₂ max	
W	
Warm-up	
WHO	

Command Words

Account for	Analyse	Assess
Give reasons or an explanation for	Examineinvestigategive an account/evaluation	Weigh up or consider something
Briefly	Comment	Classify
Be concise/straightforward	Give a commentary or opinion on something	Put something into a group or category
Idon	Compare	
Either use comparative adject about one of the subjects follow	itify similarities and differences . ives e.g. larg <u>er</u> than, <u>more</u> compe wed by whereas , however or in co aparative point about the other.	• • •
Contrast	Comment on	Define
(When on its own) means only looking for differences	Summarise the various points and give an opinion	Give a precise meaning of the term identified
Discuss	Discuss the extent to	Describe
Build an argument/	which'	Give a description -
balanced written		no need to explain
debategive examples and	Judge the validity of the evidence or outcome	unless you have been
try to reach a conclusion		asked to do so
Explain	Critically Evaluate	Examine
Give reasons or causes.	(e.g. critically evaluate the	Examine
Show understanding	impact of media on sport)	
	weigh it up or assess in terms	Look at/inspect/study
Description is not enough	of advantages/disadvantages	
(and may not be needed)	independent opinion	
	(& evidence)	
How	Identify State Name	Justify
	-	Often used when you
What methods are or could	A short answer to a	have to make a
be involved?	straightforward task	decision e.g. justify the
	needed here e.g. 'Identify	placement of
	characteristics of'	something on a
		continuum
Outline	Select	Suggest
Note main features of	Choose	Give a reason
Summarise	To what extent	Always do exactly what
		the question asks
Sum up/recap/review	Agree and disagree	
	comment for and against	
	yes/but	


Exam Questions – stages of cognitive demand/development

Your AS PE written exam consists of three sections as follows:


- Section A Anatomy and physiology
- Section B Acquiring movement skills
- Section C Socio-cultural studies

In the exam each of these three sections will have five questions (a-e)One or more of the five question parts (a-e) may be sub-divided e.g. into a i) and a ii).

The first four questions (a-d) will usually have 4-6 marks (totalling 20) and the fifth part (e) will have 10 marks. This makes a total of 30 marks for each of the three sections. The fifth (10 mark) question (e) will need you to think or consider (analyse or critically evaluate) your knowledge more fully than questions a-d.

Stage 1 – Knowledge and understanding. You need a knowledge base (to learn the information from the spec) before you can move up the 'cognitive triangle'. You cannot apply your knowledge to more demanding questions if you don't know it in the first place! You are likely to get some straightforward level 1 marks at AS (e.g. *identify two structural characteristics of muscle fibre types associated with athletes participating in endurance events*) – but you should work towards operating beyond this stage.

Satge 2 – **Apply**. This is where you use your learned and understood knowledge and can shift it around in your head to answer a more engaging question e.g. Using examples from PE or sport explain how changes in the position of a performer's centre of mass can affect performance.

Stage 3 – **Evaluate and synthesise**. This is the 'fun' bit – the critical thinking! You know and understand the material, and can apply it. You can now consider it critically. You can add your opinions backed up with evidence and point out those of others. This is the '**yes**, **but**' stage. It can take some 'brain training' to reach – but it is worth the effort.

A 'Stage 3' question that asks you to 'critically evaluate' needs you to determine the value, significance, strengths and/or weaknesses of something, e.g. critically evaluate the impact of long term aerobic training on the cardio vascular system.

When critically evaluating a subject or issue (such as the potential impact of contact sports and activities involving repetitive actions on the skeletal system) you should ideally consider the following:

- □ What's good about them if anything?
- What's bad about them if anything?
- What have others said or written about this issue?
- □ What do you think?
- Why do you think that?
- What is your evidence?

Good answers contain evaluative or judgmental statements and descriptive points about the strengths and weaknesses associated with the topic, e.g. 'contact sports can cause broken bones, dislocated joints and meniscus tears. On the other hand they can also reduce the risk of osteoporosis, osteoarthritis and build stronger ligaments.'

Better answers contain reasoned explanations for (or examples of) the points being made, e.g. 'contact sports such as rugby can cause broken bones (although after a break the bone is stronger). These sports can also cause dislocated joints and meniscus tears. On the other hand they can reduce the risk of osteoporosis (a disorder resulting in fragile bones that are prone to fracture), osteoarthritis (a degenerative disease due to loss of articular cartilage) and build stronger ligaments which can increase joint stability, and decrease risk of joint trauma.'

So, you should not only say how good a particular idea is, but say exactly why you think that. The best answers really 'tussle' with the material probably having read about and around it as well as having discussed and debated it.

OCR AS Physical Education

Developing 'higher order' thinking and writing skills – especially for your 10-mark questions

- □ First (and as always) read the exam question very carefully
- □ So, check the **command word**, the **subject** and **exactly what is being examined** about the subject
- □ Then (if required by the command word) set off on the road to critical evaluation

1. Know & understand		2. Apply		3. Evaluate & synthesise		
Identify	Describe	Explain Give reasons for		Discuss Critically e	Analyse evaluate	
Brain	Brainstorm		Writedevelop		Develop further Think of alternatives	
Think of points that relate directly to the exam question		Develop key points by saying why and how they are significant to the question Explain significance		Critically on what you h		
List or 'spider diagram' your points/ ideas		Give examples and evidence to support your points		Complete key poin with alternativ a differe	e evidence /	
Each of the points can be used as central theme of sentences or even paragraphs		Keep application relevant and stay focused on the exact requirements of the question.		Sum up or relevant co		

From knowledge and understanding to critical evaluation and higher grades

OCR AS Physical Education

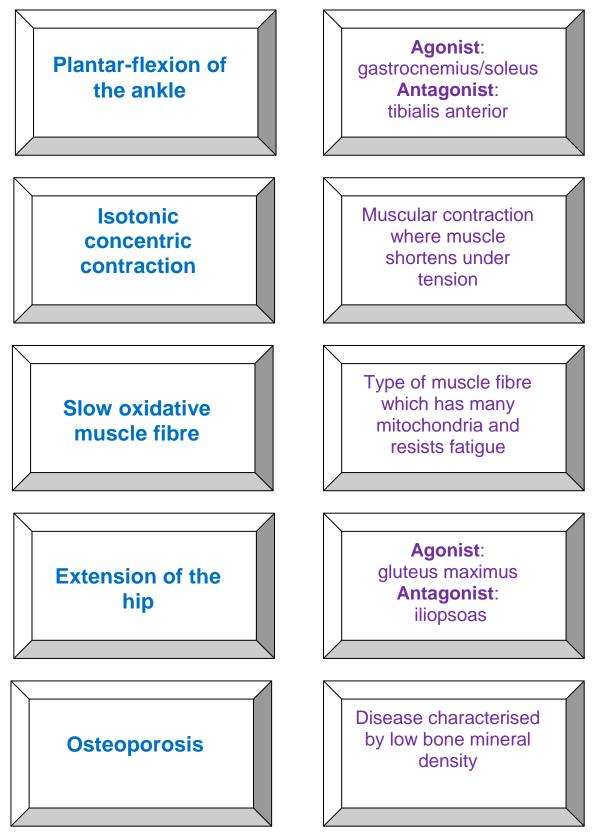
The aim here is to take a key idea and to develop it into something more critically evaluative by adding examples, evidence, explanations and alternative views where relevant

1. Know and understand	2. Apply		3. Evaluate and synthesis
Key idea	Example/ evidence	Explanation	Development/ critical evaluation What's good or bad? How does it affect health or sport? What do you think? Why?
Repetitive action sports are associated with osteoarthritis			
A high level of core stability is important for a healthy, balanced lifestyle			

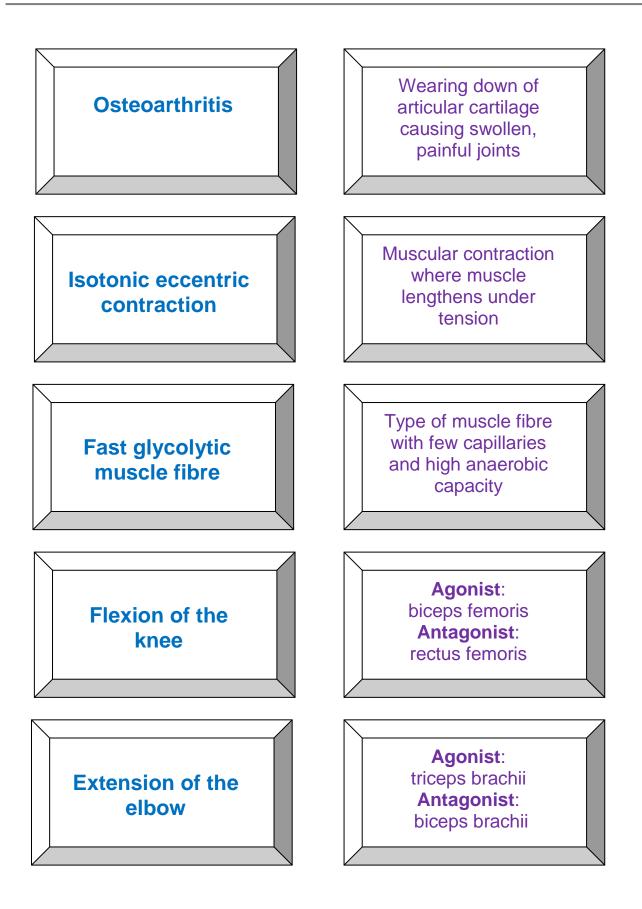
1. Know and understand	2. Apply		3. Evaluate and synthesis	
Key idea	Example/ evidence	Explanation	Development/ critical evaluation What's good or bad? How does it affect health or sport? What do you think? Why?	
A high level of stability is beneficial for effective sports performance				
Newton's laws of motion can be applied to a 100m sprint start				

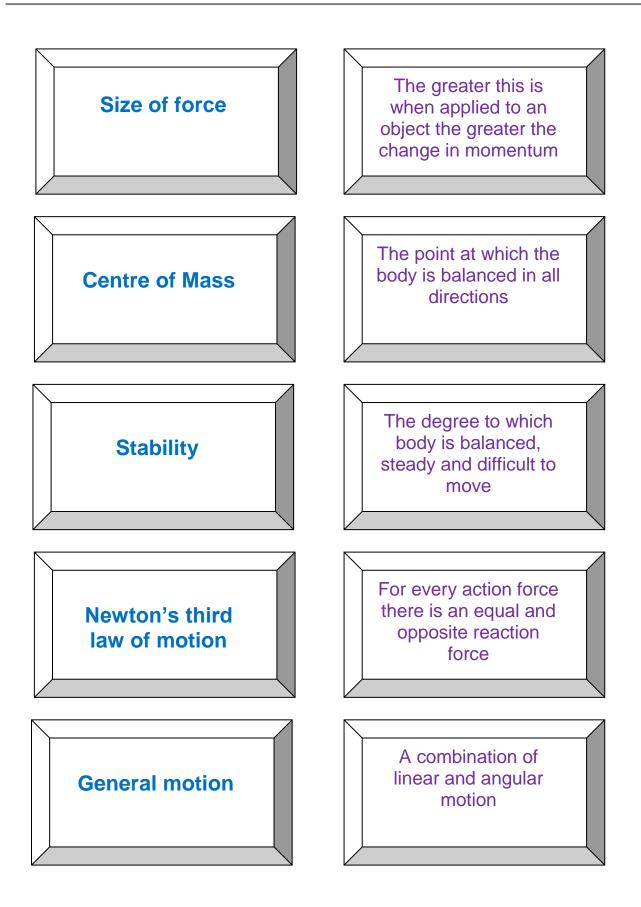
1. Know and understand	2. Apply		3. Evaluate and synthesis	
Key idea	Example/ evidence	Explanation	Development/ critical evaluation What's good or bad? How does it affect health or sport? What do you think? Why?	
Atherosclerosis is closely linked to developing coronary heart disease				
The vascular shunt mechanism is controlled by the vasomotor control centre				

1. Know and understand	2. Apply		3. Evaluate and synthesis	
Key idea	Example/ evidence	Explanation	Development/ critical evaluation What's good or bad? How does it affect health or sport? What do you think? Why?	
Altitude training is an effective training technique to improve endurance performance				
Smoking has a negative impact on gaseous exchange				

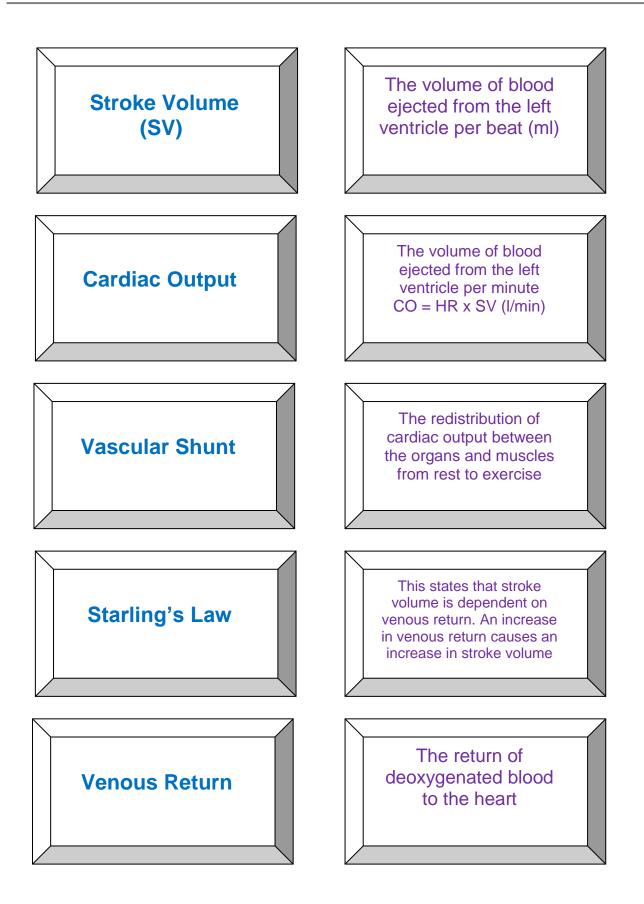

Exam Preparation – True or False

	True	False
1. There are five parts to each AS exam question		
 A-D are usually 4-6 marks each and part E is a 10 mark question 		
3. If the number of required responses is written as a word in the question e.g. state two structural characteristics of– only two will be marked		
 Depending on the 'command word' I need to develop my answers with explanation, evidence and examples to hit the top marks 		
5. In the anatomy and physiology section marks are often lost by candidates being Too Vague (TV)		
I must be able to apply my A&P knowledge to different types of sporting movement		
7. Students sometimes find internal respiration difficult to understand at first		
 A&P questions will probably refer to balanced healthy lifestyles and lifelong involvement in an active and healthy lifestyle 		
 9. A&P questions usually include parts from each of the following key areas of the spec: The skeletal and muscular systems Motion and movement (smaller section) Response of CV system to physical activity Response of respiratory system to physical activity 		
10. In the exam I should generally avoid using bullet points		

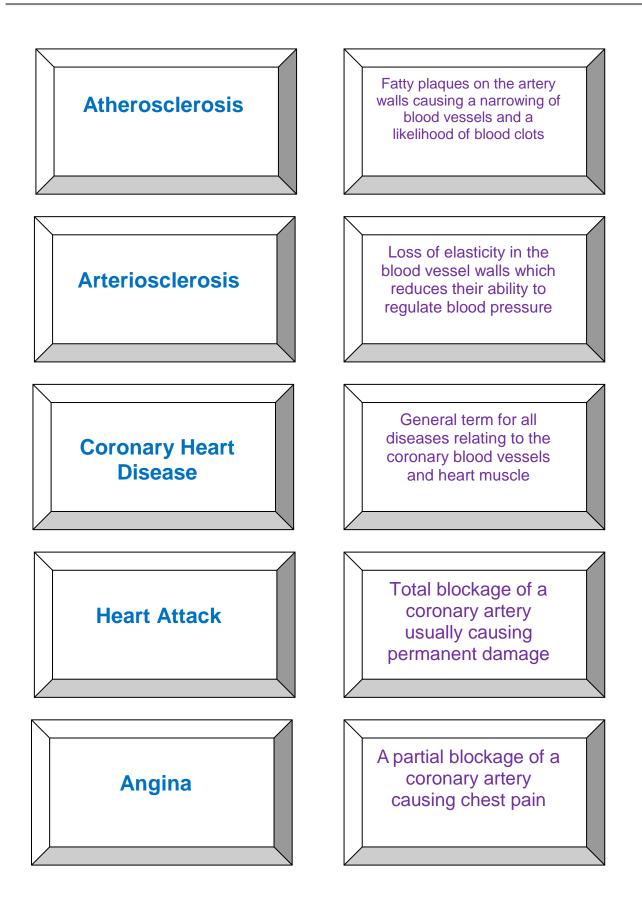

(See page 3 for answers)



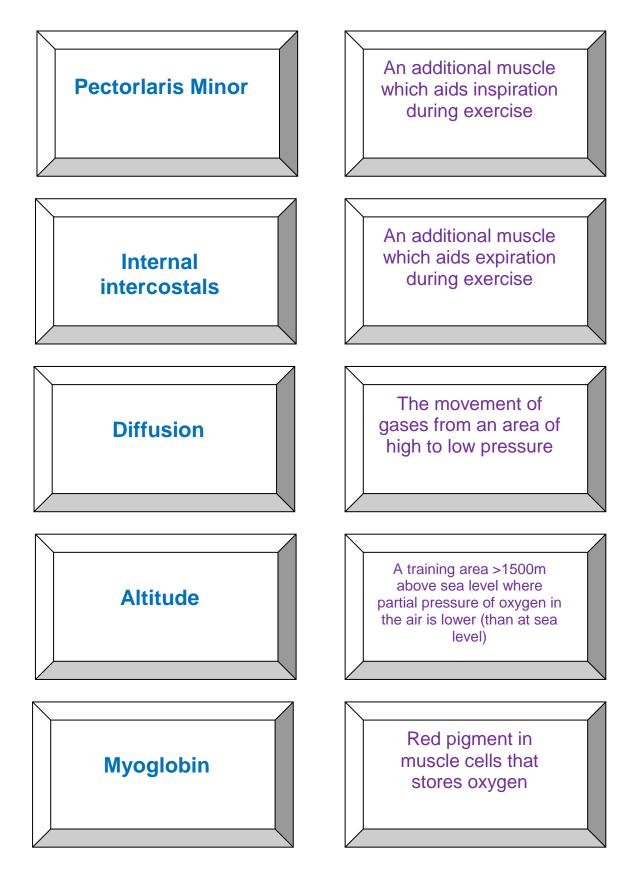
Key term card match 2 – Motion and Movement.

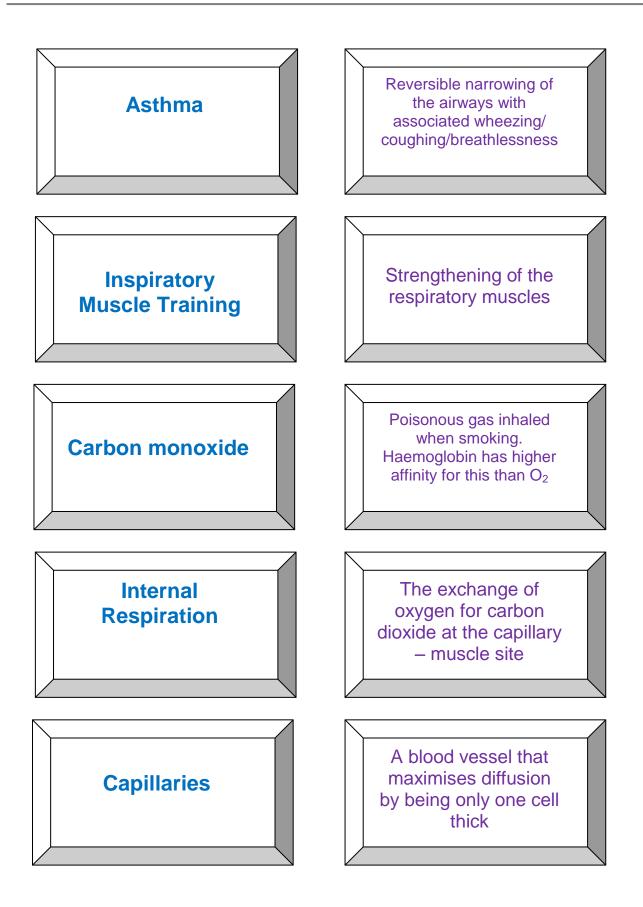


Key term card match 3 – Cardiovascular System.


Diastole	Relaxation of the cardiac muscle
Atrial Systole	Contraction of the upper chambers of the heart
Sino-atrial (SA) node	Structure responsible for initiating the cardiac impulse
Atrio-ventricular node	Structure responsible for delaying the cardiac impulse allowing the atria to finish contracting
Heart Rate (HR)	The number of times the heart ventricles contract per minute (bpm)

) PEfocus





Key term card match 4 – Respiratory System.

Answers to Key term card I	Answers to Key term card match 1 – The Musculoskeletal System		
Plantar-flexion of the ankle	Agonist: gastrocnemius/soleus		
	Antagonist: tibialis anterior		
Isotonic concentric contraction	Muscular contraction where muscle shortens under tension		
Slow oxidative muscle fibre	Type of muscle fibre which has many mitochondria and resists fatigue		
Extension of the hip	Agonist: gluteus maximus Antagonist: iliopsoas		
Osteoporosis	Disease characterised by low bone mineral density		
Osteoarthritis	Wearing down of articular cartilage causing swollen, painful joints		
Isotonic eccentric contraction	Muscular contraction where muscle lengthens under tension		
Fast glycolytic muscle fibre	Type of muscle fibre with few capillaries and high anaerobic capacity		
Flexion of the knee	Agonist: biceps femoris Antagonist: rectus femoris		
Extension of the elbow	Agonist: triceps brachii Antagonist: biceps brachii		
Answers to Key term card match 2 – Motion and Movement			
Newton's first law of motion	A body continues in a state of rest or uniform velocity unless acted upon by an external force		
Newton's second law of motion	The rate of change in momentum experienced by an object is directly proportional to the size of force applied and takes place in the same direction as the force applied		
1.1	When a body moves in a straight or curved line, with all parts moving the same distance, in the same		
Linear motion			
Linear motion Angular motion	all parts moving the same distance, in the same		
	all parts moving the same distance, in the same direction at the same speed When a body moves in a circular path about an axis		
Angular motion	all parts moving the same distance, in the same direction at the same speedWhen a body moves in a circular path about an axis of rotationMotion, acceleration, deceleration, change of		
Angular motion Effects of force	all parts moving the same distance, in the same direction at the same speedWhen a body moves in a circular path about an axis of rotationMotion, acceleration, deceleration, change of direction or shape of a moving objectThe greater this is when applied to an object the		
Angular motion Effects of force Size of force	all parts moving the same distance, in the same direction at the same speedWhen a body moves in a circular path about an axis of rotationMotion, acceleration, deceleration, change of direction or shape of a moving objectThe greater this is when applied to an object the greater the change in momentum		
Angular motion Effects of force Size of force Centre of Mass	all parts moving the same distance, in the same direction at the same speedWhen a body moves in a circular path about an axis of rotationMotion, acceleration, deceleration, change of direction or shape of a moving objectThe greater this is when applied to an object the greater the change in momentumThe point at which body is balanced in all directionsThe degree to which body is balanced, steady and		
Angular motion Effects of force Size of force Centre of Mass Stability	 all parts moving the same distance, in the same direction at the same speed When a body moves in a circular path about an axis of rotation Motion, acceleration, deceleration, change of direction or shape of a moving object The greater this is when applied to an object the greater the change in momentum The point at which body is balanced in all directions The degree to which body is balanced, steady and difficult to move For every action force there is an equal and opposite 		

Answers to Key term card match 3 – Cardiovascular System		
Diastole	Relaxation of the cardiac muscle	
Atrial Systole	Contraction of the upper chambers of the heart	
Sino-atrial (SA) node	Structure responsible for initiating the cardiac impulse	
Atrio-ventricular node	Structure responsible for delaying the cardiac impulse allowing the atria to finish contracting	
Heart Rate (HR)	The number of times the heart ventricles contract per minute (bpm)	
Stroke Volume (SV)	The volume of blood ejected from the left ventricle per beat (ml)	
Cardiac Output	The volume of blood ejected from the left ventricle per minute CO = HR x SV (I/min)	
Vascular Shunt	The redistribution of cardiac output between the organs and muscles from rest to exercise	
Starling's Law	This states that stroke volume is dependent on venous return. An increase in venous return causes an increase in SV	
Venous Return	The return of deoxygenated blood to the heart	
Atherosclerosis	Fatty plaques on the artery walls causing a narrowing of blood vessels and a likelihood of blood clots	
Arteriosclerosis	Loss of elasticity in the blood vessel walls which reduces their ability to regulate blood pressure	
Coronary Heart Disease	General term for all diseases relating to the coronary blood vessels and heart muscle	
Heart Attack	Total blockage of a coronary artery usually causing permanent damage	
Angina	A partial blockage of a coronary artery causing chest pain	
Answers to Key ter	rm card match 4 – Respiratory System	
Pectorlaris Minor	An additional muscle which aids inspiration during exercise	
Internal intercostals	An additional muscle which aids expiration during exercise	
Diffusion	The movement of gases from an area of high to low pressure	
Altitude	A training area >1500m above sea level where partial pressure of oxygen in the air is lower (than at sea level)	
Myoglobin	Red pigment in muscle cells that stores oxygen	
Asthma	Reversible narrowing of the airways with associated wheezing/ coughing/breathlessness	
Inspiratory Muscle Training	Strengthening of the respiratory muscles	
Carbon monoxide	Poisonous gas inhaled when smoking. Haemoglobin has higher affinity for this than $\ensuremath{\text{O}}_2$	
Internal Respiration	The exchange of oxygen for carbon dioxide at the capillary – muscle site	
Capillaries	A blood vessel that maximises diffusion by being only one cell thick	
	1	

What am I describing?

1 – The Musculoskeletal System

Shoulder	Knee Radio-ulnar	
Ankle		
Warm-up	Fast glycolytic fibre types	
Slow oxidative fibre types	Concentric contraction	

Isometric contraction	Posture and alignment
Repetitive action physical activity	High contact / collision physical activity
Osteoporosis	Osteoarthritis
Growth plate disorders	Joint stability

What am I describing – possible clues 1 - The Musculoskeletal System

- Ankle a joint which can plantar or dorsi-flex
- Concentric contraction a type of muscular contraction where the muscle shortens in length under tension/a type of muscle contraction that causes joint movement
- □ **Fast glycolytic fibre type** a type of muscle fibre used by 100m sprinters to create a fast speed and high force of contraction. It fatigues quickly
- □ **Growth plate disorder** condition characterised by the premature closing of the epiphysis, often associated with gymnasts and weightlifters
- High contact/collision physical activity type of physical activity which can be dangerous to joints due to overstretching connective tissues / a type of physical activity associated with dislocation e.g. rugby
- Isometric contraction also known as static contraction this type of muscle contraction is used by gymnasts when holding the crucifix position on the rings. Here muscle produces tension whilst not changing length
- Joint stability this can be increased by strengthening the ligaments and tendons around a joint. Due to its deep socket and high levels of connective tissue the hip joint has more of this than the shoulder joint
- Knee a joint which extends to kick a ball. A joint whose agonist for extension is the rectus femoris
- Osteoarthritis a disease of the skeletal system causing painful and swollen joints, bone spurs and decreased activity levels
- Osteoporosis a disease of the skeletal system characterised by low bone mineral density and high fracture risk
- Posture and alignment this can prevent lower back pain and increase muscular efficiency / this uses the transverse abdominis and multifidus / this is enhanced by having good core strength
- Radio-ulnar a pivot joint in the arm / a joint which can pronate to put spin on a ball
- Repetitive action physical activity sports that can be damaging in the long term by wearing away the articular cartilage / a type of activity associated with 'tennis elbow' or 'golfer's knee'
- Shoulder a joint which uses the posterior deltoid as an agonist to extend the arm in the preparation phase of an underarm throw/ a joint which circumducts during a tennis serve
- Slow oxidative fibre type a type of muscle fibre that resists fatigue well / type of muscle fibre with many capillaries, mitochondria and high myoglobin content
- Warm-up this increases muscle temperature and elasticity and reduce risk of injury

What am I describing?

2 – Motion and Movement

Linear motion	Angular motion
General motion	Newton's law 1
Newton's law 2	Newton's law 3
Force	Centre of mass

Points of contact	Line of gravity
Base of support	Inertia
Acceleration	Reaction
Rotation	Direct force

What am I describing – possible clues 2 - Motion and Movement

- Acceleration the rate of change in velocity / the opposite to deceleration / the name of Newton's second law
- Angular motion a type of movement in a circular path about an axis of rotation
- Base of support the area of a body in contact with the floor/ this is smaller in a handstand than in a bridge in gymnastics
- **Centre of mass** the point at which the body is balanced in all directions
- Direct force this creates linear motion / a type of force that is applied through the centre of mass
- Force a push or pull that can change the direction or shape of an object / measured in Newtons
- General motion a combination of linear and angular motion / a type of motion seen in a 100m sprint
- Inertia the resistance of a body to change its state of motion / the name of Newton's first law
- Line of gravity this comes from the centre of mass and should fall within the base of support for increased stability
- Linear motion Movement along a line. This can be straight (e.g. tobogganing straight down a hill) or curved (e.g in the skeleton bob event)
- Newton's law 1 a football remains on the penalty spot until a footballer applies a force to create motion
- Newton's law 2 if a sprinter applies a greater force to the blocks they will accelerate away at a faster rate
- Newton's law 3 for every action there is an equal and opposite reaction
- **Points of contact** the more of these there are the greater the base of support
- Reaction the equal and opposite force in response to the first force exerted/the name of Newton's third law
- Rotation created when the centre of mass moves outside the body / created by an eccentric force / can be medial or lateral

What am I describing?

3- The Cardiovascular System

Ventricular systole	Diastole
Conduction system	SA node
Venous return	Pocket valves
Starling's law	Cool-down

Vascular shunt	Cardiac output
Stroke volume	Blood pressure
Hypertension	Atherosclerosis
Coronary heart disease	Heart attack

What am I describing – possible clues

3 – The Cardiovascular System

- Atherosclerosis the most common cause of CHD / a narrowing of the arteries / caused by fatty deposits / leads to coronary heart disease
- Blood pressure the force exerted by the blood against the artery walls / average value of this is 120/80 mmHg
- Cardiac output the volume of blood ejected from the left ventricle per minute / HR x SV = this!
- Conduction system this controls the cardiac cycles / involves structures that pass a cardiac impulse through the heart walls
- Cool-down performed after exercise to gradually lower the heart rate / this maintains venous return / light aerobic exercise and stretches that follow a session of physical activity / the aim of this is to gradually reduce heart and respiratory rates and to prevent blood pooling
- Coronary heart disease the largest cause of death in the western world / caused by a combination of poor diet, inactivity and high blood pressure
- Diastole when the heart relaxes / when the atria fill with blood
- Heart attack a total blockage of a coronary artery / a potentially fatal consequence of coronary heart disease / myocardial infarction
- Hypertension long-term high blood pressure / this accelerates arteriosclerosis/ this increases strain on the heart
- **Decket valves** prevent the backflow of blood / located in veins
- SA node this generates a cardiac impulse
- Starling's law -this states that stroke volume is dependent on venous return
- Stroke volume the volume of blood ejected by the left ventricle per beat / controlled by venous return
- Vascular shunt redistribution of blood around the body / during exercise blood flow is redirected to the muscles and away from the organs
- Venous return aided by gravity and the muscle pump / return of blood to the heart
- Ventricular systole a type of contraction of the heart / contraction of the ventricles

What am I describing?

4 – The Respiratory System

Inspiration at rest	Expiration during exercise
Thermoreceptors	Chemoreceptor
Respiratory control centre	Expiratory centre
Gaseous exchange	Diffusion gradient

Bohr shift/effect	Haemoglobin
Carbon monoxide	Asthma
Inspiratory muscle training	Altitude
Partial pressure	Capillarisation

What am I describing – possible clues

4 – The Respiratory System

- □ Altitude an area with low partial pressure of oxygen / an area above 1500m
- Asthma a temporary narrowing of the airways / symptoms of this include coughing, wheezing and breathlessness
- Bohr effect/shift an increase in the diffusion gradient caused by an increase in blood acidity/ an increase in acidity which causes the oxygen-dissociation curve to shift to the right increasing the dissociation of O₂ from haemoglobin
- **Capillarisation** an increase in the number of capillaries due to aerobic training
- Carbon monoxide poisonous gas linked with smoking / a partially combusted gas / CO
- Chemoreceptors changes in oxygen, carbon dioxide or lactic acid are sensed by these structures
- Diffusion gradient the difference between the concentration of a substance in one area compared to another area / also known as concentration gradient
- Expiration during exercise this occurs when additional muscles such as the rectus abdominis, obliques and internal intercostals contract / a large decrease in thoracic cavity volume
- Expiratory centre this sends stimulation to the rectus abdominis / this stimulates a forced expiration
- **Gaseous exchange –** the process of diffusion across a membrane
- □ Haemoglobin a red blood cell that carries oxygen in the blood stream
- Inspiration at rest this occurs when the diaphragm and external intercostals contract / a small intake of air
- Inspiratory muscle training brings about a strengthening of the respiratory muscles / lessens breathlessness
- Partial pressure oxygen has a high one of these in the alveolar air / the pressure a gas exerts within a mixture of gases
- Respiratory control centre this is found in the medulla oblongata / this has two areas - one inspiratory and one expiratory
- **Thermoreceptors –** sensory structures that recognises changes in temperature

Quick Quiz 1 – The Musculoskeletal System

Fill in the missing blanks

The first letter of your answers will vertically spell 'OSTEOARTHRITIS'

	-	
1.	A condition associated with increased	
	fracture risk	0
2.	A joint rotated by the internal and external	
	obliques	S T
3.	A key muscle for core strength	T
		A
4.	A joint used during a biceps curl	
		E
5.	The formation of the adult skeleton	
		0 A
6.	A smooth, slightly spongy structure that	
	prevents bones rubbing together	C
7.	A movement which can be lateral or medial	R
8.	The agonist for dorsi-flexion of the ankle	T
		A
9.	This can be achieved by performing 30	Η
	minutes of physical activity five times a week	B
	(adults)	L
10.	The antagonist for spine extension	R
		A
11.	The agonist for hip flexion	
		I
12.	A structure that connects muscle to bone	
		T
13.	A warm-up has this effect on a muscle	I
		E
14.	If you strengthen connective tissue	
	surrounding a joint, it will have more	S

Quick Quiz 1 – The Musculoskeletal System

Answers

1.	A condition associated with increased	Osteoporosis
	fracture risk	
2.	A joint rotated by the internal and	Spine
	external obliques	
3.	A key muscle for core strength	Transverse abdominis
4.	A joint used during a biceps curl	Elbow
5.	The formation of the adult skeleton	Ossification
6.	A smooth, slightly spongy structure that	Articular cartilage
	prevents bones rubbing together	
7.	A movement which can be lateral or	Rotation
	medial	
8.	The agonist for dorsi-flexion of the ankle	Tibialis anterior
9.	This can be achieved by performing 30	Healthy balanced
	minutes of physical activity five times a	lifestyle
	week (adults)	
10.	The antagonist for spine extension	Rectus abdominis
11.	The agonist for hip flexion	lliopsoas
12.	A structure that connects muscle to bone	Tendon
13.	A warm-up has this effect on a muscle	Increased elasticity
14.	If you strengthen connective tissue	Stability
	surrounding a joint, it will have more	

Quick Quiz 2 – Motion and Movement

Fill in the missing blanks

The first letter of your answers will vertically spell 'CENTRE OF MASS'

1.	This is essential when holding a balance	C
	on the beam in gymnastics	S E
2.	Acceleration, deceleration, changing	E
	direction, changing shape and creating	0_
	motion, are all	F N ' L
3.	A set of rules governing the movement	N'_ L
	of bodies	O_ M
4.	A muscle involved in core stability	O_ M T
		A
5.	For every action there is an equal and	
	opposite	R
6.	Newton's first law of motion is also	
	known as: the Law of	E
7.	When a body travels in a straight line	
	with all its parts moving the same	L
	distance, in the same direction at the	_0
	same speed it is in a state of	
8.	A push or pull that changes the state of	
	motion of a body	F
9.	The greater this is the more stable the	
	body will be	M
10.	A gymnasts moving around the high bar	M A
	will be performing	M S
11.	The greater this is the greater the	S
	acceleration of the object	0_ F
12.	This can be increased by widening the	
	base of support	S
·		

Quick Quiz 2 – Motion and Movement

Answers

1.	This is essential when holding a balance on the beam in gymnastics	Core stability
2.	Acceleration, deceleration, changing direction, changing shape and creating motion, are all	Effects of force
3.	A set of rules governing the movement of bodies	Newton's laws of motion
4.	A muscle involved in core stability	Transverse abdominis
5.	For every action there is an equal and opposite	Reaction
6.	Newton's first law of motion is also known as: the Law of	InErtia
7.	When a body travels in a straight line with all its parts moving the same distance, in the same direction at the same speed it is in a state of	Linear m O tion
8.	A push or pull that changes the state of motion of a body	Force
9.	The greater this is the more stable the body will be	Mass
10.	A gymnasts moving around the high bar will be performing	Angular motion
11.	The greater this is the greater the acceleration of the object	Size of force
12.	This can be increased by widening the base of support	S tability

Quick Quiz 3 – The Cardiovascular System

Fill in the missing blanks

The first letter of your answers will vertically spell 'VASCULAR SHUNT'

1.	Blood going back to the heart	V R
2.	The passage of blood into the ventricles is due to	A
		\$
3.	Stroke volume is dependent on venous	S'_
	return - this is known as	L
4.	The passage of electricity through the	C
	heart	S
5.	If you could reverse atherosclerosis you	U N
	would be	A
6.	Performing a cool-down	L
		G
7.	A condition characterised by the	A
	hardening of arteries	
8.	The vascular shunt controls the	R
		0_
		B F
9.	This reaches its maximum value at sub-	\$
	maximal exercise	V
10.	This increases as exercise intensity	H R
	increases	
11.	A more technically correct term for heart	C
		_U
12.	Proprioreceptors, baroreceptors, and	N
	chemoreceptors are all types of	c
13.	A sensory receptor that picks up changes	T
	in temperature	

Quick Quiz 3 – The Cardiovascular System

Answers

1.	Blood going back to the heart	Venous return
2.	The passage of blood into the ventricles is due to	Atrial systole
3.	Stroke volume is dependent on venous return - this is known as	Starling's Law
4.	The passage of electricity through the heart	Conduction system
5.	If you could reverse atherosclerosis you would be	Unblocking arteries
6.	Performing a cool-down	Lowers H R gradually
7.	A condition characterised by the hardening of arteries	Arteriosclerosis
8.	The vascular shunt controls the	Redistribution of blood flow
9.	This reaches its maximum value at sub- maximal exercise	Stroke volume
10.	This increases as exercise intensity increases	Heart rate
11.	A more technically correct term for heart	Cardiac mUscle
12.	Proprioreceptors, baroreceptors, and chemoreceptors are all types of	Neural control
13.	A sensory receptor that picks up changes in temperature	Thermoreceptor

Quick Quiz 4 – The Respiratory System

Fill in the missing blanks

The first letter of your answers will vertically spell 'INSPIRATION AT REST'

1.	A process used to strengthen muscles such as	I
	the external intercostals	muscle
		T
2.	A sensory mechanism that feeds the	N
	respiratory control centre	c
3.	An additional inspiratory muscle used when	
	exercising	S P
4.	This is high in the capillary blood and low in the	P
	muscle tissues at rest	P 0_
		0
5.	This process is caused by an increase in	
	thoracic cavity volume	I
6.	This is located in the medulla oblongata and	R
	sends stimulation via the vagus and intercostal	C
	nerves	C
7.	The temporary narrowing of the bronchi and	
	bronchioles	A
8.	An increase in tidal volume, capillarisation and	
	strengthening of the respiratory muscles are	Τ
	all	E
9.	The Bohr effect is caused by this happening	
	during exercise	A
		L
10.	A gas used by the muscle tissues to create	
	energy	0
11.	Used to warm & moisten air while breathing	N C
12.	Where the partial pressure of oxygen is lower in	
	the alveolar air	A
13.	Detected by thermorecepetors	Τ
14.	Expiration is due to passive recoil of the	
	external intercostals and diaphragm in this	R
	condition	
15.	This happens when oxygen and carbon dioxide	E of
	move across membranes	 G
16.	An oxygen dissociation curve shows this level of	
	oxygen in the haemoglobin	S (level)
17.	A way of using altitude to maximise training	'T H
	adaptations	L'

Quick Quiz 4 – The Respiratory System

Answers

1.	A process used to strengthen muscles such as the external intercostals	Inspiratory muscle training
0		
2.	A sensory mechanism that feeds the	Neural control
	respiratory control centre	
3.	An additional inspiratory muscle used when	S calenes
	exercising	
4.	This is high in the capillary blood and low in	Partial pressure of
	the muscle tissues at rest	_
_		oxygen
5.	This process is caused by an increase in	Inspiration
	thoracic cavity volume	
6.	This is located in the medulla oblongata and	Respiratory control
	sends stimulation via the vagus and	centre
	intercostal nerves	
7.		Asthma
1.	The temporary narrowing of the bronchi and	Asuina
_	bronchioles	
8.	An increase in tidal volume, capillarisation	Training effects
	and strengthening of the respiratory muscles	
	are all.	
9.	The Bohr effect is caused by this happening	Increased acidity
0.	during exercise	levels
10		
10.	A gas used by the muscle tissues to create	Oxygen
	energy	
11.	Used to warm & moisten air while breathing	Nasal cavity
12.	Where the partial pressure of oxygen is lower	Altitude
	in the alveolar air	
13.	Detected by thermorecepetors	Temperature
тэ.	Detected by thermolecepetors	Temperature
14.	Expiration is due to passive recoil of the	Rest
	external intercostals and diaphragm in this	
	condition	
15.	This happens when oxygen and carbon	Exchange of gases
±0.	dioxide move across membranes	
40		Contrary the second second
16.	An oxygen dissociation curve shows this level	Saturation level
	of oxygen in the haemoglobin	
17.	A way of using altitude to maximise training	'T rain high live low'
	adaptations	-

Cue Cards 1: The Musculoskeletal System

SHOULDER Joint type / articulating bones Movements and agonists

HIP

Joint type / articulating bones Movements and agonists

ELBOW

Joint type / articulating bones Movements and agonists RADIO-ULNAR

Joint type / articulating bones Movements and agonists

WRIST

Joint type / articulating bones Movements and agonists

SPINE

Joint type / articulating bones Movements and agonists

KNEE

Joint type / articulating bones Movements and agonists

ANKLE

Joint type / articulating bones Movements and agonists

MUSCLE FIBRE TYPE

FG / FOG / SO

3 structural 3 functional Practical example

OSTEOPOROSIS

OSTEOARTHRITIS

GROWTH PLATE DISORDERS

WARM – UP EFFECTS

On speed and force of muscular contraction

HEALTH & ACTIVITY

Types of activity and general effects of exercise on: 1. MUSCLES 2. BONES

JOINT STABILITY

POSTURE AND ALIGNMENT

OCR AS Physical Education

Cue (ue Cards 1: The Musculoskeletal System – short answers			
	SHOULDER	ELBOW		
gle de	all & socket / head of humerus & enoid cavity of scapula / flexion (anterior eltoid) / extension (posterior deltoid) /	Hinge / humerus, radius & ulna / flexion (biceps brachii) / extension (triceps brachii)		
	duction (middle deltoid) / adduction	RADIO-ULNAR		
	itissimus dorsi) HIP	Pivot / radius & ulna / pronation (pronator teres) / supination (supinator)		
	all & socket / acetabulum of pelvic girdle	WRIST		
ext (gl	head of femur / flexion (ilipsoas) / tension (gluteus maximus) / abduction luteus medius & minimus) / adduction dductor longus)	Condyloid / radius, ulna & carples / flexion (wrist flexors) / extension (wrist extensors		
<u> </u>	SPINE	WARM – UP EFFECTS		
Gli	iding / vertebrae / flexion (rectus	Increased: muscle temperature / elasticity		
	dominis) / extension (erector spinae) KNEE	of connective tissue / flexibility / nerve transmission		
Hi	nge / femur & tibia / flexion (biceps	Decreased: Muscle viscosity		
	moris) / extension (rectus femoris)			
	ANKLE	Improved injury prevention & increased		
Hi	nge / tibia, fibula & talus / dorsi-flexion	speed and force of muscular contraction		
(tik	bialis anterior) / plantar-flexion			
(ga	astrocnemius & soleus)			
	MUSCLE FIBRE TYPE	HEALTH & ACTIVITY		
	FG (100m sprinter)	In general physical activity can:		
	ructural: large / few mitochondria &	1. MUSCLES		
	pillaries Functional : high speed & force contraction / low fatigue resistance	Strengthen connective tissue & tone / improve posture & flexibility / reduce pain		
	FOG (team game player)	2. BONES		
St	ructural: large / moderate mitochondria	Increase peak bone density / calcium salt		
	capillaries	deposition / vary line of stress / nourish &		
	nctional: high speed &force of	thicken articular cartilage		
со	ntraction / low fatigue resistance	High-impact can damage growth plate		
	SO (marathon runner)	Contact sport compromises joint stability		
	ructural: small / many mitochondria & pillaries Functional: low speed & force	Repetitive action can lead to osteoarthritis No activity can lead to osteoporosis		
	contraction / high fatigue resistance	No activity can lead to osteoporosis		
	OSTEOPOROSIS	JOINT STABILITY		
	w bone density leading to fracture risk	Dislocations, sprains and strains can		
	aused by sedentary lifestyle with low	decrease physical activity & cause		
ca	lcium & vitamin D in diet)	permanent lengthening of connective		
	OSTEOARTHRITIS	tissue		
	ear & tear of articular cartilage leading	(Rotator cuff: teres minor/supraspinatus)		
to	bone spurs, swelling & joint pain	POSTURE AND ALIGNMENT		
	GROWTH PLATE DISORDERS	Good posture prevents excess pressure and pain on lumbar vertebrae & maximum		
	nused by sudden forces that prematurely	muscular efficiency		
	ose the growth plate resulting in stricted growth	(multifidus & transverse abdominis)		
103		,		

Cue	Cards	2:	Motion	and	Movement
-----	-------	----	---------------	-----	----------

LINEAR MOTION ANGULAR MOTION GENERAL MOTION	SPORTING EXAMPLES of: Linear Motion Angular Motion General Motion
NEWTON'S LAWS OF MOTION INERTIA (1) ACCELERATION (2) REACTION (3)	EFFECTS OF FORCE with examples
CENTRE OF MASS Define / Fosbury Flop	SIZE OF FORCE DIRECTION OF FORCE POINT OF APPLICATION OF FORCE
FACTORS AFFECTING STABILITY	

Cue Cards 2: Motion and Movement – short answers

LINEAR MOTION	Linear Motion
Straight line motion with body parts	A tobogganist reaching maximum speed
travelling at the same speed, direction &	as they cross the finish line
distance	Angular Motion
ANGULAR MOTION	A gymnast rotating around the high bar
Circular motion about an axis of rotation	General Motion
GENERAL MOTION	A 100m sprinter (straight line motion with
A combination of linear and angular	joints in angular motion)
motion	
NEWTON'S LAWS OF MOTION	EFFECTS OF FORCE
1 (inertia): a body continues in a state of	Force = push or pull that can alter the
rest until an external force is applied	state of motion
2 (acceleration): the rate of change in	Create motion: football on penalty spot
momentum is proportional to the size of	Accelerate: after the ball is kicked
force applied & in the same direction	Decelerate: goalkeeper catch
3 (reaction): for every action force there is	Change direction: side step in rugby
an equal and opposite reaction force	Change shape: trampoline
CENTRE OF MASS	SIZE OF FORCE
The point at which the body is balanced in	The greater the force applied the greater
all directions	the change in momentum
Centre of mass can be moved outside the	DIRECTION OF FORCE
body to create rotation. Fosbury flop	The body will travel in the same direction
arched back moves centre of mass below	as the force applied
the bar and becomes a pivot point allowing greater jump heights compared	POINT OF APPLICATION OF FORCE
to the scissor kick method.	To create linear motion apply direct force
	through centre of mass
	To create angular motion apply eccentric force outside the centre of mass
FACTORS AFFECTING	
STABILITY	
Height of centre of mass (lower = more stable)	
Size of base of support (larger = more	
room for movement of centre of mass =	
more stable)	
Line of gravity (falls within the base of	
support = stable)	
Mass of athlete (higher mass = more	
stable)	

Cue Cards 3: The	e Cardiovascular System
------------------	-------------------------

CARDIAC CYCLE	VENOUS RETURN
Diastole	Define
Atrial Systole / Ventricular Systole	List 5 mechanisms
CONDUCTION SYSTEM	STARLING'S LAW
WARM-UP EFFECTS	CO / SV / HR
On the vascular system	Define terms
COOL-DOWN EFFECTS	Draw sub-max and max graphs showing
On the vascular system	values and units
BLOOD PRESSURE Define / resting value HYPERTENSION O2 / CO2 TRANSPORT Effects of smoking	VASCULAR SHUNT VASOMOTOR CONTROL
HORMONAL CONTROL OF HR INTRINSIC CONTROL OF HR NEURAL CONTROL OF HR	CORONARY HEART DISEASE TYPES OF ACTIVITY AEROBIC WEIGHT/ISOMETRIC

) (PEfocus ٦

Cue Cards 3: The Cardiovascular System – short answers	
CARDIAC CYCLE	VENOUS RETURN
Diastole: relaxation of cardiac muscle	Return of blood to the heart
(atria fill with blood) Atrial Systole: atria	Pocket valves
contract (blood forced into ventricles)	Muscle pump
Ventricular Systole: ventricles contract	Respiratory pump
(blood forced to tissues & lungs)	Smooth muscle
CONDUCTION SYSTEM	Gravity
Initiation and movement of the cardiac	STARLING'S LAW
impulse to control the cardiac cycle	SV is dependant on VR
SA node – AV node – bundle of His –	SV increases when VR and ventricle
bundle branches – purkinje fibres	stretch increases
WARM-UP EFFECTS	CO = HR x SV, volume of blood ejected
Increased blood flow/CO/blood & muscle	from left ventricle per minute (l.min)
temperature/enzyme activity/oxygen	
dissociation.	SV = volume of blood ejected from the left
	ventricle per beat (mls.min)
Decrease blood viscosity/ OBLA COOL-DOWN EFFECTS	HR = number of ventricle contractions in
	one minute (bpm)
Gradual decrease of HR/SV/CO. Maintains	
respiratory & muscle pump/VR/blood	See Heinemann student text OCR AS PE
pressure/capillary dilation to remove lactic	page 71 for graphs
acid & CO ₂	
BLOOD PRESSURE	VASCULAR SHUNT
Pressure exerted by blood on arterial	Redistribution of cardiac output from rest
Pressure exerted by blood on arterial walls, healthy value 120/80mmHg	Redistribution of cardiac output from rest to exercise. Rest : 80% blood flow directed
	•
walls, healthy value 120/80mmHg	to exercise. Rest: 80% blood flow directed
walls, healthy value 120/80mmHg HYPERTENSION	to exercise. Rest : 80% blood flow directed to organs. Exercise : 80% blood flow
walls, healthy value 120/80mmHg HYPERTENSION Long term high blood pressure	to exercise. Rest : 80% blood flow directed to organs. Exercise : 80% blood flow directed to muscle tissue
walls, healthy value 120/80mmHg HYPERTENSION Long term high blood pressure >140/90mmHg O2: haemoglobin/plasma	to exercise. Rest : 80% blood flow directed to organs. Exercise : 80% blood flow directed to muscle tissue VASOMOTOR CONTROL
walls, healthy value 120/80mmHg HYPERTENSION Long term high blood pressure >140/90mmHg	to exercise. Rest : 80% blood flow directed to organs. Exercise : 80% blood flow directed to muscle tissue VASOMOTOR CONTROL Acidity (chemoreceptors) & blood pressure
walls, healthy value 120/80mmHg HYPERTENSION Long term high blood pressure >140/90mmHg O ₂ : haemoglobin/plasma CO ₂ : haemoglobin/plasma/carbonic acid	to exercise. Rest : 80% blood flow directed to organs. Exercise : 80% blood flow directed to muscle tissue VASOMOTOR CONTROL Acidity (chemoreceptors) & blood pressure (baroreceptors) increase = VCC increases
walls, healthy value 120/80mmHg HYPERTENSION Long term high blood pressure >140/90mmHg O2: haemoglobin/plasma CO2: haemoglobin/plasma/carbonic acid Smoking: inhale carbon monoxide, higher	to exercise. Rest : 80% blood flow directed to organs. Exercise : 80% blood flow directed to muscle tissue VASOMOTOR CONTROL Acidity (chemoreceptors) & blood pressure (baroreceptors) increase = VCC increases stimulation of arterioles & pre-capillary
walls, healthy value 120/80mmHg HYPERTENSION Long term high blood pressure >140/90mmHg O2: haemoglobin/plasma CO2: haemoglobin/plasma/carbonic acid Smoking: inhale carbon monoxide, higher affinity to haemoglobin, decrease HbO2	to exercise. Rest : 80% blood flow directed to organs. Exercise : 80% blood flow directed to muscle tissue VASOMOTOR CONTROL Acidity (chemoreceptors) & blood pressure (baroreceptors) increase = VCC increases stimulation of arterioles & pre-capillary sphincters to organs to vaso-constrict
walls, healthy value 120/80mmHg HYPERTENSION Long term high blood pressure >140/90mmHg O2: haemoglobin/plasma CO2: haemoglobin/plasma/carbonic acid Smoking: inhale carbon monoxide, higher affinity to haemoglobin, decrease HbO2 saturation	to exercise. Rest : 80% blood flow directed to organs. Exercise : 80% blood flow directed to muscle tissue VASOMOTOR CONTROL Acidity (chemoreceptors) & blood pressure (baroreceptors) increase = VCC increases stimulation of arterioles & pre-capillary sphincters to organs to vaso-constrict reducing blood flow CORONARY HEART DISEASE
walls, healthy value 120/80mmHg HYPERTENSION Long term high blood pressure >140/90mmHg O ₂ : haemoglobin/plasma CO ₂ : haemoglobin/plasma/carbonic acid Smoking: inhale carbon monoxide, higher affinity to haemoglobin, decrease HbO ₂ saturation Effect of exercise: HORMONAL CONTROL OF HR	to exercise. Rest : 80% blood flow directed to organs. Exercise : 80% blood flow directed to muscle tissue VASOMOTOR CONTROL Acidity (chemoreceptors) & blood pressure (baroreceptors) increase = VCC increases stimulation of arterioles & pre-capillary sphincters to organs to vaso-constrict reducing blood flow CORONARY HEART DISEASE CHD : reduction of coronary circulation/
walls, healthy value 120/80mmHg HYPERTENSION Long term high blood pressure >140/90mmHg O ₂ : haemoglobin/plasma CO ₂ : haemoglobin/plasma/carbonic acid Smoking: inhale carbon monoxide, higher affinity to haemoglobin, decrease HbO ₂ saturation Effect of exercise: HORMONAL CONTROL OF HR Release of adrenaline directly stimulates	to exercise. Rest : 80% blood flow directed to organs. Exercise : 80% blood flow directed to muscle tissue VASOMOTOR CONTROL Acidity (chemoreceptors) & blood pressure (baroreceptors) increase = VCC increases stimulation of arterioles & pre-capillary sphincters to organs to vaso-constrict reducing blood flow CORONARY HEART DISEASE
<pre>walls, healthy value 120/80mmHg</pre>	to exercise. Rest : 80% blood flow directed to organs. Exercise : 80% blood flow directed to muscle tissue VASOMOTOR CONTROL Acidity (chemoreceptors) & blood pressure (baroreceptors) increase = VCC increases stimulation of arterioles & pre-capillary sphincters to organs to vaso-constrict reducing blood flow CORONARY HEART DISEASE CHD : reduction of coronary circulation/ decrease delivery of blood & oxygen to cardiac muscle.
walls, healthy value 120/80mmHg HYPERTENSION Long term high blood pressure >140/90mmHg O2: haemoglobin/plasma CO2: haemoglobin/plasma/carbonic acid Smoking: inhale carbon monoxide, higher affinity to haemoglobin, decrease HbO2 saturation Effect of exercise: HORMONAL CONTROL OF HR Release of adrenaline directly stimulates the SA node to increase HR INTRINSIC CONTROL OF HR	to exercise. Rest : 80% blood flow directed to organs. Exercise : 80% blood flow directed to muscle tissue VASOMOTOR CONTROL Acidity (chemoreceptors) & blood pressure (baroreceptors) increase = VCC increases stimulation of arterioles & pre-capillary sphincters to organs to vaso-constrict reducing blood flow CORONARY HEART DISEASE CHD : reduction of coronary circulation/ decrease delivery of blood & oxygen to
walls, healthy value 120/80mmHg HYPERTENSION Long term high blood pressure >140/90mmHg O2: haemoglobin/plasma CO2: haemoglobin/plasma/carbonic acid Smoking: inhale carbon monoxide, higher affinity to haemoglobin, decrease HbO2 saturation Effect of exercise: HORMONAL CONTROL OF HR Release of adrenaline directly stimulates the SA node to increase HR INTRINSIC CONTROL OF HR Temperature (thermoreceptors) & venous	to exercise. Rest: 80% blood flow directed to organs. Exercise: 80% blood flow directed to muscle tissue VASOMOTOR CONTROL Acidity (chemoreceptors) & blood pressure (baroreceptors) increase = VCC increases stimulation of arterioles & pre-capillary sphincters to organs to vaso-constrict reducing blood flow CORONARY HEART DISEASE CHD: reduction of coronary circulation/ decrease delivery of blood & oxygen to cardiac muscle. Atherosclerosis: build up of fatty plaques on arterial walls. Arteriosclerosis:
<pre>walls, healthy value 120/80mmHg</pre>	to exercise. Rest : 80% blood flow directed to organs. Exercise : 80% blood flow directed to muscle tissue VASOMOTOR CONTROL Acidity (chemoreceptors) & blood pressure (baroreceptors) increase = VCC increases stimulation of arterioles & pre-capillary sphincters to organs to vaso-constrict reducing blood flow CORONARY HEART DISEASE CHD : reduction of coronary circulation/ decrease delivery of blood & oxygen to cardiac muscle. Atherosclerosis : build up of fatty plaques on arterial walls. Arteriosclerosis : hardening of arteries. Angina : partial
walls, healthy value 120/80mmHg HYPERTENSION Long term high blood pressure >140/90mmHg O2: haemoglobin/plasma CO2: haemoglobin/plasma/carbonic acid Smoking: inhale carbon monoxide, higher affinity to haemoglobin, decrease HbO2 saturation Effect of exercise: HORMONAL CONTROL OF HR Release of adrenaline directly stimulates the SA node to increase HR INTRINSIC CONTROL OF HR Temperature (thermoreceptors) & venous return increase = CCC increases HR sympathetically via accelerator nerve	to exercise. Rest: 80% blood flow directed to organs. Exercise: 80% blood flow directed to muscle tissue VASOMOTOR CONTROL Acidity (chemoreceptors) & blood pressure (baroreceptors) increase = VCC increases stimulation of arterioles & pre-capillary sphincters to organs to vaso-constrict reducing blood flow CORONARY HEART DISEASE CHD: reduction of coronary circulation/ decrease delivery of blood & oxygen to cardiac muscle. Atherosclerosis: build up of fatty plaques on arterial walls. Arteriosclerosis: hardening of arteries. Angina: partial blockage of coronary artery. Heart attack:
<pre>walls, healthy value 120/80mmHg HYPERTENSION Long term high blood pressure >140/90mmHg O₂: haemoglobin/plasma CO₂: haemoglobin/plasma/carbonic acid Smoking: inhale carbon monoxide, higher affinity to haemoglobin, decrease HbO₂ saturation Effect of exercise: HORMONAL CONTROL OF HR Release of adrenaline directly stimulates the SA node to increase HR INTRINSIC CONTROL OF HR Temperature (thermoreceptors) & venous return increase = CCC increases HR sympathetically via accelerator nerve NEURAL CONTROL OF HR</pre>	to exercise. Rest : 80% blood flow directed to organs. Exercise : 80% blood flow directed to muscle tissue VASOMOTOR CONTROL Acidity (chemoreceptors) & blood pressure (baroreceptors) increase = VCC increases stimulation of arterioles & pre-capillary sphincters to organs to vaso-constrict reducing blood flow CORONARY HEART DISEASE CHD : reduction of coronary circulation/ decrease delivery of blood & oxygen to cardiac muscle. Atherosclerosis : build up of fatty plaques on arterial walls. Arteriosclerosis : hardening of arteries. Angina : partial
walls, healthy value 120/80mmHg HYPERTENSION Long term high blood pressure >140/90mmHg O ₂ : haemoglobin/plasma CO ₂ : haemoglobin/plasma/carbonic acid Smoking: inhale carbon monoxide, higher affinity to haemoglobin, decrease HbO ₂ saturation Effect of exercise: HORMONAL CONTROL OF HR Release of adrenaline directly stimulates the SA node to increase HR INTRINSIC CONTROL OF HR Temperature (thermoreceptors) & venous return increase = CCC increases HR sympathetically via accelerator nerve NEURAL CONTROL OF HR Motor activity (proprioreceptors), acidity	to exercise. Rest: 80% blood flow directed to organs. Exercise: 80% blood flow directed to muscle tissue VASOMOTOR CONTROL Acidity (chemoreceptors) & blood pressure (baroreceptors) increase = VCC increases stimulation of arterioles & pre-capillary sphincters to organs to vaso-constrict reducing blood flow CORONARY HEART DISEASE CHD: reduction of coronary circulation/ decrease delivery of blood & oxygen to cardiac muscle. Atherosclerosis: build up of fatty plaques on arterial walls. Arteriosclerosis: hardening of arteries. Angina: partial blockage of coronary artery. Heart attack: total blockage of coronary artery TYPES OF ACTIVITY
<pre>walls, healthy value 120/80mmHg HYPERTENSION Long term high blood pressure >140/90mmHg O₂: haemoglobin/plasma CO₂: haemoglobin/plasma/carbonic acid Smoking: inhale carbon monoxide, higher affinity to haemoglobin, decrease HbO₂ saturation Effect of exercise: HORMONAL CONTROL OF HR Release of adrenaline directly stimulates the SA node to increase HR INTRINSIC CONTROL OF HR Temperature (thermoreceptors) & venous return increase = CCC increases HR sympathetically via accelerator nerve NEURAL CONTROL OF HR Motor activity (proprioreceptors), acidity (chemoreceptors) & blood pressure</pre>	to exercise. Rest: 80% blood flow directed to organs. Exercise: 80% blood flow directed to muscle tissue VASOMOTOR CONTROL Acidity (chemoreceptors) & blood pressure (baroreceptors) increase = VCC increases stimulation of arterioles & pre-capillary sphincters to organs to vaso-constrict reducing blood flow CORONARY HEART DISEASE CHD: reduction of coronary circulation/ decrease delivery of blood & oxygen to cardiac muscle. Atherosclerosis: build up of fatty plaques on arterial walls. Arteriosclerosis: hardening of arteries. Angina: partial blockage of coronary artery. Heart attack: total blockage of coronary artery TYPES OF ACTIVITY Aerobic = 3 x 30mins per week beneficial
<pre>walls, healthy value 120/80mmHg HYPERTENSION Long term high blood pressure >140/90mmHg O₂: haemoglobin/plasma CO₂: haemoglobin/plasma/carbonic acid Smoking: inhale carbon monoxide, higher affinity to haemoglobin, decrease HbO₂ saturation Effect of exercise: HORMONAL CONTROL OF HR Release of adrenaline directly stimulates the SA node to increase HR INTRINSIC CONTROL OF HR Temperature (thermoreceptors) & venous return increase = CCC increases HR sympathetically via accelerator nerve NEURAL CONTROL OF HR Motor activity (proprioreceptors), acidity (chemoreceptors) & blood pressure (baroreceptors) increase = CCC increases</pre>	to exercise. Rest : 80% blood flow directed to organs. Exercise : 80% blood flow directed to muscle tissue VASOMOTOR CONTROL Acidity (chemoreceptors) & blood pressure (baroreceptors) increase = VCC increases stimulation of arterioles & pre-capillary sphincters to organs to vaso-constrict reducing blood flow CORONARY HEART DISEASE CHD : reduction of coronary circulation/ decrease delivery of blood & oxygen to cardiac muscle. Atherosclerosis : build up of fatty plaques on arterial walls. Arteriosclerosis : hardening of arteries. Angina : partial blockage of coronary artery. Heart attack : total blockage of coronary artery TYPES OF ACTIVITY Aerobic = 3 x 30mins per week beneficial (decrease blood lipids/LDLs/obesity/
<pre>walls, healthy value 120/80mmHg HYPERTENSION Long term high blood pressure >140/90mmHg O₂: haemoglobin/plasma CO₂: haemoglobin/plasma/carbonic acid Smoking: inhale carbon monoxide, higher affinity to haemoglobin, decrease HbO₂ saturation Effect of exercise: HORMONAL CONTROL OF HR Release of adrenaline directly stimulates the SA node to increase HR INTRINSIC CONTROL OF HR Temperature (thermoreceptors) & venous return increase = CCC increases HR sympathetically via accelerator nerve NEURAL CONTROL OF HR Motor activity (proprioreceptors), acidity (chemoreceptors) & blood pressure</pre>	to exercise. Rest : 80% blood flow directed to organs. Exercise : 80% blood flow directed to muscle tissue VASOMOTOR CONTROL Acidity (chemoreceptors) & blood pressure (baroreceptors) increase = VCC increases stimulation of arterioles & pre-capillary sphincters to organs to vaso-constrict reducing blood flow CORONARY HEART DISEASE CHD : reduction of coronary circulation/ decrease delivery of blood & oxygen to cardiac muscle. Atherosclerosis : build up of fatty plaques on arterial walls. Arteriosclerosis : hardening of arteries. Angina : partial blockage of coronary artery. Heart attack : total blockage of coronary artery TYPES OF ACTIVITY Aerobic = 3 x 30mins per week beneficial

attack

pressure = can trigger angina/ heart

Cue Cards 4: The Respiratory Sys	Cue Cards 4: The Respiratory System		
MECHANICS OF BREATHING INSPIRATION at rest and response to exercise	MECHANICS OF BREATHING EXPIRATION at rest and response to exercise		
RESPIRATORY CONTROL Inspiration – rest / exercise Expiration – rest / exercise	GASEOUS EXCHANGE EFFECT OF EXERCISE		
O ₂ / CO ₂ TRANSPORT EFFECT OF SMOKING on health and performance	ASTHMA EXERCISE INDUCED ASTHMA TREATMENT		
EFFECT OF ALTITUDE On efficiency of respiratory system On performance	Effect of AEROBIC training		

71

Cue Carus 4: The Respiratory Sys	
MECHANICS OF BREATHING	MECHANICS OF BREATHING
Inspiration at rest = Diaphragm &	Expiration at rest = diaphragm + external
external intercostals contract = up & out	intercostals relax = down & in movement
movement of ribs and	of ribs & sternum/diaphragm domes =
sternum/diaphragm flattens = thoracic	thoracic cavity volume decreases = lung
cavity volume increases = lung air	air pressure increases
pressure decreases	Exercise = additional muscle contract (e.g.
Exercise = additional muscles contract	rectus abdominis) = ribs & sternum down
(e.g. scalenes) = ribs & sternum lifted with	with more force/diaphragm up further =
more force/diaphragm flattens further =	greater decrease in thoracic cavity volume
greater increase in thoracic cavity volume	= higher pressure of lung air = greater
= lower pressure of lung air = greater	expiration
inspiration	
RESPIRATORY CONTROL	GASEOUS EXCHANGE
Inspiration: Increased temperature	External: high PPO2 in alveolar air - low
(thermoreceptors), motor activity	PPO ₂ in blood capillaries = diffusion
(proprioreceptors) & acidity	gradient (O2 into blood)
(chemoreceptors) = RCC initiates IC =	Internal: high PPO ₂ in blood capillaries –
phrenic & intercostal nerve stimulate	low PPO ₂ in muscle tissue = diffusion
external intercostals & diaphragm at	gradient (O ₂ into muscle tissue)
rest/additional muscles during exercise =	EFFECT OF EXERCISE
increased breathing depth	Increase diffusion gradient /lower PPO2 in
Expiration: Increased stretch (stretch	blood capillaries (external) and muscle
receptors) = RCC initiates EC = stimulate	tissue (internal)/increase temperature &
internal intercostals & additional muscles	acidity (Bohr effect)/HbO ₂ dissociation.
during exercise = increased breathing rate	Increased diffusion of O ₂
TRANSPORT	ASTHMA
0 ₂ : haemoglobin/plasma	Reversible narrowing of airways (wheezing
CO₂: haemoglobin/plasma/carbonic acid	breathlessness/excess mucus)
Smoking: inhale carbon monoxide, higher	Triggers: dust/pollen/pollutants
affinity to haemoglobin, decrease HbO ₂	EXERCISE INDUCED ASTHMA
saturation	Bronchoconstriction brought on by
Health: impairs development/lung	U
function & diffusion rates/ increased	exercise (especially cold & dry air) limits performance
prevalence of disease, infection and	•
damage (asthma/COPD/cancer)	Treatment: Bronchodilators (reliever)
Performance: decreased VO ₂ max	corticosteroids (preventer) warm-up/ IMT
EFFECT OF ALTITUDE	Effect of AEROBIC training
	Respiratory structures: increased
On respiratory system: decreased	alveoli/elasticity/longevity of structures
alveolar PPO ₂ (hypoxia) /diffusion gradient	Breathing mechanics: increased strength
$(external)/HbO_2/O_2 transport in$	& endurance of respiratory muscles
blood/diffusion gradient (internal) / O ₂	Respiratory volumes: increase minute
supply to muscles	ventilation (120 to 1501.min maximally)
On performance: Decreased VO ₂ max/	Diffusion: increased pulmonary diffusion/
hyperventilation /aerobic performance/	VO_2 diff in maximal activity
increased muscular fatigue	Net Effect: increase intensity & duration of
	aerobic performance (delay fatigue)
	deroble performance (deray fatigue)

Fill in the blanks 1: The Musculoskeletal System

The Ankle, Knee and Hip

The ankle is a ______ joint with three articulating bones: talus, tibia and fibula.

When a basketballer jumps and leaves the ground the ankle plantarflexes.
 The agonist for plantarflexion is the ______. The ______.
 The tibialis anterior, which _______.
 contracts, lengthening under tension to provide a co-ordinated movement.

The knee is a hinge joint with two articulating bones: ______ and tibia.

The hip is a ______ joint, which has a large range of movement. The deep socket of the ______ articulates with the head of the humerus

- When rotating over the high jump bar using the Fosbury Flop technique, the hip joint extends. The agonist for hip extension is the ______ concentrically contracting. The antagonist is the iliopsoas eccentrically contracting.
- When performing a star jump, in the outward phase the hip joint abducts. The agonist for hip abduction is the gluteus medius and minimus, which
 ______ contract to create the movement. The antagonist is the adductor longus (______ and brevis), which eccentrically contracts ______ under tension.

Word bank

biceps femoris	ball and socket	antagonist	gluteus maximus	lengthening
hinge	rectus femoris	pelvic girdle	eccentrically	gastrocnemius
magnus	concentrically	femur	shortening	

OCR AS Physical Education

Answers - The Musculoskeletal System The Ankle, Knee and Hip

The ankle is a <u>hinge</u> joint with three articulating bones: talus, tibia and fibula.

 When a basketballer jumps and leaves the ground the ankle plantarflexes. The agonist for plantarflexion is the <u>gastrocnemius</u>. The <u>antagonist</u> is the tibialis anterior, which <u>eccentrically</u> contracts, lengthening under tension to provide a co-ordinated movement.

The knee is a hinge joint with two articulating bones: **femur** and tibia.

When a footballer strikes the ball, in the execution phase of a kick the knee extends. The agonist for extension is the <u>rectus femoris</u> (vastus lateralis, vastus medialis and vastus intermedius), which concentrically contracts <u>shortening</u> under tension. The antagonist is the <u>biceps femoris</u> (semimembranosus and semitendinosus) which eccentrically contract to control the movement.

The hip is a <u>ball and socket</u> joint, which has a large range of movement. The deep socket of the <u>pelvic girdle</u> articulates with the head of the humerus.

- When rotating over the high jump bar using the Fosbury Flop technique, the hip joint extends. The agonist for hip extension is the <u>gluteus maximus</u> concentrically contracting. The antagonist is the iliopsoas eccentrically contracting.
- When performing a star jump, in the outward phase the hip joint abducts. The agonist for hip abduction is the gluteus medius and minimus, which <u>concentrically</u> contract to create the movement. The antagonist is the adductor longus (<u>magnus</u> and brevis), which eccentrically contracts <u>lengthening</u> under tension.

Fill in the blanks 2: Motion and Movement Stability

Factors that affect stability:

- The lower the centre of mass the greater the stability.
- Centre of mass is the point at which the body is ______ in all directions
- The wider the base of _____ the greater the stability
- If the line of ______ falls within the base of support the body will be stable
- The greater the _____ of the athlete the greater the stability

Stability is essential for ______ situations, such as a footballer withstanding a tackle or taking a shot on goal keeping the head, knee and toe in line, with the line of gravity falling through the planted foot.

Rugby players in a scrum widen their _____, leaning into the force and bending their _____ to lower the centre of mass.

Instability is an advantage for ______ sports such as netball where the performer must change ______ quickly, moving the line of gravity outside the base of support to gain maximum reach to intercept the ball.

Badminton players must change direction at ______ and move from left to right across the court with ease. They raise their centre of mass, staying on their toes with their racquet high and often place all their ______ over only one foot to push away from the ground in the opposite direction.

Word bank:

direction	mass	defensive	weight	support
stance	agility	balanced	gravity	knees
speed				

OCR AS Physical Education

Answers - Motion and Movement Stability

Factors that affect stability:

- The lower the centre of mass the greater the stability
- Centre of mass is the point at which the body is <u>balanced</u> in all directions
- The wider the base of **<u>support</u>** the greater the stability
- If the line of <u>gravity</u> falls within the base of support the body will be stable
- The greater the mass of the athlete the greater the stability

Stability is essential for <u>defensive</u> situations, such as a footballer withstanding a tackle or taking a shot on goal keeping the head, knee and toe in line, with the line of gravity falling through the planted foot.

Rugby players in a scrum widen their <u>stance</u>, leaning into the force and bending their <u>knees</u> to lower the centre of mass.

Instability is an advantage for <u>agility</u> sports such as netball where the performer must change <u>direction</u> quickly, moving the line of gravity outside the base of support to gain maximum reach to intercept the ball.

Badminton players must change direction at <u>speed</u> and move from left to right across the court with ease. They raise their centre of mass, staying on their toes with their racquet high and often place all their <u>weight</u> over only one foot to push away from the ground in the opposite direction.

Fill in the blanks 3: Cardiovascular System Vascular shunt control during exercise

At rest 80% of the _____ leaving the heart distributes blood flow to the organs and only 20% to the muscles.

As a performer begins to ______ the sensory receptors pick up changes in our body and send information to the vasomotor control centre (VCC) in the ______.

- _____ sense an increase in muscular movement
- sense an increase in carbon dioxide and decrease in oxygen levels
- against the arterial walls
 sense an increase in the pressure of blood

The VCC ______ the _____ and pre-capillary sphincters feeding the organs to ______. This decreases the blood flow to the organs.

The VCC decreases stimulation to the arterioles and pre-capillary sphincters feeding the working ______ allowing them the vasodilate. This increases the blood flow to the working muscles.

During intense activity roughly ______ of blood flow is distributed to the working muscles and only ______ to the organs.

Word bank

exercise	muscles	80%	stimulates	chemoreceptors
medulla	cardiac output	arterioles	proprioreceptors	20%
oblongata				
baroreceptors	vasoconstrict			

OCR AS Physical Education

Answers - Cardiovascular System

Vascular shunt control during exercise

At rest 80% of the <u>cardiac output</u> leaving the heart distributes blood flow to the organs and only 20% to the muscles.

As a performer begins to <u>exercise</u> the sensory receptors pick up changes in the body and send information to the vasomotor control centre (VCC) in the <u>medulla oblongata</u>.

- Proprioreceptors sense an increase in muscular movement
- <u>Chemoreceptors</u> sense an increase in carbon dioxide and decrease in oxygen levels
- <u>Baroreceptors</u> sense an increase in the pressure of blood against the arterial walls

The VCC <u>stimulates</u> the <u>arterioles</u> and pre-capillary sphincters feeding the organs to <u>vasoconstrict</u>. This decreases the blood flow to the organs .

The VCC decreases stimulation to the arterioles and pre-capillary sphincters feeding the working <u>muscles</u> allowing them the vasodilate. This increases the blood flow to the working muscles.

During intense activity roughly $\underline{80\%}$ of blood flow is distributed to the working muscles and only $\underline{20\%}$ to the organs.

Fill in the blanks 4: Respiratory System Gaseous Exchange

Respiration and gaseous exchange are essential for aerobic athletes such as Paula Radcliffe who require ______ to create energy for muscular contraction. At rest oxygen ______ into the bloodstream where the haemoglobin has a high ______ for oxygen and ______ up to 98% ______. At the internal site the capillary blood has a ______ partial pressure (pp) of O₂ and muscle tissue a ______ ppO₂. As gases move down a pressure ______ from an area of high to low pressure the oxygen diffuses into the muscle tissue.

As Paula Radcliffe begins to perform the marathon race, the demand for oxygen increases and the ______ redirects 80% of the blood flow to the working ______ away from the organs The effect of exercise on gaseous exchange is to:

- Increase the _____ of blood and muscle tissue
- Increase the production of _____
- □ Increase production of CO₂

CO₂ is converted into carbonic acid, and with lactic acid raises the ______ levels of the blood stream. This increases the ______ of O₂ from haemoglobin increasing the rate of diffusion. The is known as the ______ effect.

The muscles use greater volumes of oxygen, ______ the ppO₂ in the muscles tissue and increasing the diffusion gradient. The increased supply of oxygen to muscle cells increases ______ supply and enables Paula Radcliffe to exercise for longer at a higher intensity.

Word bank:

decreasing	lactic acid	gradient	associates	muscles
acidity	oxygen	high	temperature	saturation
diffuses	affinity	energy	low	dissociation
vascular shunt	Bohr			

OCR AS Physical Education

Answers - Respiratory System Gaseous Exchange

Respiration and gaseous exchange are essential for aerobic athletes such as Paula Radcliffe who require <u>oxygen</u> to create energy for muscular contraction. At rest oxygen <u>diffuses</u> into the bloodstream where the haemoglobin has a high <u>affinity</u> for oxygen and <u>associates</u> up to 98% <u>saturation</u>. At the internal site the capillary blood has a <u>high</u> partial pressure (pp) of O₂ and muscle tissue a <u>low</u> ppO₂. As gases move down a pressure <u>gradient</u> from an area of high to low pressure the oxygen diffuses into the muscle tissue.

As Paula Radcliffe begins to perform the marathon race the demand for oxygen increases and the <u>vascular shunt</u> redirects 80% of the blood flow to the working <u>muscles</u> away from the organs. The effect of exercise on gaseous exchange is to:

- □ Increase the <u>temperature</u> of blood and muscle tissue.
- Increase the production of <u>lactic acid.</u>
- □ Increase production of CO₂.

 CO_2 is converted into carbonic acid, and with lactic acid raises the <u>acidity</u> levels of the blood stream. This increases the <u>dissociation</u> of O_2 from haemoglobin increasing the rate of diffusion. The is known as the <u>Bohr</u> effect.

The muscles use greater volumes of oxygen, <u>decreasing</u> the ppO_2 in the muscles tissue and increasing the diffusion gradient. The increased supply of oxygen to muscle cells increases <u>energy</u> supply and enables Paula Radcliffe to exercise for longer at a higher intensity.

BURSA	increases muscle temperature and enzyme activity				
TENDON	benefit of the hip joint				
AEROBIC EXERCISE	reduces the risk of delayed onset of muscle soreness				
ANTAGONIST	an athlete with a high percentage of FG fibres in the soleus				
RADIO-ULNAR	bone growth				
BICEPS BRACHII	lengthens under tension				
ISOMETRIC	sub-maximal activity where oxygen supply meets demand				
A WARM-UP	a fibre type rich in myoglobin				
COOL-DOWN	creates upward phase of a bicep curl				

Dominoes / 'follow me' 1: Musculoskeletal System

DEEP SOCKET	prevents friction between articulating bones
ECCENTRIC	a pivot joint which supinates
ROTATION	a synovial fluid filled sac which reduces friction
OSSIFICATION	connective tissue joining muscle to bone
SPRINTER	cartilaginous / gliding / pivot
SLOW OXIDATIVE	a muscle which co-ordinates movement
ARTICULAR CARTILAGE	movement of a bone around its longitudinal axis
SPINAL JOINTS	muscle contraction with no change in muscle length

Answers/links - Musculoskeletal System

bursa	increases muscle temperature and enzyme activity	A warm-up	a fibre type rich in myoglobin	slow oxidative	a muscle which co- ordinates movement	antagonist
						an athlete with a high percentage of FG fibres in the soleus sprinter
reduces the risk of delayed onset of muscle soreness	aerobic exercise	sub- maximal activity where oxygen supply meets demand	isometric	muscle contraction with no change in muscle length	spinal joints	cartilaginous / gliding / pivot
Cool- down Creates upward phase of a bicep curl			1			
Biceps brachii	lengthens under tension	eccentric	pivot joint which supinates	radio-ulnar	bone growth	ossification
						connective tissue

	tension		supinates			
						connective tissue joining muscle to bone Tendon
synovial fluid filled sac which reduces friction	rotation	movement of a bone around its longitudinal axis	articular cartilage	prevents friction between articulating bones	deep socket	benefit of the hip joint

CENTRE OF MASS	One effect of force is
LINE OF GRAVITY	Newton's first law of motion
BASE OF SUPPORT	A rugby scrum
SIZE OF FORCE	A netball goal-keeper defending a shot on goal
MASS	Newton's third law of motion
an example of CENTRE OF MASS BEING OUTSIDE OF THE BODY	The greater this is, the greater acceleration will be
INERTIA	Movement in a straight line
ECCENTRIC FORCE	The wider this is, the more stable the body
an example of a STABLE POSITION	Fosbury flop

LINEAR MOTION	Push or pull that alters motion
is in an UNSTABLE POSITION	Quantity of matter in a body
REACTION	Circular path around an axis of rotation
ACCELERATION	A force that creates angular motion
ANGULAR MOTION	Imaginary line extending from the centre of mass
FORCE	Point at which a body is balanced

Answers/links - Motion and Movement

Line of gravity	Newton's first law of motion	Inertia	movement in a straight line	Linear motion	Push or pull that alters motion	Force
						Point at which a body is balanced Centre of mass
A rugby scrum	Base of support	The wider this is, the more stable the body	Eccentric force	A force that creates angular motion	acceleration	One effect of force is
an example of a stable position Fosbury flop						
Is an example of Centre of Mass outside of the body	The greater this is, the greater the acceleration will be	Size of force	A netball goal- keeper defending a shot on goal	is in an unstable position	Quantity of matter in a body	Mass
						Newton's third law of motion Reaction
				Imaginary line extending from the centre of mass	Angular motion	Circular path around an axis of rotation

Dominoes / 'follow me' 3: Cardiovascular System

CAUSES ANTICIPATORY RISE	HR x SV
COOL-DOWN	Reduced with a warm-up
VENOUS RETURN	This transports gases in the bloodstream
HAEMOGLOBIN	Accumulation of lactic acid in the blood stream
ANAEROBIC	Narrowing of blood vessels
MYOGENIC	Generates the cardiac impulse
CARBON MONOXIDE	Blood vessels with a single cell wall
HEART RATE	The heart generates its own electrical impulse and so is said to be
CARDIAC CONTROL CENTRE	70mls at rest

DIASTOLE	Exercise without oxygen is
BLOOD VISCOCITY	Release of adrenaline
CAPILLARIES	Blood flow back to the heart
SA NODE	Relaxation of the heart
VASO-CONSTRICTION	Inspired when smoking
CARDIAC OUTPUT	Receives information from the chemoreceptors
OBLA	Prevents blood pooling
STROKE VOLUME	Number of left ventricle contractions per minute

Answers/links - Cardiovascular System

Diastole	Exercise without oxygen is	Anaerobic	Narrowing of blood vessels	Vaso- constriction	Inspired when smoking	Carbon monoxide	Blood vessels with a single cell wall
							Capillaries Blood flow back to the heart
Cool-	down	Prevents blood pooling	OBLA	Accumulation of lactic acid in the blood stream	Haemoglobin	This transports gases in the bloodstream	Venous return
	d with a n-up						
Blood v	iscosity						
	ase of naline	Causes anticipatory rise	HR x SV	Cardiac output	Receives information from the chemo-	Cardiac control centre	70mls at rest

					contractions per minute
Relaxation of the heart	SA node	Generates the cardiac impulse	Myogenic	The heart generates its own electrical impulse and so is said to be	Heart rate

receptors

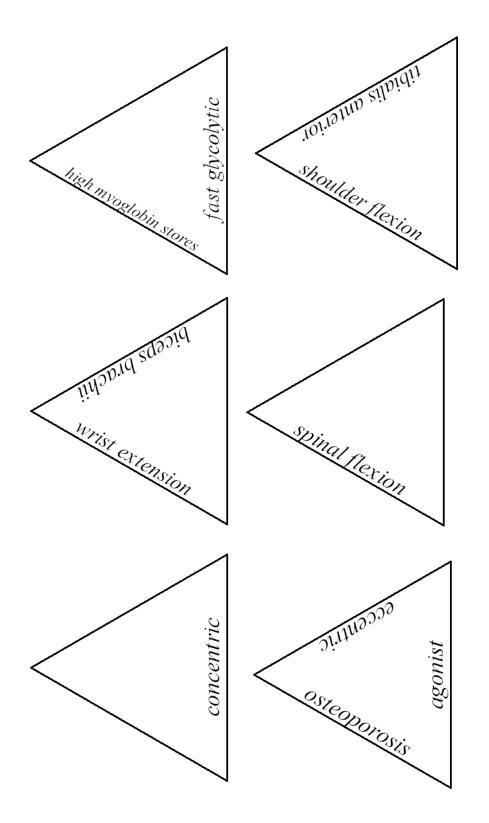
Stroke volume Number of left ventricle

Dominoes / 'follow me	' 4: Respiratory System
-----------------------	-------------------------

Inspiratory muscle training (IMT)	An area with a low partial pressure of oxygen in the air
O ₂ deprivation linked to altitude	This strengthens the respiratory muscles
Alveoli	'Train high live low' =
Bohr shift	Tiny bundles of air sacs
Scalenes	Increased acidity responsible for increased oxygen dissociation
Tidal volume	Additional inspiratory muscles
Partial pressure	Volume of air inspired or expired per breath
External respiration	Pressure a gas exerts within other gases
Haemoglobin	Gaseous exchange between the alveolar air and capillary blood

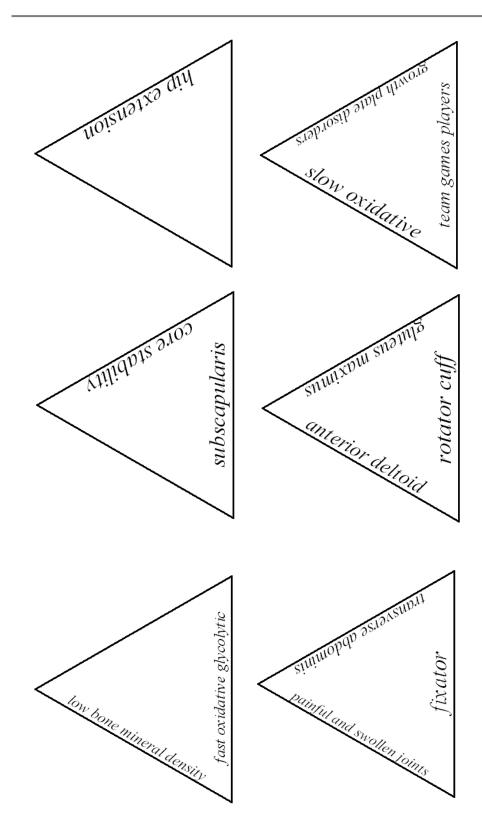
Chemoreceptors	This transports oxygen in the blood
Expiratory centre	These send information about changes in PPO ₂ to the RCC
Myoglobin	Stimulates the obliques to create a forced expiration during exercise
Internal respiration	Red pigment in muscle tissue that stores oxygen
Altitude	Gaseous exchange between the muscle tissue and capillary blood
Altitude training	Poisonous gas inhaled gas when smoking
Asthma	Hypoxia
Carbon monoxide	Temporary narrowing of the airways

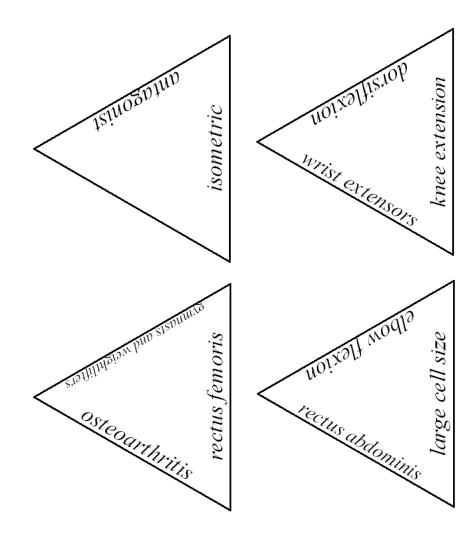
Answers/links - Respiratory System

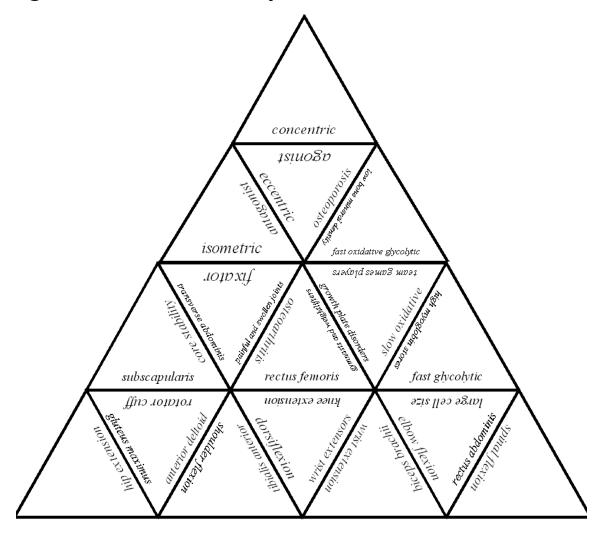

Oxygen deprivation linked to altitude	This strengthens the respiratory muscles	Inspiratory muscle training	An area with a low partial pressure of oxygen in the air	Altitude	Gaseous exchange between the muscle tissue and capillary blood	Internal respiration Red
						pigment in muscle tissue that stores oxygen Myoglobin
Gaseous exchange between the alveolar air and capillary blood	Haemoglobin	This transports oxygen in the blood	Chemo- receptors	These send information about changes in PPO ₂ to the RCC	Expiratory centre	Stimulates the obliques to create a forced expiration during exercise
External respiration Pressure a gas exerts within other gases	-					
Partial pressure	Volume of air inspired or expired per breath	Tidal volume	Additional inspiratory muscles	Scalenes	Increased acidity responsible for increased oxygen dissociation	Bohr shift/effect
						Tiny bundles of air sacs Alveoli
Нурохіа	Asthma	Temporary narrowing of the	Carbon monoxide	Poisonous gas inhaled	Altitude training	'Train high live low' =

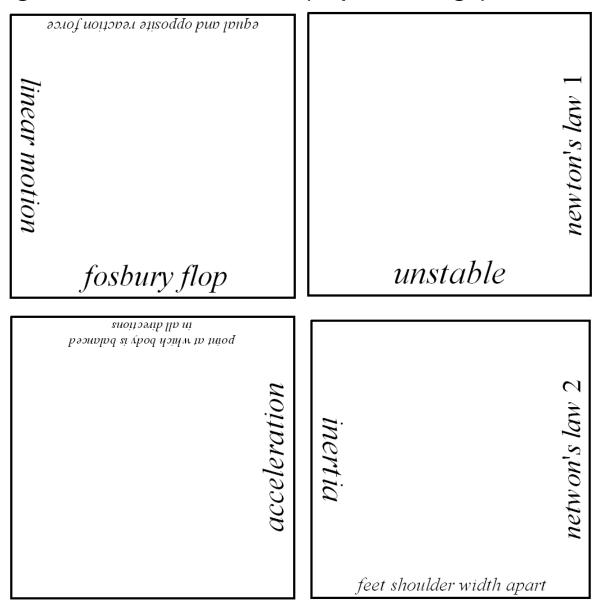
airways

when

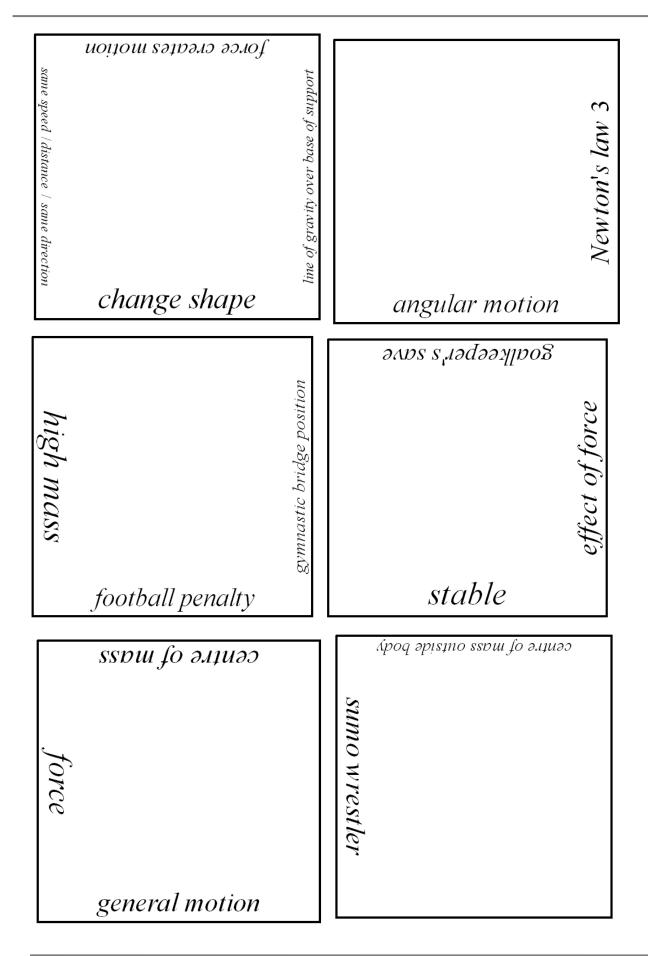

smoking

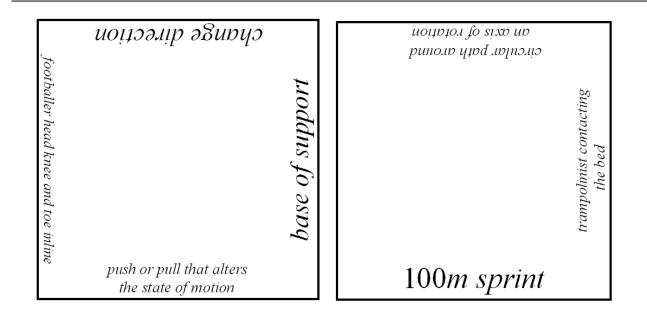




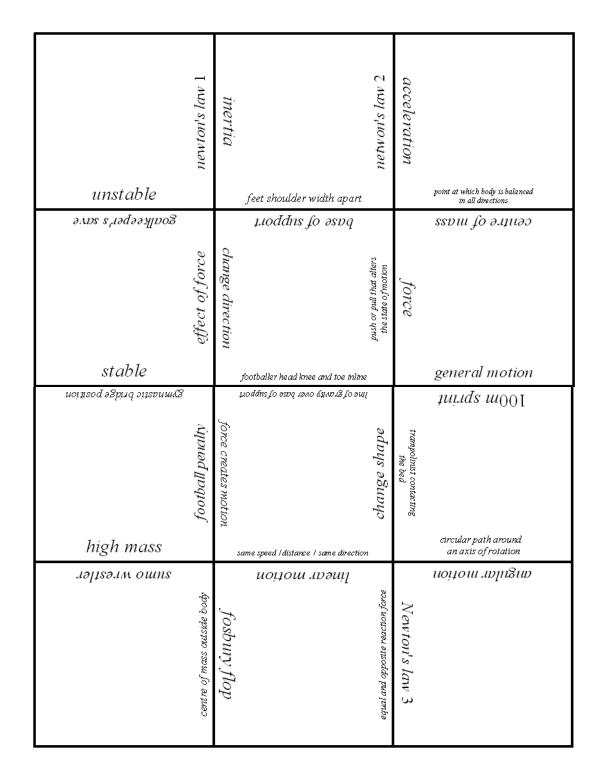


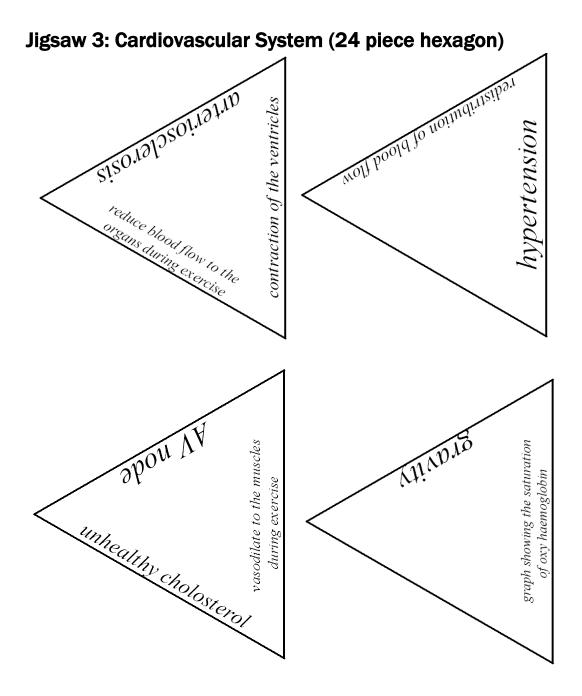
Jigsaw 1: Musculoskeletal system solution



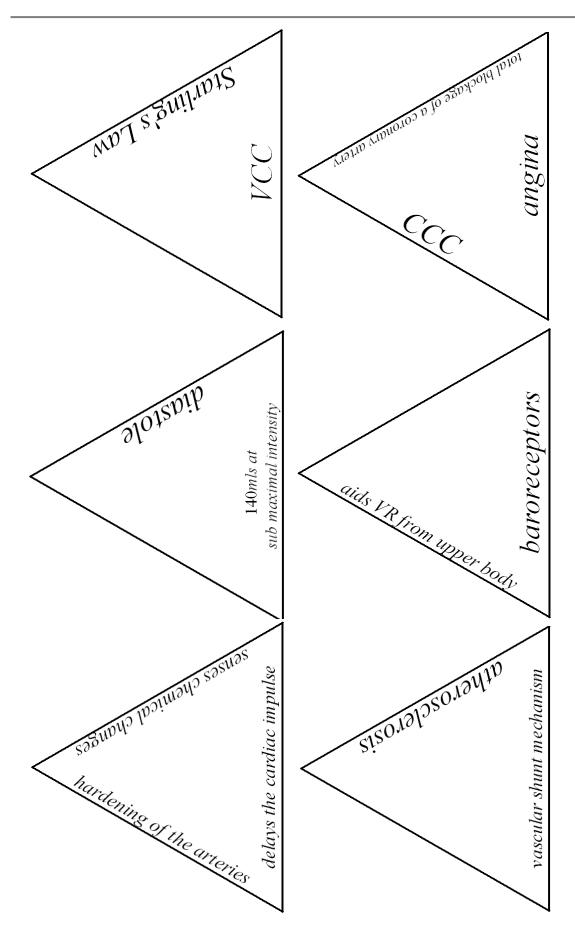


Jigsaw 2: Motion and Movement (12 piece rectangle)

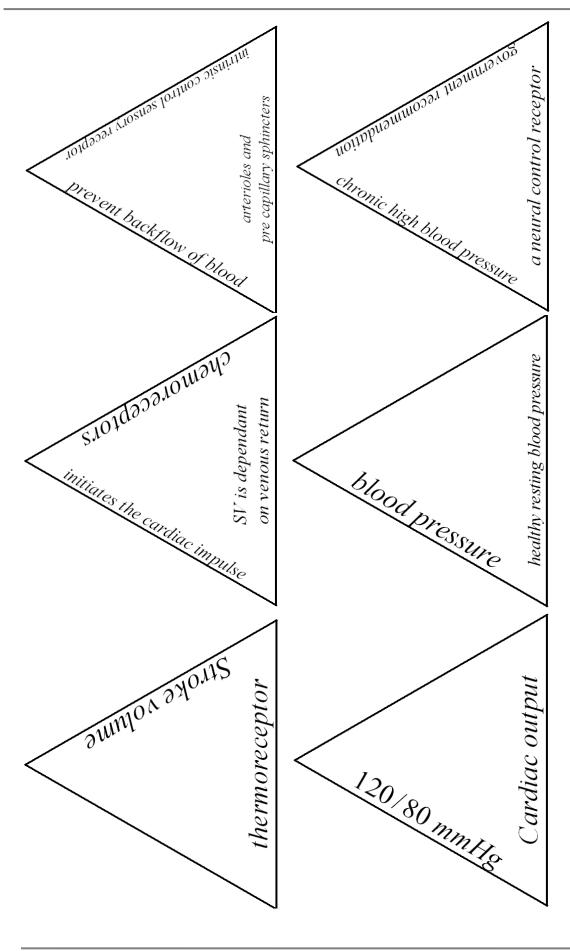


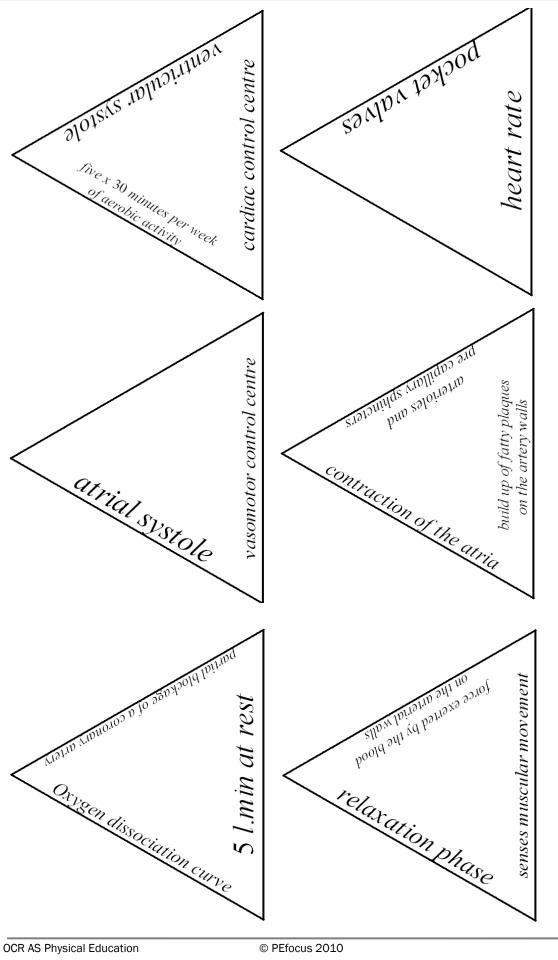


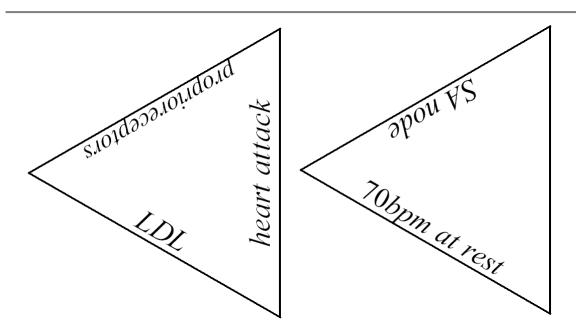
99

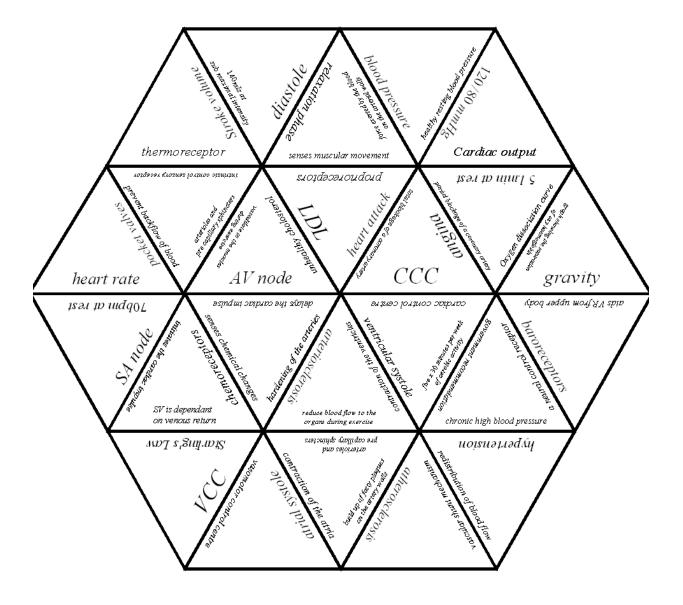


Jigsaw 2: Motion and Movement solution

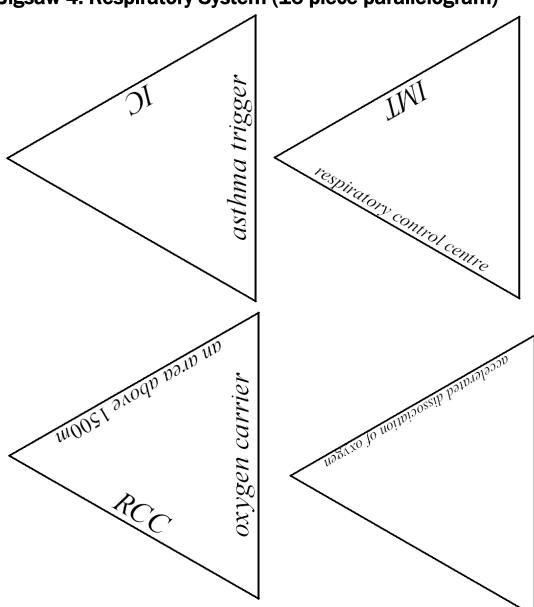


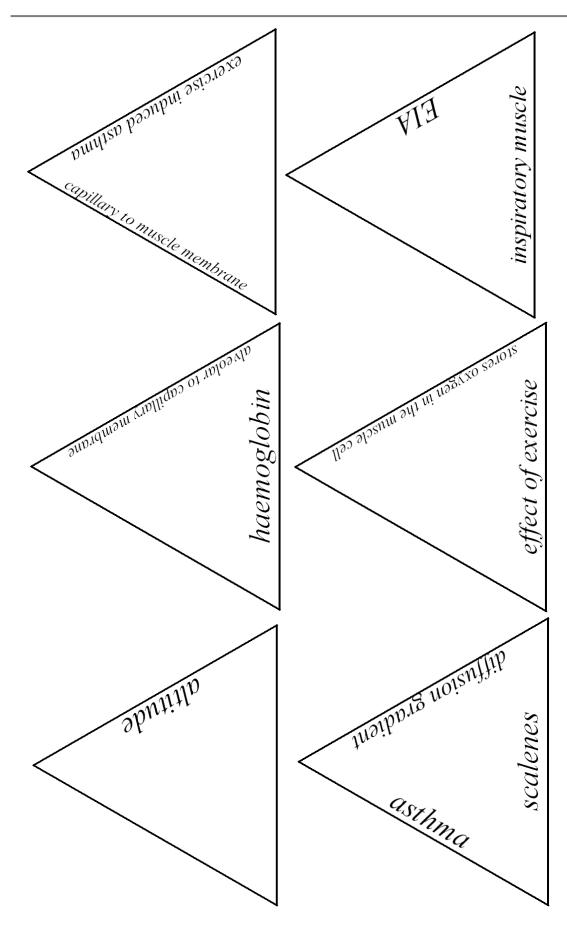


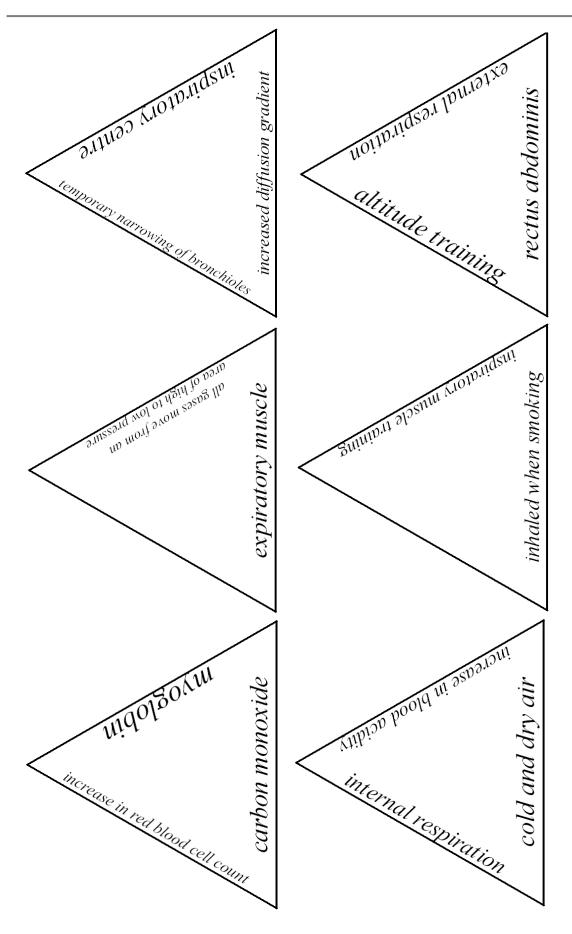


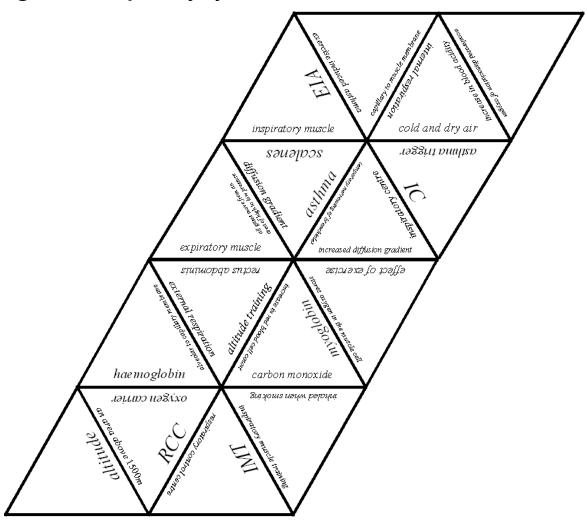


104






Jigsaw 4: Respiratory System (16 piece parallelogram)



AS Anatomy and Physiology

1		2		3		4						5	
		6			7								
					8								
									9				
								10					
				11									
		10						10			45		
		12						13	14		15		
									16				
							17						
											18		
	19											I	

Quick puzzle 1: Musculoskeletal System

Clues

Acro	DSS	Dow	'n								
1	Movement created by the biceps brachii at the elbow (7)	1	Sprinters have a large percentage of this fibre type (4-10)								
4	Contraction often associated with an agonist (10)	2	Contraction where muscle lengthens under tension (9)								
6	Movement created by the iliopsoas (9)	3	Joint trauma or repetitive action sports can lead to this in later life (14)								
8	Core stability improves this (7)	5	Type of contraction where muscle does not change length (9)								
9	The point of attachment of muscle to bone (6)	7	Radio-ulnar joint movement leaving palms facing upwards (10)								
11	Movement of a bone around its longitudinal axis (8)	10	Transverse abdominis and multifidus increase stability here (4)								
13	A hinge joint in the upper body (5)	12	Muscles are rich in this protein (7)								
16	A long bone in the lower leg (5)	14	Rotation to the outside of the body (7)								
18	Fast glycolytic and fast oxidative muscle fibres are this type (3)	15	Carpals, ulna and radius found here (5)								
19	Slow oxidative muscle fibres are rich in this (12)	17	Structural feature of slow oxidative muscle fibre (3)								

٦F	L	2 E	Χ	I	3 О	Ν		4 C	0	Ν	С	Ε	Ν	Т	R	5	С
Α		С			S											S	
S		С			Т											0	
Т		6 E	Χ	Τ	Ε	Ν	7 S	I	0	Ν						Μ	
G		Ν			0		U									Ε	
L		Т			Α		۶	0	S	Т	U	R	Ε			Т	
Υ		R			R		I									R	
С		I			Т		Ν					90	R	Ι	G	I	Ν
0		С			Н		Α				10 C					С	
L					11 R	0	Т	Α	Т	Ι	0	Ν					
Υ					Ι		I				R						
Τ		12 E			Т		0				13 E	14	В	0	15 W		
		L			Ι		Ν					Α			R		
С		Α			S							16	Ι	В	-	Α	
		S							17 R			Е			S		
		Т							ш			R			18	W	0
	19 M	Ι	Τ	0	С	Η	0	Ν	D	R		Α					
		Ν										L					

Solution puzzle 1: Musculoskeletal System

1		2	3						4			5
	6					7		8		9		
10												
						11						
					12							
										13		
							14					
		15								16		
				17								
18												

Quick puzzle 2: Motion and Movement

Clues

Acro	SS	Dow	n
1	The degree to which body is balanced, steady and difficult to move (9)	1	Force can alter this (5)
4	Motion along a straight line (6)	2	The width of this affects stability (4-2-7)
6	Linear and angular motion combined (7)	3	If this is within the base of support the body is stable (4-2-7)
8	A push or pull that can alter the state of motion of a body (5)	4	Newton's second L of M (3-2-12)
10	This affects stability of a body (4)	5	Caused by an eccentric or off-centre force. It can be medial or lateral (8)
12	A body continues in a state of rest or uniform velocity until an external force is applied. Which law? (3)	7	To increase stability the centre of mass will be this (5)
13	Force can make a body (4)	9	The point at which the body is balanced in all directions (6-2-4)
16	The greater the of force applied the greater the change in momentum (4)	11	Newton's first law of motion. Law of (7)
17	Newton's third law (8)	14	He investigated effects of motion and gravity (6)
18	Amy Williams creates linear motion with this (3–8)	15	Angular motion causes rotation around this fixed point (4)

1 S	Τ	Α	2 B	I	3	I	Τ	Υ				4	I	Ν	Ε	Α	₅R
Η			Α		I							Α					0
Α			S		Ν							W					Т
Ρ		۶G	Ε	Ν	Ε	R	Α	7			8 F	0	R	٩C	Ε		Α
Ε			0		0			0				F		Ε			Т
			F		F			W				Α		Ν			Ι
10 M	Α	S	S		G			Ε				С		Т			0
			U		R			R				С		R			Ν
			Ρ		Α							Е		Ε			
			Ρ		V			11				L		0			
			0		I		12	Ν	Ε			Ε		F			
			R		Т			Е				R		13 M	0	V	Ε
			Т		Υ			R		14 N		Α		Α			
								Т		Е		Т		S			
			15 A							W				16 S	I	Ζ	Ε
			Х			17 R	Ε	Α	С	Т	Ι	0	Ν				
			I							0		Ν					
18 B	0	В	S	Κ	Ε	L	Ε	Τ	0	Ν							

Solution puzzle 2: Motion and Movement

1	2		3			4						
					1							5
				6				7				
	_		10							8		
	9		10				11					
							11					
		12										
		12										
										13		
				14								
	15					16						
						17						
18												

Quick puzzle 3: Cardiovascular System

Clues

Acro	DSS	Dow	n
1	Redistribution of blood flow from rest to exercise (11-7)	1	Contraction of the lower chambers of the heart (11-7)
6	Blockages in this type of artery can cause heart attack (8)	2	Volume of blood ejected from the left ventricle per heart beat (6-6)
9	Point at which lactic acid accumulates in the blood stream (4)	3	These deposit cholesterol on arterial walls and increase risk of atherosclerosis $(1,1,1)$
11	Vessel that carries blood away from the heart to the muscles & organs (5)	4	This states that stroke volume is dependent on venous return (9-3)
12	Type of control using the chemo-, proprio- and baro-receptors (6)	5	Chronic high blood pressure (12)
13	The vena cava is an example (4)	7	Condition where fatty plaques are deposited in arteries (15)
14	The number of times the heart ventricles contract per minute (5-4)	8	A lifestyle in danger of developing CHD (8)
15	These are sited between the capillaries and vein (7)	10	A blood vessel that usually carries oxygenated blood (6)
17	A partial blockage of a coronary artery causing chest pain (6)	14	'Scavengers' that remove cholesterol from the arterial walls (1,1,1)
18	A protein produced to catalyse a reactio (6)	16	This node or 'pacemaker' initiates the cardiac impulse (1,1)

Solution puzzle 3: Cardiovascular System

١V	Α	2 S	С	U	3	Α	R	٩S	Η	U	Ν	Т					
Ε		Т			D			Т									₅ H
Ν		R			L			Α									Υ
Т		0				6 C	0	R	0	Ν	7 A	R	Υ				Ρ
R		Κ						L			Т			_			Ε
Ι		Е						I			Η						R
С		V						Ν			Ε			8			Т
U		9 0	В	L	10			G			R			Ν			Ε
L		L			R			S		11 A	0	R	Τ	Α			Ν
Α		U			Т			L			S			С			S
R		Μ		12 N	Ε	U	R	Α	L		С			Т			Ι
S		Ε			R			W			L			I			0
Υ					Υ						Ε			13 V	Ε	Ι	Ν
S						14	Ε	Α	R	Τ	R	Α	Τ	Ε			
Т						D					0						
0		15 V	Ε	Ν	U	L	Ε	16 S			S						
L								17 A	Ν	G	I	Ν	Α				
18 E	Ν	Ζ	Υ	Μ	Ε						S						

				1					2	3	4		
		5											
			_							_			
			6							7			
	8												
				9		10							
										11			
	12				13							14	
							-						
		1		1				1					
	15								16				
17									18				
19													

Quick puzzle 4: Respiratory System

Clues

Acro	DSS	Dow	'n
1	Cluster of tiny air sacs (7)	1	Training area above 1500m (8)
6	The partial pressure of oxygen in the atmospheric air (4)	2	Brought about by the scalenes and pectolaris major (11)
7	Effect/shift caused by increased acidity (4)	3	Poisonous gas inhaled when smoking (6-8)
8	The partial pressure of oxygen in muscle tissues (3)	4	Condition causing temporary narrowing of the bronchioles (6)
9	This thin muscle actively contracts and passively relaxes (9)	5	The transporter of gases in the bloodstream (11)
11	Cavity in which air is inspired, warmed and moistened (5)	10	Respiration at the lung site (9)
12	The movement of gases across a membrane (9)	13	Extra muscles of inspiration (8)
15	Blood vessels that are one cell thick (11)	14	Gaseous exchange between the capillaries and muscle tissue (8)
18	Gas used aerobically to generate energy (6)	16	This describes the diffusion path between the alveoli and capillaries (5)
19	Group of additional expiratory muscles (8)	17	Partial pressure of carbon dioxide in atmospheric air (3)

Solution puzzle 4: Respiratory System

Extended/10 mark questions - (not endorsed by any examining body)

1. Musculoskeletal System

Using a practical example of a sports performance of your choice carry out a movement analysis of either the hip joint **or** the shoulder joint. Critically evaluate the impact of a pre-exercise warm-up on the performer's muscle and connective tissue.

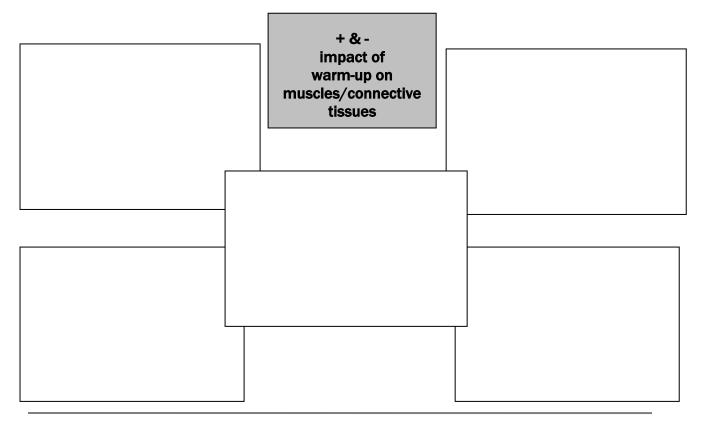
2. Motion and Movement

In a named sport of your choice discuss how a performer uses knowledge of stability and motion to enhance their performance.

3. Cardiovascular System

For a performer in a sport of your choice explain the response of heart rate to a 30 minute training run followed by a 10 minute recovery period. Include an explanation of the role of neural, intrinsic and hormonal control mechanisms in your answer.

4. Respiratory System


Critically evaluate the effects of altitude exposure and a period of altitude training on the respiratory system and performance of an endurance athlete.

1: Musculoskeletal System - Answer Plan

Using a practical example of a sports performance of your choice carry out a movement analysis of either the hip joint **or** the shoulder joint. Critically evaluate the impact of a pre-exercise warm-up on the performer's muscle and connective tissue.

Hip joint/s (delete as nece Joint type	shoulder joint essary):		Articulating bor	nes	
movement	agonist	contraction type	antagonist	contraction type	sporting application

1: Musculoskeletal System - Outline answer scheme (not endorsed by

any examining body)

Using a practical example for a sports performer of your choice carry out a movement analysis on either the hip joint or shoulder joint. Critically evaluate the need for a warm-up prior to exercise on the sport performer's muscle and connective tissue.

Numbered points - indicative content that candidates are likely to include **Indented points -** possible developmental points

NB - Relevant points made that are not on answer scheme will gain credit

Нір	Indicative content			Possible develop	ment points			
1	Ball and socket jo	int		Deep socket / large range of motion				
2	(Head) femur & (a	cetabulum) pelvic girdl	e	Articular cartilage to prevent wear and tear / friction-free movement				
	Indicative content				Possible development points			
	Movement	Agonist	Ar	ntagonist				
3	Flexion	lliopsoas	Gluteus maximus		e.g. execution phase of striking a football			
4	Extension	Gluteus maximus	llio	opsoas	e.g. preparation phase drawing back the leg to strike a football			
5	Abduction	Gluteus medius & minimus	loi	lductor ngus/magnus/ evis	e.g. outward phase of a star jump to warm-up			
6	Adduction	Adductor longus/magnus/ brevis	-	uteus medius & inimus	e.g. inward phase of a star jump to warm-up			
7	Rotation (lateral)	Gluteus maximus	GI	teus minimus e.g. twisting the leg outwards show the instep to the ball				

Shoulder	Indicative cont	ent	Possible develop	Possible development points				
8	Ball and socke	t joint	Shallow socket/u	Shallow socket/unstable/dislocation				
9	(Head) humeru (Glenoid cavity			Articular cartilage to prevent wear and tear / friction-free movement				
	Indicative cont	ent		Possible development points				
	Movement	Agonist	Antagonist					
10	Flexion	Anterior deltoid	Posterior deltoid	e.g. execution of a ball toss in tennis				
11	Extension	Posterior deltoid	Anterior deltoid	e.g. drawback of the racquet on a tennis serve				
12	Abduction	Middle deltoid	Latissimus dorsi	e.g. outward phase of a star jump to warm-up				
13	Adduction	Latissimus dorsi	Middle deltoid	e.g. inward phase of a star jump to warm-up				
14	Horizontal flexion	Pectorlaris major	Trapezius	e.g. recovery phase of a groundstroke in tennis bringing raquet across chest				
15	Horizontal extension	Trapezius	Pectorlaris major	e.g. preparation for a groundstroke in tennis				
16	Rotation (lateral)	Teres minor & infraspinatus	Teres major & subscapularis	& supraspinalis = rotator cuff which assist stability of the shoulder				

Additional points

17. When acting as the agonist the muscle concentrically contracts

Shortens under tension / isotonic contraction

- 18. When acting as the antagonist the muscle eccentrically contracts Lengthens under tension / isotonic contraction
- **19.** Any suitable reference to fixator muscles

 $\label{eq:loss_state} \text{Isometric contraction} \ / \ \text{same length under tension}$

Impact of warm-up

- 20. Warm-up essential to all performers (novice or elite)
- 21. An increase in muscle temperature:

allows greater stretch in the muscles/tendons/ligaments/ increased elasticity allows greater range of movement at a joint

e.g. gymnastics full range of movement important for muscular efficiency and aesthetics

22. Decreases risk of injury/prevents injury

e.g. common hamstring strains during maximal performance common on football pitch/ athletics stadium

23. Nerve impulse conduction is quicker

Improves muscle contraction speed/faster reaction time

e.g. essential when making an interception in netball/ contraction speed of the

triceps brachii to extend the elbow

24. Decreased muscle viscocity

improved co-ordination of antagonistic pairs

25. Increased enzyme activity/hormonal activity

More energy available in muscles

2: Motion and Movement - Answer Plan

In a named sport of your choice discuss how a performer uses knowledge of stability and motion to enhance their performance.

Chosen sport _____

	 Describe and explain a stable situation	Describe and explain an unstable situation
Factors that affect stability		

	Effects of force						
Newton's Law 1	Newton's Law 2	Newton's Law 3					
Effect on performance	Effect on performance	Effect on performance					

Conclusion:

2: Motion and Movement - Outline answer scheme (not endorsed by any

examining body)

In a named sport of your choice discuss how a performer uses knowledge of stability and motion to enhance their performance.

Numbered points - indicative content that candidates are likely to include **Indented points -** possible developmental points NB - Relevant points made that are not on answer scheme will gain credit

Stability – factors affecting

1. The lower the centre of mass (or gravity) the more stable the body

Bending knees / small stature e.g. hockey players crouch

2. The wider the base of support the more stable the body / the greater the number of points of contact, the more stable the body

e.g. coaching point 'feet shoulder width apart'/e.g. bridge more stable than a handstand in gymnastics

- 3. Line of gravity should fall within the base of support for stability
 - e.g. vertical jump take-off position / serve in badminton
- 4. The larger the mass the more stable the body
 - e.g. rugby back row / sumo wrestling

Stability enhances performance when:

- 5. Preparation phase / balancing situations
 - e.g. balance beam in gymnastics
- 6. Defensive situations / lean into oncoming force
 - e.g. rugby tackles

Instability enhances performance when:

- 7. The body rotates / swerves / line of gravity falls outside the base of support
 - e.g. somersaults in gymnastics / side steps in rugby
- 8. The body changes direction at speed / changes state of motion / overbalances
 - e.g. dodging in netball \slash moving about the court in badminton

Force

9. (Newton's ${\bf 1}^{st}$ law) a body will remain at rest / in a state of constant velocity until acted upon by an external force

10. An external force can create motion / get an object moving

e.g. football penalty, football will remain at rest until a force is applied by the footballer's foot

11. An external force can change the direction of an object

e.g. one touch in football changing direction of the ball

12. An external force can create acceleration / increase speed of an object

e.g. a greater external force will be applied by a goalkeeper performing a goal kick than a centre-mid passing to a striker

13. An external force can decelerate / decrease the speed of an object

e.g. the foot can cushion the ball

14. (Newton's 2nd law) the rate of change in momentum is proportional to the size of the force applied

e.g. the footballer will generate a large force when performing a penalty to accelerate the ball faster

15. The direction the force is applied will determine the direction of the object

e.g. the footballer applies a force behind the ball to accelerate it forwards towards the net

16. If the force is applied through the centre of mass (gravity) linear motion is created

e.g. football at take-off when jumping for a header

17. If the force is applied outside the centre of mass (gravity) angular motion / rotation is created

e.g. free kick over a wall / corner kick into the box

18. (Newton's 3^{rd} law) for every action force applied there is an equal and opposite reaction force

e.g. to change direction the footballer pushes down and back and the ground equally pushes up and forward

3: Cardiovascular System - Answer Plan

For a performer in a sport of your choice explain the response of heart rate to a 30 minute training run followed by a 10 minute recovery period. Include an explanation of the role of neural, intrinsic and hormonal control mechanisms in your answer.

Anticipatory rise: 30 minute training run: 10 minute recovery:

		HR (exercise)	HR (recovery)
	Chemoreceptors		
	Proprioreceptors		
Neural control	Baroreceptors		
	Send sensory infor	nation to the cardiac control c oblongata	entre (CCC) in the medulla
	Response:		

		HR (exercise)	HR (recovery)
	Thermoreceptors		
	Send sensory inform	nation to the cardiac control c	entre (CCC) in the medulla
Intrinsic		oblongata	
control	Response:		
	Venous return		

Hormonal control:

(exercise)

(recovery)

3: Cardiovascular system - Outline answer scheme (not endorsed by

any examining body)

For a performer in a sport of your choice explain the response of heart rate to a 30 minute training run and a 10 minute recovery. Include an explanation of the role of neural, intrinsic and hormonal control mechanisms in your answer.

Numbered points - indicative content that candidates are likely to include **Indented points -** possible developmental points NB - Relevant points made that are not on answer scheme will gain credit

Heart rate

- 1. At rest 60-75bpm
- 2. Prior to exercise increase in heart rate/ anticipatory rise
- 3. During exercise HR increases in line with exercise intensity

Sub-maximal / aerobic performance: HR will plateau (130-160bpm)

- i.e. 30 minute training run
- 4. During recovery HR decreases rapidly
- 5. Then slower decline to resting value

Neural control During 30 minute training run

- 6. Chemoreceptors detect decrease in O_2 / blood pH/ increase in acidity/ CO_2
- 7. Proprioreceptors detect movement
- 8. Baroreceptors detect increase in blood pressure
- 9. Messages are sent to the cardiac control centre (CCC) in the medulla oblongata
- 10. SA node stimulated to increase heart rate

via the accelerator nerve

via sympathetic nervous system

Neural control During recovery

- 11. Chemoreceptors detect increase in the O_2 / blood pH/ decrease in acidity/ CO_2
- 12. Proprioreceptors detect decrease in movement
- 13. Baroreceptors detect decrease in blood pressure
- **14**. Messages are sent to the cardiac control centre (CCC)
- 15. SA node reduces stimulation decreasing heart rate
 - via the vagus nerve
 - via the parasympathetic nervous system

AS Anatomy and Physiology

Intrinsic control During 30 minute training run

- 16. Thermoreceptors detect increase in temperature
 - Increase the speed of nerve impulse/ transmission
- **17.** Increased venous return
 - Increased end diastolic volume (EDV)
 - stretch in the wall of the right atria/ stroke volume/ SV/ Starling's Law
- 18. Messages sent to the cardiac control centre (CCC)
- 19. SA node stimulated to increase heart rate

Intrinsic control During recovery period

20. Thermoreceptors detect decrease in temperature

decreases the speed of nerve impulse/ transmission

21. Decreased venous return

decreased end diastolic volume (EDV)

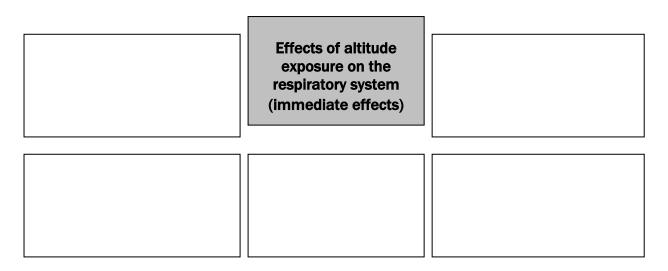
less stretch in the wall of the right atria/ stroke volume (SV)

- 22. Messages sent to the cardiac control centre (CCC)
- 23. SA node reduces stimulation to decrease heart rate

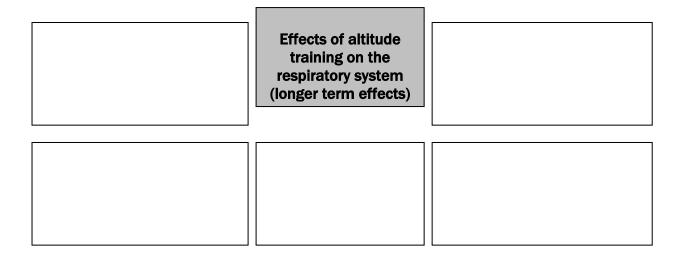
Hormonal control

- 24. Prior to exercise and during exercise
- 25. Release of adrenaline/ epinephrine/ noradrenaline

from the adrenal glands/ into the blood stream


26. Direct stimulation of the SA node to increase heart rate

bypass medulla oblongata (CCC)



4: Respiratory System - Answer Plan

Critically evaluate the effects of altitude exposure and a period of altitude training on the respiratory system and performance of an endurance athlete.

Effect on performance at altitude:

Effect on performance at sea level:

) PEfocus

4: Respiratory System - Outline answer scheme (not endorsed by any examining body)

Critically evaluate the effects of altitude exposure and a period of altitude training on the respiratory system and the performance of an endurance athlete.

Numbered points - indicative content that candidates are likely to include **Indented points -** possible developmental points NB - Relevant points made that are not on answer scheme will gain credit

Altitude exposure/immediate effects

Effects on the respiratory system

- **1**. Decrease in atmospheric pressure causes an increase in frequency of breathing
- 2. Partial pressure of oxygen alveoli is lower than at sea level

e.g. Kenya / Alps training camps

3. Decreased diffusion gradient of oxygen between the alveoli and blood

all gases move from an area of high to low partial pressure

the steeper the diffusion gradient the greater volume of gas diffused

- 4. Less oxygen diffuses into the capillary blood
- 5. Less oxygen is transported in the blood
 - lower oxy-haemoglobin association or saturation
- 6. Decreased diffusion gradient of oxygen between blood and muscle tissue
- 7. Less oxygen diffuses into the muscle tissue or myoglobin
- 8. Less oxygen available for (aerobic) respiration

less energy for muscular contraction

9. Hypoxic conditions at high altitude

Effects on performance

10. Performance decreases at altitude

performer fatigues more quickly

decrease in VO₂max

accelerated OBLA

e.g. slower running/ cycling speeds

- 12. Performer may hyperventilate decreasing performance
- 13. Hypoxia can cause causes poor co-ordination/poor perceptions/ dizziness

OCR AS Physical Education

Altitude training/longer term effects

14. 2-4 weeks at an area above 1500m

e.g. high altitude training for England football team ahead of the world cup

15. Several different methods

train high live low/ live high train low/ live high train high

16. Alternatives

hypoxic tents or rooms/ inspiratory muscle training

e.g. power breathe

Effects on the respiratory system

17. Increased production of erythropoietin (EPO)

stimulates red blood cell production

leads to higher volumes of haemoglobin

Increased carrying capacity of oxygen in the blood steam

18. Capillarisation

increased capacity for diffusion into bloodstream/ muscle tissue

19. Increased strength, power and endurance of respiratory muscles e.g. scalenes (or other suitable example)

Effects on performance

- 20. Acclimatisation
- 21. Increased VO₂max

increased lactate threshold/ time to OBLA

- 22. Aerobic performance increases at higher intensities or less effort needed at submaximal/ low-moderate intensities increasing duration of performance
- 23. Results controversial/ short-term adaptations only

Introductory or revision lesson

Objectives:	Learning Outcomes:			
To understand key aspects of the AS	Must: know what the course entails			
Anatomy and Physiology specification	Should: be able to engage with the tasks			
	Could : see the link between the three tasks			
Context:	Key Words/cognitive demand:			
Revision or introductory carousel lesson for AS Anatomy and Physiology (can be adapted with more challenging tasks).	Describe / Analyse / Evaluate			

Preparation: three tables set up – each with a different activity

Whole group: Discussion on what students think anatomy and physiology may include (if introductory lesson). Quick recap discussion of main parts of the A&P course (if used as revision lesson).

Lesson Structure:

Teacher Input: PowerPoint presentation briefly explaining AS A&P (if intro lesson) or debriefing on year (if revision lesson) (10 mins)

Table 1: Key word matching task-key word card strips that students will have comeacross should be matched to correct explanation (10-15 mins)Table 2: Analysis of balanced active healthy lifestyles - who leads one? (10-15 mins)Table 3: Long-term endurance training - working towards a critical evaluation.Identifying and then developing key points with examples as needed for the 10-markquestions (10-15 mins).

Whole group: Analysis and evaluation of key aspects learned or revised. Questions. Summary (10 mins)

Differentiation (lower ability):	Differentiation (stretch and challenge):
Follow-up work:	

Table 1a: Place each key word strip (table 1b) next to correct description:

Structural changes in response to aerobic training, for example: increased mitochondrial density

A partial blockage of a coronary artery causing chest pain

Training in areas >1500m above sea level for 4-6 weeks

Two muscles that work together to provide co-ordinated movement: as one muscle lengthens the opposing muscle shortens

An increase in the size of the heart muscle

General term for all diseases relating to the coronary blood vessels and heart muscle

The difference in partial pressures across a membrane which allows gaseous exchange

A push or pull that can alter the state of motion of a body, measured in Newtons

A red blood cell (protein molecule) that transports gases in the bloodstream

Links between the bones in the skeleton. Depending on structural factors these can be classified as ball and socket, hinge, pivot, condyloid or gliding

The process of moving air into and out of the lungs that involves muscles, movement, thoracic cavity volume, lung air pressure, inspiration and expiration

The study of a movement pattern including; joint type, articulating bones, movement patterns, agonist muscle, antagonist muscle and contraction types

Due to loss of articular cartilage at the ends of long bones this results in painful, swollen joints which severely limits involvement in physical activity

An inactive existence with little or no physical activity

The return of deoxygenated blood to the heart

The largest amount of oxygen an individual's body can transport and use during exercise – indicating cardiovascular efficiency

Table 1b: Key words/phrases

(laminate/cut-into strips and place next to correct description on Table 1a)

AEROBIC ADAPTATION

ANGINA

ALTITUDE TRAINING

ANTAGONISTIC MUSCLE ACTION

CARDIAC HYPERTROPHY

CORONARY HEART DISEASE

DIFFUSION GRADIENT

FORCE

HAEMOGLOBIN

JOINT

MECHANICS OF BREATHING

MOVEMENT ANALYSIS

OSTEOARTHRITIS

SEDENTARY LIFESTYLE

VENOUS RETURN

$VO_2 max$

Table 2: Balanced, active and healthy lifestyles – who leads one?

Task - Consider each of the following students in terms of:

- Positive aspects of their lifestyle (with evidence)
- Negative aspects of their lifestyle (with evidence)
- □ Any potential risk factors (explain)
- **Recommendations for improvement**

In shaded box 4 describe the lifestyle of a student which could be described as healthy, balanced and active

1. Maria – 9 years old

- Trains for gymnastics three evenings a week plus Saturday mornings.
 Training is intensive and includes sessions on flexibility and strength
- Maria's favourite piece of apparatus/discipline is the floor and she also loves tumbling
- Maria eats lots of vegetables and loves to drink milk. She has a very sweet tooth and regularly eats crisps and sweets
- Maria competes regularly at weekends and often struggles to find time to do her homework

Comments:

2. Nimesh – 14 years old

- Nimesh wants to be a boxer and goes to the sparring club twice a week.
 He also jogs to and from school each day (15 minutes away)
- Nimesh is very annoyed at his father who won't let him start weight training until he is 16
- Nimesh has a love for fast food and regularly eats burgers, pizzas and chips with plenty of salt and vinegar

• Nimesh is very tired at weekends and regularly sleeps in **Comments**:

3. Greg - 18 years old

 Greg loves being active and plays cricket and football with friends. He is a member of the local gym and weight trains several times a week plus goes for an occasional relaxing swim

• Greg is a vegetarian, loves fruit and hates fast food. He takes creatine and protein supplements to give him energy in the gym

Comments:

4. Describe the lifestyle of a student's which could be classed as balanced, active and healthy

Table 3: Long-term endurance training – a critical evaluation

It is widely accepted that long-term endurance training is beneficial to the cardio-vascular system

Consider/discuss/make brief notes on the following:

- □ What is endurance training?
- □ How many times a week would you participate in endurance training?
- What kinds of activities would you include?
- How may your heart adapt to endurance training?
- How may your **blood vessels** adapt to endurance training?
- □ How may your **blood** adapt to endurance training?
- Can endurance training have any **preventative health benefits**?
- What can happen if you **don't participate** in endurance training?
- □ What can happen if a person is **old, unfit or has coronary heart disease**?
- How might this endurance training be adapted to maintain a balanced, active and healthy lifestyle?

Stretch and Challenge 1: The Musculoskeletal System

For each of the situations/examples below:

- **1**.Identify the main concern re **skeletal and muscular system** (consider osteoporosis, growth place disorder, posture and alignment, osteoarthritis, joint stability))
- 2. Outline **potential risks** to participating **excessively** (more than five times per week) in each activity
- 3. Are there any benefits to participation in each activity? If so, what are they?
- 4. What **recommendations** would you make for safe, healthy participation in each activity?

Contact sports e.g. rugby

Main concern:

Potential risks re excessive participation:

Benefits:

Recommendations for safe, healthy participation:

Vigorous, high impact sports e.g. gymnastics

Main concern:

Potential risks re excessive participation:

Benefits:

Recommendations for safe, healthy participation:

OCR AS Physical Education

Activities involving repetitive actions e.g. long distance running

Main concern:

Potential risks re excessive participation:

Benefits:

Recommendations for safe, healthy participation:

Non-weight bearing activities e.g. swimming

Main concern:

Potential risks re excessive participation:

Benefits:

Recommendations for safe, healthy participation:

Working at a desk 9am-5pm and a sedentary lifestyle outside of work Main concern:

Potential risks re excessive participation:

Benefits:

Recommendations for safe, healthy participation:

OCR AS Physical Education

Stretch and Challenge 2: Motion and Movement

Work in groups:

For one of Newton's three laws of motion each group should prepare a short documentary including the following :

- An explanation of the law
- Several sporting applications of the law
- An easy way to remember the law

Newton's first law of motion: Inertia

'A body continues in a state of rest or uniform velocity unless acted upon by an external force'

(Inertia = the resistance of a body to change its state of motion)

Newton's second law of motion: Acceleration

'The rate of change in momentum experienced by an object is directly proportional to the size of the force applied and takes place in the same direction as the force applied'

(Acceleration = the rate of change in velocity)

Newton's third law of motion: Reaction

'For every action force there is an equal and opposite reaction force'

- **Return to show all groups the movie clips**
- Answer the following exam-style question:

Using a serve in tennis, explain Newton's three laws of motion

[5 marks]

Stretch and Challenge 3: Cardiovascular System

Working in groups – from the British Heart Foundation website (<u>www.bhf.org.uk</u>) find answers to the following questions:

- □ What is coronary heart disease (CHD)?
- What are the related **conditions** of CHD?

List/categorise CHD risk factors below:									
Factors that I can change	Factors that I can't change								

- Bearing in mind the risk factors that can be changed how can coronary heart disease be prevented?
- What kind of physical activity is best to prevent coronary heart disease?
- If helping to prevent coronary heart disease really interests me what potential career paths could I follow?

OCR AS Physical Education

Stretch and Challenge 4: Respiratory System

On graph paper draw the oxygen dissociation curve using the data in table 1 below. Remember :

- Horizontal axis = partial pressure of O₂
- Vertical axis = Percent O₂ saturation of haemoglobin
- Draw a line of best fit to connect the points

Table 1: Oxygen-Haemoglobin dissociation curve at REST											
Percent O ₂ saturation of haemoglobin	0	12	35	60	75	85	92	95	98	99	100
Partial pressure of O ₂ (mmHg)	0	10	20	30	40	50	60	70	80	90	100

Plot the following points and describe the relationship between partial pressure of oxygen and percent saturation of haemoglobin:

Lung PPO₂ = 100 mmHg

Muscle tissue PPO₂ = 40 mmHg

At rest what percentage of total O₂ being carried by the haemoglobin has been released to the muscle tissue (difference between lung and muscle %)?

On same graph draw the line of best fit to connect points for data during exercise:

Table 2 Oxygen-Haemoglobin dissociation curve during EXERCISE											
Percent O ₂ saturation of haemoglobin	0	8	18	33	50	68	80	88	95	98	100
Partial pressure of O ₂ (mmHg)	0	10	20	30	40	50	60	70	80	90	100

```
OCR AS Physical Education
```


AS Anatomy and Physiology

Plot the following point and describe the relationship between partial pressure of oxygen and percent saturation of haemoglobin:

Lung PPO₂ = 100 mmHg

What is the difference to rest?

Muscle tissue PPO₂ = 20 mmHg

What is the difference to rest?

During exercise what percentage of total O₂ being carried by the haemoglobin has been released to the muscle tissue (difference between lung and muscle %)?

How does this help performance?

What causes this shift of the oxygen-haemoglobin curve to the right from rest to exercise?

- 1.
- 2.
- 3.
- 4.

143

Stretch and Challenge activities 1-4: Answers

Answers are a brief guide rather than a comprehensive analysis of these four extension activities

Stretch and Challenge 1: The Musculoskeletal System – brief answers

Contact sports e.g. rugby

Main concern: Muscular and skeletal system: joint stability

Potential risks re excessive participation: e.g. strain, sprain, dislocation from poor or dangerous tackles

Benefits: e.g. team game with varied strain on bones helps development and maintenance of bone density

Recommendations for safe, healthy participation: e.g. strengthen connective tissue/use an effective warm-up before exercise

Vigorous, high impact sports e.g. gymnastics

Main concern: Skeletal system: growth plate disorders

Potential risks re excessive participation: e.g. premature closure of the growth plate

Benefits: e.g. stimulation of calcium salt deposition helps development of peak bone mineral density

Recommendations for safe, healthy participation: e.g. recommended maximum 3 sessions per week with an age related limit on excessive impact

Activities involving repetitive actions e.g. long distance running

Main concern: Skeletal system: osteoarthritis/

muscular system: repetitive strain injuries

Potential risks re excessive participation: e.g. wear and tear of articular cartilage leading to bone spurs, painful and swollen joint with reduced mobility

Benefits: e.g. stimulation of joint capsule to secrete synovial fluid to lubricate joint

Recommendations for safe, healthy participation: e.g. limit frequency of performance to 3 times per week / include different activities to vary line of stress placed on bones

Non-weight bearing activities e.g. swimming

Main concern: Skeletal system: osteoporosis

Potential risks re excessive participation: e.g. due to lack of impact, bone turnover is reduced potentially decreasing bone density more quickly after adulthood is reached

Benefits: e.g. weight management/prevention of obesity or coronary heart disease

Recommendations for safe, healthy participation: e.g. include some weight bearing activities at least once a week

Working at a desk 9am-5pm and a sedentary lifestyle outside of work

Main concern: Muscular and skeletal system: overweight/obesity

Potential risks re excessive participation: e.g. high blood lipid and LDL cholesterol leading to atherosclerosis

Benefits: No health related benefits / possibly reduced risk of sports related injuries

Recommendations for safe, healthy participation: e.g. government guidelines for adults: BAHL possible through 30 mins x 3 per week/moderate level/feel breathless

Stretch and Challenge 2: Motion and Movement - brief answers

□ An explanation of the law

 an object (e.g. a ball) will not move from a stationary position (e.g. the penalty spot) until an external force is applied. Equally an object (e.g. a ball) will continue to travel with constant velocity until an external force is applied (e.g. goalkeepers hands)
 The greater the external force applied to an object the greater the acceleration in the same direction as the force is applied

3: When an action force is applied to an object there is an equal and opposite reaction force

• Sporting applications of the law (e.g.)

1: A football will remain at rest on the penalty spot until an external force is applied from the foot

2: To make the ball travel faster and therefore further (e.g. goalkick) a larger external force is applied. If the goalkeeper applies the external force to the back of the football it travels in a forward direction

3: If the goalkeeper wants to dive to the top right hand corner of the goal they will apply an action force/push down into the ground to the left, the ground will provide an equal and opposite reaction force up and to the right

- An easy way to remember the law
- **Return to show all groups the movie clips**
- Answer the following exam-style question:

Using a serve in tennis, explain Newton's three laws of motion

[5 marks]

Newton's first law of motion: Inertia

'A body continues in a state of rest or uniform velocity unless acted upon by an external force'

(Inertia = the resistance of a body to change its state of motion)

Newton's second law of motion: Acceleration

'The rate of change in momentum experienced by an object is directly proportional to the size of the force applied and takes place in the same direction as the force applied'

(Acceleration = the rate of change in velocity)

Newton's third law of motion: Reaction

'For every action force there is an equal and opposite reaction force'

OCR AS Physical Education

Stretch and Challenge 3: Cardiovascular System – brief answers

Working in groups – from the British Heart Foundation website (<u>www.bhf.org.uk</u>) find answers to the following questions:

- □ What is coronary heart disease (CHD)?
- General term for all diseases relating to the coronary blood vessels and heart muscle
- □ What are the related **conditions** of CHD? (e.g.)
- Arteriosclerosis
- Atherosclerosis
- Angina
- Heart attack
- Hypertension

List/categorise CHD risk factors below:							
Factors that I can change	Factors that I can't change						
Level of exercise Poor diet (high salt/fat/cholesterol intake) Amount of stress Smoking / alcohol consumption Weight / body composition	Genetic make-up / hereditary factors						

Bearing in mind the risk factors that can be changed - how can coronary heart disease be prevented? (e.g.)

Healthy balanced diet / low cholesterol / low saturated fat / low salt Regular exercise Low alcohol consumption / no smoking Low stress lifestyle Healthy weight in relation to height (body mass index) What kind of physical activity is best to prevent coronary heart disease?

Aerobic / sub-maximal / heart rate raising activities lasting 30minutes or more

□ If helping to prevent coronary heart disease really interests me what potential career paths could I follow? (e.g.)

Dietician / Nutritionalist / Personal trainer / Health worker / Nurse / Doctor / Cardiac rehabilitation specialist

Stretch and Challenge 4: Respiratory System

On graph paper draw the oxygen dissociation curve using the data in table 1 below. Remember :

- Horizontal axis = partial pressure of O₂
- Vertical axis = Percent O₂ saturation of haemoglobin
- Draw a line of best fit to connect the points

Table 1: Oxygen-Haemoglobin dissociation curve at REST											
Percent O ₂ saturation of haemoglobin	0	12	35	60	75	85	92	95	98	99	100
Partial pressure of O ₂ (mmHg)	0	10	20	30	40	50	60	70	80	90	100

See pp.111, Fig.3.3.9a (Heinemann PE for OCR student textbook)

Plot the following points and describe the relationship between partial pressure of oxygen and percent saturation of haemoglobin:

Lung PPO₂ = 100 mmHg

At a PPO₂ of 100mmHg the saturation of haemoglobin with O_2 would be 98-100%

i.e. The blood travelling past the lungs would become maximally oxygenated

Muscle tissue PPO₂ = 40 mmHg

At a PPO₂ of 40mmHg the saturation of haemoglobin with O₂ would be approximately 75%

i.e. The blood travelling past the muscle tissue would offload/dissociate approximately 25% of the oxygen being carried (for diffusion into the muscle cell)

At rest what percentage of total O_2 being carried by the haemoglobin has been released to the muscle tissue (difference between lung and muscle %)?

Approximately 25%

On same graph draw the line of best fit to connect points for data during exercise:

Table 2 Oxygen-Haemoglobin dissociation curve during EXERCISE											
Percent O ₂ saturation of haemoglobin	0	8	18	33	50	68	80	88	95	98	100
Partial pressure of O ₂ (mmHg)	0	10	20	30	40	50	60	70	80	90	100

See pp.111, Fig.3.3.9b (Heinemann PE for OCR student textbook)

OCR AS Physical Education

AS Anatomy and Physiology

Plot the following point and describe the relationship between partial pressure of oxygen and percent saturation of haemoglobin:

Lung PPO₂ = 100 mmHg

At a PPO₂ of 100mmHg the saturation of haemoglobin with O₂ would be 98-100%

i.e. The blood travelling past the lungs would become maximally oxygenated

What is the difference to rest?

No difference: the blood travelling past the lungs would become maximally oxygenated

Muscle tissue PPO₂ = 20 mmHg

At a PPO₂ of 20mmHg the saturation of haemoglobin with O_2 would be approximately 20%

i.e. The blood travelling past the muscle tissue would offload/dissociate approximately 80% of the oxygen being carried (for diffusion into the muscle cell)

What is the difference to rest?

The percentage saturation of haemoglobin with O₂ around the muscle tissue has dramatically decreased from approximately 75% in resting conditions to approximately 20% during exercise

i.e. The blood travelling past the muscle tissue would offload/dissociate approximately 55% more oxygen during exercise

During exercise what percentage of total O₂ being carried by the haemoglobin has been released to the muscle tissue (difference between lung and muscle %)?

Approximately 80%

How does this help performance?

A larger volume of oxygen is available for diffusion into the muscle cell for aerobic respiration. This increases the energy produced aerobically therefore can increase aerobic performance and recovery

What causes this shift of the oxygen-haemoglobin curve to the right from rest to exercise?

-an increase in blood and muscle temperature

-a decrease in PPO₂ within the muscle cell (increasing the diffusion gradient)

-an increase in PPCO₂ within the muscle cell and blood capillaries (increasing the diffusion gradient)

-a decrease in pH (increase in acidity, known as the Bohr effect)

These factors increase oxygen dissociation from haemoglobin in the blood capillaries for diffusion into the muscle cell during exercise

OCR AS Physical Education