
 

 
 

 

 

  

 

 

 

Warwick Economics Research Papers 

 

 

 

ISSN 2059-4283 (online) 

ISSN 0083-7350 (print)  

 
Subsidizing the spread of COVID19 :  

Evidence from the UK’s Eat-Out to-Help-Out scheme 

 
Thiemo Fetzer 

(This paper also appears as CAGE Discussion paper 517) 

 

 

October 2020            No: 1310 

This paper has been updated & published in the Economic Journal 

 

 

 

https://warwick.ac.uk/fac/soc/economics/research/centres/cage/manage/publications/wp.517.2020.pdf
https://academic.oup.com/ej


Subsidizing the spread of COVID19: Evidence
from the UK’s Eat-Out-to-Help-Out scheme

Thiemo Fetzer ∗

October 29, 2020

Abstract

This paper documents that a large-scale government subsidy aimed at encour-
aging people to eat out in restaurants in the wake of the first 2020 COVID19
wave in the United Kingdom has had a large causal impact in accelerating
the subsequent second COVID19 wave. The scheme subsidized 50% off the
cost of food and non-alcoholic drinks for an unlimited number of visits in par-
ticipating restaurants on Mondays-Wednesdays from August 3 to August 31,
2020. Areas with higher take-up saw both, a notable increase in new COVID19
infection clusters within a week of the scheme starting, and again, a decelera-
tion in infections within two weeks of the program ending. Areas that exhibit
notable rainfall during the prime lunch and dinner hours on days the scheme
was active record lower infection incidence – a pattern that is also measurable
in mobility data – and non-detectable on days during which the discount was
not available or for rainfall outside the core lunch and dinner hours. A back of
the envelope calculation suggests that the program is accountable for between
8 to 17 percent of all new local infection clusters during that time period.
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1 Introduction
The COVID19 pandemic caused by the novel coronavirus (SARS-CoV) has left

a significant mark on many economies. The hospitality sector is particularly vul-

nerable to the economic fallout due to an unprecedented decline in tourism and

leisure activities (Brinca et al., 2020; Carvalho et al., 2020; Dingel and Neiman,

2020). Naturally, lockdown measures in spring, which were implemented to slow

down the uncontrolled spread of COVID19, directly impacted the hospitality sec-

tor’s ability to provide its goods and services. Yet, the behavioral changes in

consumption patterns due to consumers trying to avoid infections may lead to the

hospitality sector to continue to suffer sustained contractions in demand, espe-

cially if the disease spread is perceived as being uncontrolled (Baker et al., 2020;

Fetzer et al., 2020; Mongey et al., 2020). Since the changed consumption patterns

are a direct result of the virus presence in many countries, economists have broadly

suggested that aggressive testing- and tracing schemes and the suppression of the

virus’ spread may be most cost effective strategy to aid the economy (Brotherhood

et al., 2020; Kaplan et al., 2020; DELVE, 2020). Nevertheless, some governments

have attempted to specifically stimulate demand for the hospitality sector: this pa-

per studies to what extent one such large scale intervention in the UK, the so-called

Eat Out to Help Out (henceforth, EOHO) scheme – had the unintended effect of

furthering COVID19 infections.

The EOHO scheme was conceived to shore up demand for the hospitality- and

restaurant sector in the UK. It effectively saw the cost of meals and non-alcoholic

drinks being slashed by up to 50% across tens of thousands participating restau-

rants across the UK for meals served on all Mondays to Wednesdays from August

3 to August 31, 2020. The discount was capped at a maximum of GBP 10 per

person but there was no limit on how often it could be claimed per individual.

Early release statistics suggest that during the four weeks in which the program

was active, a total of nearly 100 million covers were claimed, at a total cost to

the taxpayer of around GBP 500 million. The total value of meals for which the

discount was claimed was around GBP 1 billion.1 Restaurant visits increased dras-
1This represents a large share of the the broader non-residential catering sector which is esti-
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tically on weekdays Monday to Wednesday, which usually see less traffic, even in

a year-on-year comparison. Given a growing body of evidence from epidemiolog-

ical studies, which suggests that restaurants may be a particular prominent vector

of COVID19 transmission (see e.g. Hijnen et al., 2020; Fisher et al., 2020; Lu et al.,

2020), this naturally raises the question to what extent the EOHO scheme may have

contributed causally to the drastic acceleration of the spread of COVID19 seen in

early fall 2020 across the UK.2

This paper leverages spatially and temporarily granular data from the UK to

make four observations. First, the EOHO scheme appears to have led to a sig-

nificant increase in restaurant visits over-and-above the levels in the previous year

and potentially shifting visits to the weekdays on which the discount was available.

Second, areas that have relatively more participating restaurants saw a notable in-

crease in the emergence of new COVID19 infection clusters starting around one

week after the scheme launched. Third, the time-patterns of the differential emer-

gence of COVID19 infection clusters across areas with larger uptake of the scheme

closely tracks the time-pattern of visits that the scheme appears to have induced

when studying Google (2020) mobility data and aggregate data from restaurant

booking sites. Fourth, we observe a notable decline in new infection clusters in

areas with higher take up of the EOHO scheme around a week after the scheme

ended. This again, follows closely patterns in aggregate restaurant visit pattern

data, which saw a drastic decline in restaurant visits after the scheme ended, sug-

gesting that the positive economic impact have not been sustained.

The difference-in-difference design findings are already very consistent with

the state of epidemiological knowledge and the EOHO program scheme specifics.

Nevertheless, there may be concerns about reverse causality. I complement the

above findings with further reduced form evidence that, at least, is indicative of

the direction of causality. Using very granular high frequency rainfall data, I doc-

ument that areas that experienced notable amounts of rainfall during lunch- and

dinner hours on the weekdays during which the discount was available had fewer

mated to have gross-value added of around GBP 37 billion per year.
2See also Marcus et al. (2020) which, using US data, suggests that adults with positive SARS-

CoV-2 test results were approximately twice as likely to have reported dining at a restaurant than
were those with negative SARS-CoV-2 test results.
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COVID19 infection clusters emerging relative to areas that saw little or no rain

during these hours. These patterns are remarkably robust: rainfall during the

same lunch- and dinner time hours on days in the week during which the scheme

was not active is uncorrelated with the emergence of new COVID19 infection clus-

ters. Similarly, rainfall during days on which the scheme was active but which fell

outside the core lunch- and dinner-time hours is uncorrelated with the subsequent

emergence of COVID19 infection clusters. These differential patterns can only be

detected during the four calendar weeks when the scheme was active – but not in

the immediate four weeks before- and after the scheme was active – which mark

periods during which no part of the country was under any form of lockdown.

Naturally, rainfall may affect human mobility in many different ways and may

have direct impacts on the spread of COVID19, thereby threatening the implicit

exclusion restriction implicit in the above reduced form design. To, at least par-

tially allay these concerns, I again turn to coarser district level Google mobility

data. Consistent with the above patterns on COVID19 infections, I find that rain-

fall during peak lunch and dinner hours is associated with notably less restaurant

visits. Further, consistent with the results on infections, these effects are only

present during weekdays days on which the scheme was active and for rain falling

around the core lunch and dinner hours (but not for rainfall falling outside these

hours or weekdays during which the scheme was not active). Further, the pat-

terns do not emerge in the four weeks prior and four weeks after the scheme

was officially active. Lastly, the intra-day rainfall measures have no statistically

discernible impact on mobility proxies capturing visits to grocery stores, transit

places or workplaces, suggesting that the restaurant visit patterns that midday

or evening rainfall caused are not confounding more general or other mobility

changes. This is further indirect evidence suggesting that the EOHO scheme in-

deed caused a significant increase in COVID19 infections and that the exclusion

restriction implicit in the reduced form exercise holds.

The observed empirical results are very robust to a host of further additional

checks and exercises. First, it is noteworthy that the timing of the effects on new

COVID19 infections is very consistent with the program timings, both in terms of

onset- and offset. Second, results are robust to accounting for very demanding
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time effects that can capture both, various local policy shocks, as well as account

for the inherently non-linear and local disease dynamics. Third, results are fur-

ther robust to controlling non-parametrically for non-linear time trends in a host

of other factors that may be confounding the progression of the pandemic into

its second wave and also be correlated with program take-up. These are a range

of proxies of population density; several measures capturing an areas’ exposure

to the spring 2020 COVID19; an areas’ usual exposure to both in- and out com-

muting flows; the share of regular university student residents; the structure of

the local housing market. Fourth, results are not driven by any one specific ma-

jor metropolitan area, which we confirm through a host of leave-one-out exercises

at different geographic granularities. Fifth, results are not driven by the specific

choice of functional form or the precise measurement of the likely area-specific

scheme take-up. Especially the latter is relevant as official EOHO statistical release

data is yet pending. This paper leverages detailed and granular restaurant-specific

data from the government’s own public Github repository through which the cen-

tral “restaurant finder” application was run. This app was the primary go-to

website that was used to help interested consumers identify participating restau-

rants within their neighborhood. We further combine this with a spatially coarser

pre-release take-up data measuring the number of meals claimed.3

The empirical estimates suggest that the EOHO scheme may be responsible for

around 8 to 17% of all new detected COVID19 clusters emerging during August

and into early September in the UK. Given the dramatic rise of COVID19 infections

across the UK in recent weeks, the likely changes in consumer behavior due to

higher infection risks and the ensuing economic damage this generates suggests

that the EOHO scheme may have indirect economic- and public health costs that

vastly outstrip its short term economic benefits.

3Further, more granular EOHO data may be made available in the future. This data will, at
best, only help to improve the accuracy of the take-up measures further. We think at present, given
we are primarily measuring an intention-to-treat, that we are currently underestimating the true
effects. Unfortunately data on COVID19 fatalities at the geographic granularity needed for the
analysis is still pending. The UK’s official COVID19 tracking website does not provide data on
COVID19 fatalities at the same geographic level at which it publishes weekly new local infection
data. Monthly mortality data will be produced by the Office of National Statistics and is expected
to be forthcoming for the August period the earliest in December 2020.
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The paper is related to a rapidly growing literature studying the economic im-

plications of the COVID19 pandemic. The macroeconomic literature has put spe-

cific emphasis on understanding how to think of the optimal policy in the context

of externalities in individual distancing decisions and socially optimal lockdowns.

Notable work is also being conducted to track the economic implications of the

pandemic in real-time across a host of margins, such as inequality (Adams-Prassl

et al., 2020b,c; Benzeval et al., 2020; Blundell et al., 2020), gender-differentiated ef-

fects (Alon et al., 2020), across sectors and social economic groups (Mongey et al.,

2020; Coibion et al., 2020b). There is also a growing literature that studied the

impacts and implications of various fiscal countermeasures (see Bayer et al., 2020;

Coibion et al., 2020a; Kaplan et al., 2020, to name a few). This paper puts an em-

phasis on a specific fiscal countermeasure that, even at the time of announcement,

has been criticized by epidemiologists and economists for its “backfire potential”

given the known risks of infection in restaurant settings.

In the broader literature, the paper is related to the strand of work that speaks

to the complexity of economic policy making in the wake of a pandemic in a world

with both economic externalities and health externalities. Targeted fiscal interven-

tions may be optimal if they reduce both the negative economic impacts of the

pandemic, while at the same time, putting in check the underlying health exter-

nalities that certain types of economic behaviors may bring about. Most countries

opted for a broad set of measures to prevent sectors from making drastic adjust-

ments to its workforce through the expansion of furlough schemes (see Adams-

Prassl et al., 2020a for work on the UK scheme), targeted financial and liquidity

support to companies, as well as broad demand stabilizing initiatives such as those

implemented through the CARES Act in the US (Coibion et al., 2020b) or through

measures to temporarily lower the VAT.

The UK’s policy response shared many of the broader features of most fiscal

interventions. Yet, the EOHO scheme stands out internationally. The intervention,

not only reverses a lockdown that ordered in-dining restaurant activity shut (as

e.g. studied in Glaeser et al., 2020), but rather was targeted post-lockdown to

actively increase demand in the sector. Given a broad set of epidemiological work

that suggests that the health externalities associated with hospitality-sector related
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economic activity may be particularly high (see e.g. Hijnen et al., 2020; Fisher et al.,

2020; Lu et al., 2020), the overall soundness of the scheme stands in question. The

paper documents that the scheme has broadly accelerated the pandemic, naturally,

the question arises to what extent policy makers designing the scheme may not

have been aware of the epidemiological risks associated with it or, to what extent

misperceptions around trade-offs between “lives versus the economy” may have

shaped attitudes towards the scheme.

The paper proceeds as follows: section 2 presents the policy context and the

underlying data leveraged in this paper. Section 3 presents the empirical approach,

while Section 4 presents and discusses the results. Section 5 concludes.

2 Context and Data

2.1 COVID19 in the UK
Despite the UK having had advance warning, the government was slow to

respond to the COVID19 spread early in the year (see Fetzer et al., 2020). The

relatively late decision to lockdown the country resulted in a much longer period

during which the lockdown needed to be maintained. This has resulted in a sig-

nificant drop in GDP, which was quite prominently felt in the UK’s hospitality and

high-street retail sectors (see e.g. ONS, 2020).

Measuring COVID19 spread We leverage data from the UK’s official COVID19

reporting dashboard available on https://coronavirus.data.gov.uk/. This

provides data on weekly COVID19 case counts at the level of Middle Layer Super

Output Area (MSOA) and the district-level.

MSOA’s are statistical regions that can be broadly compared to wards. MSOA’s

have, on average, 8,288 residents but at least 5000 residents as per the 2011 Census.

Across England, which is the study area, there are 6,791 MSOAs. For confidential-

ity protection, the data that is publicly available suppresses counts that are below

2. This implies that not all infection clusters may be detected in this data. An

individual case gets recorded and attributed to the MSOA based on his or her res-

idence address. Further, the date of infection is recorded, not based on the date
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on which the rest result is reported, but rather, based on the date at which a test

specimen sample was taken. As it is estimated that at least 50% of symptomatic

cases report symptoms within three to five days of infection (see e.g. Qin et al.

(2020); Lauer et al. (2020); Chun et al. (2020) for estimates), it is thus not unreason-

able for COVID infections occurring on Mondays - Wednesdays to be recorded as

early as within the same calendar week in case individuals had a test done later in

the week.

COVID19 spread extremely rapidly across the UK. Figure A1 presents the share

of MSOA’s that had at least two cases per week. All reported cases are linked to

the date that the specimen for the test was taken and not the date when the test

report came back. While in the week prior to the launch of the EOHO scheme just

7% of English MSOA’s reported a local outbreak with more than two new cases,

just four weeks later, when the scheme ended, 30.6% of MSOAs reported local

outbreaks with more than two new cases of COVID19. We assess to what extent

the rapid spread of COVID19 may be attributable to the government operated

EOHO scheme.

The resulting dataset at the MSOA level is a balanced panel across 6,791 English

MSOAs by calendar week from calendar week 5 to calendar week 40. For this

data set, the primary dependent variable is an indicator capturing whether there

have been more than three cases reported in any given week. The binary coding

is appropriate given the high spatial granularity and the fact that low numbers

(less than or equal to two) are not reported for confidentiality protection. We

nevertheless also exploit the weekly new case count at that level as well. The

dataset has around 250,000 observation, yet, we primarily focus on the time around

which the EOHO program was active as quite likely, case counts from early into

2020 are not very reliable due to poor testing performance. Nevertheless, all results

are robust to working with the full sample.

2.2 Eat Out to Help Out
The hospitality sector in the UK, as elsewhere, took a significant economic hit as

a result of the lockdowns that were implemented in most countries early in 2020.

The sector is an important source of employment opportunities for individuals
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with lower qualifications; it provides a source of income for students and those

entering the labor market and is often characterized by a widespread prevalence

of small and medium enterprises and often quite deep local economic linkages.

While many countries opted to expand their furlough scheme and provide var-

ious forms of direct financial support, the UK government was quick to announce

a phase-out of its furlough scheme. Rather, it opted for measures to stabilize de-

mand facing the hospitality sector. Two primary initiatives were taken: a tempo-

rary VAT cut for businesses in the hospitality sector, lowering the applicable VAT

rate from 20% to 5% as an indirect measure that quite likely will increase margins

of restaurants (see Benzarti and Carloni, 2019). At the same time, the government

implemented a demand-stabilizing program that was dubbed the “Eat Out to Help

Out” (henceforth, EOHO) scheme.

Under the Scheme Government will provide 50% off the cost of food and/or

non-alcoholic drinks eaten-in at participating businesses UK-wide. The scheme

ran from 3 August (calendar week 32) to 31 August 2020 (calendar week 36), but

was only active on Monday-Wednesday. The discount was capped at a maximum

of GBP 10 per person. In order to benefit from the scheme, eligible hospitality

businesses had to register with the UK’s Tax Authority, Her Majesty’s Revenue and

Customs (HMRC) to participate. Once registered, businesses can offer the discount

to customers and claim the money back from HMRC. We primarily leverage this

data for this paper using the HMRC Github repository providing the database of

registered restaurants. This database was used to develop the governments online

restaurant finder showing businesses registered in the EOHO scheme within 5

miles of any postcode entered.

While official statistics on the scheme are still pending, preliminary reports

suggests that up to 84,000 premises (either individual restaurants or chains) may

have registered for the scheme by late August with a total of nearly 100 million

covers (individual meal claims) being sponsored. The average claim was GBP

5.25, just over half the GBP 10 maximum per person. Figure 1 highlights that

the program did have a notable, but temporary, impact on restaurant visits when

comparing year-on-year changes using data made available as a time-series for

the UK by online booking site OpenTable. During the days that the program
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was active, restaurant visits, year-on-year, increase drastically by up to 100% in

the last week during which the program was active. Especially in the first two

weeks that the program was active it appears, however, that visits may have simply

shifted within the week to earlier weekdays. The effects appear to not persist

with visits starting a declining trend year-on-year as soon as the program ended.

The significant increase in restaurant visits, within a short period of time and

concentrated within a few days in the week, may have had a notable impact on

the spread of COVID19. In order to study this using spatially granular data, we

leverage two data sources to measure the uptake of the EOHO scheme.

Restaurant registrations While official statistical data is yet to be released (see

https://www.gov.uk/government/statistics/announcements/eat-out-to-help

-out-statistics), some program data was made already available. Naturally, as

the data are preliminary, a qualifier about the potential impacts that measurement

error could have on the results presented here needs to be made.

For restaurants to participate in the program they had to register with the

HMRC. The data team in the HMRC made restaurant registrations with names

and addresses publicly available in a GitHub repository (see https://github.com

/hmrc/eat-out-to-help-out-establishments). Registrations were open during

the full program duration. The repository was updated from late July to early

September almost daily, providing a time-varying number of participating restau-

rants. Figure A2 presents the time series of the data available on that repository.

At the start of the program, around 53,059 restaurants were registered to partici-

pate. Towards the end, that number had increased by nearly 10,000 restaurants to

62,804.

We will exploit the expansion of the program in addition to cross-sectional

measures capturing the intensity of the program’s use across districts and MSOA’s

to study whether the program is associated with an acceleration of the spread of

the pandemic. For each participating restaurant, at each point in time, we know the

exact address including the full post-code. This allows us to map the restaurants to

any geographic unit in the UK. Figure 2 displays the distribution of the number of

participating restaurants per 10,000 residents at the end of the program. There is
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ample and notable spatial variation. We will control in all exercises for population

density, an area’s exposure to the first wave of the pandemic and a host of other

factors that shape the local restaurant supply-side structure.

Early Release Statistics A second method of measurement are statistics that were

published at the level of the constituency. These have been available at https:

//www.gov.uk/government/publications/eat-out-to-help-out-scheme-

claims-by-parliamentary-constituency. The data provided information on

the total number of restaurants by constituency that participated in the program;

the number of meals that were claimed under the scheme; the amount of money

disbursed to participating restaurants and the average value of the claim. The

data were subsequently removed from the website in mid October, likely due to

an error in the geographic attribution of some chain restaurants to constituencies.

Nevertheless, for the purpose of the empirical exercises presented here, the data is

likely to contain sufficient statistical signal as the measurement error, if anything,

does not appear to be systematic.

The correlation, for example, between the number of restaurants participating

from the micro data on registrations aggregated to the constituency and the num-

ber of restaurants per constituency as reported in the early release file is very high

(see Appendix Figure A3). Given the tight correlation, the data still contains valid

statistical information to be leveraged. Nevertheless, all results obtained here are

robust to not using this data at all and working solely with the data on restaurant

registrations that come directly from HMRC’s Github’s repository.

England has around 533 constituencies. Constituencies are spatially much

coarser compared to MSOAs. We break down the reported figures on the num-

ber of meals claimed to the MSOA level using the number of active restaurants

as weight. This gives us a measure of the number of meals claimed as an ad-

ditional, albeit, inferred measure of take-up at the local level, in addition to the

time-invariant and the time-varying number of restaurants at the MSOA.
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2.3 Rainfall data and other data
I will show that intra-day rainfall around lunch- and dinner hours measured

on days during which the EOHO discount was available is strongly predictive of

both, visits to restaurants measured using the Google mobility data, and COVID19

infections.

Rainfall data I use data from the Global Satellite Mapping of Precipitation (GSMaP)

project which provides a global hourly rain rate with a 0.1 x 0.1 degree resolution

(around 10 x 10 km at the equator). This dataset measures rainfall around the

globe in near real time using multi-band passive microwave and infrared radiome-

ters from the GPM Core Observatory satellite with more technical details provided

in Okamoto et al. (2005). The rainfall rate measure I leverage here is adjusted for

rainfall gauge measures on the ground providing an hourly rainfall rate. To con-

struct the measures I obtain the hourly images and map the grid cell to the centroid

for each MSOA.

To construct the rainfall during the lunch- and dinner times I sum up the hourly

rainfall rates on each day for lunch hours from 11:00 - 14:00 (inclusive) and dinner

time from 17:00-21:00 (inclusive). I also construct the rainfall falling outside these

hours. As the infection data at the local level is provided only at the weekly level I

aggregate up the rainfall occurring on weekdays during which the EOHO discount

was avail is active (Mondays-Wednesdays) as well as for the rest of the week.

For the mobility exercise, I can leverage the daily rainfall data directly.

Google mobility data To understand to what extent the EOHO scheme was

changing or affecting local patterns directly, we also use data from the Google

Mobility indices – see for example, Besley (2020) for a use of the data with an

application to political economy. The data is provided by Google at a level that is

slightly coarser than local authority districts, but nevertheless, they can be mapped

to the districts. We use the daily-level data to measure the impact of the EOHO

scheme on mobility within districts over time to provide corroborating evidence.

I next provide the empirical approach before presenting the main results.
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3 Empirical Strategy
The paper primarily studies data at the granular Middle Layer Super Output

(MSOA) area. These statistical regions are constructed based on granular census

geographies and nest into the original 2011 census geographies and can be broadly

considered to be well-defined neighbourhoods with at least 5000 inhabitants. The

relative homogeneity in terms of population size make it particularly appealing for

statistical purposes. I also conduct some supporting analysis at the much coarser

local authority district level, which, due to its coarseness, allow for much less de-

manding empirical specifications and require stronger identification assumptions.

3.1 Difference-in-difference analysis
I follow a several simple difference-in-difference strategy exploiting cross-sectional

variation across MSOAs in the the exposure to the EOHO scheme Ei. That is, I es-

timate

yi,t = ηi + γl(i),t + η × Postt × Ei + β′Xi,t + εd (1)

where yi,t denotes a measure of COVID19 spread. The primary focus of this

paper is to measure the emergence of new COVID19 infection clusters. This is

primarily motivated by the data granularity measuring new COVID19 infections

at the MSOA level by week. For confidentiality reason, instances with less than

or two cases are suppressed. As such, we only observe new cases in the data if

there are more than two infections. While the results are not sensitive to the choice

of the dependent variable or the functional form, it nevertheless seems sensible to

focus on measuring the incidence of new COVID19 clusters capturing more than

two detected infections in a given week.

The regression controls for district- or MSOA fixed effects, ηi, as well as a set of

time fixed effects γl(i),t. We explore a range of different time-fixed effects at differ-

ent spatial resolutions. For example, we can control for district by time fixed effects

or Westminster constituency by time fixed effects. The potential for uncontrolled

spread of COVID19 makes such flexible time-effects quite relevant as a potential

set of controls. They further have the appealing feature of absorbing any time-
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varying policy shocks. This is particularly relevant for the case of local authority

districts as many COVID19 restriction measures and policies are implemented at

that level in the UK.

Ei is a measure of an area’s exposure to the EOHO scheme. I work with two

primary measures capturing either the number of restaurant establishments within

an MSOA that participate in the EOHO scheme or, an imputed measure of the

number of meals covered under the scheme, exploring various functional form or

variable

The above specification naturally also extends to a more flexible econometric

specification that allow us to explore to what extent there are common trends in

infection outcomes before the scheme started e.g. by estimating.

yi,t = ηi + γl(i),t + ∑
t

ηt × 1(Week = t)× Ei + β′Xi,t + εd (2)

What is important in the above specification is that we can not only explore how

the program may have led to an increase in infection from the onset, but also can

study to what extent infection dynamics slow down as the scheme ends. Through-

out the paper, we cluster standard errors at the level of the local authority district.

Control variables In addition to conducting various robustness checks, we can

control for a host of potential time-varying factors measured in Xi,t that may drive

the spread of the disease independently from the EOHO scheme. We will explore

a large range of potential confounders, flexibly controlling for them across the em-

pirical exercises, such as an area’s exposure to the first pandemic wave; commut-

ing patterns; the prevalence and distribution of different types of commercially

used real estate – to measure an areas’ specialization in leisure or production;

population density and variability in population density; the local age profile or

demographics, among many others.

3.2 Exploiting time-variation in (likely) restaurant visits
Unfortunately, at the time this paper was written, time-varying measures of

the uptake of the EOHO scheme broken down to different geographic units was

yet missing. Nevertheless, I also adopt a reduced form approach exploiting time-
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variation in weather across areas of the UK around lunch- and dinnertime on

weekdays when the scheme was active.

Specifically, I fully focus on the data for the calendar weeks during which the

scheme was active from August 3 to August 31, exploiting time-variation within-

and between MSOAs in whether an area saw notable amounts of rainfall during

the primary lunch- and dinner-time hours during which individuals may have

conceivably taken advantage of the substantial price discount to visit restaurants.

That is, I estimate

yi,t = ηi + γl(i),t + ξ × Ri,t + εd (3)

where again yi,t is a dummy variable that measures whether a new COVID19

infection cluster was identified in an area in a calendar week. The timing is not

particularly sharp but epidemiological estimates suggest that 97% of non asymp-

tomatic patients develop symptoms within 8.2 to 15.6 days of infection (Lauer

et al., 2020). At least 50% of symptomatic cases report symptoms within two to

five days of infection (see e.g. Qin et al. (2020); Chun et al. (2020) for estimates),

it is thus not unreasonable for COVID infections occurring on Mondays - Wednes-

days to be recorded as early as within the same calendar week in case individuals

had a test done later in the week. I will nevertheless show that results are further

robust to the precise choice of timing.

The above regression controls for local authority by week fixed effects, again,

to account for non-linear growth and potential confounding policy shocks. I con-

struct a whole set of different rainfall measures Ri,t which measure the amount

of rainfall from 11:00-14:00 proxying potential lunch-time restaurant visitors and

from 17:00 to 21:00 proxying potential dinner-time restaurant visits. These mea-

sures are constructed for each weekday. I also construct a rainfall measure for the

non-peak potential restaurant visitor time-windows. This allows a host of placebo

exercises that will be further supported by the mobility analysis described next.

3.3 Supporting Mobility analysis
To corroborate the findings I leverage data from Google Mobility indices pro-

viding measures of the percent change relative to the pre-COVID19 baseline in
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mobility measuring visits and the time spent in Retail, Restaurant, Parks, Work-

places vis-a-vis the home. This data is available broadly speaking at a slightly

coarser version of the UK local authorities, but can be matched to them. The data

is available by day and allows for a set of analysis that can corroborate the reduced

form evidence on infections.

First, I study at the week level that mobility patterns proxying time spent and

visits to Restaurants significantly responded to the roll out of the scheme. I es-

timate variations of specification 1 at the local authority level, documenting how

mobility proxies proxying restaurant visits changed on EOHO days comparing the

EOHO weekdays both before- and after the scheme started and subsequently after

it ended.

Similarly, I study the daily data for just the time-period during which the

scheme was active, exploiting the same type of weather variation, now at the dis-

trict level, as discussed above. Specifically, I estimation variations of specification

3 at the district level, studying to what extent restaurant visit mobility proxies ap-

pear to decrease on EOHO weekdays in districts that experienced some notable

rainfall. Again, this exercise allows for a host of additional placebo exercises, the

results of which will track closely the patterns identified from the infection data.

4 Results and Discussion

4.1 Difference-in-difference analysis
We begin by presenting some evidence that highlights that the scheme was

successful in mobilizing more people to Eat Out

4.1.1 EOHO substantiallly increased restaurant visits

We begin by studying Google mobility data to explore to what extent the scheme

appears to have attracted more visits to restaurants – and to what extent the pat-

terns change after the program ended. Figure 1 provides a daily time series of

restaurant booking service OpenTable across all channels of potential visitors: on-

line reservations, phone reservations, and walk-ins across the UK. The measure

captures changes year-on-year relative to the same day in the previous year. The
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vertical lines indicate the start- and end-dates of the EOHO scheme. The individ-

ual dates when the EOHO subsidy was available across participating restaurants

in the UK are marked as circles while weekend days of Friday, Saturday and Sun-

day are indicated as solid black lines. We make three observations: first, while

restaurant visits had been recovering from substantially lower bookings relative to

the previous year in July, there are notably higher restaurant visits on days during

which the scheme was available – the increases suggest that restaurant visits year-

on-year are between 10% to more than 200% higher.4 Second, the patterns suggest

that prior to the scheme being active, there is a notable increase in visits during on

weekend days within a week – this pattern seems to disappear during the weeks

that the EOHO scheme was available, which may suggest that the scheme may

have led to shifting of planned visits within the week to days during which the

discount was available. Third, there are notable declines in restaurant visits after

the scheme ended with visits starting to decline again relative to the previous year.

Figure A5 highlights that the scheme had a signifiant and timely effect, in-

creasing mobility in the category Retail & Recreation, which includes places such

as restaurants, cafes, shopping centres, theme parks, museums, libraries and cin-

emas. On the weekdays Monday to Wednesday, during which the program was

active, the mobility score increased drastically by around 6 percentage points. Rel-

ative to the mean, this is an increase of around 22%.5

The scheme ended on August 31, 2020 as the last Monday during which it was

active in calendar week 36. Mobility in restaurants and cafes dropped significantly

from week 36 again and does not recover. This suggests that the programs effects

were primarily temporary in nature and may have had the adverse effect fo shifting

and concentrating restaurant visits to earlier in the week, possibly increasing the

4August 31 was the last, so-called Summer Bank Holiday which marks a public holiday. The
date of these bank holidays are changing year-on-year with the corresponding holiday the previous
year being August 26, 2019. This results in a notable inflation of the restaurant visits in the year-
on-year comparison.

5Appendix Table A1 highlights that, while there are other changes in mobility, these are rela-
tively marginal. For the empirical exercise at the much more spatially granular MSOA level, we
will fully account for mobility and policy changes through flexibly controlling for district by week
fixed effects or even constituency by week fixed effects, fully absorbing changes measured at this
level.
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infection risk even further as restaurants may have been at capacity or possibly

even beyond capacity.

4.1.2 Impact of EOHO on infections

We next turn to presenting results from the difference-in-difference analysis. The

results are presented in Table 1. As dependent variable in this exercise we use the

binary indicator measuring whether there was a new COVID19 infection cluster

comprised of more than two new cases that were detected within a given calendar

week. The sample period here covers calendar weeks 24 to 36.6 Across the different

panels in the regression table, I explore different ways of measuring the exposure

of an area to the EOHO scheme. In Panel A, I measure the exposure as the log

number of EOHO covered meals consumed in an area d or the log number of

participating restaurant establishments in an area, each normalized by an area’s

population. For ease of interpretation, the measures are normalized to have unit

standard deviation. Across columns, I explore different levels of time-fixed effects

moving from coarser NUTS2 region by week fixed effects to much more granular

local authority district by week fixed effects.

The results suggest that there is a notable positive and precisely impact: areas

that have a higher exposure to the EOHO scheme see notably higher incidences of

infections during weeks that the scheme operated. In Panels B and C I show that

it is immaterial how we measure the exposure to the scheme in this difference-

in-difference exercise. Overall, the estimates across columns and panels suggest

that a one standard deviation higher exposure to the EOHO scheme increased the

incidence of new infection clusters by, on average, between 0.008 to 0.017 percent-

age points. Relative to the mean of the dependent variable, this suggests that the

EOHO scheme can account for between 8 to 17 percent of all new infections during

the period in which the scheme was active.7

6The respective start time period is insubstantial for the estimation. Week 24 marks the start of
the easing of the lockdown restrictions following the first COVID19 wave in the UK.

7The results are not an artefact of the choice of functional form studying new COVID19 infec-
tions as a binary variable. Appendix Table A2 highlights results are robust to alternative functional
forms.
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Impact over time A natural question that may arise is whether the results are

picking up some trends in infections that may precede the scheme being active.

Further, given that the scheme was only available for around four calendar weeks,

it raises the question whether the increased infections that are attributed to the

scheme continue in the same areas that saw higher exposure to the scheme, after it

ended and after which restaurant visits notably declined again. Figure 3 estimates

a flexible difference-in-difference design that can provide some answers to these

questions. Infections steadily increase around one week after the scheme started in

areas that had higher uptake, peaking in the last week the scheme was available,

and, from then on declined again. There is no evidence of any diverging pre-trends

prior to the program being available. This maps closely to the patterns observed

in aggregate restaurant bookings data in Figure 1 as well as the patterns observed

in mobility data at the district level in Appendix Figure A5.

We next present some further robustness checks that can allay some plausible

concerns.

4.1.3 Robustness

In Table 2 I explores to what extent results are robust to controlling for the po-

tential time-varying impact of other area characteristics that have been muted to

being potential correlates or drivers of a subsequent second wave. The specifi-

cations across columns include local authority by week fixed effects throughout

and successively add more additional control variables that are fully interacted

with time fixed effects to allow for non-linear growth patterns in these character-

istics. The variables consist of a set of measures capturing population density in

column (2), adding measures capturing an area’s exposure to the first wave of the

pandemic in spring in terms of cases and COVID19 and non COVID19 mortality

figures in column (3). Column (4) adds further an areas exposure to both in- and

out-commuting flows, which is relevant given that the time marked the reopening

of the economy with public calls for people to go back working from their respec-

tive offices. Column (5) adds measures capturing the share of the population that

lives in an area that is full-time student. This is to account for concerns that the

growth in cases may be associated with universities reopening (despite time time
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period under consideration being outside regular term time as most universities

have not started until mid to late September the earliest). Lastly, column (6) further

controls for a measure of the house tenure types as rented occupiers, especially in

cities, typically may live in housing conditions that facilitate the spread of the dis-

ease. Throughout, despite adding a large set of additional control variables, the

results remain unchanged.

In Appendix Table A3 we show that the results are robust to controlling for

the potential non-linear growth in infections across a wide range of subnational

geographies. We explore the NUTS1 - NUTS3 region classification which sub-

divides England into 9, 30 and 93 spatial units, respectively in columns (1)-(3).

We also control for local authority district by week fixed effects allowing for 325

different district-level non-linear time trends in column (4). Column (5) explores

parliamentary constituency by week fixed effects controlling for 533 different time

trends. Lastly, column (6) explores the cross of the two controlling for 728 unique

non-linear time trends. Throughout the results remain unchanged. Especially the

latter three are substantially important from a policy perspective: local infection

control and local measures are typically implemented at the local authority level,

which represents the finest subnational political unit in the UK. Similarly, if there

are concerns about some areas benefiting disproportionally e.g. due to political

favoritism, the parliamentary constituency by time-effects absorb any such shocks.

Since the two geographic units are not nested, the last column highlights that re-

sults are robust.

Lastly, Appendix Figure A4 performs a leave-on-one validation exercise drop-

ping all MSOAs that are part of each of Englands 9, 30 and 93 NUTS1- NUTS3

regions. I plot both a kernel density estimate of the distribution of point estimates

obtained as well as a box plot. Throughout the exercises, the distribution of point

estimates points to the EOHO having a positive impact on disease spread.

We next turn to exploiting arguably exogenous variation in the intensity of

restaurant visits due to inclement weather conditions around lunch- and dinner-

time during days on which the discount was available.
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4.2 Exploiting time-variation in restaurant visits
While the difference-in-difference results are very consistent in terms of timing

when compared to data on restaurant visits, there remain some concerns about

whether we can interpret results in a causal fashion. To tackle this concern, I lever-

age high frequency data measuring inclement weather around the typical lunch-

and dinner times during which people most likely frequent restaurants. While the

subsidy was available during the summer month August – the month was actu-

ally quite rainy in comparison to the long term average: in August, England saw

rainfall levels at 159% of the usual long term average, ranging from a low 137%

of the long term average in the East of the country to 174% in the Central region

(Environment Agency, 2020).

I construct a measure capturing whether an area experienced notable rainfall

during the prime lunch- and dinner hours across different days over the time

window the subsidy was available. This allows me further to exploit intra-day

variation in the amount of rainfall that falls outside of regular hours during which

one would visit restaurants.

4.2.1 Rainfall on EOHO days and subsequent infections

Table 3 presents the main reduced form estimates linking intra-day and inter-day

rainfall measures to subsequent COVID19 infections. Throughout this exercise, I

estimate versions of specification 3 with different sets of rainfall measures. For

ease of interpretation of the estimates, I discretize the rainfall measure to capture

areas and time windows during which rainfall was in the upper decile.8

Panel A studies the impact of rainfall on subsequent COVID19 infection clus-

ters emerging. Column (1) suggests that an area that saw notable rainfall during

the lunch- and dinner hours measured on days on which the EOHO scheme was

active in a week saw, on average, 0.029 percentage points lower COVID19 infec-

tions in the week – an affect of around 20% relative to the mean of the dependent

during the calendar weeks 32 to 36 during which the scheme was active. Column

8Appendix Table A5 presents the same table for alternative rainfall measures, yielding qualita-
tively very similar results.
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(2) studies the impact of notable rainfall during lunch- and dinner hours on days

during which the EOHO scheme was available and during days within the same

week on which the scheme was not available. Naturally, these rainfall measures

are quite correlated. Nevertheless, the primary impact that is statistically precisely

estimated is rainfall falling during days on which the EOHO scheme was available.

Lastly, column (3) studies rainfall falling on the same days during which the EOHO

scheme was available – but across different hours. We observe that only rainfall

during the peak lunch- and dinner hours is associated with subsequently lower

infection incidence – but not rainfall falling outside these hours on the same days.

In Panel B and Panel C I perform a set of placebo exercises. These highlight that

the impact of rainfall on days during which the EOHO would have been available

(Mondays-Wednesdays) in the four weeks prior- and the four weeks following the

scheme is not statistically associated with differential COVID19 incidence. This

suggests that rainfall may have had a notable negative impact on restaurant visits

during days on which the discount was available relative to areas were the in-

creased restaurant visits that the scheme encouraged were not impeded by poor

weather.

It is worth highlighting that this points to the potential detrimental impact that

the EOHO scheme had by concentrating restaurant visits within the week during

a few week days, thereby making it more likely that restaurants had very high

turnover on a few days which may have facilitated the spread of the disease due to

possible challenges with complying with social distancing rules and other hygiene

rules. This is not unlikely given the overall low enforcement of social distancing

measures that have been observed elsewhere.9

We will document very consistent patterns when studying mobility data but flag

up a few notable robustness to point to before.

9Low enforcement of social distancing rules at the council level is likely to have been substan-
tially hampered by the fact that council budgets have been decreased in value by around 50% in
real terms since 2010 due to austerity policies – see Fetzer, 2018, 2020.

22



4.2.2 Robustness

Timing Naturally, as the EOHO days were early in the week it is not unreason-

able to expect to see some impacts on infections later within the same week. We

can, however, also explore some alternative timing. In Appendix Table A4 I study

whether there are any lead effects – a form of a placebo exercise – or whether there

are any lagged effects of rainfall. There appear to be no lead effects, highlighting

that the results are not spurious. The impact of rainfall early in the week on EOHO

days Mondays-Wednesdays on infections recorded between 7 to 14 days later in

Panel B is just marginally insignificant at conventional levels with a p-value of

around 15%.

Rainfall measurement As indicated, for ease of interpretation I measure rainfall

as a binary variable capturing whether rainfall is in the upper decile relative to its

corresponding empirical distribution. In Appendix Table A5 I present alternative

rainfall measures, specificially, measuring rainfall simply in overall levels – the

results are very similar.

Alternative dependent variables Appendix Table A6 documents that results are

robust to using alternative dependent variables to measure COVID19 infections.

4.2.3 Inclement weather and mobility patterns

Lastly, I want to study to what extent the documented link between rainfall and in-

fections – specifically, rainfall on EOHO days and during periods when restaurants

typically experience high demand – can also be detected in more general mobility

data. This will serve as complementary evidence on the underlying mechanism.

The Google mobility data is only available at a substantially coarser district-

level. It is worth flagging up that this is the level at which the time-fixed effects are

specified in the previous main exercises, implying that all the patterns presented

in what follows are in essence indirectly accounted for in the previous exercises.

Using daily mobility measures from Google (2020) I can directly study to what

extent rainfall on days during which the EOHO scheme was active impacted the
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mobility score that includes visits to restaurants and cafes. Further, I can explore

to what extent other types of mobility are impacted. These could be potential

confounders or could capture alternative mechanisms through which rainfall or

the EOHO scheme more generally could have an impact on mobility.

Results Table 4 presents results studying the impact of intra-day rainfall on the

proxy measure for restaurant visits across different weekdays and between calen-

dar weeks when the EOHO scheme was and was not available. Panel A focuses

on the calendar weeks 32 to 36 when the EOHO discount was available on Mon-

days to Thursdays up to the 31st of August. Column (1) documents that rainfall

during the core lunch- and dinner hours negatively impacts visits to restaurants.

The estimate implies that the restaurant visit mobility score is around 18 percent

lower on days in districts that saw notable rainfall during the lunch and dinner

hours on the weekdays during which the EOHO discount was available. Column

(2) performs the same exercise but focuses on the impact of rainfall on visits occur-

ring later in the same week on the weekdays during which the discount was not

available. We observe that rainfall during these days does not reduce restaurant

visits. Lastly, column (3) documents the specific importance of rainfall falling dur-

ing the core lunch and dinner hours in affecting restaurant visits on the Mondays

to Wednesdays during which the discount was available.

Panels B and C study the same regressions, yet, focusing on the four calendar

weeks immediately before and immediately after the EOHO scheme was active.

We do not observe any robust correlation between inclement weather and restau-

rant visits across these time windows. This is worthy of some interpretation: the

EOHO drastically increased restaurant visits – yet, it appears to have done less so

in areas that saw poor whether on weekdays on which the discount was available.

This observation, coupled with the observations studying infections in Table 3 sug-

gests that regular restaurant visiting activity spread out across weekdays before- and

after the scheme was active is not associated with infections. Rather, it appears to

be the excess visits and the concentration of restaurant visits that the EOHO scheme

has generated and which are very evident in the aggregate data in Figure 2, that

drive the infection dynamics.
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It is quite likely that excess crowding and a failing to respect social distanc-

ing measures may have contributed to the EOHO schemes impact on infections

documented here.

Naturally, there may be some concerns about whether the rainfall during the

core lunch and dinner hours have impacts on other mobility measures. That is,

rainfall could have reduced infections not through its impacts on lowering visits to

restaurants, but rather, due to lowering of other forms of mobility. I show that this

appears to not be the case – this is best done visually in Figure 4. This figure rep-

resents the impact of notable rainfall on the Mondays to Wednesdays in calendar

weeks 32 to 36 during which the EOHO discount was available on Google mobil-

ity scores by mobility type. Panel A presents the impact of rainfall on mobility

for rainfall occurring during the core lunch- and dinner hours from 11:00 - 14:00

and 17:00 to 21:00. The regression coefficients have been rescaled to represent the

mean impact relative to the mean of the dependent variable over the estimating

sample. The figure documents that notable rainfall on EOHO days notably re-

duces the mobility score capturing restaurant visits by up to 20%. Similarly, we

see notable declines of around 10% to visits or time spent in parks. We observe

marginal increases in time spent at home, but null effects on mobility measures

proxying grocery shopping, transit or at workplaces.

Panel B presents the impact of rainfall falling on the same days – but outside

the core lunch and dinner hours. Throughout, we see null effects, suggesting

that rainfall falling outside the lunch or dinner hours has no notable impacts on

mobility during the day, on average.

In Appendix Figure A6 we perform the same exercise exploiting intra-day vari-

ation in rainfall during calendar weeks 32 to 36 – but study differential mobility

patterns on the days of the week during which the EOHO discount was not avail-

able (Thursdays to Sundays). We observe marginally insignificant negative impacts

of rainfall during lunch and dinner hours on mobility proxies capturing visits to

restaurants – the marginal effects are substantially smaller compared to the days

in the week during which the EOHO discount is available. This highlights that

rainfall during core lunch and dinner hours on the days during which the EOHO

scheme was available had a disproportionate negative impact on restaurant visits
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vis-a-vis areas that did not see notable rainfall.

Overall the results from the mobility analysis are very consistent in terms of

overall patterns, results and significance compared to the patterns detected on

infections in the previous section.

5 Conclusion
Policy makers are debating the optimal policy response to the COVID19 pan-

demic. The economic impact of changed consumer behavior in response to rising

and falling COVID19 infections is far from uniformly distributed across sectors

(Barrot et al., 2020; Brinca et al., 2020; Carvalho et al., 2020; Dingel and Neiman,

2020). The notion that there may be a trade-offs between health and the economy

is broadly refused by most economic experts – disease containment is considered

to be the best policy response to reduce both the human cost in terms of lives lost

as well as to reduce the economic burden of the pandemic. Naturally, disease con-

tainment becomes more costly, if the pandemic is out of control. This suggests that

early targeted interventions supported by an effective test and tracing system may

be the most effective and least cost interventions (Acemoglu et al., 2020; Kaplan

et al., 2020).

In the wake of Europe’s first wave of the COVID19 pandemic many countries

have mobilized significant fiscal resources to stimulate the economy out of their

respective lockdown freezes (Bayer et al., 2020; Coibion et al., 2020a; Kaplan et al.,

2020). The UK’s policy response shared many similar elements compared to the

fiscal measures used in other advanced economies. The most prominent point

of divergence between the UK’s fiscal response and that of other countries was a

large scale demand-inducing measure aimed at the hospitality sector – specifically,

restaurants and cafes. A total of GBP 500 million was spent to subsidize the cost of

eating out in restaurant by up to 50% in the month of August. At the time, evidence

of the likely spread of COVID19 in hospitality settings was already paramount.

This paper documents that the Eat-Out-to-Help-out scheme, hailed as an economic

cure for the ailing sector, may have substantially worsened the disease. The paper

documents that the scheme had a substantial and causal impact leading to new

26



spatially spread out COVID19 infections in the weeks during which the scheme

was active. The estimates suggest that the scheme is responsible for around 8-17%

of all infections during the summer months and likely, many more non-detected

asymptomatic infections, that may have substantially contributed to accelerating

the second wave of the pandemic.
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Figure 1: Year-on-Year evolution of restaurant visits as measured by the OpenTable
state of the restaurant industry for the UK

Notes: Figure plots year-over-year proportional changes in seated diners at a sample of restaurants on the OpenTable
network across all channels: online reservations, phone reservations, and walk-ins across the UK in %. The vertical lines
indicate the start- and end-dates of the EOHO scheme. The individual dates when the EOHO subsidy was available across
participating restaurants in the UK are marked. August 31 was the last, so-called Summer Bank Holiday which marks a
public holiday. The date of these bank holidays are changing year-on-year with the corresponding holiday the previous
year being August 26, 2019. This results in a notable inflation of the restaurant visits in the year-on-year comparison.
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Figure 2: Participating Restaurants Per 10,000 Residents

Notes: Figure plots the distribution of the number of participating restaurants per 10,000 residents at the MSOA level.
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Figure 3: Difference-in-difference and parallel trends assumption: impact of EOHO scheme on new COVID19 clus-
ters

Emergence of new COVID19 infection clusters across MSOAs associated with EOHO exposure measured as...

Panel A: Imputed Number of Meals per capita Panel B: Number of participating restaurants

Notes: Figure presents regression estimates capturing the impact of EOHO exposure of an MSOA on the probability of a new COVID19 cluster being detected over time. The
regressions control for MSOA fixed effects and local authority district by week fixed effects. Standard errors are clustered at the district level with 90% confidence intervals
shown. The dependent variable is a dummy that is equal to 1 in case a new COVID19 infection cluster was detected. A cluster is defined as at least two newly detected
infections. Week refers to the week in which the specimen for the COVID19 test was taken. New infection clusters increase sharply within a week of the introduction of the
EOHO scheme and decline once again with the end of the scheme in MSOAs with more exposure to the scheme.
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Figure 4: Impact of intra-day rainfall on EOHO days on daily Google mobility scores

Relative impact of notable rain on Google mobility scores category for rain falling during

Panel A: Core lunch & dinner hours Panel B: Outside lunch & dinner hours

Notes: Figure presents results from regression estimates presented in Appendix Table A7. The figure represents the impact of notable rainfall on days during which the
EOHO discount was available in calendar weeks 32 to 36 on Google mobility scores by mobility type. Panel A presents the impact of rainfall on mobility for rainfall occurring
during the core lunch- and dinner hours from 11:00 - 14:00 and 17:00 to 21:00. Panel B presents the impact of rainfall falling on the same day but outside the core lunch and
dinner hours. The regressions control for district fixed effects and NUTS2 region by date fixed effects. 90% confidence intervals obtained from clustering standard errors at
the district level are indicated.
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Table 1: Impact of EOHO on Emergence of Local Infection Clusters

DV: Any new COVID19 cluster (1) (2) (3) (4) (5) (6)

Panel A: EOHO exposure measured in log normalized by population

Post × log(EOHO covered meals per capita) 0.008*** 0.010*** 0.010***
(0.003) (0.003) (0.003)

Post × log(EOHO restaurants per capita) 0.008*** 0.010*** 0.011***
(0.003) (0.003) (0.003)

Mean DV 0.099 0.099 0.099 0.099 0.099 0.099
Observations 88283 88283 88283 88283 88283 88283
MSOA 6791 6791 6791 6791 6791 6791
Additional controls 390 1209 4121 390 1209 4121
Clusters 326 326 326 326 326 326

Panel B: EOHO exposure measured in log +1

Post × log(EOHO meals) 0.017*** 0.016*** 0.014***
(0.004) (0.003) (0.003)

Post × log(EOHO restaurants) 0.014*** 0.016*** 0.017***
(0.003) (0.003) (0.003)

Mean DV 0.100 0.100 0.100 0.099 0.099 0.099
Observations 79547 79547 79547 88283 88283 88283
MSOA 6119 6119 6119 6791 6791 6791
Additional controls 390 1209 4121 390 1209 4121
Clusters 326 326 326 326 326 326

Panel C: EOHO exposure measured in levels

Post × EOHO covered meals 0.018*** 0.017*** 0.015***
(0.004) (0.003) (0.004)

Post × EOHO restaurants 0.012** 0.013** 0.013**
(0.005) (0.005) (0.005)

Mean DV 0.099 0.099 0.099 0.099 0.099 0.099
Observations 88283 88283 88283 88283 88283 88283
MSOA 6791 6791 6791 6791 6791 6791
Additional controls 390 1209 4121 390 1209 4121
Clusters 326 326 326 326 326 326

Area by Week FE: NUTS2 NUTS3 LAD NUTS2 NUTS3 LAD

Notes: Table presents difference-in-difference regression estimates studying the impact of the EOHO at the MSOA level on the
emergence of new COVID19 infection clusters across the 13 calendar weeks from 24 to 36. All regressions also control for local
authority by week fixed effects. Standard errors are clustered at the district level with starts indicating *** p< 0.01, ** p< 0.05, *
p< 0.1.
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Table 2: Robustness of Impact of EOHO on Emergence of Local Infection Clusters: Additional non-parametric
control variables

DV: Any new COVID19 cluster (1) (2) (3) (4) (5) (6)

Panel A: Measuring EOHO by imputed meals per capita

Post Week 32 × log(EOHO covered meals per capita) 0.010*** 0.010*** 0.008*** 0.007** 0.006** 0.006*
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Mean DV 0.099 0.099 0.099 0.099 0.099 0.099
Observations 88283 88270 88270 88270 88270 88270
Clusters 326 325 325 325 325 325

Panel B: Measuring EOHO by number of restaurants per capita

Post Week 32 × log(EOHO restaurants per capita) 0.011*** 0.010*** 0.010*** 0.008*** 0.006** 0.006**
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Mean DV 0.099 0.099 0.099 0.099 0.099 0.099
Observations 88283 88270 88270 88270 88270 88270
Clusters 326 325 325 325 325 325

Week x Additional control:
Population density measures X X X X X
Spring 2020 COVID19 exposure X X X X
Commuting exposure X X X
Student exposure X X
Tenure types X

Notes: Table presents difference-in-difference regression estimates studying the impact of the EOHO at the MSOA level on the emer-
gence of new COVID19 infection clusters across the 13 calendar weeks from 24 to 36. The dependent variable is 1 in case an MSOA
reported more than two new detected infections per calendar week. The specifications across panels explore the robustness to adding
additional successively more MSOA-level control variables interacted with week fixed effects to account for non-linear trends in these
measures. Population density measures include: population density, the standard deviation of population density across lower-level
super output areas (LSOAs) that make up the MSOA, and the area size of the MSOA in km2. Spring 2020 COVID measures an MSOA’s
exposure to COVID from March to July 2020 as the number of COVID19 deaths per capita ; the number of COVID19 cases per capita;
the number of non-COVID19 deaths per capita and the share of COVID19 deaths among all deaths. Commuting exposure measures
based on 2011 census the number of people usually commuting for work into an MSOA divided by the MOSA’s population; the number
of commuters usually resident but commuting elsewhere divided by the MSOA’s population. Student exposure measures based on the
2011 census the share of full time students resident in an MSOA. Tenure types measures the share of households living in rented or
owned accommodation. All regressions also control for local authority by week fixed effects. Standard errors are clustered at the district
level with starts indicating *** p< 0.01, ** p< 0.05, * p< 0.1.
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Table 3: Reduced Form Impact of Rainfall on EOHO days on emergence of local COVID19 infection
clusters later in the week

DV: Any new COVID19 cluster (1) (2) (3)

Panel A: Data window covering exactly the EOHO scheme

Significant Rainfall on EOHO days during lunch and dinner time -0.029** -0.030*** -0.030***
(0.011) (0.011) (0.011)

Significant Rainfall on Non-EOHO days during lunch and dinner time -0.024*
(0.014)

Significant Rainfall on EOHO days outside lunch and dinner hours 0.023
(0.020)

Mean DV 0.151 0.151 0.151
Observations 33955 33955 33955
Clusters 317 317 317

Panel B: Data window four week window prior to EOHO scheme (placebo)

Significant Rainfall on EOHO days during lunch and dinner time -0.018 -0.018 -0.018
(0.020) (0.020) (0.020)

Significant Rainfall on Non-EOHO days during lunch and dinner time -0.030*
(0.016)

Significant Rainfall on EOHO days outside lunch and dinner hours 0.002
(0.014)

Mean DV 0.059 0.059 0.059
Observations 1268 1268 1268
Clusters 317 317 317

Panel C: Data window four weeks after the EOHO scheme (placebo)

Significant Rainfall on EOHO days during lunch and dinner time 0.014 0.014 0.013
(0.020) (0.020) (0.020)

Significant Rainfall on Non-EOHO days during lunch and dinner time 0.001
(0.023)

Significant Rainfall on EOHO days outside lunch and dinner hours 0.036
(0.026)

Mean DV 0.534 0.534 0.534
Observations 27164 27164 27164
Clusters 317 317 317

Notes: Table presents difference-in-difference regression estimates studying the impact of the EOHO at the MSOA level
on the emergence of new COVID19 infection clusters during calendar weeks 32 to 36. All regressions also control for local
authority by week fixed effects. Standard errors are clustered at the district level with starts indicating *** p< 0.01, ** p< 0.05,
* p< 0.1.
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Table 4: Reduced Form Impact of Rainfall on EOHO days on Google mobility scores proxying visits to
restaurants and cafe’s across districts over time

DV: Google mobility visits to restaurants (1) (2) (3)

Panel A: Data window covering exactly the EOHO scheme

Significant Rainfall on EOHO days during lunch and dinner time -1.459*** -1.419***
(0.441) (0.422)

Significant Rainfall on non-EOHO days during lunch and dinner time -0.743
(0.464)

Significant Rainfall on EOHO days outside lunch and dinner hours -0.148
(0.521)

Mean DV -8.244 -21.968 -8.244
Observations 2401 4233 2401
Clusters 311 312 311

Panel B: Data window four week window prior to EOHO scheme

Significant Rainfall on EOHO days during lunch and dinner time 0.021 -0.167
(1.112) (1.117)

Significant Rainfall on non-EOHO days during lunch and dinner time 1.273
(1.252)

Significant Rainfall on EOHO days outside lunch and dinner hours 1.903**
(0.966)

Mean DV -21.407 -28.633 -21.407
Observations 3732 4979 3732
Clusters 311 312 311

Panel C: Data window four weeks after the EOHO scheme

Significant Rainfall on EOHO days during lunch and dinner time -0.155 -0.154
(0.606) (0.605)

Significant Rainfall on non-EOHO days during lunch and dinner time -1.397*
(0.712)

Significant Rainfall on EOHO days outside lunch and dinner hours -0.185
(0.865)

Mean DV -13.965 -18.172 -13.965
Observations 2918 4478 2918
Clusters 311 312 311

Notes: Table presents regression estimates studying the impact of inclement weather on Google mobility proxies capturing
visits to Restaurants and Cafes within local authority districts over time. Column (1) and (3) exploit intra-day variation in
rainfall falling during core lunch and dinner hours and outside these hours to study its impact on mobility to restaurants
on Mondays to Wednesdays during which the EOHO scheme would have been available during calendar weeks 32 to 36.
Column (2) explores the impact of rainfall falling during core lunch and dinner hours on restaurant visits occurring from
Thursdays to Sundays – days during which the EOHO discount would not have been available. Panel A focuses on the
calendar weeks 32 to 36 when the EOHO was available, while Panel B and Panel C can be thought of as placebo exercises
studying the rainfall and mobility relationships during times when the EOHO scheme was not available. All regressions
control for district fixed effects and NUTS2 area by date fixed effects. Standard errors are clustered at the district level with
starts indicating *** p< 0.01, ** p< 0.05, * p< 0.1.
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For Online Publication

Figure A1: COVID19 spread across MSOA’s in England

Notes: Figure plots the share of English MSOA’s that report at least three new cases of COVID19 per calendar week. The
vertical lines indicate the time that the Eat Out to Help Out scheme was open.
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Figure A2: Number of restaurants registered to participate in the Eat Out to Help
Out scheme across England

Notes: Time series plots the number of restaurants that are registered in the scheme at different points in time in England.
The program started on Aug 3, 2020 and lasted until Aug 31, 2020. Dots indicate points where a flat file with the restaurants
was downloadable from the HMRC Github repository track changes. The data in between is interpolated.
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Figure A3: Correlation between number of participating restaurant as measured
from two sources

Notes: Time series plots the number of restaurants that are registered in the scheme at different points in time in England.
The program started on Aug 3, 2020 and lasted until Aug 31, 2020. Dots indicate points where a flat file with the restaurants
was downloadable from the HMRC Github repository track changes. The data in between is interpolated.
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Figure A4: Distribution of point estimates obtained when dropping one region a
time

Panel A: Dropping each of the 9 NUTS1 regions in turn

Panel B: Dropping each of the 30 NUTS2 regions in turn

Panel C: Dropping each of the 93 NUTS3 regions in turn

Notes: Figures present the distribution of the point estimates obtained when dropping one region a time. The estimating
regression has as dependent variable an indicator that is equal to 1 in case a new COVID19 cluster of more than two cases
was detected in an MSOA. The regressions include MSOA fixed effects and district by time fixed effects. The coefficient
estimate is the interaction between the post indicator marking the start of the EOHO scheme and the log of the number of
number of restaurants +1 divided by the MSOA population. Standard errors are clustered at the district level.

4



Figure A5: Impact of the EOHO scheme on Google Mobility for Retail and Recre-
ation (which includes restaurant visits)

Notes: Figure plots the change in Google mobility measure on days during which the EOHO scheme was active (Monday,
Tuesday, Wednesday) before and after the scheme was introduced from calendar week 32 inclusive onwards up until
Monday 31, August inclusive in calendar week 36. The regression controls for district fixed effects, district-specific linear
trends by calendar week and day of week fixed effects. 90% standard errors obtained from clustering standard errors at the
district level are indicated.
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Figure A6: Placebo exercise studying impact of intra-day rainfall during calendar weeks 32 to 36 outside the EOHO
days on daily Google mobility scores

Relative impact of notable rain on Google mobility scores category for rain falling during

Panel A: Core lunch & dinner hours Panel B: Outside lunch & dinner hours

Notes: Figure presents results from regression estimates. The figure represents the impact of notable rainfall during weeks 32 to 36 when the EOHO was available – but on
the weekdays when the discount was not offered (Thursday-Sunday) - on Google mobility scores by mobility type. Panel A presents the impact of rainfall on mobility for rainfall
occurring during the core lunch- and dinner hours from 11:00 - 14:00 and 17:00 to 21:00. Panel B presents the impact of rainfall falling on the same day but outside the core
lunch and dinner hours. The regressions control for district fixed effects and NUTS2 region by date fixed effects. 90% confidence intervals obtained from clustering standard
errors at the district level are indicated.
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Table A1: EOHO and Google Mobility

DV: Google mobility in Retail & Recreation Grocery Parks Transit Workplace Residential

(1) (2) (3) (4) (5) (6)

Post Week 32 × EOHO Weekday 6.780*** -0.615*** 6.489*** -1.295*** -2.625*** 0.059**
(0.253) (0.100) (1.178) (0.258) (0.077) (0.023)

Mean DV -31.568 -10.997 69.819 -31.403 -38.000 11.908
Observations 24061 24597 17023 24224 26925 26331
Clusters 312 311 300 311 312 311

Notes: Table presents difference-in-difference regression estimates studying the evoltution of Google mobility measures at the district
level over time between calendar weeks 24 and 36. The EOHO scheme was active on Mondays, Tuesdays and Wednesdays from August
3, 2020 to August 31, 2020 (calendar weeks 32 to 36). The dependent variable is the mobility measure relative to pre COVID19 levels per
day across the categories provided by Google indicated in the column head. The regressions control for district FE, week fixed effects,
and weekday fixed effects. Standard errors are clustered at the district level with starts indicating *** p< 0.01, ** p< 0.05, * p< 0.1.
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Table A2: Robustness of Impact of EOHO on Emergence of Local Infection Clusters: Alternative functional
forms

DV: indicated in panel label (1) (2) (3) (4) (5) (6)

Panel A: Dependent variable: Any COVID19 cluster

Post × log(EOHO covered meals per capita) 0.008*** 0.010*** 0.010***
(0.003) (0.003) (0.003)

Post × log(EOHO restaurants per capita) 0.008*** 0.010*** 0.011***
(0.003) (0.003) (0.003)

Mean DV 0.099 0.099 0.099 0.099 0.099 0.099
Observations 88283 88283 88283 88283 88283 88283
MSOA 6791 6791 6791 6791 6791 6791
Additional controls 390 1209 4121 390 1209 4121
Clusters 326 326 326 326 326 326

Panel B: Dependent variable: log( of COVID19 cases in cluster)

Post × log(EOHO covered meals per capita) 0.014*** 0.016*** 0.016***
(0.005) (0.005) (0.006)

Post × log(EOHO restaurants per capita) 0.011** 0.014*** 0.016***
(0.005) (0.005) (0.005)

Mean DV 0.172 0.172 0.172 0.172 0.172 0.172
Observations 88283 88283 88283 88283 88283 88283
MSOA 6791 6791 6791 6791 6791 6791
Additional controls 390 1209 4121 390 1209 4121
Clusters 326 326 326 326 326 326

Panel C: Dependent variable: Inverse hyperbolic sine (asinh) of of COVID19 cases in cluster

Post × log(EOHO covered meals per capita) 0.018*** 0.021*** 0.021***
(0.007) (0.007) (0.007)

Post × log(EOHO restaurants per capita) 0.015** 0.018*** 0.021***
(0.006) (0.007) (0.007)

Mean DV 0.222 0.222 0.222 0.222 0.222 0.222
Observations 88283 88283 88283 88283 88283 88283
MSOA 6791 6791 6791 6791 6791 6791
Additional controls 390 1209 4121 390 1209 4121
Clusters 326 326 326 326 326 326

Area by Week FE: NUTS2 NUTS3 LAD NUTS2 NUTS3 LAD

Notes: Table presents difference-in-difference regression estimates studying the impact of the EOHO at the MSOA level on
the emergence of new COVID19 infection clusters across the 13 calendar weeks from 24 to 36. The dependent variable is 1
in case an MSOA reported more than two new detected infections per calendar week. The independent variable in panel
A measures the EOHO scheme as the log number of meals served in restaurants in an MSOA that participate in the EOHO
scheme plus 1 divided by the population in the area. The independent variable in panel B measures the EOHO scheme as the
log number of restaurants that participate in the EOHO scheme in an MSOA plus 1 divided by the population in the area. The
specifications across panels explore the robustness to controlling for more granular non-linear time fixed effects. NUTS refers
to the nomenclature unitÃ c©s territoriales statistiques which subdivides the England into 11, 30 and 93 regions. LAD refers too
local authority districts. PCON refers to Westminster parliamentary constituencies. Standard errors are clustered at the district
level with starts indicating *** p< 0.01, ** p< 0.05, * p< 0.1.
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Table A3: Robustness of Impact of EOHO on Emergence of Local Infection Clusters: Alternative fixed effects

DV: Any new COVID19 cluster (1) (2) (3) (4) (5) (6)

Panel A: Measuring EOHO by imputed meals per capita

Post Week 32 × log(EOHO covered meals per capita) 0.008*** 0.008*** 0.010*** 0.010*** 0.008*** 0.008***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Mean DV 0.099 0.099 0.099 0.099 0.099 0.099
Observations 88283 88283 88283 88283 88283 88283
MSOA 6791 6791 6791 6791 6791 6791
Additional controls 117 390 1209 4121 6929 9373
Clusters 326 326 326 326 326 326

Panel B: Measuring EOHO by number of restaurants per capita

Post Week 32 × log(EOHO restaurants per capita) 0.006** 0.008*** 0.010*** 0.011*** 0.009*** 0.008***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Mean DV 0.099 0.099 0.099 0.099 0.099 0.099
Observations 88283 88283 88283 88283 88283 88283
MSOA 6791 6791 6791 6791 6791 6791
Additional controls 117 390 1209 4121 6929 9373
Clusters 326 326 326 326 326 326

Area by Week FE: NUTS1 NUTS2 NUTS3 LAD PCON PCON x LAD

Notes: Table presents difference-in-difference regression estimates studying the impact of the EOHO at the MSOA level on the emergence of new
COVID19 infection clusters across the 13 calendar weeks from 24 to 36. The dependent variable is 1 in case an MSOA reported more than two new
detected infections per calendar week. The independent variable in panel A measures the EOHO scheme as the log number of meals served in
restaurants in an MSOA that participate in the EOHO scheme plus 1 divided by the population in the area. The independent variable in panel B
measures the EOHO scheme as the log number of restaurants that participate in the EOHO scheme in an MSOA plus 1 divided by the population
in the area. The specifications across panels explore the robustness to controlling for more granular non-linear time fixed effects. NUTS refers
to the nomenclature unitÃ c©s territoriales statistiques which subdivides the England into 11, 30 and 93 regions. LAD refers too local authority
districts. PCON refers to Westminster parliamentary constituencies. Standard errors are clustered at the district level with starts indicating *** p<
0.01, ** p< 0.05, * p< 0.1.
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Table A4: Reduced Form Impact of Rainfall on EOHO days on emergence of local COVID19 infection
clusters later in the week

DV: Any new COVID19 cluster (1) (2) (3)

Panel A: Rainfall and new COVID19 cases later in same week

Significant Rainfall on EOHO days during lunch and dinner time -0.023** -0.023** -0.023***
(0.009) (0.009) (0.009)

Significant Rainfall on Non-EOHO days during lunch and dinner time 0.001
(0.010)

Significant Rainfall on EOHO days outside lunch and dinner hours 0.002
(0.014)

Mean DV 0.151 0.151 0.151
Observations 33955 33955 33955
Clusters 317 317 317

Panel B: Rainfall and new COVID19 cases later in next week

Significant Rainfall on EOHO days during lunch and dinner time -0.015 -0.015 -0.014
(0.010) (0.010) (0.010)

Significant Rainfall on Non-EOHO days during lunch and dinner time 0.005
(0.011)

Significant Rainfall on EOHO days outside lunch and dinner hours -0.009
(0.014)

Mean DV 0.153 0.153 0.153
Observations 33955 33955 33955
Clusters 317 317 317

Panel C: Rainfall and new COVID19 cases later in previous week (placebo)

Significant Rainfall on EOHO days during lunch and dinner time -0.009 -0.009 -0.008
(0.009) (0.009) (0.009)

Significant Rainfall on Non-EOHO days during lunch and dinner time 0.006
(0.010)

Significant Rainfall on EOHO days outside lunch and dinner hours -0.019
(0.014)

Mean DV 0.149 0.149 0.149
Observations 33955 33955 33955
Clusters 317 317 317

Notes: Table presents difference-in-difference regression estimates studying the impact of the EOHO at the MSOA level
on the emergence of new COVID19 infection clusters during calendar weeks 32 to 36. All regressions also control for local
authority by week fixed effects. Standard errors are clustered at the district level with starts indicating *** p< 0.01, ** p<
0.05, * p< 0.1.
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Table A5: Reduced Form Impact of Rainfall on EOHO days on emergence of local COVID19 infection
clusters later in the week: alternative rainfall measures

(1) (2) (3)

Panel A: Any significant rainfall

Significant Rainfall on EOHO days during lunch and dinner time -0.029** -0.030*** -0.030***
(0.011) (0.011) (0.011)

Significant Rainfall on Non-EOHO days during lunch and dinner time -0.024*
(0.014)

Significant Rainfall on EOHO days outside lunch and dinner hours 0.023
(0.020)

Mean DV 0.151 0.151 0.151
Observations 33955 33955 33955
Clusters 317 317 317

Panel B: Rainfall in levels

Rainfall on EOHO days during lunch and dinner time -0.005** -0.005** -0.005**
(0.002) (0.002) (0.002)

Rainfall on Non-EOHO days during lunch and dinner time 0.001
(0.002)

Rainfall on EOHO days outside lunch and dinner hours -0.001
(0.002)

Mean DV 0.151 0.151 0.151
Observations 33955 33955 33955
Clusters 317 317 317

Notes: Table presents difference-in-difference regression estimates studying the impact of the EOHO at the MSOA level
on the emergence of new COVID19 infection clusters during calendar weeks 32 to 36. All regressions also control for local
authority by week fixed effects. Standard errors are clustered at the district level with starts indicating *** p< 0.01, ** p< 0.05,
* p< 0.1.
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Table A6: Reduced Form Impact of Rainfall on EOHO days on emergence of local COVID19 infection
clusters later in the week: alternative dependent variables

(1) (2) (3)

Panel A: Data window covering exactly the EOHO scheme

Significant Rainfall on EOHO days during lunch and dinner time -0.029** -0.030*** -0.030***
(0.011) (0.011) (0.011)

Significant Rainfall on Non-EOHO days during lunch and dinner time -0.024*
(0.014)

Significant Rainfall on EOHO days outside lunch and dinner hours 0.023
(0.020)

Mean DV 0.151 0.151 0.151
Observations 33955 33955 33955
Clusters 317 317 317

Panel B: Data window covering exactly the EOHO scheme

Significant Rainfall on EOHO days during lunch and dinner time -0.053*** -0.053*** -0.054***
(0.020) (0.020) (0.020)

Significant Rainfall on Non-EOHO days during lunch and dinner time -0.029
(0.023)

Significant Rainfall on EOHO days outside lunch and dinner hours 0.027
(0.037)

Mean DV 0.262 0.262 0.262
Observations 33955 33955 33955
Clusters 317 317 317

Panel C: Data window covering exactly the EOHO scheme

Significant Rainfall on EOHO days during lunch and dinner time -0.156** -0.157** -0.157**
(0.075) (0.076) (0.073)

Significant Rainfall on Non-EOHO days during lunch and dinner time -0.071
(0.073)

Significant Rainfall on EOHO days outside lunch and dinner hours 0.036
(0.169)

Mean DV 0.804 0.804 0.804
Observations 33955 33955 33955
Clusters 317 317 317

Notes: Table presents difference-in-difference regression estimates studying the impact of the EOHO at the MSOA level on the
emergence of new COVID19 infection clusters during calendar weeks 32 to 36. All regressions also control for local authority
by week fixed effects. Standard errors are clustered at the district level with starts indicating *** p< 0.01, ** p< 0.05, * p< 0.1.
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Table A7: Reduced Form Impact of Rainfall on EOHO days on Google mobility across districts over time

(1) (2) (3)

Panel A: Recreation and Retail

Significant Rainfall on EOHO days during lunch and dinner time -1.937*** -1.952***
(0.356) (0.364)

Significant Rainfall on non-EOHO days during lunch and dinner time -0.807**
(0.355)

Significant Rainfall on EOHO days outside lunch and dinner hours 0.039
(0.349)

Mean DV -8.244 -21.968 -8.244
Observations 2401 4233 2401
Clusters 311 312 311

Panel B: Grocery

Significant Rainfall on EOHO days during lunch and dinner time -0.777*** -0.581**
(0.234) (0.228)

Significant Rainfall on non-EOHO days during lunch and dinner time -0.769***
(0.257)

Significant Rainfall on EOHO days outside lunch and dinner hours -0.542**
(0.235)

Mean DV -12.288 -12.136 -12.288
Observations 2893 4336 2893
Clusters 311 311 311

Panel C: Parks

Significant Rainfall on EOHO days during lunch and dinner time -22.904*** -19.904***
(3.569) (3.376)

Significant Rainfall on non-EOHO days during lunch and dinner time -9.048***
(3.003)

Significant Rainfall on EOHO days outside lunch and dinner hours -5.920
(4.059)

Mean DV 92.791 75.969 92.791
Observations 937 2179 937
Clusters 239 295 239

Panel D: Transit

Significant Rainfall on EOHO days during lunch and dinner time -1.255*** -0.937**
(0.469) (0.473)

Significant Rainfall on non-EOHO days during lunch and dinner time 0.052
(0.505)

Significant Rainfall on EOHO days outside lunch and dinner hours -0.850
(0.548)

Mean DV -35.748 -27.783 -35.748
Observations 2934 3947 2934
Clusters 311 311 311

Panel D: Workplace

Significant Rainfall on EOHO days during lunch and dinner time -0.189** -0.131
(0.086) (0.087)

Significant Rainfall on non-EOHO days during lunch and dinner time -1.279***
(0.271)

Significant Rainfall on EOHO days outside lunch and dinner hours -0.172*
(0.104)

Mean DV -46.681 -32.225 -46.681
Observations 4624 4837 4624
Clusters 312 312 312

Panel D: Residential

Significant Rainfall on EOHO days during lunch and dinner time 0.309*** 0.258***
(0.042) (0.043)

Significant Rainfall on non-EOHO days during lunch and dinner time 0.700***
(0.080)

Significant Rainfall on EOHO days outside lunch and dinner hours 0.153***
(0.047)

Mean DV 11.417 7.504 11.417
Observations 4647 5533 4647
Clusters 311 311 311

Notes: Table presents difference-in-difference regression estimates studying the impact of the EOHO at the MSOA level on the
emergence of new COVID19 infection clusters during calendar weeks 32 to 36. All regressions also control for local authority by
week fixed effects. Standard errors are clustered at the district level with starts indicating *** p< 0.01, ** p< 0.05, * p< 0.1.
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