ODE and PDE Stability Analysis

COS 323

Last Time

- Finite difference approximations
- Review of finite differences for ODE BVPs
- PDEs
- Phase diagrams
- Chaos

Today

- Stability of ODEs
- Stability of PDEs
- Review of methods for solving large, sparse systems
- Multi-grid methods

Reminders

- Homework 4 due next Tuesday
- Homework 5, final project proposal due Friday December 17
- Final project: groups of 3-4 people

Stability of ODE

A solution of the ODE y' = f(t, y) is stable if for every $\varepsilon > 0$ there is a $\delta > 0$ st if $\hat{y}(t)$ satisfies the ODE and $\|\hat{y}(t_0) - y(t_0)\| \le \delta$ then $\|\hat{y}(t) - y(t)\| \le \varepsilon$ for all $t \ge t_0$

i.e., rules out exponential divergence if initial value is perturbed

asymptotically stable solution:

$$\|\hat{y}(t) - y(t)\| \rightarrow 0 \text{ as } t \rightarrow 0$$

• stable but not asymptotically so:

• unstable:

Determining stability

- General case: $\mathbf{y}' = \mathbf{f}(t, \mathbf{y})$
- Simpler: linear, homogeneous system:
 y' = Ay

• Even simpler:
$$y' = \lambda y$$

$$y' = \lambda y$$

- Solution: $y(t) = y_0 e^{\lambda t}$
- If λ > 0: exponential divergence : every solution is unstable
- If $\lambda < 0$: every solution is asymptotically stable
- If λ complex:
 - $-e^{\lambda t} = e^{at} (\cos(bt) + i \sin(bt))$
 - $\operatorname{Re}(\lambda)$ is a. This is oscillating component multiplied by a real amplification factor.
 - $-\operatorname{Re}(\lambda) > 0$: All unstable; $\operatorname{Re}(\lambda) < 0$: All stable.

Stability: Linear system

- y' = Ay
- if **A** is diagonalizable \rightarrow eigenvectors are linearly independent

$$y_0 = \sum_{i=1}^n \alpha_i \mathbf{u}_i \text{ where } \mathbf{u}_i \text{ are eigenvectors of A}$$
$$y(t) = \sum_{i=1}^n \alpha_i \mathbf{u}_i e^{\lambda_i t} \text{ is a solution satisfying initial condition}$$

- Component by component: if Re(λ_i) > 0 then growing, Re(λ_i) < 0 decaying; Re(λ_i) = 0 oscillating
- Non-diagonalizable: requires all $\text{Re}(\lambda_i) \le 0$, and $\text{Re}(\lambda_i) \le 0$ for any non-simple eigenvalue

Stability with Variable Coefficients

- y'(t) = A(t) y(t)
- Signs of eigenvalues may change with t, so eigenvalue analysis hard

Stability, in General

- y' = f(t, y)
- Can linearize ODE using truncated Taylor Series: $z' = J_f(t, y(t))z$

where J_f is Jacobian of f with respect to y

i.e.,
$$\left\{J_f(t,y)\right\}_{ij} = \frac{\partial f_i(t,y)}{\partial y_i}$$

- If autonomous, then eigenvalue analysis yields same results as for linear ODE; otherwise, difficult to reason about eigenvalues
- NOTE: J_f evaluated at certain value of y₀ (i.e., for a particular solution): so changing y₀ may change stability properties

Summary so far

- A solution to an ODE may be stable or unstable, regardless of method used to solve it
- May be difficult to analyze for non-linear, nonhomogenous ODEs
- $y' = \lambda y$ is a good proxy for understanding stability of more complex systems, where λ functions like the eigenvalues of J_f

Stability of ODE vs Stability of Method

- Stability of ODE solution: Perturbations of solution do not diverge away over time
- Stability of a **method**:
 - Stable if small perturbations do not cause the solution to diverge from each other without bound
 - Equivalently: Requires that solution at any fixed time t remain bounded as h → 0 (i.e., # steps to get to t grows)
- How does stability of method interact with stability of underlying ODE?
 - ODE may prevent convergence (e.g., $\lambda > 0$)
 - Method may be unstable even when ODE is stable
 - ODE can determine step size h allowed for stability, for a given method

Stability of Euler's Method

- $y' = \lambda y$: Solution is $y(t) = y_0 e^{\lambda t}$
- Euler's method: $y_{k+1} = y_k + h\lambda y_k$
- $y_{k+1} = (1 + h\lambda)y_k$
- Significance?
 - $y_k = (1 + h\lambda)^k y_0$
- $(1 + h\lambda)$ is growth factor
- If $|1 + h\lambda| \le 1$: Euler's is stable
- If $|1 + h\lambda| > 1$: Euler's is unstable

Stability region for Euler's method, $y' = \lambda y$

• $h\lambda$ must be in circle of radius 1 centered at -1:

i.e., For $\lambda < 0$, stable only if $h \le -2/\lambda$; can be unstable even when ODE stable

Stability for Euler's method, general case

$$e_{k+1} = (\mathbf{I} + h_k \overline{J}_f) e_k + l_{k+1}$$

where $\overline{J}_f = \int_0^1 J_f(t_k, \alpha y_k + (1 - \alpha)y(t_k)) d\alpha$

- Growth factor: $\mathbf{I} + h_k \overline{J}_f$ - Compare to $|1 + h\lambda|$
- Stable if spectral radius $\rho(\mathbf{I} + h_k \overline{J}_f) \le 1$

- Satisfied if all eigenvalues of $h_k \overline{J}_f$ lie inside the circle

Stability region for Euler's method, y' = f(t, y)

• Eigenvalues of $h_k \overline{J}_f$ inside

Discussion: Euler's Method

- Stability depends on h, J_f
- Haven't mentioned accuracy at all
- Accuracy is O(h)
 - Can always decrease h without penalty if λ real

Backward Euler

• $y' = \lambda y$

•
$$y_{k+1} = y_k + h\lambda y_{k+1}$$

•
$$(1-h\lambda)y_{k+1} = y_k$$

$$y_k = \left(\frac{1}{1 - h\lambda}\right)^k y_0$$

so stability requires
$$\left|\frac{1}{1-h\lambda}\right| \le 1$$

Stability Region for Backward Euler, $y' = \lambda y$

• Region of stability: $h\lambda$ in left half of complex plane:

Stability for Backward Euler, general case

- Amplification factor is $(I hJ_f)^{-1}$
- Spectral radius < 1 if eigenvalues of hJ_f outside circle of radius 1 centered at one
- i.e., if solution is stable, then Backward Euler is stable for any positive step size: unconditionally stable
- Step size choice can manage efficiency vs accuracy without concern for stability
 - Accuracy is still O(h)

Stability for Trapezoid Method

$$y_{k+1} = y_k + h(\lambda y_k + \lambda y_{k+1})/2$$
$$y_k = \left(\frac{1+h\lambda/2}{1-h\lambda/2}\right)^k y_0$$
so stable if $\left|\frac{1+h\lambda/2}{1-h\lambda/2}\right| \le 1$

(holds for any h > 0 when $\text{Re}(\lambda) < 0$)

- i.e., unconditionally stable
- In general: Amplification factor = $(\mathbf{I} + \frac{1}{2}h\mathbf{J}_f)(\mathbf{I} \frac{1}{2}h\mathbf{J}_f)^{-1}$

spectral radius < 1 if eigenvalues of $h\mathbf{J}_{f}$ lie in left half of plane

Implicit methods

- Generally larger stability regions than explicit methods
- Not always unconditionally stable
 - i.e., step size does matter sometimes

Stiffness and Stability

- for y' = λ y:
- stiff over interval b a if
 (b a) Re(λ) << -1

i.e., λ may be negative but large in magnitude (a stable ODE)

Euler's method stability requires $|1 + h \lambda| < 1$

therefore requires VERY small h

Backward Euler fine: any step size still OK (see graph)

Conditioning of Boundary Value Problems

- Method does not travel "forward" (or "backward") in time from an initial condition
- No notion of asymptotically stable or unstable
- Instead, concern for interplay between solution modes and boundary conditions
 - growth forward in time is limited by boundary condition at b
 - decay forward in time is limited by boundary condition at a
- See "Boundary Value Problems and Dichotomic Stability," England & Mattheij, 1988

PDEs

Finite Difference Methods: Example

Consider heat equation

$$u_t = c \, u_{xx}, \qquad 0 \le x \le 1, \qquad t \ge 0$$

with initial and boundary conditions

$$u(0,x) = f(x), \qquad u(t,0) = \alpha, \qquad u(t,1) = \beta$$

Example, Continued

• Finite difference method yields recurrence relation:

$$u_i^{k+1} = u_i^k + c \,\frac{\Delta t}{(\Delta x)^2} \left(u_{i+1}^k - 2u_i^k + u_{i-1}^k \right), \quad i = 1, \dots, n$$

 Compare to semi-discrete method with spatial mesh size Δx:

$$y'_{i}(t) = \frac{c}{(\Delta x)^{2}} \left(y_{i+1}(t) - 2y_{i}(t) + y_{i-1}(t) \right), \quad i = 1, \dots, n$$

 Finite difference method is equivalent to solving each y_i using Euler's method with h= ∆t

Recall:

Stability region for Euler's method

Requires eigenvalues of h_kJ_f inside

Example, Continued

• What is J_f here?

$$\boldsymbol{y}' = \frac{c}{(\Delta x)^2} \begin{bmatrix} -2 & 1 & 0 & \cdots & 0 \\ 1 & -2 & 1 & \cdots & 0 \\ 0 & 1 & -2 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & -2 \end{bmatrix} \boldsymbol{y} = \boldsymbol{A}\boldsymbol{y}$$

- A is Jf, so eigenvalues of ΔtA must lie inside the circle
- i.e., $\Delta t \le (\Delta x)^2 / 2c$
- Quite restrictive on $\Delta t!$

Alternative Stencils

- Unconditionally stable with respect to Δt
- (Again, no comment on accuracy)

Lax Equivalence Theorem

- For a well-posed linear PDE, two necessary and sufficient conditions for finite difference scheme to converge to true solution as Δx and $\Delta t \rightarrow 0$:
 - Consistency: local truncation error goes to zero
 - Stability: solution remains bounded
 - Both are required
- Consistency derived from soundness of approximation to derivatives as $\Delta t \rightarrow 0$
 - i.e., does numerical method approximate the correct PDE?
- Stability: exact analysis often difficult (but less difficult than showing convergence directly)

Reasoning about PDE Stability

- Matrix method
 - Shown on previous slides
- Domains of dependence
- Fourier / Von Neumann stability analysis

Domains of Dependence

 CFL Condition: For each mesh point, the domain of dependence of the PDE must lie within the domain of dependence of the finite difference scheme

Notes on CFL Conditions

- Encapsulated in "CFL Number" or "Courant number" that relates Δt to Δx for a particular equation
- CFL conditions are necessary but not sufficient
- Can be very restrictive on choice of Δt
- Implicit methods may not require low CFL number for stability, but still may require low number for accuracy

Fourier / Von Neumann Stability Analysis

- Also pertains to finite difference methods for PDEs
- Valid under certain assumptions (linear PDE, periodic boundary conditions), but often good starting point
- Fourier expansion (!) of solution

$$u(x,t) = \sum a_k(n\Delta t)e^{ikj\Delta x}$$

Assume

$$a_k(n\Delta t) = (\xi_k)^n$$

- Valid for linear PDEs, otherwise locally valid
- Will be stable if magnitude of ξ is less than 1: errors decay, not grow, over time

Review of Methods for Large, Sparse Systems

Why the need?

- All BVPs and implicit methods for timedependent PDEs yield systems of equations
- Finite difference schemes are typically sparse

$$\boldsymbol{y}' = \frac{c}{(\Delta x)^2} \begin{bmatrix} -2 & 1 & 0 & \cdots & 0 \\ 1 & -2 & 1 & \cdots & 0 \\ 0 & 1 & -2 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & -2 \end{bmatrix} \boldsymbol{y} = \boldsymbol{A}\boldsymbol{y}$$

Review: Stationary Iterative Methods for Linear Systems

- Can we formulate g(x) such that x*=g(x*) when Ax* - b = 0?
- Yes: let A = M N (for any satisfying M, N) and let g(x) = Gx + c = M⁻¹Nx + M⁻¹b
- Check: if $x^* = g(x^*) = M^{-1}Nx^* + M^{-1}b$ then $Ax^* = (M - N)(M^{-1}Nx^* + M^{-1}b)$ $= Nx^* + b + N(M^{-1}Nx^* + M^{-1}b)$ $= Nx^* + b - Nx^*$ = b

So what?

- We have an update equation:
 x^(k+1) = M⁻¹Nx^k + M⁻¹b
- Only requires inverse of M, not A
- We can choose M to be nicely invertible (e.g., diagonal)

Jacobi Method

- Choose M to be the diagonal of A
- Choose N to be M A = -(L + U)

– Note that A != LU here

• So, use update equation: $x^{(k+1)} = D^{-1} (b - (L + U)x^k)$

Jacobi method

• Alternate formulation: Recall we've got

 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

- Store all x^k_i
- In each iteration, set

$$x_{i}^{(k+1)} = \frac{b_{i} - \sum_{j \neq i} a_{ij} x_{j}^{(k)}}{a_{ii}}$$

Gauss-Seidel

 Why make a complete pass through components of x using only x^k_i, ignoring the x^(k+1) we've already computed?

Jacobi:
$$x_i^{(k+1)} = \frac{b_i - \sum_{j \neq i} a_{ij} x_j^{(k)}}{a_{ii}}$$

G.S.:
$$x_i^{(k+1)} = \frac{b_i - \sum_{j>i} a_{ij} x_j^{(k)} - \sum_{j$$

Notes on Gauss-Seidel

- Gauss-Seidel is also a stationary method
 A = M N where M = D + L, N = -U
- Both G.S. and Jacobi may or may not converge
 - Jacobi: Diagonal dominance is sufficient condition
 - G.S.: Diagonal dominance or symmetric positive definite
- Both can be very slow to converge

Successive Over-relaxation (SOR)

- Let $x^{(k+1)} = (1-w)x^{(k)} + w x_{GS}^{(k+1)}$
- If w = 1 then update rule is Gauss-Seidel
- If w < 1: Under-relaxation
 - Proceed more cautiously: e.g., to make a nonconvergent system converge
- If 1 < w < 2: Over-relaxation
 - Proceed more boldly, e.g. to accelerate convergence of an already-convergent system
- If w > 2: Divergence. ☺

- All these methods can be very slow
- Can have great initial progress but then slow down
- Tend to reduce high-frequency error rapidly, and low-frequency error slowly
- Demo: http://www.cse.illinois.edu/iem/fft/ itrmthds/

Multigrid Methods

See Heath slides

For more info

 http://academicearth.org/lectures/multigridmethods