
ODE and PDE Stability Analysis 

COS 323 



Last Time 

•  Finite difference approximations 

•  Review of finite differences for ODE BVPs 

•  PDEs 

•  Phase diagrams 

•  Chaos 



Today 

•  Stability of ODEs 

•  Stability of PDEs 

•  Review of methods for solving large, sparse 
systems 

•  Multi-grid methods 



Reminders 

•  Homework 4 due next Tuesday 

•  Homework 5, final project proposal due 
Friday December 17 

•  Final project: groups of 3-4 people 



Stability of ODE 

•  i.e., rules out exponential divergence if initial 
value is perturbed 

€ 

A solution of the ODE ʹ′ y = f (t,y) is stable
if for every ε >  0 there is a δ >  0 st
if ˆ y (t) satisfies the ODE and ˆ y (t0) − y(t0) ≤ δ

then ˆ y (t) − y(t)  ≤ ε for all t ≥ t0



•  asymptotically stable solution: 

€ 

ˆ y (t) − y(t) →0  as t →0



•  stable but not asymptotically so: 



•  unstable: 



Determining stability 

•  General case: y’ = f(t, y) 

•  Simpler: linear, homogeneous system:  
 y’ = Ay 

•  Even simpler: y’ = 𝛌y 



y’ = 𝛌y 

•  Solution: y(t) = y0e𝛌t 

•  If 𝛌 > 0: exponential divergence : every  > 0: exponential divergence : every 
solution is unstable 

•  If 𝛌 < 0: every solution is asymptotically stable  < 0: every solution is asymptotically stable 

•  If 𝛌 complex:  complex: 
–  e𝛌t = eat (cos(bt) + i sin(bt)) 
– Re(𝛌) is a. This is oscillating component multiplied ) is a. This is oscillating component multiplied 

by a real amplification factor. 
– Re(𝛌) > 0: All unstable; Re(𝛌) < 0: All stable. ) > 0: All unstable; Re(𝛌) < 0: All stable. ) < 0: All stable. 



Stability: Linear system 

•  y’ = Ay 

•  if A is diagonalizable  eigenvectors are linearly 
independent 

•  Component by component: if Re(𝛌i) > 0 then growing, i) > 0 then growing, 
Re(𝛌i) < 0 decaying; Re(𝛌i) = 0 oscillating i) < 0 decaying; Re(𝛌i) = 0 oscillating i) = 0 oscillating 

•  Non-diagonalizable: requires all Re(𝛌i) <= 0, and  i) <= 0, and  
Re(𝛌i) < 0 for any non-simple eigenvalue i) < 0 for any non-simple eigenvalue 

€ 

y0 = α iui
i=1

n

∑  where ui are eigenvectors of A

€ 

y(t) = α iui
i=1

n

∑ eλi t  is a solution satisfying initial condition



Stability with Variable Coefficients 

•  y’(t) = A(t) y(t) 

•  Signs of eigenvalues may change with t, so 
eigenvalue analysis hard 



Stability, in General 

•  y’ = f(t, y) 

•  Can linearize ODE using truncated Taylor Series: 

•  If autonomous, then eigenvalue analysis yields same 
results as for linear ODE; otherwise, difficult to 
reason about eigenvalues 

•  NOTE: Jf evaluated at certain value of y0 (i.e., for a 
particular solution): so changing y0 may change 
stability properties   

€ 

ʹ′ z = J f (t, y(t))z
where J f  is Jacobian of f with respect to y 

i.e.,  J f (t, y){ }
ij

=
∂f i(t, y)
∂y j



Summary so far 

•  A solution to an ODE may be stable or unstable, 
regardless of method used to solve it 

•  May be difficult to analyze for non-linear, non-
homogenous ODEs 

•  y’ = 𝛌y is a good proxy for understanding stability of 
more complex systems, where 𝛌 functions like the  functions like the 
eigenvalues of Jf 



Stability of ODE vs Stability of Method 

•  Stability of ODE solution: Perturbations of solution do not 
diverge away over time 

•  Stability of a method: 
–  Stable if small perturbations do not cause the solution to diverge 

from each other without bound 
–  Equivalently: Requires that solution at any fixed time t remain 

bounded as h → 0 (i.e., # steps to get to t grows) 

•  How does stability of method interact with stability of underlying 
ODE? 
–  ODE may prevent convergence (e.g., 𝛌 > 0)  > 0) 
–  Method may be unstable even when ODE is stable 
–  ODE can determine step size h allowed for stability, for a given 

method 



Stability of Euler’s Method 

•  y’ = 𝛌y: Solution is y(t) = y0e𝛌t 

•  Euler’s method: yk+1 = yk + h𝛌yk 

•  yk+1 = (1 + h𝛌)yk 

•  Significance? 
yk = (1 + h𝛌)k y0 

•  (1 + h𝛌) is growth factor ) is growth factor 

•  If |1 + h𝛌| <= 1: Euler’s is stable | <= 1: Euler’s is stable 

•  If |1 + h𝛌| > 1: Euler’s is unstable | > 1: Euler’s is unstable 



Stability region for Euler’s method, y’ = 𝛌y 

•  h𝛌 must be in circle of radius 1 centered at -1:  must be in circle of radius 1 centered at -1: 



Stability for Euler’s method, general case 

•  Growth factor: 
– Compare to |1 + h𝛌|  |  

•  Stable if spectral radius  
– Satisfied if all eigenvalues of  
 lie inside the circle 

€ 

ek +1 = (I+ hkJ f )ek + lk +1

where J f = J f (tk,αyk + (
0

1
∫ 1−α)y(tk ) dα

€ 

I+ hkJ f

€ 

ρ(I+ hkJ f ) ≤1

€ 

hkJ f



Stability region for Euler’s method,  
y’ = f(t, y) 

•  Eigenvalues of        inside 

€ 

hkJ f



Discussion: Euler’s Method 

•  Stability depends on h, Jf 

•  Haven’t mentioned accuracy at all 

•  Accuracy is O(h) 
– Can always decrease h without penalty if 𝛌 real  real 



Backward Euler 

•  y’ = 𝛌y 

•  yk+1 = yk + h𝛌yk+1 

•  (1-h𝛌)yk+1 = yk 

€ 

yk =
1

1− hλ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
k

y0

so stability requires 1
1− hλ

≤1



Stability Region for Backward Euler, 
y’ = 𝛌y 

•  Region of stability: h𝛌 in left half of complex plane:  in left half of complex plane: 



Stability for Backward Euler, general case 

•  Amplification factor is (I – hJf)-1 

•  Spectral radius < 1 if eigenvalues of hJf 

outside circle of radius 1 centered at one 

•  i.e., if solution is stable, then Backward Euler 
is stable for any positive step size: 
unconditionally stable 

•  Step size choice can manage efficiency vs 
accuracy without concern for stability 
– Accuracy is still O(h) 



Stability for Trapezoid Method 

•  i.e., unconditionally stable 

•  In general: Amplification factor = 

€ 

yk+1 = yk + h(λyk + λyk+1) /2

yk =
1+ hλ /2
1− hλ /2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
k

y0

so stable if 1+ hλ /2
1− hλ /2

≤1

(holds for any h > 0 when Re(λ) < 0)

€ 

(I+ 1
2 hJ f )(I − 1

2 hJ f )
−1

spectral radius <  1 if eigenvalues of hJ f  lie in left half of plane



Implicit methods 

•  Generally larger stability regions than explicit 
methods 

•  Not always unconditionally stable 
–  i.e., step size does matter sometimes 



Stiffness and Stability 

•  for y’ = 𝛌y: 

•  stiff over interval b – a if 
(b - a) Re(𝛌) << -1 ) << -1 
i.e., 𝛌 may be negative but large in magnitude (a  may be negative but large in magnitude (a 

stable ODE) 
Euler’s method stability requires | 1 + h 𝛌 | < 1  | < 1 

 therefore requires VERY small h 
Backward Euler fine: any step size still OK (see 

graph) 



Conditioning of Boundary Value Problems 

•  Method does not travel “forward” (or “backward”) in 
time from an initial condition 

•  No notion of asymptotically stable or unstable 

•  Instead, concern for interplay between solution 
modes and boundary conditions 
–  growth forward in time is limited by boundary condition at b 
–  decay forward in time is limited by boundary condition at a 

•  See “Boundary Value Problems and Dichotomic 
Stability,” England & Mattheij, 1988 



PDEs 



Finite Difference Methods: Example 



Example, Continued 

•  Finite difference method yields recurrence relation: 

•  Compare to semi-discrete method with spatial mesh 
size Δx: 

•  Semi-discrete method yields system 

•  Finite difference method is equivalent to solving each 
yi using Euler’s method with h= Δt 



Recall:  
Stability region for Euler’s method 

•  Requires eigenvalues of hkJf inside 



Example, Continued 

•  What is Jf here? 

•  A is Jf, so eigenvalues of ΔtA must lie inside the circle 

•  i.e., Δt <= (Δx)2 / 2c 

•  Quite restrictive on Δt! 



Alternative Stencils 

•  Unconditionally stable with respect to Δt 

•  (Again, no comment on accuracy) 



Lax Equivalence Theorem 

•  For a well-posed linear PDE, two necessary and 
sufficient conditions for finite difference scheme to 
converge to true solution as Δx and Δt → 0 : 
–  Consistency: local truncation error goes to zero 
–  Stability: solution remains bounded 
–  Both are required 

•  Consistency derived from soundness of 
approximation to derivatives as Δt → 0 
–  i.e., does numerical method approximate the correct PDE? 

•  Stability: exact analysis often difficult (but less difficult 
than showing convergence directly) 



Reasoning about PDE Stability 

•  Matrix method 
– Shown on previous slides 

•  Domains of dependence 

•  Fourier / Von Neumann stability analysis 



Domains of Dependence 

•  CFL Condition: For each mesh point, the domain of 
dependence of the PDE must lie within the domain of 
dependence of the finite difference scheme 



Notes on CFL Conditions 

•  Encapsulated in “CFL Number” or “Courant 
number” that relates Δt to Δx for a particular 
equation 

•  CFL conditions are necessary but not 
sufficient 

•  Can be very restrictive on choice of Δt 

•  Implicit methods may not require low CFL 
number for stability, but still may require low 
number for accuracy 



Fourier / Von Neumann Stability Analysis 

•  Also pertains to finite difference methods for PDEs 

•  Valid under certain assumptions (linear PDE, periodic 
boundary conditions), but often good starting point 

•  Fourier expansion (!) of solution 

•  Assume 

–  Valid for linear PDEs, otherwise locally valid 
–  Will be stable if magnitude of ξ is less than 1: 

errors decay, not grow, over time 

€ 

u(x, t) = ak (nΔt)e
ikjΔx∑



Review of Methods for Large, Sparse 
Systems 



Why the need? 

•  All BVPs and implicit methods for time-
dependent PDEs yield systems of equations 

•  Finite difference schemes are typically sparse 



Review: Stationary Iterative Methods for 
Linear Systems 

•  Can we formulate g(x) such that x*=g(x*) 
when Ax* - b = 0? 

•  Yes: let A = M – N  (for any satisfying M, N) 
 and let g(x) = Gx + c = M-1Nx + M-1b 

•  Check: if x* = g(x*) = M-1Nx* + M-1b then  
Ax* = (M – N)(M-1Nx* + M-1b)  
   = Nx* + b + N(M-1Nx* + M-1b)  
       = Nx* + b – Nx*  
       = b 



So what? 

•  We have an update equation: 
x(k+1) = M-1Nxk + M-1b  

•  Only requires inverse of M, not A 

•  We can choose M to be nicely invertible (e.g., 
diagonal) 



Jacobi Method 

•  Choose M to be the diagonal of A 

•  Choose N to be M – A = -(L + U)  
– Note that A != LU here 

•  So, use update equation: 
 x(k+1) = D-1 ( b – (L + U)xk) 



Jacobi method 

•  Alternate formulation: Recall we’ve got 

•  Store all xi
k 

•  In each iteration, set 

€ 

xi
(k+1) =

bi − aij x j
(k )

j≠ i
∑
aii



Gauss-Seidel 

•  Why make a complete pass through 
components of x using only xi

k, ignoring the 
xi

(k+1) we’ve already computed? 

€ 

xi
(k+1) =

bi − aij x j
(k )

j≠ i
∑
aii

€ 

xi
(k+1) =

bi − aij x j
(k )

j> i
∑ − aij x j

(k+1)
j< i

∑
aii

Jacobi: 

G.S.: 



Notes on Gauss-Seidel 

•  Gauss-Seidel is also a stationary method 
A = M – N where M = D + L, N = -U 

•  Both G.S. and Jacobi may or may not 
converge 
–  Jacobi: Diagonal dominance is sufficient condition 
– G.S.: Diagonal dominance or symmetric positive 

definite 

•  Both can be very slow to converge 



Successive Over-relaxation (SOR) 

•  Let x(k+1) = (1-w)x(k) + w xGS
(k+1) 

•  If w = 1 then update rule is Gauss-Seidel 

•  If w < 1: Under-relaxation 
– Proceed more cautiously: e.g., to make a non-

convergent system converge 

•  If 1 < w < 2: Over-relaxation 
– Proceed more boldly, e.g. to accelerate 

convergence of an already-convergent system 

•  If w > 2: Divergence.  



Slow Convergence 

•  All these methods can be very slow 

•  Can have great initial progress but then slow 
down 

•  Tend to reduce high-frequency error rapidly, 
and low-frequency error slowly 

•  Demo: http://www.cse.illinois.edu/iem/fft/
itrmthds/ 



Multigrid Methods 

See Heath slides 



For more info 

•  http://academicearth.org/lectures/multigrid-
methods 


