

Odoo Development
Cookbook

Build effective applications by applying Odoo development
best practices

Holger Brunn

Alexandre Fayolle

Daniel Reis

BIRMINGHAM - MUMBAI

FM-2

Odoo Development Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: April 2016

Production reference: 1260416

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-364-4

www.packtpub.com

www.packtpub.com

FM-3

Credits

Authors
Holger Brunn

Alexandre Fayolle

Daniel Reis

Reviewers
Guewen Baconnier

Stefan Rijnhart

Acquisition Editor
Manish Nainani

Content Development Editor
Mehvash Fatima

Technical Editors
Menza Mathew

Deepti Tuscano

Copy Editors
Merilyn Pereira

Alpha Singh

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

FM-4

About the Authors

Holger Brunn has been a fervent open source advocate since he came in to contact
with the open source market sometime in the nineties. With an academic background in
philosophy and sociology, he turned his interest to generalized logic, which proves helpful in
many aspects of his IT work. Turning into a professional programmer was a side effect of his
hobbyist interest, combined with a part-time job with a very open-minded mentor to whom he
owes a lot of gratitude.

He has programmed for ERP and similar systems in different positions since 2001. For the
last eight years, he has dedicated his time to TinyERP, which became OpenERP and evolved
into Odoo. Currently, he works at Therp BV in the Netherlands as a developer and is an active
member of the Odoo Community Association (OCA). He's most interested in fundamental work
on technical modules, but also enjoys contributing to other projects, with a focus on UI and
website widgets, CRM, and knowledge management.

Alexandre Fayolle started working with Linux and free software in the mid 1990s and
quickly became interested in the Python programming language. Between 1999 and 2012, he
helped manage Logilab, a company he cofounded, he specialized in Python development, and
had the opportunity to work on projects for large companies such as EDF, Arcelor-Mittal, and
GdF Suez (now Engie) using the Cubicweb framework.

He also tackled fun projects involving machine learning, natural language processing, and
multi-agent systems. In 2012, he joined Camptocamp to share his expertise on Python,
PostgreSQL, and Linux with the team implementing Odoo (OpenERP at the time). He
currently manages projects for Camptocamp and is strongly involved in the Odoo Community
Association. In his spare time, he likes to play the vibraphone in a jazz quartet, but has
recently been known for writing a book about Odoo, which he hopes you'll enjoy.

FM-5

Daniel Reis has been working in the IT industry for over 15 years in developer, consultant,
and management roles. Most of this work was at the Capgemini multinational consultancy
firm, implementing proprietary business solutions for reference companies in a variety of
sectors, such as industry, telecommunications, and banking. Daniel has a BSc in applied
mathematics and a master's in business administration from the ISCTE Business School.

He's worked with Odoo solutions (formerly OpenERP) since 2010, and he is an active
contributor in the Odoo community association projects. He has been a speaker at the Open
Days annual conference and other open source events. He is the author of the first Odoo
development book: Odoo Development Essentials, also by Packt Publishing.

He currently works at Securitas, the global security services company, where he has
introduced Python, Odoo, and other open source solutions into the company's IT
applications portfolio.

I thank my wife, Maria José, for all the support and patience that made this
book possible.

FM-6

About the Reviewers

Guewen Baconnier is a discrete guy who does not enjoy being put forward. He works
at Camptocamp where he's been a TinyERP programmer before moving to OpenERP and
now Odoo. He is a free software enthusiast and an active member of the Odoo Community
Association (OCA), where his responsibilities involve, among others, being the lead developer
of the OCA Connector Framework. Guewen also loves books so should you come across him,
there is a good chance he may have his nose in one, either reading a technical book to keep up
with his boundless curiosity and hunger to learn, or reading a novel to journey in some fictional
universe, or whatever good read fell into his hands. He likes to hike in the countryside with his
beloved wife. He is also the happy father of two nice kids, with whom he enjoys spending time,
strolling, going to the library, reading books, and playing Kerbal Space Program.

I would like to thank my wife and kids for supporting my tiredness on the
morrows of long evenings of reviewing. And I would like to thank Alexandre
Fayolle who helped me shape this short biography. Finally, thanks to my
colleagues and to all contributors of the OCA from whom I learn every day.

Stefan Rijnhart is a life-long open source advocate and has been a full time Odoo
consultant and developer since 2010. He enjoys collaborating in the Odoo Community
Association (OCA), which he finds to be mutually beneficial to his customers' projects. In the
OCA, Stefan played a key role in the creation of the OpenUpgrade migration project for Odoo
and in the Odoo Community Backports project (OCB). Offline, you can find him riding a carrier
bicycle through the streets of Amsterdam with his son on the front seat, or playing music with
his band. Get in touch with Stefan at http://opener.amsterdam.

http://opener.amsterdam

FM-7

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

i

Table of Contents
Preface vii
Chapter 1: Installing the Odoo Development Environment 1

Introduction 1
Easy installation of Odoo from source 2
Managing Odoo environments using the start command 9
Managing Odoo server databases 10
Storing the instance configuration in a file 19
Activating the Odoo developer tools 22
Updating Odoo from source 25

Chapter 2: Managing Odoo Server Instances 29
Introduction 29
Configuring the addons path 30
Updating the addon modules list 31
Standardizing your instance directory layout 33
Installing and upgrading local addon modules 36
Installing addon modules from GitHub 40
Applying changes to addons 42
Applying and trying proposed pull requests 43

Chapter 3: Creating Odoo Modules 47
Introduction 47
Creating and installing a new addon module 48
Completing the addon module manifest 49
Organizing the addon module file structure 52
Adding models 55
Adding Menu Items and Views 57
Using scaffold to create a module 61

ii

Table of Contents

Chapter 4: Application Models 63
Introduction 63
Defining the Model representation and order 64
Adding data fields to a model 66
Using a float field with configurable precision 71
Adding a monetary field to a Model 73
Adding relational fields to a Model 74
Adding a hierarchy to a Model 78
Adding constraint validations to a Model 80
Adding computed fields to a Model 82
Exposing Related fields stored in other models 85
Adding dynamic relations using Reference fields 86
Adding features to a Model using inheritance 87
Using Abstract Models for reusable Model features 89
Using Delegation inheritance to copy features to another Model 91

Chapter 5: Basic Server Side Development 95
Introduction 95
Defining model methods and use the API decorators 96
Reporting errors to the user 99
Obtaining an empty recordset for a different model 101
Creating new records 102
Updating values of recordset records 104
Searching for records 107
Combining recordsets 109
Filtering recordsets 110
Traversing recordset relations 112
Extending the business logic defined in a Model 114
Extending write() and create() 117
Customizing how records are searched 120

Chapter 6: Advanced Server Side Development Techniques 125
Introduction 125
Change the user performing an action 126
Call a method with a modified context 128
Execute raw SQL queries 130
Write a wizard to guide the user 133
Define onchange methods 138
Call onchange methods on the server side 141
Port old API code to the new API 143

iii

Table of Contents

Chapter 7: Debugging and Automated Testing 153
Introduction 153
Producing server logs to help debug methods 153
Using the Odoo shell to interactively call methods 157
Using the Python debugger to trace method execution 159
Writing tests for your module using YAML 164
Writing tests for your module using Python unit tests 168
Running server tests 172
Using the Odoo Community Association maintainer quality tools 173

Chapter 8: Backend Views 179
Introduction 180
Adding a menu item and window action 180
Having an action open a specific view 184
Adding content and widgets to a form view 186
Adding buttons to forms 189
Passing parameters to forms and actions: Context 190
Defining filters on record lists: Domain 193
List views 196
Search views 198
Changing existing views: View inheritance 201
Document-style forms 205
Dynamic form elements using attrs 207
Embedded views 207
Kanban views 209
Show kanban cards in columns according to their state 211
Calendar views 212
Graph and pivot views 213
QWeb reports 215

Chapter 9: Module Data 219
Introduction 219
Using external IDs and namespaces 219
Loading data using XML files 221
Using the noupdate and forcecreate flags 224
Loading data using CSV files 226
Loading data using YAML files 228
Addon updates and data migration 229

Chapter 10: Access Security 233
Create security groups and assign them to users 233
Add security access to models 238

iv

Table of Contents

Limit access to fields in models 241
Limit record access using record rules 243
Using security group to activate features 246

Chapter 11: Internationalization 253
Installing a language and configure user preferences 253
Configure language-related settings 257
Translate texts through the web client user interface 258
Exporting translation strings to a file 261
Use gettext tools to ease translations 264
Import translation files 266

Chapter 12: Automation and Workflows 269
Introduction 269
Using Kanban stages and features 270
Creating server actions 273
Adding messaging and tracking features 276
Using Python code server actions 281
Using automated actions on time conditions 283
Using automated actions on event conditions 288
Inspecting built-in workflows 291

Chapter 13: Web Server Development 295
Introduction 295
Make a path accessible from the network 295
Restrict access to web accessible paths 300
Consume parameters passed to your handlers 302
Modify an existing handler 304
Using the RPC API 307

Chapter 14: CMS Website Development 311
Introduction 311
Extending CSS and JavaScript for the website 311
Creating or modifying templates - QWeb 314
Offering snippets to the user 318

Chapter 15: Web Client Development 325
Introduction 325
Creating custom widgets 325
Using client-side QWeb templates 331
Making RPC calls to the server 333
Writing tests for client side code 336
Debugging your client side code 340

v

Table of Contents

Chapter 16: Server Deployment 345
Introduction 345
Installing Odoo for production 345
Adapting the configuration file for production 351
Set up Odoo as a system service 355
Configure a reverse proxy and SSL 357
Use buildout for repeatable builds 362

Index 371

vii

Preface
Odoo, formerly known as OpenERP, is a great platform for developers. The framework at
its core is very rich and allows building client–server applications from scratch as well as
adapting existing applications to your needs through a clever extension mechanism and a
very modular design. The latest versions have brought a wealth of new possibilities with the
addition of a full-featured website development stack. The scope is huge and it is easy for
newcomers to feel lost.

For years, Odoo developers have been learning their craft by reading the code of the addon
modules, which are built on top of the framework to provide enterprise management features.
While effective, the process is long and error prone, since it is difficult to know whether the
source code you are learning from is using the latest possibilities offered by the framework,
or if you are looking at an older module that has not been updated to use these features. To
make things worse, some code flows are intrinsically hard to follow because they're partly in
the business logic layer, partly in the database layer, partly in the request handling layer, and
partly in the client side code. The introduction of a new API in version 8 has made things even
more confusing, since most of the code base was not immediately ported to this new API.

This book is meant to save you time by tapping in to the years of experience accumulated
by long-time Odoo contributors to learn the current best practices in Odoo development by
focusing on the new features of version 9, and also giving a solid base in the existing mature
functionality of the framework. Since Odoo has a long tradition of guaranteeing backward
compatibility, most of the presented material should still work with the upcoming versions.

What this book covers
This book contains 16 chapters. We tried hard to make each chapter as independent as
possible, and to make the various recipes in each chapter self-contained.

Chapter 1, Installing the Odoo Development Environment, explains how to create a
development environment for Odoo, start Odoo, create a configuration file, and activate
the developer tools of Odoo.

Preface

viii

Chapter 2, Managing Odoo Server Instances, is about addon installation and upgrading.
It provides useful tips for working with addons installed from GitHub, and organizing the
source code of your instance.

Chapter 3, Creating Odoo Modules, explains the structure of an Odoo addon module and
gives a step-by-step guide for creating a simple module from scratch.

Chapter 4, Application Models, focuses on Odoo model descriptions, and explains the various
field types and the different inheritance models available in Odoo.

Chapter 5, Basic Server Side Development, introduces the v8 API of Odoo, presents the
commonly used methods of the Model class, and explains how to write business logic methods.

Chapter 6, Advanced Server Side Development Techniques, deals with more advanced topics
useful when writing business methods such as writing wizards to walk the user through a
process or writing onchange methods. It also covers porting code from the old API to the
v8 API.

Chapter 7, Debugging and Automated Testing, proposes some strategies for server-side
debugging and an introduction to the Python debugger. It also explains how to write and
run automated tests using YAML or Python for your addon modules.

Chapter 8, Backend Views, explains how to write business views for your data models and how
to call server-side methods from these views. It covers the usual views (list view, form view,
and search view) as well as the views introduced in recent versions of Odoo (Kanban, graph,
calendar, pivot, and so on)

Chapter 9, Module Data, shows how to ship data along with the code of your module. It also
explains how to write a migration script when a data model provided by an addon is modified
in a new release.

Chapter 10, Access Security, explains how to control who has access to what in your Odoo
instance, by creating security groups, writing access control lists to define what operations are
available to each group on a given model, and, if necessary, by writing record level rules.

Chapter 11, Internationalization, deals with the translation of the user interfaces of your addons.

Chapter 12, Automation and Workflows, illustrates the different tools available in Odoo to
implement business process for your records. It also shows how server actions and automated
rules can be used to support business rules.

Chapter 13, Web Server Development, deals with the core of the web server in Odoo. It
explains how to map URLs to methods and how to control who can access these URLs.

Chapter 14, CMS Website Development, shows how to customize websites built with Odoo, by
writing your own templates and providing new snippets for use in the website builder.

Preface

ix

Chapter 15, Web Client Development, dives into the JavaScript part of Odoo and explains
how you can provide new widgets and make RPC calls to the server. It also gives tips about
debugging and testing this part of your code.

Chapter 16, Server Deployment, provides advice on how to install and configure Odoo for
production, including setting up a reverse proxy to encrypt network communications over
HTTPS and ensuring that Odoo starts when the server boots.

Who this book is for
This book is targeted at Python developers who want to learn Odoo development or
consolidate their Odoo skills. Some experience with the JavaScript programming language
and web development in general is required to fully benefit from the frontend chapters.

This book focuses on core application development. It does not cover how to use the business
applications provided by Odoo. You may want to refer to Working with Odoo, by Greg Moss,
for this.

This book does not provide explanations about how the internals of the enterprise
management applications work. To understand this, you will have to read the source code and
experiment for yourself. Being familiar with the contents of the Odoo Development Cookbook
should make your life easier, as it contains pointers to parts of the code you can read to learn
about a specific topic.

What you need for this book
The set up recipes in Chapter 1, Installing the Odoo Development Environment, and Chapter 15,
Web Client Development, expect that you are working on a server running Debian GNU/Linux, or
a derivative distribution such as Ubuntu, in a reasonably up-to-date release. If you are running
another distribution, things should be fairly straightforward; the main differences should be
in the names of the packages to install, and possibly the location of the configuration files of
PostgreSQL and Nginx.

If your workstation is running Windows or MacOS, we advise you to set up a Debian virtual
machine to work with Odoo. While it is possible to develop natively on Windows or Mac, having
a development environment as close as possible to the deployment environment is a good way
to avoid nasty surprises and GNU/Linux is the recommended deployment platform for Odoo.

Preface

x

Is there a recommended Integrated Development Environment (IDE) for Odoo? This is a
frequently asked question by newcomers. The best answer is to use whatever tool you
are familiar with. Popular choices include Eclipse or PyCharm, but a very high number of
experimented developers, including the core Odoo developers, use just a programming
text editor such as vim, GNU emacs, or Sublime Text to have syntax highlighting and useful
helpers such as automatic indentation, while using the Python debugger for debugging. It is
recommended to start with the basic tools because IDEs have a tendency to hide complexity
you should be familiar with in order to fix the harder problems.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Preface

xi

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The parsing
of the configuration file by Odoo is done using the Python ConfigParser module."

A block of code is set as follows:

[DEFAULT]
project = /home/odoo/projects/project1
env = dev
prefix = %(project)s/%(env)s

[options]
addons-path = %(prefix)s/odoo/addons,%(prefix)s/OCA/server-tools
data_dir = %(prefix)s/data_dir

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

{ 'name': 'Chapter 03 code',
 'depends': ['base', 'decimal_precision],
 'data': ['views/library_book.xml'] }

Any command-line input or output is written as follows:

$ sudo apt-get install git python2.7 postgresql nano python-virtualenv

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Click on the Manage
Databases link."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

xii

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.

2. Hover the mouse pointer on the SUPPORT tab at the top.

3. Click on Code Downloads & Errata.

4. Enter the name of the book in the Search box.

5. Select the book for which you're looking to download the code files.

6. Choose from the drop-down menu where you purchased this book from.

7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

xiii

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

 f WinRAR / 7-Zip for Windows

 f Zipeg / iZip / UnRarX for Mac

 f 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from http://www.packtpub.com/sites/default/files/
downloads/Bookname_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section
of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

xiv

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

1

1
Installing the

Odoo Development
Environment

In this chapter, we will cover the following topics:

 f Easy installation of Odoo from source

 f Managing Odoo environments using the start command

 f Managing Odoo server databases

 f Storing the instance configuration in a file

 f Activating the Odoo developer tools

 f Updating Odoo from source

Introduction
There are lots of ways to set up an Odoo development environment. This chapter proposes
one of these, although you will certainly find a number of other tutorials on the web explaining
other approaches. Keep in mind that this chapter is about a development environment, which
has different requirements from a production environment, covered in Chapter 16, Server
Deployment.

Installing the Odoo Development Environment

2

Easy installation of Odoo from source
For Odoo deployment, it is recommended to use a GNU/Linux environment. You may be
more at ease using Microsoft Windows or Mac OS X, but the fact is that most of the Odoo
developers are using GNU/Linux and you are much more likely to get support from the
community for OS-level issues happening on GNU/Linux than on Windows.

It is also recommended to develop using the same environment (same distribution, same
version) as the one which will be used in production. This will avoid nasty surprises such as
discovering on the day of deployment that some library has a different version than expected,
with a slightly different and incompatible behavior. If your workstation is using a different OS,
a good approach is to set up a virtual machine on your workstation and to install a GNU/Linux
distribution in the VM.

To avoid copying files between your workstation where you are running
your development environment and the virtual machine which runs Odoo,
you can configure a SAMBA share inside the virtual machine and store the
source code there. You can then mount the share on your workstation in
order to edit the files easily.

This book assumes you are running Debian GNU/Linux as its stable version (Jessie at the time
of writing). Ubuntu is another popular choice, and since it is built on top of Debian, most of
the examples in this book should work unchanged. Whatever Linux distribution you choose,
you should have some notion of how to use it from the command line, and having a few ideas
about system administration will certainly not cause any harm.

Getting ready
We assume that Linux is up and running and that you have an account with root access, either
because you know the root password or because sudo has been configured. In the following
pages, we will be using $(whoami) whenever the login of your work user is required in a
command line. This is a shell command which will substitute your login in the command you
are typing.

Some operations will definitely be easier if you have a GitHub account. Go to
https://github.com and create one if you don't have one already.

How to do it...
To install Odoo from source, you need to follow these steps:

1. Run the following commands to install the main dependencies:
$ sudo apt-get install git python2.7 postgresql nano \

python-virtualenv

https://github.com

Chapter 1

3

2. Download and install wkhtmltopdf:
$ wget http://nightly.odoo.com/extra/wkhtmltox-0.12.1.2_linux-
jessie-amd64.deb

$ sudo dpkg -i wkhtmltox-0.12.1.2_linux-jessie-amd64.deb

Caution!
This is a package provided by the Odoo maintainer for Debian Jessie.
If you are using another distribution, browse to http://download.
gna.org/wkhtmltopdf/0.12/0.12.1/ and download the
package for your operating system.

3. Now, use this to install the build dependencies:
$ sudo apt-get install gcc python2.7-dev libxml2-dev \

libxslt1-dev libevent-dev libsasl2-dev libldap2-dev libpq-dev \

libpng12-dev libjpeg-dev

4. Configure PostgreSQL:
$ sudo -u postgres createuser --createdb $(whoami)

$ createdb $(whoami)

5. Configure git:
$ git config --global user.name "Your Name"

$ git config --global user.email youremail@example.com

6. Clone the Odoo code base:
$ mkdir ~/odoo-dev

$ cd ~/odoo-dev

$ git clone -b 9.0 --single-branch https://github.com/odoo/odoo.
git

$ cd odoo

7. Create an odoo-9.0 virtual environment and activate it:
$ virtualenv ~/odoo-9.0

$ source ~/odoo-9.0/bin/activate

8. Install the Python dependencies of Odoo in virtualenv:
$ pip install -r requirements.txt

http://download.gna.org/wkhtmltopdf/0.12/0.12.1/
http://download.gna.org/wkhtmltopdf/0.12/0.12.1/

Installing the Odoo Development Environment

4

9. Create and start your first Odoo instances:
$ createdb odoo-test

$ python odoo.py -d odoo-test --addons-path=addons \

--dbfilter=odoo-test$

10. Point your browser to http://localhost:8069 and authenticate using the admin
account and admin as password.

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.
You can download the code files by following these steps:

 f Log in or register to our website using your e-mail address and
password

 f Hover the mouse pointer on the SUPPORT tab at the top
 f Click on Code Downloads & Errata
 f Enter the name of the book in the Search box
 f Select the book for which you're looking to download the code files
 f Choose from the drop-down menu where you purchased this book

from
 f Click on Code Download

You can also download the code files by clicking on the Code Files button
on the book's webpage at the Packt Publishing website. This page can be
accessed by entering the book's name in the Search box. Please note that
you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

 f WinRAR / 7-Zip for Windows
 f Zipeg / iZip / UnRarX for Mac
 f 7-Zip / PeaZip for Linux

How it works...
Dependencies come from various sources. First, you have the core dependencies of Odoo,
the Python interpreter that is used to run the source code, and the PostgreSQL database
server used to store the instance data. Git is used for source code versioning and getting
the source code of Odoo itself.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

5

Since we will need to edit some files as root or as postgres (the PostgreSQL administrative
user) on our server, we need to install a console-based text editor. We suggest nano as it is
very simple to use, but feel free to choose any editor with which you feel at ease as long as it
works on the console, such as vim, e3, or emacs-nox.

Wkhtmltopdf is a runtime dependency of Odoo used to produce PDF reports. The version
required by Odoo 9.0 is 0.12.1, which is not included in current GNU/Linux distributions.
Fortunately for us, the maintainers of wkhtmltopdf provide prebuilt packages for various
distributions on http://wkhtmltopdf.org/downloads.html (in the archive section).
However, Debian Jessie is not there, so the Odoo maintainers provide their own version of the
package on http://nightly.odoo.com/extra/.

There are lots of other runtime dependencies that are Python modules, which we can install
using pip in a virtual environment. However, some of these Python modules can feature
some dependencies on native C libraries for which the Python bindings need to be compiled.
We therefore install the development packages for these C libraries as well as the Python
development package and a C compiler. Once these build dependencies are installed, we
can use pip -r requirements.txt (a file which comes from the Odoo source code
distribution) to download, compile, and install the Python modules.

Virtual environments
Python virtual environments, or virtualenv for short, are isolated Python workspaces. They
are very useful to Python developers because they allow different workspaces with different
versions of various Python libraries installed, possibly on different Python interpreter versions.

You can create as many environments as you wish using the command virtualenv path/
to/newenv. This will create a newenv directory in the specified location, containing a
bin/ subdirectory and a lib/python2.7 subdirectory.

In bin/ you will find several scripts:

 f activate: The script is not executed, it is sourced using the built-in source shell.
This will activate the environment by adjusting the PATH environment variable to
include the bin/ directory of the virtualenv. It also installs a shell function called
deactivate, which you can run to exit the virtualenv, and changes the shell
prompt to let you know which virtualenv is currently activated

 f pip: This is a special version of the pip command which acts inside the
virtualenv only.

 f python: This is a wrapper around your system Python interpreter which uses the
packages installed in the virtualenv.

http://wkhtmltopdf.org/downloads.html
http://nightly.odoo.com/extra/

Installing the Odoo Development Environment

6

The built-in source shell is also available (as a single dot, followed
by a space, and the path to the file to source). The shortcut form is
perfectly fine, but we will stick to source in this book for readability.

There are two main ways of using a virtualenv. You may activate it as we show in the recipe
(and call deactivate when you're done) or you may use the scripts in the bin/ directory of
the environment explicitly by calling them with their full path, in which case you don't need to
activate the virtualenv. This is mainly a matter of taste, so you should experiment and find
out which style suits you better for which case.

You may have executable Python scripts with the first line looking like the following:

#! /usr/bin/env python

These will be easier to use with an activated virtualenv. This is the case with the odoo.py
script, which you can therefore call in the following way:

$./odoo.py -d odoo-test --addons-path=addons --db-filter=odoo-test$

PostgreSQL configuration
On a GNU/Linux system, Odoo works very well with the default values of psycopg2, the
Python module used to access a PostgreSQL database:

 f Passwordless authentication if the database user has the same name as the current
user on local connections

 f Local connection uses Unix domain sockets

 f The database server listens on port 5432

In that case, there is nothing special to do: we use the postgres administrative user to
create a database user which shares our login name and give it the right to create new
databases. We then create a new database with the same name as the new user, which
will be used as a default database when using the psql command.

When on a development server, it is OK to give the PostgreSQL user more rights and to use
the --superuser command-line option rather than just --createdb. The net effect is that
this user can then also create other users and globally manage the database instance. If
you feel --superuser is too much, you may still want to use --createrole in addition to
--createdb when creating your database user. Avoid doing this on production servers as
it would give additional leverage to an attacker exploiting a vulnerability in some part of the
deployed code (see Chapter 16, Server Deployment).

If you want to use a database user with a different login, you will need to provide a password
for the user. This is done by passing the --pwprompt flag on the command line when
creating the user, in which case the command will prompt you for the password.

Chapter 1

7

If the user has already been created and you want to set a password (or modify a forgotten
password) you can use the following command:

$ psql -c "alter role $(whoami) with password 'newpassword'"

If this command fails with an error message saying that the database
does not exist, it is because you did not create a database named after
your login name in step 3. That's fine; just add the --dbname option
with an existing database name such as --dbname template1.

Git configuration
At some point in the book, you will need to use git commit. This will fail unless some basic
configuration is performed; you need to provide Git with your name and email address. Git will
remind you to do this with a nice error message, but you may as well do it now.

This is also something to keep in mind if you are using a service such
as Travis for continuous integration, and your test scripts need to
perform some git merges: you have to provide a dummy name and
e-mail for the merging to succeed.

Downloading the Odoo source code
Downloading the Odoo code base is done by performing a git clone operation. Be
patient as this will take some time. The options --branch 9.0 --single-branch avoid
downloading other branches and save a little time. The --depth option can also be used to
avoid downloading the whole repository history, but the downside of that option is that you will
not be able to explore that history when looking for issues.

The Odoo developers also propose nightly builds, which are available as tarballs and
distribution packages. The main advantage of using a git clone is that you will be able to
update your repository when new bug fixes are committed in the source tree. You will also be
able to easily test any proposed fixes and track regressions, so you can make your bug reports
more precise and helpful for the developers.

Starting the instance
Now comes the moment you've been waiting for. To start our first instance, we first create
a new empty database and then use the odoo.py script with the following command-line
arguments:

 f -d database_name: Use that database by default.

Installing the Odoo Development Environment

8

 f --db-filter=database_name$: Only try to connect to databases matching the
supplied regular expression. One Odoo installation can serve multiple instances living
in separate databases and this argument limits the available databases. The trailing
$ is important as the regular expression is used in match mode; this avoids selecting
names starting with the specified string.

 f --addons-path=directory1,directory2,...: This is a comma separated list
of directories in which Odoo will look for addons. This list is scanned at the instance
creation time to populate the list of available add-on modules in the instance.

If you are using a database user with a database login different from your Linux login, you
need to pass the following additional arguments:

 f --db_host=localhost: use a TCP connection to the database server

 f --db_user=database_username: use the specified database login

 f --db_password=database_password: the password to use to authenticate
against the PostgreSQL server

To get an overview of all the available options, use the --help argument. We will see much
more about the odoo.py script in this chapter as well as in Chapter 2, Managing Odoo Server
Instances.

When Odoo is started on an empty database, it will first create the database structure
needed to support its operations. It will also scan the addons path to find the available addon
modules, and insert some the initial records in the database. This includes the admin user
with the default password admin which you will use to authenticate with.

Odoo includes an HTTP server. By default, it listens on all local network interfaces on TCP port
8069 so pointing your web browser to http://localhost:8069/ leads you to your newly
created instance.

There is more…
In the recipe, we downloaded the latest stable version of Odoo using the following command:

$ git clone -b 9.0 --single-branch https://github.com/odoo/odoo.git

This uses the official branch maintained by Odoo. One issue with this branch is that bug
fixes contributed by the community are not always merged in a timely fashion. The Odoo
Community Association (OCA) maintains a parallel branch in which fixes and improvements
are peer-reviewed by the community and tend to be merged faster than on the official branch.
It is not a fork of Odoo, and the latest version of Odoo is merged back into that branch daily.
You may want to use it for your developments and deployments, in which case you need to
clone Odoo like this:

$ git clone -b 9.0 --single-branch https://github.com/OCA/OCB.git odoo

Chapter 1

9

Managing Odoo environments using the
start command

We will often want to use custom or community modules with our Odoo instance. Keeping
them in a separate directory makes it easier to install upgrades to Odoo or troubleshoot
issues from our custom modules. We just have to add that directory to the addons path and
they will be available in our instance, just like the core modules are.

It is possible to think about this module directory as an Odoo environment. The Odoo start
command makes it easy to organize Odoo instances as directories, each with its own modules.

Getting ready
For this recipe we need to have already installed Odoo. We assume that it will be at
~/odoo-dev/odoo, and that the virtualenv is activated.

This means that the following command should successfully start an Odoo server:

$ ~/odoo-dev/odoo/odoo.py

How to do it...
To create a work environment for your instance, you need to follow these steps:

1. Change to the directory where Odoo is:
$ cd ~/odoo-dev

2. Choose a name for the environment and create a directory for it:
$ mkdir my-odoo

3. Change to that directory and start an Odoo server instance for that environment:
$ cd my-odoo/

$../odoo/odoo.py start

How it works...
The Odoo start command is a shortcut to start a server instance using the current directory.
The directory name is automatically used as the database name (for the -d option), and the
current directory is automatically added to the addons path (the --addons-path option) as
long as it contains an Odoo addon module. In the preceding recipe you won't see the current
directory in the addons path because it doesn't contain any modules yet.

Installing the Odoo Development Environment

10

There's more
By default the current directory is used, but the --path option allows you to set a specific
path to use instead. For example, this would work from any directory:

$ ~/odoo-dev/odoo/odoo.py start --path=~/odoo-dev/my-odoo

The database to use can also be overridden using the usual -d option. In fact, all the other
usual odoo.py command-line arguments, except --addons-path, will work. For example,
to set the server listening port, use the following command:

$../odoo/odoo.py start --xmlrpc-port=8080

As we can see, the Odoo start command can be a convenient way to quickstart Odoo
instances with their own module directory.

Managing Odoo server databases
When working with Odoo, all the data of your instance is stored in a PostgreSQL database.
All the standard database management tools you are used to are available, but Odoo also
proposes a web interface for some common operations.

Getting ready
We assume that your work environment is set up and you have an instance running. Do not
start it using the odoo.py start command shown in the previous recipe, as it configures
the server with some options which interfere with multi-database management.

How to do it...
The Odoo database management interface provides tools to create, duplicate, remove, back
up, and restore a database. There is also a way to change the master password which is used
to protect access to the database management interface.

Access the Database Management interface
To access the database, the following steps need to be performed:

1. Go to the login screen of your instance (if you are authenticated, log out).

2. Click on the Manage Databases link. This will navigate to http://
localhost:8069/web/database/manager (you can also point your browser
directly to that URL.).

Chapter 1

11

Set or change the master password
If you've set up your instance with default values, and not yet modified it as explained in the
following section, the database management screen will display a warning telling you that the
master password is not set, and advising you to set one, with a direct link:

1. To set the Master Password, you can click on that link. You will get a dialog box
asking you to provide the new password:

2. Type in a non-trivial new password and click on Continue.

3. When the master password is already set, click the Set Master Password button at
the bottom of the screen to change it

4. In the displayed dialog box, type the previous master password and the new one, and
then click on Continue.

Installing the Odoo Development Environment

12

The master password is in the server configuration file under the admin_
password key. If the server was started without specifying a configuration
file, a new one will be generated in ~/.openerp_serverrc. See the next
recipe for more information about the configuration file.

Creating a new database
This dialog box can be used to create a new database instance which will be handled by the
current Odoo server:

1. In the database management screen, click on the Create Database button at the
bottom of the screen.

2. Fill the form in as follows:

 � Master password: The master password for this instance.

 � Database name: Input the name of the database you wish to create.

 � Language: Select the language you wish to be installed by default in the new
database.

 � Password of admin user: Type the password you want to set for the admin
user of the new instance.

Chapter 1

13

 � Load demonstration data: Check this box to have demonstration data. This
is useful to run tests or set up a demonstration for a customer, but should
not be checked for a database meant to contain production data.

3. Click on the Continue button, and wait a little until the new database is initialized.
You will then be redirected to the instance, connected as the Administrator.

Troubleshooting
If you are redirected to a login screen, this is probably because the option
--db-filter was passed to Odoo and the new database name did
not match the new database name. Note that the odoo.py start
command does this silently, making only the current database available.
To work around this, simply restart Odoo without the start command,
as shown in the first recipe of this chapter. If you have a configuration
file (see the Storing the instance configuration in a file recipe later in this
chapter), then check that the db_filter option is unset or set to a
value matching the new database name.

Duplicating a database
Very often you will have an existing database and you want to experiment with it to try a
procedure or run a test, but without modifying the existing data. The answer is simple:
duplicate the database and run the tests on the copy. Repeat as many times as required:

1. In the database management screen, click on the Duplicate link next to the name of
the database you wish to clone.

Installing the Odoo Development Environment

14

2. Fill in the form:

 � Master Password: the master password of the Odoo server

 � New Name: the name you want to give to the copy

3. Click on the Continue button.

4. You can then click on the name of the newly created database in the database
management screen to access the login screen for that database.

Removing a database
When you have finished your tests, you will want to clean up the duplicated databases. To do
this, perform the following steps:

1. In the database management screen, click on the Delete link next to the name of the
database you want to remove.

2. Fill in the form; enter the Master Password, which is the master password of the
Odoo server.

3. Click the Delete button.

Caution! Potential data loss!
If you selected the wrong database, and have no backup, there is no way
to recover the lost data.

Chapter 1

15

Backing up a database
For creating a backup, the following steps need to be performed:

1. In the database management screen, click the Backup link next to the database you
want to back up.

2. Fill in the form:

 � Master Password: the master password of the Odoo server.

 � Backup Format: always use zip for a production database, as it is the only
real full backup format. Only use the pg_dump format for a development
database where you don't really care about the file store (admin by default).

3. Click the Backup button. The backup file will be downloaded to your browser.

Installing the Odoo Development Environment

16

Restoring a database backup
If you need to restore a backup, this is what you need to do:

1. In the database management screen, click the Restore Database button at the
bottom of the screen.

2. Fill in the form:

 � Master Password: the master password of the Odoo server.

 � File: a previously downloaded Odoo backup.

 � Database Name: provide the name of the database in which the backup will
be restored. The database must not exist on the server.

 � Generate a new database uuid: leave unchecked if you are installing a
database which has been deleted from the server; otherwise check the box.
There is little difference between them, and if in doubt, leaving it unchecked
is a safe choice.

3. Click the Continue button.

Note: It is not possible to restore a database on top of itself. If you try to
do this, you will get an error message (Database restore error: Database
already exists). You need to remove the database first.

Chapter 1

17

How it works...
These features, apart from the Change master password screen, run postgresql
administration commands on the server and report back through the web interface.

The master password is a very important piece of information which only lives in the Odoo
server configuration file and is never stored in the database. There used to be a default
value of admin, but using this value is a security liability as it is well known. In Odoo v9, this
is identified as an "unset" master password and you get urged to change it when accessing
the database administration interface. Even if it is stored in the configuration file under the
admin_passwd entry, this is not the same as the password of the admin user; these are two
independent passwords: the master password is set for an Odoo server process, which itself
can handle multiple database instances, each of which has an independent admin user with
his own password.

Security considerations: Remember that we are considering a
development environment in this chapter. The Odoo database
management interface is something which needs to be secured when you
are working on a production server as it gives access to a lot of sensitive
information, especially if the server hosts Odoo instances for several
different clients. This will be covered in Chapter 16, Server Deployment.

To create a new database, Odoo uses the PostgreSQL createdb utility and calls the internal
Odoo function to initialize the new database in the same way as when you start Odoo on an
empty database.

To duplicate a database, Odoo uses the --template option of createdb passing the
original database as an argument. This essentially duplicates the structure of the template
database in the new database using internal and optimized PostgreSQL routines, which is
much faster than creating a backup and restoring it (especially when using the web interface
which requires downloading the backup file and uploading it again).

Backup and restore operations use the pg_dump and pg_restore utilities respectively.
When using the .zip format, the backup will also include a copy of the file store which
contains a copy of the documents when you configure Odoo to not keep these in the
database, which is the default in 9.0. Unless you configure it otherwise, these files live in
~/.local/share/Odoo/filestore.

Installing the Odoo Development Environment

18

If the backup gets large, downloading it may fail, either because the
Odoo server itself is not able to handle the large file in memory or if the
server runs behind a reverse proxy (see Chapter 16, Server Deployment)
because there is a limit to the size of HTTP responses set in the proxy.
Conversely, for the same reasons, you will likely experience issues with
the database restore operation. When you start running into these issues,
it is time to invest in a more robust external backup solution.

There is more...
Experienced Odoo developers generally don't use the database management interface, and
perform the operations from the command line. To initialize a new database with demo data
for instance, the following one-liner can be used:

$ createdb testdb && odoo.py -d testdb

The additional bonus of this command line is that you can request installation of addons
while you are at it using for instance -i sale,purchase,stock (more on this in Chapter 2,
Managing Odoo Server Instances).

To duplicate a database, stop the server, and run the following command:

$ createdb -T dbname newdbname

$ cd ~/.local/share/Odoo/filestore # adapt if you have changed the data_
dir

$ cp -r dbname newdbname

$ cd -

Note that in the context of development, the file store is often omitted.

The use of createdb -T only works if there are no active sessions
on the database, which means you have to shut down your Odoo
server before duplicating the database from the command line.

To remove an instance, run the following command:

$ dropdb dbname

$ rm -rf ~/.local/share/Odoo/filestore/dbname

To create a backup (assuming the PostgreSQL server is running locally), use the following
command:

$ pg_dump -Fc -f dbname.dump dbname

$ tar cjf dbname.tgz dbname.dump ~/.local/share/Odoo/filestore/dbname

Chapter 1

19

To restore the backup, run the following command:

$ tar xf dbname.tgz

$ pg_restore -C -d dbname dbname.dump

Caution!
If your Odoo instance uses a different user to connect to the database
you need to pass -U username so that the correct user is the owner
of the restored database.

Storing the instance configuration in a file
The odoo.py script has dozens of options, and it is tedious to remember them all and to
remember to set them properly when starting the server. Fortunately, it is possible to store
them all in a configuration file and to only specify by hand the ones you want to alter, for
example, for development.

How to do it...
To generate a configuration file for your Odoo instance, run the following command:

$ odoo.py --save --config myodoo.cfg --stop-after-init

You can add additional options, and their values will be saved in the generated file. All the
unset options will be saved with their default value set. To get a list of possible options, use:

$ odoo.py --help | less

This will provide you with some help about what the various options perform. To convert from
the command line form to the configuration form, use the long option name, remove the
leading dashes, and convert the dashes in the middle to underscores: --without-demo
becomes without_demo. This works for most options, but there are a few exceptions listed
in the next section.

Edit the file myodoo.cfg (use the table in the following section for some parameters you may
want to change). Then to start the server with the saved options, run the following command:

$ odoo.py -c myodoo.cfg

The --config option is commonly abbreviated as -c

Installing the Odoo Development Environment

20

How it works...
At start up, Odoo loads its configuration in three passes. First a set of default values for all
options is initialized from the source code. Then the configuration is parsed, and any value
defined in the file overrides the defaults. Finally, the command-line options are analyzed and
their values override the configuration obtained from the previous pass.

As mentioned earlier, the names of the configuration variables can be found from the names
of the command-line options by removing the leading dashes and converting the middle
dashes to underscores. There are a few exceptions, notably:

Command line Configuration file
--db-filter dbfilter

--no-xmlrpc xmlrpc = True / False

--database db_name

--debug debug_mode = True / False

--i18n-import / --i18n-export Unavailable

Here is a list of options commonly set through the configuration file:

Option Format Usage
without_demo Prevents module demo data from being loaded.
addons_path Comma

separated list of
paths

A list of directory names in which the server will
look for addons (see Chapter 2, Managing Odoo
Server instances).

admin_passwd Text The master password (see previous recipe).
data_dir Path to a

directory
A directory in which the server will store session
information, addons downloaded from the
Internet, and documents if you enable the file
store.

db_host Host name The name of the server running the PostgreSQL
server. Use False to use local Unix Domain
sockets, and localhost to use TCP sockets
locally.

db_user Database user
login

db_password Database user
password

This is generally empty if db_host is False and
db_user has the same name as the user running
the server. Read the man page of pg_hba.conf
for more information on this.

Chapter 1

21

Option Format Usage
database Database name Used to set the database name on which some

commands operate by default). This does not limit
the databases on which the server will act. See the
following dbfilter option for this.

dbfilter A regular
expression

The expression should match the name of the
databases considered by the server. If you run
the website, it should match a single database,
so it will look like ^databasename$. More
information on this is in Chapter 16, Server
Deployment.

xmlrpc_interface IP address
of a network
interface

Defaults to 0.0.0.0, meaning the server listens
on all interfaces

xmlrpc_port
longpolling_port

Port number The ports on which the Odoo server will listen.
You will need to specify both to run multiple Odoo
servers on the same host. longpolling_port
is only used if workers is not 0.

logfile Path to a file The file in which Odoo will write its logs.
log_level Log verbosity

level
Specify the level of logging. Accepted values (in
increasing verbosity order): critical, error,
warn, info, debug, debug_rpc, debug_rpc_
answer, debug_sql.

workers Integer The number of worker processes. See Chapter 16,
Server Deployment, for more information.

no_database_list True / False Set to True to disable listing of databases.
See Chapter 16, Server Deployment, for more
information.

There is more...
The parsing of the configuration file by Odoo is done using the Python ConfigParser
module. This module supports defining values for variables from the values of other variables
using the %(section.variable)s notation. You can omit section if the value comes from
the same section or if it is defined in the special [DEFAULT] section.

For instance, if you want to define the database login to be the same as the database name,
you can write the following in your Odoo configuration file:

[options]
db_name = projectname
db_user = %(options.db_name)s

Installing the Odoo Development Environment

22

A very common use is to define a common prefix for the paths of the addons:

[DEFAULT]
project = /home/odoo/projects/project1
env = dev
prefix = %(project)s/%(env)s

[options]
addons-path = %(prefix)s/odoo/addons,%(prefix)s/OCA/server-tools
data_dir = %(prefix)s/data_dir

Activating the Odoo developer tools
When using Odoo as a developer, you need to know how to activate Developer Mode in the
web interface to access the advanced settings menu and developer information.

How to do it...
To activate Developer Mode in the web interface:

1. Connect to your instance and authenticate (not necessarily as admin; this function is
available to all users, but the Administrator has more tools available).

2. Click on the down arrow next to your user name in the top right corner of the page .

3. In the drop-down menu, click on About.

Chapter 1

23

4. In the dialog box which is displayed, click on Activate the developer mode in the top
right corner.

It is also possible to activate the developer mode by editing the URL:
before the # sign, insert ?debug=. For instance, if you are starting from:
http://localhost:8069/web#menu_id=102&action=94, then you
need to change this to: http://localhost:8069/web?debug=#menu_
id=102&action=94.

Installing the Odoo Development Environment

24

5. To exit developer mode, you can edit the URL and remove that string, close your
browser tab and open a new one, or use the Leave Debug Mode option at the bottom
of the debug drop-down menu next to the user menu in the top right of the screen.

How it works...
When in developer mode, three things happen:

 f The JavaScript and CSS code sent to the browser is not minified, which means
that the web development tools of your browser are easy to use for debugging the
JavaScript code (more on this in Chapter 15, Web Client Development).

 f You get tooltips when hovering over a field in a form view or over a column in list view
providing technical information about the field (internal name, type, and so on).

 f A drop-down menu with a Bug icon is displayed next to the user's menu in the top
right corner giving access to technical information about the model being displayed,
the various related view definitions, the workflow, custom filter management, and
so on.

Caution!
Test your addons both with and without developer mode, as the
unminified versions of the JavaScript libraries can hide bugs which
only bite you in the minified version.

Chapter 1

25

Updating Odoo from source
We saw in the first recipe how to install Odoo from source by using the git repository. The main
benefit of this setting is being able to update the source code of Odoo using git to get the
latest bug fixes.

Getting ready
Stop any instance currently running with the Odoo source you are about to update.

Make a backup of all the databases you care about in case something goes bad. This is
obviously something you need to do for production databases. See the Managing Odoo server
databases recipe for instructions.

Then make a note of the current version of the source you are running. The best way is to
create a lightweight tag using the following command:

$ cd ~/odoo-dev/odoo

$ git checkout 9.0

$ git tag 9.0-before-update-$(date --iso)

How to do it...
To update the source code of Odoo, use the following command:

$ git pull –-ff-only

This will fetch the latest version of the source code committed to the current branch.

To update an instance running on this code, run the following command:

$ odoo.py -c myodoo.cfg --stop-after-init -u base

-u is the shortcut notation for the --update option of odoo.py.

If you don't have a database set in the configuration file, you will have to add the -d
database_name option. That command is to be repeated for all the instances running
with this version of the source code.

Installing the Odoo Development Environment

26

If the update fails, don't panic, you have backups.

1. Read the error message carefully. Save it to a file, as it will be useful to make a bug
report later.

2. If you cannot figure out what the problem is, restore the service; restore the Odoo
source code to the previous version, which is known to work using the tag you set
before updating the source version:
$ git reset --hard 9.0-before-update-$(date --iso)

3. Drop the broken databases and restore them from the backups you made (see the
Managing Odoo server databases recipe for instructions).

4. Restart your instances and tell your users that the upgrade has been postponed.

Note that in real life, this should never happen on a production database,
because you would have tested the upgrade beforehand on a copy of the
database, fixed the issues, and only done the upgrade on the production
server after making sure that it runs flawlessly. But sometimes, you still get
surprises, so even if you are really sure, make a backup.

How it works...
Updating the source code is done by making sure we are on the correct branch using git
checkout, and then fetching the new revisions using git pull. The --ff-only option will
cause a failure if you have local commits not present in the remote repository. If this happens
and you want to keep your changes, you can use git pull (without --ff-only) to merge
the remote changes with yours; otherwise, use git reset --hard origin/9.0 to force
the update, discarding your local modifications.

The update command uses the following options:

 f -c: specify the configuration file

 f --stop-after-init: stop the instance when the update is over

 f -u base or --update base: requests the update of the base module

Chapter 1

27

When updating a module, Odoo does the following:

 f It updates the database structure for the models defined in the module for which the
structure changes. For updates on the stable branch of Odoo, there should be no
such changes, but this can happen for your own addons or third party addons.

 f It updates the database records stored in data files of the module, most notably
the views. It then recursively updates the installed modules which have declared a
dependency on the module.

Since the base module is an implicit dependency of all Odoo modules, updating it will trigger
an update of all the installed modules in your instance. To update all installed modules, the
alias all can be used instead of base.

29

2
Managing Odoo Server

Instances

In this chapter, we will learn about:

 f Configuring the addons path

 f Updating the addon modules list

 f Standardizing your instance directory layout

 f Installing and upgrading local addon modules

 f Installing addon modules from GitHub

 f Applying changes to addons

 f Applying and trying proposed pull requests

Introduction
In Chapter 1, Installing the Odoo Development Environment, we have seen how to set up an
Odoo instance using only the standard "core" addons, which are shipped by the editor. This
chapter focuses on adding noncore addons to an Odoo instance, be it your own addons, or
third-party addons such as the ones maintained by the Odoo Community Association (OCA).

About the terminology – addon versus module
In this book, we will use the term addon or addon module to refer to a Python
package that respects the expected format to be installed in Odoo. The user
interface often uses the word module for this, but we prefer keeping this term
for Python modules or packages that are not necessarily Odoo addons.

Manage Odoo Server Instances

30

Configuring the addons path
The addons path is a configuration parameter that lists the directories, which will be searched
for addon modules by Odoo when it initializes a new database.

Directories listed in the addons path are expected to contain subdirectories, each of which is
an addon module.

Getting ready
This recipe assumes you have an instance ready, with a configuration file generated
as described in Chapter 1, Installing the Odoo Development Environment. The source
code of Odoo is available in ~/odoo-dev/odoo, and the configuration file is in
~/odoo-dev/my-instance.cfg.

How to do it…
To add the directory ~/odoo-dev/local-addons to the addons path of the instance, follow
these steps:

1. Edit the configuration file for your instance ~/odoo-dev/my-instance.cfg

2. Locate the line starting with addons_path =. By default, it should look like
the following:
addons_path = ~/odoo-dev/odoo/openerp/addons,~/odoo-dev/odoo/
addons

3. Modify the line by appending a comma followed by the name of the directory you
want to add to the addons path:
addons_path = ~/odoo-dev/odoo/openerp/addons,~/odoo-dev/odoo/
addons,~/odoo-dev/local-addons

You can tidy that line a little by adding a root variable and using it to shorten the
path definition (see Chapter 1, Installing the Odoo Development Environment, for
more on this):
root = ~/odoo-dev

addons_path = %(root)s/odoo/openerp/addons,%(root)s/odoo/
addons,%(root)s/local-addons

4. Restart your instance:
$ ~/odoo-dev/odoo/odoo.py -c my-instance.cfg

Chapter 2

31

How it works…
When Odoo is restarted, the configuration file is read. The value of the addons_path variable
is expected to be a comma-separated list of directories. Relative paths are accepted, but
they are relative to the current working directory, and therefore should be avoided in the
configuration file.

At this point, the new addons present in ~/odoo-dev/local-addons are not available in
the list of available addon modules of the instance. For this, you need to perform an extra
operation explained in the next recipe, Updating the addon modules list.

There's more…
When you call the odoo.py script for the first time to initialize a new database, you can
pass the --addons-path command line argument with a comma-separated list of
directories. This will initialize the list of available addon modules with all the addons found in
the supplied addons path. When you do this, you have to explicitly include the base addons
directory (odoo/openerp/addons) as well as the core addons directory (odoo/addons).
Be careful—if you put a space after the commas—you will need to quote the list of directories.
You can use the --save option to also save the path to the configuration file:

$ odoo/odoo.py -d mydatabase \

--addons-path="odoo/openerp/addons,odoo/addons,local-addons" \

--save -c odoo-project.cfg –stop-after-init

In this case, using relative paths is OK, since they will be converted to absolute paths in the
configuration file.

Updating the addon modules list
As we said in the previous recipe, when you add a directory to the addons path, just
restarting the Odoo server is not enough to be able to install one of the new addon modules.
A specific action is required for Odoo to scan the addons path and update the list of available
addon modules.

Getting ready
Start your instance, and connect to the instance using the Administrator account and activate
the developer mode (see Chapter 1, Installing the Odoo Development Environment).

Manage Odoo Server Instances

32

How to do it…
To update the list of available addon modules in your instance, you need to perform the
following steps:

1. Open the Apps menu:

2. Click on Update Apps List:

3. In the dialog, click on the Update button.

4. At the end of the update, you can click on the first Apps entry to see the updated list
of available addon modules. You will need to remove the default filter on Apps in the
search box to see all of them.

Chapter 2

33

How it works…
When the Update button is clicked on, Odoo will read the addons path configuration variable,
and for each directory in the list, it will look for immediate subdirectories containing an addon
manifest file, which is a file named __openerp__.py, stored in the addon module directory.
Odoo reads the manifest expecting to find a Python dictionary. Unless the manifest contains
a key installable set to False, the addon module metadata is recorded in the database.
If the module was already present, the information is updated; otherwise, a new record is
created. If a previously available addon module is not found, the record is not deleted from
the list.

Standardizing your instance directory layout
We recommend that your development and production environments all use a similar
directory layout. This standardization will prove helpful when you have to perform
maintenance operations, and it will also ease your day to day work.

This recipe creates a directory structure that groups files having similar life cycles or similar
purpose together in standardized subdirectories. Feel free to alter this structure to suit your
needs, but be sure to have this documented somewhere.

How to do it…
To create the proposed instance layout, you need to perform the following steps:

1. Create one directory per instance:
$ mkdir ~/odoo-dev/projectname

$ cd ~/odoo-dev/projectname

2. Create a Python virtualenv in a subdirectory called env/:
$ virtualenv env

3. Create some subdirectories, as follows:
$ mkdir src local bin filestore logs

The functions of the subdirectories are as follows:

 � src/: This contains the clone of Odoo itself and of the various third-party
addons projects (see step 4 in this recipe)

 � local/: This is used to save your instance-specific addons

 � bin/: This includes various helper executable shell scripts

 � filestore/: This is used as a file store

 � logs/ (optional): This is used to store the server log files

Manage Odoo Server Instances

34

4. Clone Odoo and install the requirements (see Chapter 1, Installing the Odoo
Development Environment, for details):
$ git clone https://github.com/odoo/odoo.git src/odoo

$ env/bin/pip -r src/odoo/requirements.txt

5. Save the following shell script as bin/odoo:
#!/bin/sh

ROOT=$(dirname $0)/..

PYTHON=$ROOT/env/bin/python

ODOO = $ROOT/src/odoo/odoo.py

PYTHON ODOO -c $ROOT/projectname.cfg "$*"

exit $?

6. Make the script executable:
$ chmod +x bin/odoo

7. Generate a configuration file for your instance:
bin/odoo --stop-after-init –-save \
–-addons-path src/odoo/openerp/addons,src/odoo/addons,local \

--data-dir filestore

8. Add a .gitignore file, asking to exclude data/, env/, and src/:
dotfiles, with exceptions:

.*

.gitignore

python compiled files

*.py[co]

emacs backup files

*~

not tracked subdirectories

/env/

/src/

/filestore/

/logs/

9. Create a Git repository for this instance and add the files you've added to Git:
$ git init

$ git add .

$ git commit -m "initial version of projectname"

Chapter 2

35

How it works…
We generate a clean directory structure with clearly labeled directories and dedicated roles.
Especially, we separate the following:

 f The code maintained by other people (in src/)

 f The local specific code

 f The data of the instance

By having one virtualenv per project, we are sure that the projects' dependencies are not
going to interfere with the dependencies of other projects that can be running a different
version of Odoo or use different third-party addon modules, which need different versions of
Python dependencies. This comes at the cost of a little disk space.

In a similar way, using separate clones of Odoo and third-party addon modules for our
different projects, we are able to let each of these evolve independently and only install
updates on the instances that need them; hence, reducing the risk of introducing regressions.

The bin/odoo script allows to run the server without having to remember the various paths
or activate the virtualenv. It also sets the configuration file for us. You can add additional
scripts in there to help you in your day-to-day work, for instance, a script to check out the
different third-party projects that you need to run your instance.

Regarding the configuration file, we only show the bare minimum options to set up here,
but you obviously can set more, such as the database name, the database filter, or the port
on which the project listens. Please refer to Chapter 1, Installing the Odoo Development
Environment, for more information on this topic.

Finally, by managing all this in a Git repository, it becomes quite easy to replicate the setup on
a different computer and share the development among a team.

Speedup tip
To ease project creation, you can create a template repository containing
the empty structure, and fork that repository for each new project; this
will save you from retyping the bin/odoo script and the .gitignore
file, and any other template file you need (continuous integration
configuration, README.md, ChangeLog, and so on).

See also
If you like this approach, we suggest trying out the buildout recipe in Chapter 16, Server
Deployment, which goes one step further in this way by using buildout to create the
instance environment.

Manage Odoo Server Instances

36

Installing and upgrading local addon
modules

The core of the functionality of Odoo comes from the addon modules. You have a wealth of
addons available as part of Odoo itself as well as addon modules that you can download from
the Internet or write yourself.

In this recipe, we will show how to install and upgrade addon modules through the web
interface and from the command line.

The main benefits of using the command line for these operations are being able to act on
more than one addon at a time and having a clear view of the server logs as the installation or
update progresses, which is very useful when in the development mode or when scripting the
installation of an instance.

Getting ready
You have an Odoo instance with its database initialized, the addons path is properly set, and
the addons list is up to date.

How to do it…
There are two possible methods to install or update addons—you can use the web interface or
the command line.

From the web interface
To install a new addon module in your database using the web interface, use the following steps:

1. Connect to the instance using the Administrator account. Open the Apps menu:

Chapter 2

37

2. Click on Apps.

3. Use the search box to locate the addon you want to install. Here are few tips to help
you in this task:

 � Activate the Not Installed filter

 � If looking for a specific functionality addon rather than a broad functionality
addon, remove the Apps filter

 � Type a part of the module name in the search box, and use this as a
Module filter

 � You may find that using the list view gives something more readable

4. Click on the Install button under the module name (in the icons view or in the
form view).

To update an already installed module in your database, use the following steps:

1. Connect to the instance using the Administrator account.

2. Open the Apps menu.

3. Click on Apps:

4. Use the search box to locate the addon you want to install. A few tips:

 � Activate the Installed filter

 � If looking for a specific functionality addon rather than a broad functionality
addon, remove the Apps filter

 � Type a part of the addon module name in the search box, and use this a
Module filter

 � You may find that using the list view gives something more readable

5. Display the module in the form view, and click on the Upgrade button under the
module name.

Manage Odoo Server Instances

38

From the command line
To install some new addons in your database, follow the following steps:

1. Find the names of the addons. This is the name of the directory containing the file
__openerp__.py without the leading path.

2. Stop the instance. If you are working on a production database, make a backup.

3. Run the following command:
$ odoo/odoo.py -c instance.cfg -d dbname -i addon1,addon2 --stop-
after-init

You may omit -d dbname if this is set in your configuration file.

4. Restart the instance.

To update an already installed addon module in your database, follow the steps given here:

1. Find the name of the addon module to update; this is the name of the directory
containing the __openerp__.py file without the leading path.

2. Stop the instance. If you are working on a production database, make a backup.

3. Run the following command:
$ odoo/odoo.py -c instance.cfg -d dbname -u addon1 \

--stop-after-init

You may omit -d dbname if this is set in your configuration file.

4. Restart the instance.

How it works…
The addon module installation and update are two closely related processes, but there are
some important differences, as highlighted in the next two sections.

Addon installation
When you install an addon, Odoo checks its list of available addons for an uninstalled addon
with the supplied name. It also checks for the dependencies of that addon and, if any, it will
recursively install them before installing the addon.

Chapter 2

39

The installation process of a single module consists of the following steps:

1. If any, run the addon preinit hook.

2. Load the model definitions from the Python source code and update the database
structure if necessary (see Chapter 4, Application Models, for details).

3. Load the data files of the addon and update the database contents if necessary
(see Chapter 9, Module Data, for details).

4. Install the addon demo data if demo data is enabled in the instance.

5. If any, run the addon postinit hook.

6. Run a validation of the view definitions of the addon.

7. If demo data is enabled and test is enabled, run the tests of the addon
(see Chapter 7, Debugging and Automated Testing, for details).

8. Update the module state in the database.

9. Update the translations in the database from the addon's translations
(see Chapter 11, Internationalization, for details).

preinit and postinit hooks are defined in the __openerp__.py file
using the pre_init_hook and post_init_hook keys, respectively. The
value of the key is the name of a Python function which must be defined in
the __init__.py file of the addon module. The preinit (resp. postinit)
hook is called with a database cursor (resp. a database cursor and a
registry object) and may perform modification in the database to prepare
(resp. finalize) the module installation. Note that these are not run when the
module is updated (you can use migration steps for this, see below).

Addon update
When you update an addon, Odoo checks in its list of available addon modules for an installed
addon with the given name. It also checks for the reverse dependencies of that addon (these
are the addons that depend on the updated addon), and, if any, it will recursively update them.

The update process of a single addon module consists of the following steps:

1. Run the addon module's pre migration steps, if any (see Chapter 9, Module Data,
for details).

2. Load the model definitions from the Python source code and update the database
structure if necessary (see Chapter 4, Application Models, for details).

3. Load the data files of the addon and update the database contents if necessary (see
Chapter 9, Module Data for details).

4. Update the addon's demo data if demo data is enabled in the instance.

5. If any, run the addon post migration steps (see Chapter 9, Module Data for details).

Manage Odoo Server Instances

40

6. Run a validation of the view definitions of the addon.

7. If demo data is enabled and test is enabled, run the tests of the addon
(see Chapter 7, Debugging and Automated Testing, for details).

8. Update the module state in the database.

9. Update the translations in the database from the addon's translations
(see Chapter 11, Internationalization, for details).

Note that updating an addon module which is not installed does nothing at all. However,
installing an addon module that is already installed reinstalls the addon, which can have
some unintended effects with some data files containing data that is supposed to be updated
by the user and not updated during the normal module update process (see Using the
noupdate and forcecreate flags in Chapter 9, Module Data). There is no risk of error from the
user interface, but this can happen from the command line.

There's more…
Be careful about the dependency handling. Consider an instance where you want to have
the addons sale, sale_stock, and sale_specific installed, with sale_specific
depending on sale_stock and sale_stock depending on sale. To install all three,
you only need to install sale_specific, as it will recursively install the dependencies
sale_stock and sale. To update all three, you need to update sale, as this will recursively
update the reverse dependencies sale_stock and sale_specific.

Another tricky part is when you add a dependency to an addon that already has a version
installed. To continue with the previous example, imagine that you add a dependency on
stock_dropshipping in sale_specific. Updating the addon sale_specific will
not automatically install the new dependency, neither will requesting the installation of
sale_specific. In this situation, you can get very nasty error messages because the Python
code of the addon is not successfully loaded but the data of the addon and the models tables
in the database are present. To solve this, you need to stop the instance and manually install
the new dependency.

Installing addon modules from GitHub
GitHub is a great source of third-party addons. A lot of Odoo partners use GitHub to share
the addons they maintain internally, and the Odoo Community Association (OCA) collectively
maintains several hundreds of addons on GitHub. Before starting to write your own addon, be
sure to check that nothing already exists that you could use as is or as a starting point.

This recipe will show you how to clone the partner-contact project of the OCA from GitHub and
make the addon modules it contains available in your instance.

Chapter 2

41

Getting ready
Suppose you want to change the way addresses are handled in your instance; your customer
needs a third field in addition to Odoo's two (street and street2) to store addresses.
You could certainly write your own addon to add a field on res.partner, but the issue
is a bit trickier than it seems if you want the address to be properly formatted on invoices.
Fortunately, someone on a mailing list tells you about the partner_address_street3
addon that is maintained by the OCA as part of the partner-contact project.

The paths used in this recipe reflect the layout proposed in the Standardizing your instance
directory layout recipe.

How to do it…
To install partner_address_street3, follow these steps:

1. Go to your project's directory:
$ cd ~/odoo-dev/my-odoo

2. Clone the 9.0 branch of the partner-contact project in the src/ directory:
$ git clone --branch 9.0 \

https://github.com/OCA/partner-contact.git src/partner-contact

3. Change the addons path to include that directory and update the addons list of your
instance (see previous recipes, Configure the addons path and Update the addon
modules list, of this chapter).

4. Install the partner_address_street3 addon (see the previous previous recipe,
Install and upgrade local addon modules).

How it works…
All the Odoo Community Association code repositories have their addons contained in
separate subdirectories, which is coherent with what is expected by Odoo regarding the
directories in the addons path; therefore, just cloning the repository somewhere and adding
that location in the addons path is enough.

There's more…
Some maintainers follow a different approach and have one addon module per repository,
living at the root of the repository. In that case, you need to create a new directory, which
you will add to the addons path and clone all the addons from that maintainer you need
in this directory. Remember to update the addon modules list each time you add a new
repository clone.

Manage Odoo Server Instances

42

Applying changes to addons
Most addons available on GitHub are subject to change and do not follow the rules that
Odoo enforces for its stable release. They may receive bug fixes or enhancements, including
issues or feature requests that you submitted, and these changes may introduce database
schema changes or updates in the data files and views. This recipe explains how to install the
updated versions.

Getting ready
Suppose you reported an issue with partner_address_street3 and received a
notification that the issue was solved in the lasted revision of the 9.0 branch of the
partner-contact project, you will want to update your instance with this latest version.

How to do it…
To apply a source modification to your addon from GitHub, you need to perform the
following steps:

1. Stop the instance using that addon.

2. Make a backup if it is a production instance (see the recipe Manage Odoo server
databases in Chapter 1, Installing the Odoo Development Environment).

3. Go to the directory where partner-contact was cloned:
$ cd ~/odoo-dev/my-odoo/src

4. Create a local tag for the project so that you can revert to that version in case
things break:
$ git checkout 9.0

$ git tag 9.0-before-update-$(date --iso)

5. Get the latest version of the source code:
$ git pull --ff-only

6. Update the partner_address_street3 addon in your databases (see previous
recipe Install and upgrade local addon modules).

7. Restart the instance.

Chapter 2

43

How it works…
This is just a simple application of all the previous recipes we've seen; we get a new version of
the addon and we update it in our instances.

If git pull --ff-only fails, you can revert to the previous version using this command:

$ git reset --hard 9.0-before-update-$(date --iso)

Then, you can try git pull (without --ff-only), which will cause a merge, but this means
you have local changes on the addon.

There is an entry in the Settings menu labeled Upgrade
modules, but it does not work for our purpose.

See also
If the update step breaks, refer to the Updating Odoo from Source recipe in Chapter 1,
Installing the Odoo Development Environment, for the recovery instructions. Remember to
always test an update on a copy of a database production first.

Applying and trying proposed pull requests
In the GitHub world, a Pull Request (or PR for short) is a request made by a developer
for the maintainers of a project to include some new developments. Such a PR may contain
a bug fix or a new feature. These requests are reviewed and tested before being pulled in the
main branch.

This recipe explains how to apply a PR to your Odoo project in order to test an improvement or
a bug fix.

Getting ready
As in the previous recipe, suppose you reported an issue with partner_address_street3
and received a notification that the issue was solved in a pull request, which is not yet merged
in the 9.0 branch of the project. The developer asks you to validate the fix in PR #123. You
need to update a test instance with this branch.

You should not try out such branches directly on a production database, so first create a
test environment with a copy of the production database (see Chapter 1, Installing the Odoo
Development Environment, and Chapter 16, Server Deployment).

Manage Odoo Server Instances

44

How to do it…
To apply and try out a GitHub pull request for an addon, you need to perform the following steps:

1. Stop the instance.

2. Go to the directory where partner-contact was cloned:
$ cd ~/odoo-dev/my-odoo/src

3. Create a local tag for the project so that you can revert to that version in case things
break:
$ git checkout 9.0

$ git tag 9.0-before-update-$(date --iso)

4. Pull the branch of the pull request. The easiest way is to use the number of the PR,
which should have been communicated to you by the developer. In our example, this
is the pull request number 123:
$ git pull origin pull/123/head

5. Update the partner_address_street3 addon module in your database and restart
the instance (see the previous recipe, Installing and upgrading local addon modules).

6. Test the update—try to reproduce your issue, or try out the feature you wanted.

If it does not work, comment on the PR page of GitHub, explaining what you did and what did
not work, so that the developer can update the PR.

If it works, say so on the PR page too; this is an essential part of the PR validation process and
it will speed up the merging in the main branch. You can use the text :+1:, which is rendered
as a "thumb up" icon, meaning you approve the PR.

How it works…
We are using a GitHub feature that enables pull requests to be pulled by number using the
pull/nnnn/head branch name, where nnnn is the number of the PR. The git pull
command will merge the remote branch in ours, applying the changes in our code base. After
this, we update the addon module, test, and report back to the author of the change about
any failure or success.

Chapter 2

45

There's more…
You can repeat step four for different pull requests in the same repository if you want to test
them simultaneously. If you are really happy with the result, you can create a branch to keep
a reference to the result of the applied changes:

$ git checkout -b 9.0-custom

Using a different branch will help you remember that you are not using the version from
GitHub, but a custom one.

From then on, if you need to apply the latest revision of the 8.0 branch from GitHub, you will
need to pull them without using --ff-only:

$ git pull origin 9.0

47

3
Creating Odoo Modules

In this chapter, we will cover the following topics:

 f Creating and installing a new addon module

 f Completing the addon module manifest

 f Organizing the addon module file structure

 f Adding Models

 f Adding Menu Items and Views

 f Adding Access Security

 f Using scaffold to create a module

Introduction
All these components that we just mentioned will be addressed in detail in later chapters.

Now that we have a development environment and know how to manage Odoo server
instances and databases, you can learn how to create Odoo addon modules.

Our main goal here is to understand how an addon module is structured and the typical
incremental workflow to add components to it.

For this chapter, you are expected to have Odoo installed and to follow the recipes in
Chapter 1, Installing the Odoo Development Environment. You are also expected to be
comfortable in discovering and installing extra addon modules, as described in the
Chapter 2, Managing Odoo Server Instances, recipes.

Creating Odoo Modules

48

Creating and installing a new addon module
In this recipe, we will create a new module, make it available in our Odoo instance, and
install it.

Getting ready
We will need an Odoo instance ready to use.

If the first recipe in Chapter 1, Installing the Odoo Development Environment, was followed,
Odoo should be available at ~/odoo-dev/odoo. For explanation purposes, we will assume
this location for Odoo, although any other location of your preference could be used.

We will also need a location for our Odoo modules. For the purpose of this recipe, we will use
a local-addons directory alongside the odoo directory, at ~/odoo-dev/local-addons.

How to do it…
The following steps will create and install a new addon module:

1. Change the working directory in which we will work and create the addons directory
where our custom module will be placed:
$ cd ~/odoo-dev

$ mkdir local-addons

2. Choose a technical name for the new module and create a directory with that name
for the module. For our example we will use my_module:
$ mkdir local-addons/my_module

A module's technical name must be a valid Python identifier; it must
begin with a letter, and only contain letters (preferably lowercase),
numbers, and underscore characters.

3. Make the Python module importable by adding an __init__.py file:
$ touch local-addons/my_module/__init__.py

4. Add a minimal module manifest, for Odoo to detect it. Create an __openerp__.py
file with this line:
{'name': 'My module'}

5. Start your Odoo instance including our module directory in the addons path:
$ odoo/odoo.py --addons-path=odoo/addons/,local-addons/

Chapter 3

49

If the --save option is added to the Odoo command, the addons
path will be saved in the configuration file. Next time you start the
server, if no addons path option is provided, this will be used.

6. Make the new module available in your Odoo instance; log in to Odoo using admin,
enable the Developer Mode in the About box, and in the Apps top menu select
Update Apps List. Now Odoo should know about our Odoo module.

7. Select the Apps menu at the top and, in the search bar in the top right, delete the
default Apps filter and search for my_module. Click on its Install button and the
installation will be concluded.

How it works…
An Odoo module is a directory containing code files and other assets. The directory name
used is the module's technical name. The name key in the module manifest is its title.

The __openerp__.py file is the module manifest. It contains a Python dictionary with
information about the module, the modules it depends on, and the data files that it will load.

In the example, a minimal manifest file was used, but in real modules, we will want to add
a few other important keys. These are discussed in the next recipe, Completing the module
manifest.

The module directory must be Python-importable, so it also needs to have an __init__.
py file, even if it's empty. To load a module, the Odoo server will import it. This will cause the
code in the __init__.py file to be executed, so it works as an entry point to run the module
Python code. Because of this, it will usually contain import statements to load the module
Python files and submodules.

Modules can be installed directly from the command line using the --init, or -i, option. In
the past, we had to use the Update Module List to make it available to the Odoo instance.
However, at this moment, this is done automatically when the --init or --update are used from
the command line.

Completing the addon module manifest
The manifest is an important piece for Odoo modules. It contains important information about
it and declares the data files that should be loaded.

Creating Odoo Modules

50

Getting ready
We should have a module to work with, already containing an __openerp__.py manifest file.
You may want to follow the previous recipe to provide such a module to work with.

How to do it…
We will add a manifest file and an icon to our addon module:

1. To create a manifest file with the most relevant keys, edit the module __openerp__.
py file to look like this:
-*- coding: utf-8 -*-
{
 'name': "Title",
 'summary': "Short subtitle phrase",
 'description': """Long description""",
 'author': "Your name",
 'license': "AGPL-3",
 'website': "http://www.example.com",
 'category': 'Uncategorized',
 'version': '9.0.1.0.0',
 'depends': ['base'],
 'data': ['views.xml'],
 'demo': ['demo.xml'],
}

2. To add an icon for the module, choose a PNG image to use and copy it to
static/description/icon.png.

How it works…
The first line, containing coding: utf-8, is necessary for Python to process the file content
as Unicode UTF-8. This way, we can use non-ASCII characters in the manifest.

The remaining content is a regular Python dictionary, with keys and values. The example
manifest we used contains the most relevant keys:

 f name: This is the title for the module.

 f summary: This is the subtitle with a one-line description.

 f description: This is a long description, written in plain text or ReStructuredText
(RST) format. It is usually surrounded by triple quotes, used in Python to delimit
multiline texts. For an RST quickstart reference, visit http://docutils.
sourceforge.net/docs/user/rst/quickstart.html.

http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html

Chapter 3

51

 f author: This is a string with the name of the authors. When there is more than one,
it is common practice to use a comma to separate their names, but note that it still
should be a string, not a Python list.

 f license: This is the identifier for the license under which the module is made
available. It is limited to a predefined list, and the most frequent option is AGPL-3.
Other possibilities include LGPL-3, Other OSI approved license, and Other
proprietary.

 f website: This is a URL people should visit to know more about the module or the
authors.

 f category: This is used to organize modules in areas of interest. The list of the
standard category names available can be seen at https://github.com/odoo/
odoo/blob/master/openerp/addons/base/module/module_data.xml. But
it's also possible to define other new category names here.

 f version: This is the modules' version numbers. It can be used by the Odoo app
store to detect newer versions for installed modules. If the version number does not
begin with the Odoo target version (for example, 8.0), it will be automatically added.
Nevertheless, it will be more informative if you explicitly state the Odoo target version,
for example, using 8.0.1.0.0 or 8.0.1.0 instead of 1.0.0 or 1.0.

 f depends: This is a list with the technical names of the modules it directly depends
on. If none, we should at least depend on the base module. Don't forget to include
any module defining XML IDs, Views, or Models referenced by this module. That will
ensure that they all load in the correct order, avoiding hard-to-debug errors.

 f data: This is a list of relative paths to the data files to load with module installation
or upgrade. The paths are relative to the module root directory. Usually, these are
XML and CSV files, but it's also possible to have YAML data files. These are discussed
in depth in Chapter 9, Module Data.

 f demo: This is the list of relative paths to the files with demonstration data to load.
These will only be loaded if the database was created with the Demonstration Data
flag enabled.

The image that is used as the module icon is the PNG file at static/description/icon.
png.

Odoo is expected to have significant changes between major versions,
so modules built for one major version are likely to not be compatible
with the next version without conversion and migration work. Because
of this, it's important to be sure about a module's Odoo target version
before installing it.

https://github.com/odoo/odoo/blob/master/openerp/addons/base/module/module_data.xml
https://github.com/odoo/odoo/blob/master/openerp/addons/base/module/module_data.xml

Creating Odoo Modules

52

There's more
Instead of having the long description in the module manifest, it's possible to have it in its
own file. Since version 8.0, it can be replaced by a README file, with either a .txt, .rst,
or an .md (Markdown) extension. Otherwise, include a description/index.html file in
the module.

This HTML description will override a description defined in the manifest file.

There are a few more keys that are frequently used:

 f application: If this is True, the module is listed as an application. Usually, this is
used for the central module of a functional area.

 f auto_install: If this is True, it indicates that this is a "glue" module, which is
automatically installed when all its dependencies are installed.

 f installable: If this is True (the default value), it indicates that the module is
available for installation.

Organizing the addon module file structure
An addon module contains code files and other assets such as XML files and images. For
most of these files, we are free to choose where to place them inside the module directory.

However, Odoo uses some conventions on the module structure, so it is advisable to follow
them.

Getting ready
We are expected to have an addon module directory with only the __init__.py and
__openerp__.py files.

How to do it…
To create the basic skeleton for the addon module:

1. Create the directories for code files:
$ cd path/to/my-module

$ mkdir models

$ touch models/__init__.py

$ mkdir controllers

Chapter 3

53

$ touch controllers/__init__.py

$ mkdir views

$ mkdir security

$ mkdir data

$ mkdir demo

$ mkdir i18n

$ mkdir -p static/description

2. Edit the module's top __init__.py file so that the code in subdirectories is loaded:
-*- coding: utf-8 -*-

from . import models

from . import controllers

This should get us started with a structure containing the most used directories, similar to
this one:

.

├── __init__.py

├── __openerp__.py

│

├── controllers

│ └── __init__.py

├── data

├── i18n

├── models

│ └── __init__.py

├── security

├── static

│ └── description

└── views

Creating Odoo Modules

54

How it works…
To provide some context, an Odoo addon module can have three types of file:

 f The Python code is loaded by the __init__.py files, where the .py files and code
subdirectories are imported. Subdirectories containing code Python, in turn, need
their own __init__.py

 f Data files that are to be declared in the data and demo keys of the __openerp__.
py module manifest in order to be loaded. These are usually XML and CSV files for
the user interface, fixture data, and demonstration data.

 f Web assets such as JavaScript code and libraries, CSS, and QWeb/HTML templates
also play an important part. There are declared through an XML file extending the
master templates to add these assets to the web client or website pages.

The addon files are to be organized in these directories:

 f models/ contains the backend code files, creating the Models and their business
logic. A file per Model is recommended, with the same name as the model, for
example, library_book.py for the library.book model. These are addressed in
depth in Chapter 4, Application Models.

 f views/ contains the XML files for the user interface, with the actions, forms, lists,
and so on. As with models, it is advised to have one file per model. Filenames for
website templates are expected to end with the _template suffix. Backend Views
are explained in Chapter 8, Backend Views, and website Views are addressed in
Chapter 14, CMS Web Site Development.

 f data/ contains other data files with module initial data. Data files are explained in
Chapter 9, Module Data.

 f demo/ contains data files with demonstration data, useful for tests, training or
module evaluation.

 f i18n/ is where Odoo will look for the translation .pot and .po files. See
Chapter 11, Internationalization, for more details. These files don't need to be
mentioned in the manifest file.

 f security/ contains the data files defining access control lists, usually a
ir.model.access.csv file, and possibly an XML file to define access Groups and
Record Rules for row level security. See Chapter 10, Access Security, for more details
on this.

 f controllers/ contains the code files for the website controllers, for modules
providing that kind of feature. Web controllers are covered in Chapter 13, Web
Server Development.

Chapter 3

55

 f static/ is where all web assets are expected to be placed. Unlike other directories,
this directory name is not just a convention, and only files inside it can be made
available for the Odoo web pages. They don't need to be mentioned in the module
manifest, but will have to be referred to in the web template. This is discussed in
more detail in Chapter 14, CMS Website Development.

When adding new files to a module, don't forget to declare them either in
the __openerp__.py (for data files) or __init__.py (for code files);
otherwise, those files will be ignored and won't be loaded.

Adding models
Models define the data structures to be used by our business applications. This recipe shows
how to add a basic model to a module.

We will use a simple book library example to explain this; we want a model to represent books.
Each book has a name and a list of authors.

Getting ready
We should have a module to work with. If we follow the first recipe in this chapter, we will have
an empty my_module. We will use that for our explanation.

How to do it…
To add a new Model, we add a Python file describing it and then upgrade the addon module
(or install it, if it was not already done). The paths used are relative to our addon module
location (for example, ~/odoo-dev/local-addons/my_module/):

1. Add a Python file to the module, models/library_book.py, with the following code:
-*- coding: utf-8 -*-
from openerp import models, fields
class LibraryBook(models.Model):
 _name = 'library.book'
 name = fields.Char('Title', required=True)
 date_release = fields.Date('Release Date')
 author_ids = fields.Many2many('res.partner',
 string='Authors')

2. Add a Python initialization file with code files to be loaded by the module
models/__init__.py, with the following code:
from . import library_book

Creating Odoo Modules

56

3. Edit the module Python initialization file to have the models/ directory loaded by
the module:
from . import models

4. Upgrade the Odoo module, either from the command line or from the apps menu in
the user interface. If you look closely at the server log while upgrading the module,
you should see this line:
openerp.modules.module: module my_module: creating or updating
database tables

After this, the new library.book model should be available in our Odoo instance. If we
have the technical tools activated, we can confirm that by looking it up at Settings | Technical
| Database Structure | Models.

How it works…
Our first step was to create a Python file where our new module was created.

Odoo models are objects derived from the Odoo Model Python class.

When a new model is defined, it is also added to a central model registry. This makes it easier
for other modules to later make modifications to it.

Models have a few generic attributes prefixed with an underscore. The most important one is
_name, providing a unique internal identifier to be used throughout the Odoo instance.

The model fields are defined as class attributes. We began defining the name field of the Char
type. It is convenient for models to have this field, because by default, it is used as the record
description when referenced from other models.

We also used an example of a relational field, author_ids. It defines a many-to-many
relation between Library Books and the partners — a book can have many authors and
each author can have many books.

There's much more to say about models, and they will be covered in more depth in Chapter 4,
Application Models.

Next, we must make our module aware of this new Python file. This is done by the __init__.
py files. Since we placed the code inside the models/ subdirectory, we need the previous
init file to import that directory, which should in turn contain another init file importing
each of the code files there (just one in our case).

Changes to Odoo models are activated by upgrading the module. The Odoo server will handle
the translation of the model class into database structure changes.

Chapter 3

57

Although no example is provided here, business logic can also be added to these Python files,
either by adding new methods to the Model's class, or by extending existing methods, such as
create() or write(). This is addressed in Chapter 5, Basic Server Side Development.

Adding Menu Items and Views
Once we have Models for our data structure needs, we want a user interface for our users to
interact with them. This recipe builds on the Library Book Model from the previous recipe
and adds a menu item to display a user interface featuring list and form Views.

Getting ready
The addon module implementing the library.book Model, provided in the previous recipe,
is needed. The paths used are relative to our addon module location (for example, ~/odoo-
dev/local-addons/my_module/).

How to do it…
To add a view, we will add an XML file with its definition to the module. Since it is a new Model,
we must also add a menu option for the user to be able to access it.

Be aware that the sequence of the following steps is relevant, since some use references to
IDs defined in previous steps:

1. Create the XML file to add the data records describing the user interface views/
library_book.xml:
<?xml version="1.0" encoding="utf-8"?>
<openerp>
 <data>
 <!-- Data records go here -->
 </data>
</openerp>

2. Add the new data file to the addon module manifest, __openerp__.py by adding it
to the views/library_book.xml:
-*- coding: utf-8 -*-
{
 'name': "Library Books",
 'summary': "Manage your books",
 'depends': ['base'],
 'data': ['views/library_book.xml'],
}

Creating Odoo Modules

58

3. Add the Action that opens the Views in the library_book.xml file:
 <act_window
 id="library_book_action"
 name="Library Books"
 res_model="library.book" />

4. Add the menu item to the library_book.xml file, making it visible to the users:
 <menuitem
 id="library_book_menu"
 name="Library"
 action="library_book_action"
 parent=""
 sequence="5" />

If you try and upgrade the module now, you should be able to see a new top menu
option (you might need to refresh your web browser). Clicking on it should work and
will open Views for Library Books that are automatically generated by the server.

5. Add a custom form view to the library_book.xml file:
 <record id="library_book_view_form" model="ir.ui.view">
 <field name="name">Library Book Form</field>
 <field name="model">library.book</field>
 <field name="arch" type="xml">

 <form>
 <group>
 <field name="name"/>
 <field name="author_ids" widget="many2many_tags"/>
 </group>
 <group>
 <field name="date_release"/>
 </group>
 </form>

 </field>
 </record>

Chapter 3

59

6. Add a custom Tree (List) view to the library_book.xml file:
 <record id="library_book_view_tree" model="ir.ui.view">
 <field name="name">Library Book List</field>
 <field name="model">library.book</field>
 <field name="arch" type="xml">

 <tree>
 <field name="name"/>
 <field name="date_release"/>
 </tree>

 </field>
 </record>

7. Add custom Search options to the library_book.xml file:
 <record id="library_book_view_search" model="ir.ui.view">
 <field name="name">Library Book Search</field>
 <field name="model">library.book</field>
 <field name="arch" type="xml">

 <search>
 <field name="name"/>
 <field name="author_ids"/>
 <filter string="No Authors"
 domain="[('author_ids','=',False)]"/>
 </search>

 </field>
 </record>

How it works…
At the low level, the user interface is defined by records stored in special Models. The first two
steps create an empty XML file to define the records to be loaded and then add them to the
module's list of data files to be installed.

Data files can be anywhere inside the module directory, but the convention is for the user
interface to be defined inside a views/ subdirectory using file names after the Model the
interface is for. In our case, the library.book interface is in the views/library_book.
xml file.

Creating Odoo Modules

60

The next step is to define a Window Action to display the user interface in the main area of
the web client. The Action has a target Model defined by res_model and sets the title to
display to the user using name. These are just the basic attributes. It supports additional
attributes, giving much more control of how the Views are rendered, such as what Views are
to be displayed, adding filters on the records available, or setting default values. These are
discussed in detail in Chapter 8, Backend Views.

In general, data records are defined using a <record> tag, but in our example, the Window
Action was defined using the <act_window> tag. This is a shortcut to create records for the
ir.actions.act_window Model, where Window Actions are stored.

Similarly, menu items are stored in the ir.ui.menu Model, but a convenience <menuitem>
shortcut tag is available and was used.

These are the menu items' main attributes used here:

 f name: This is the menu item text to be displayed.

 f action: This is the identifier of the action to be executed. We use the ID of the
Window Action created in the previous step.

 f sequence: This is used to set the order at which the menu items of the same level
are presented.

 f parent: This is the identifier for the parent menu item. Our example menu item had
no parent, meaning that it is to be displayed at the top of the menu.

At this point, our module can display a menu item, and clicking on it opens Views for the
Library Books model. Since nothing specific is set on the Window Action, the default is to
display a List (or Tree) view and a form view.

We haven't defined any of these Views, so Odoo will automatically create them on the fly.
However, we will surely want to control how our Views look, so in the next two steps, a form
and a tree view are created.

Both Views are defined with a record on the ir.ui.view model. The attributes we used are
as follows:

 f name: This is a title identifying this view. It is frequent to see the XML ID repeated
here, but it can perfectly be a more human readable title.

 f model: This is the internal identifier of the target model, as defined in its
_name attribute.

 f arch: This is the view architecture, where its structure is actually defined. This is
where different types of View differ from each other.

Chapter 3

61

Form Views are defined with a top <form> element, and its canvas is a two-column grid.
Inside the form, <group> elements are used to vertically compose fields. Two groups result
in two columns with fields, that are added using the <field> element. Fields use a default
widget according to their data type, but a specific widget can be used with the help of the
widget attribute.

Tree Views are simpler; they are defined with a top <tree> element containing <field>
elements for the columns to be displayed.

Finally, we added a Search view to expand the search option in the box at the top right. Inside
the <search> top-level tag, we can have <field> and <filter> elements. Field elements
are additional fields that can be searched from the box. Filter elements are predefined filter
conditions that can the activated with a click.

Using scaffold to create a module
When creating a new Odoo module, there is some boilerplate that needs to be set up. To help
quick starting new modules, Odoo provides the scaffold command.

The recipe shows how to create a new module using the scaffold command, which will put
in place a skeleton of the files directories to use.

Getting ready
We need Odoo installed and a directory for our custom modules.

We will assume that Odoo is installed at ~/odoo-dev/odoo and our custom modules will be
at ~/odoo-dev/local-addons.

How to do it…
The scaffold command is used from the command line:

1. Change the working directory to where we will want our module to be. This can be
whatever directory you choose, but within an addons path to be useful. Following the
directory choices used in the previous recipe, it should be as follows:
$ cd ~/odoo-dev/local-addons

2. Choose a technical name for the new module and use the scaffold command to
create it. For our example, we will choose my_scaffolded:
$ ~/odoo-dev/odoo/odoo.py scaffold my_scaffolded

3. Edit the __openerp__.py default module manifest provided and change the
relevant values. You will surely want to at least change the module title in the
name key.

Creating Odoo Modules

62

This is how the generated addon module should look like:

$ tree my_scaffolded

my_scaffolded

├── controllers.py

├── demo.xml

├── __init__.py

├── models.py

├── __openerp__.py

├── security

│ └── ir.model.access.csv

└── templates.xml

How it works…
The scaffold command creates the skeleton for a new module based on a template.

By default, the new module is created in the current working directory, but we can provide
a specific directory where to create the module, passing it as an additional parameter.
For example:

$ ~/odoo-dev/odoo/odoo.py scaffold my_module ~/odoo-dev/local-addons

A default template is used but a theme template is also available, for website theme
authoring. To choose a specific template, the -t option can be used. We are also allowed
to use a path for a directory with a template.

This means that we can use our own templates with the scaffold command. The
built-in themes can be used as a guide, and they can be found in the Odoo subdirectory
./openerp/cli/templates. To use our own template, we could use something like this:

$ ~/odoo-dev/odoo/odoo.py scaffold -t path/to/template my_module

There's more…
Unfortunately, the default template does not adhere to the current Odoo guidelines. We could
create our own template by copying the default one, at odoo/openerp/cli/templates/
default/, and modifying to better suit the structure described in the Organizing the module
file structure recipe. A command similar to this could get us started on that:

$ cp -r ~/odoo-dev/odoo/openerp/cli/templates/default ~/odoo-dev/template

Later, we can use it with the following command:

$ ~/odoo-dev/odoo/odoo.py scaffold -t ~/odoo-dev/template my_module

63

4
Application Models

In this chapter, we will cover the following topics:

 f Defining the Model representation and order

 f Adding data fields to a Model

 f Using a float field with configurable precision

 f Adding a monetary field to a Model

 f Adding relational fields to a Model

 f Adding a hierarchy to a Model

 f Adding constraint validations to a Model

 f Adding computed fields to a Model

 f Exposing Related fields stored in other models

 f Adding dynamic relations using Reference fields

 f Adding features to a Model using inheritance

 f Using Abstract Models for reusable Model features

 f Using Delegation inheritance to copy features to another Model

Introduction
In order to concisely get the point through, the recipes in this chapter make small additions to
an existing addon module. We chose to use the module created by the recipes in Chapter 3,
Creating Odoo Modules. To better follow the examples here, you should have that module
created and ready to use.

Application Models

64

Defining the Model representation and order
Models have structural attributes defining their behavior. These are prefixed with an
underscore and the most important is _name, which defines the internal global identifier
for the Model.

There are two other attributes we can use. One to set the field used as a representation,
or title, for the records, and another one to set the order they are presented in.

Getting ready
This recipe assumes that you have an instance ready with my_module, as described in
Chapter 3, Creating Odoo Modules.

How to do it…
The my_module instance should already contain a Python file called models/library_
book.py, which defines a basic model. We will edit it to add a new class-level attribute
after _name:

1. To add a human-friendly title to the model, add the following:
 _description = 'Library Book'

2. To have records sorted first by default from newer to older and then by title,
add the following:
 _order = 'date_release desc, name'

3. To use the short_name field as the record representation, add the following:
 _rec_name = 'short_name'
 short_name = fields.Char('Short Title')

When we're done, our library_book.py file should look like this:

-*- coding: utf-8 -*-
from openerp import models, fields
class LibraryBook(models.Model):
 _name = 'library.book'
 _description = 'Library Book'
 _order = 'date_release desc, name'
 _rec_name = 'short_name'
 name = fields.Char('Title', required=True)
 short_name = fields.Char('Short Title')
 date_release = fields.Date('Release Date')
 author_ids = fields.Many2many('res.partner', string='Authors')

Chapter 4

65

We should then upgrade the module to have these changes activated in Odoo.

How it works…
The first step adds a friendlier description title to the model's definition. This is not mandatory,
but can be used by some addons. For instance, it is used by the tracking feature in the mail
addon module for the notification text when a new record is created. For more details, see
Chapter 12, Automation and Workflows.

By default, Odoo orders the records using the internal id value. But this can be changed to
use the fields of our choice by providing a _order attribute with a string containing a comma-
separated list of field names. A field name can be followed with the desc keyword to have it
sorted in reverse order.

Only fields stored in the database can be used. Non-stored computed fields can't be used to
sort records.

The syntax for the _sort string is similar to SQL ORDER BY
clauses, although it's stripped down. For instance, special
clauses such as NULLS FIRST are not allowed.

Model records have a representation used when they are referenced from other records. For
example, a user_id field with the value 1 represents the Administrator user. When displayed
in a form view, we will be shown the user name rather than the database ID. By default, the
name field is used. In fact, that is the default value for the _rec_name attribute, and that's
why it's convenient to have a name field in our Models.

If no name field exists in the model, a representation is generated with the model and record
identifiers, similar to (library.book, 1).

There's more…
Record representation is available in a magic display_name computed field added
automatically to all models since version 8.0. Its values are generated using the Model
method name_get(), which was already in existence in previous Odoo versions.

Its default implementation uses the _rec_name attribute. For more sophisticated
representations, we can override its logic. This method must return a list of tuples with
two elements: the ID of the record and the Unicode string representation for the record.

Application Models

66

For example, to have the title and its release date in the representation, such as Moby Dick
(1851-10-18), we could define the following:

 def name_get(self):
 result = []
 for record in self:
 result.append(
 (record.id,
 u"%s (%s)" % (record.name, record.date_released)
))
 return result

Do notice that we used a Unicode string while building the record representation, u"%s
(%s)". This is important to avoid errors, in case we find non-ASCII characters.

Adding data fields to a model
Models are meant to store data, and this data is structured in fields. Here, we will learn about
the several types of data that can be stored in fields, and how to add them to a model.

Getting ready
This recipe assumes that you have an instance ready with the my_module addon module
available, as described in Chapter 3, Creating Odoo Modules.

How to do it…
The my_module addon module should already have a models/library_book.py defining
a basic Model. We will edit it to add new fields:

1. Use the minimal syntax to add fields to the Library Books model:
from openerp import models, fields
class LibraryBook(models.Model):
 # ...
 short_name = fields.Char('Short Title')
 notes = fields.Text('Internal Notes')
 state = fields.Selection(
 [('draft', 'Not Available'),
 ('available', 'Available'),
 ('lost', 'Lost')],
 'State')
 description = fields.Html('Description')
 cover = fields.Binary('Book Cover')

Chapter 4

67

 out_of_print = fields.Boolean('Out of Print?')
 date_release = fields.Date('Release Date')
 date_updated = fields.Datetime('Last Updated')
 pages = fields.Integer('Number of Pages')
 reader_rating = fields.Float(
 'Reader Average Rating',
 (14, 4), # Optional precision (total, decimals),
)

2. All these fields support a few common attributes. As an example, we could edit the
preceding pages field to add them:
 pages = fields.Integer(
 string='Number of Pages',
 default=0,
 help='Total book page count',
 groups='base.group_user',
 states={'cancel': [('readonly', True)]},
 copy=True,
 index=False,
 readonly=False,
 required=False,
 company_dependent=False,
)

3. The Char fields support a few specific attributes. As an example, we can edit the
short_name field to add them:
 short_name = fields.Char(
 string='Short Title',
 size=100, # For Char only
 translate=False, # also for Text fields
)

4. The HTML fields also have specific attributes:
 description = fields.Html(
 string='Description',
 # optional:
 sanitize=True,
 strip_style=False,
 translate=False,
)

Upgrading the module will make these changes effective in the Odoo model.

Application Models

68

How it works…
Fields are added to models by defining an attribute in its Python class. The non-relational field
types available are as follows:

 f Char for string values.

 f Text for multi-line string values.

 f Selection for selection lists. This has a list of values and description pairs. The
value that is selected is what gets stored in the database, and it can be a string
or an integer.

 f Html is similar to the Text field, but is expected to store rich text in the HTML format.

 f Binary fields store binary files, such as images or documents.

 f Boolean stores True/False values.

 f Date stores date values. The ORM handles them in the string format, but they are
stored in the database as dates. The format used is defined in openerp.fields.
DATE_FORMAT.

 f Datetime for date-time values. They are stored in the database in a naive date time,
in UTC time. The ORM represents them as a string and also in UTC time. The format
used is defined in openerp.fields.DATETIME_FORMAT.

 f Integer fields need no further explanation.

 f Float fields store numeric values. The precision can optionally be defined with a
total number of digits and decimal digits pairs.

 f Monetary can store an amount in a certain currency; it is also explained in
another recipe.

The first step in the recipe shows the minimal syntax to add each field type. The field
definitions can be expanded to add other optional attributes, as shown in step 2.

Here is an explanation for the field attributes used:

 f string is the field's title, used in UI view labels. It actually is optional; if not set,
a label will be derived from the field name by adding title case and replacing
underscores with spaces.

 f size only applies to Char fields and is the maximum number of characters allowed.
In general, it is advised not to use it.

 f translate when set to True, makes the field translatable; it can hold a different
value depending on the user interface language.

 f default is the default value. It can also be a function that is used to calculate the
default value. For example, default=_compute_default, where _compute_
default is a method defined on the model before the field definition.

 f help is an explanation text displayed in the UI tooltips.

Chapter 4

69

 f groups makes the field available only to some security groups. It is a string
containing a comma-separated list of XML IDs for security groups. This is addressed
in more detail in Chapter 10, Access Security.

 f states allows the user interface to dynamically set the value for the readonly,
required, and invisible attributes, depending on the value of the state field.
Therefore, it requires a state field to exist and be used in the form view (even if it is
invisible).

 f copy flags if the field value is copied when the record is duplicated. By default,
it is True for non-relational and Many2one fields and False for One2many and
computed fields.

 f index, when set to True, makes for the creation of a database index for the field,
allowing faster searches. It replaces the deprecated select=1 attribute.

 f The readonly flag makes the field read-only by default in the user interface.

 f The required flag makes the field mandatory by default in the user interface.

 f The sanitize flag is used by HTML fields and strips its content from potentially
insecure tags.

 f strip_style is also an HTML field attribute and has the sanitization to also remove
style elements.

 f The company_dependent flag makes the field store different values per company. It
replaces the deprecated Property field type.

There's more…
The Selection field also accepts a function reference instead of a list, as its "selection"
attribute. This allows for dynamically generated lists of options. You can see an example of
this in the Add dynamic relations using Reference fields recipe, where a selection attribute
is also used.

The Date and Datetime field objects expose a few utility methods that can be convenient.

For Date, we have the following:

 f fields.Date.from_string(string_value) parses the string into a date object.

 f fields.Date.to_string(date_value) represents the Date object as a string.

 f fields.Date.today() returns the current day in string format.

 f fields.Date.context_today(record) returns the current day in string format
according to the timezone of the record's (or recordset) context.

Application Models

70

For Datetime, we have the following:

 f fields.Datetime,from_string(string_value) parses the string into a
datetime object.

 f fields.Datetime,to_string(datetime_value) represents the datetime
object as a string.

 f fields.Datetime,now() returns the current day and time in string format. This is
appropriate to use for default values.

 f fields.Datetime,context_timestamp(record, value) converts a value
naive date-time into a timezone-aware date-time using the timezone in the context of
record. This is not suitable for default values.

Other than basic fields, we also have relational fields: Many2one, One2many, and
Many2many. These are explained in the Add relational fields to a model recipe.

It's also possible to have fields with automatically computed values, defining the computation
function with the compute field attribute. This is explained in the Adding computed fields to a
model recipe.

A few fields are added by default in Odoo models, so we should not use these names for our
fields. These are the id field, for the record's automatically generated identifier, and a few
audit log fields, which are as follows:

 f create_date is the record creation timestamp

 f create_uid is the user that created the record

 f write_date is the last recorded edit timestamp

 f write_uid is the user that last edited the record

The automatic creation of these log fields can be disabled by setting the _log_access=False
model attribute.

Another special column that can be added to a model is active. It should be a Boolean flag
allowing for mark records as inactive. Its definition looks like this:

active = fields.Boolean('Active', default=True)

By default, only records with active set to True are visible. To have them retrieved,
we need to use a domain filter with [('active', '=', False)]. Alternatively, if the
'active_test': False value is added to the environment Context, the ORM will not
filter out inactive records.

Chapter 4

71

Using a float field with configurable
precision

When using float fields, we may want to let the end user configure the precision that is to be
used. The Decimal Precision Configuration module addon provides this ability.

We will add a Cost Price field to the Library Book model, with a user-configurable number
of digits.

Getting ready
We will reuse the my_module addon module from Chapter 3, Creating Odoo Modules.

How to do it…
We need to install the decimal_precision module, add a "Usage" entry for our
configuration, and then use it in the model field:

1. Make sure the Decimal Accuracy module is installed; select Apps from the top menu,
remove the default filter, search for the Decimal Precision Configuration app, and
install it if it's not already installed:

2. Activate the Developer Mode in the About dialog box, available within the ? icon in
the menu bar at the top. This will enable the Settings | Technical menu.

3. Access the Decimal Precision configurations. To do this, open the Settings top menu
and select Technical | Database Structure | Decimal Accuracy. We should see a
list of the currently defined settings.

Application Models

72

4. Add a new configuration, setting Usage to Book Price and choosing the
Digits precision:

5. Add the new dependency to the __openerp__.py manifest file. It should be similar
to this:
{ 'name': 'Chapter 03 code',
 'depends': ['base', 'decimal_precision],
 'data': ['views/library_book.xml'] }

6. To add the model field using this decimal precision setting, edit the models/
library_book.py file by adding the following:
from openerp.addons import decimal_precision as dp
...
class LibraryBook(models.Model):
 # ...
 cost_price = fields.Float(
 'Book Cost', dp.get_precision('Book Price))

How it works…
The get_precision() function looks up the name in the Decimal Accuracy Usage field
and returns a tuple representing 16-digit precision with the number of decimals defined
in the configuration.

Using this function in the field definition, instead of having it hardcoded, allows the end user
to configure it according to his needs.

Chapter 4

73

Adding a monetary field to a Model
Odoo has special support for monetary values related to a currency. Let's see how to use it in
a Model.

The Monetary field was introduced in Odoo 9.0 and is not available
in previous versions. If you are using Odoo 8.0, the float field type
is your best alternative.

Getting ready
We will reuse the my_module addon module from Chapter 3, Creating Odoo Modules.

How to do it…
The monetary field needs a complementary currency field to store the currency for the amounts.

The my_module already has a models/library_book.py defining a basic Model. We will
edit this to add the needed fields:

1. Add the field to store the currency that is to be used:
class LibraryBook(models.Model):
 # ...
 currency_id = fields.Many2one(
 'res.currency', string='Currency')

2. Add the monetary field to store our amount:
class LibraryBook(models.Model):
 # ...
 retail_price = fields.Monetary(
 'Retail Price',
 # optional: currency_field='currency_id',
)

Now, upgrade the addon module, and the new fields should be available in the Model. They
won't be visible in views until they are added to them, but we can confirm their addition by
inspecting the Model fields in Settings | Technical | Database Structure | Models.

Application Models

74

How it works…
Monetary fields are similar to Float fields, but Odoo is able to represent them correctly in the
user interface since it knows what their currency is through a second field for that purpose.

This currency field is expected to be named currency_id, but we can use whatever field
name we like as long as it is indicated using the currency_field optional parameter.
You might like to know that the decimal precision for the amount is taken from the currency
definition (the decimal_precision field of the res.currency model).

Adding relational fields to a Model
Relations between Odoo Models are represented by relational fields. We can have three
different types of relations: many-to-one, one-to-many, and many-to-many. Looking at the
Library Books example, we see that each book can have one Publisher, so we can have a
many-to-one relation between books and publishers.

Looking at it from the Publishers point of view, each Publisher can have many Books. So, the
previous many-to-one relation implies a one-to-many reverse relation.

Finally, there are cases where we can have a many-to-many relation. In our example, each
book can have several (many) Authors. And inversely, each Author can have written many
books. Looking at it from either side, this is a many-to-many relation.

Getting ready
We will reuse the my_module addon module from Chapter 3, Creating Odoo Modules.

How to do it…
Odoo uses the Partner model, res.partner, to represent persons, organizations, and
addresses. So, we should use it for authors and publishers. We will edit the models/
library_book.py file to add these fields:

1. Add to Library Books the many-to-one field for the book's publisher:
class LibraryBook(models.Model):
 # ...
 publisher_id = fields.Many2one(
 'res.partner', string='Publisher',
 # optional:
 ondelete='set null',
 context={},
 domain=[],
)

Chapter 4

75

2. To add the one-to-many field for a publisher's books, we need to extend the partner
model. For simplicity, we will add that to the same Python file:
class ResPartner(models.Model):
 _inherit = 'res.partner'
 book_ids = fields.One2many(
 'library.book', 'publisher_id',
 string='Published Books')

3. The many-to-many relation between books and authors was already created, but let's
revisit it:
class LibraryBook(models.Model):
 # ...
 author_ids = fields.Many2many(
 'res.partner', string='Authors')

4. The same relation, but from authors to books, should be added to the Partner model:
class ResPartner(models.Model):
 # ...
 book_ids = fields.Many2many(
 'library.book',
 string='Authored Books',
 # relation='library_book_res_partner_rel' # optional
)

Now, upgrade the addon module, and the new fields should be available in the Model. They
won't be visible in views until they are added to them, but we can confirm their addition by
inspecting the Model fields in Settings | Technical | Database Structure | Models.

How it works…
Many-to-one fields add a column to the database table of the model storing the database ID
of the related record. At the database level, a foreign key constraint will also be created for it,
ensuring that the stored IDs are a valid reference to a record in the related table. No database
index is created for these relation fields, but this should often be considered; it can be done
by adding the attribute index=True.

We can see that there are four more attributes we can use for many-to-one fields:

Application Models

76

The ondelete attribute determines what happens when the related record is deleted. For
example, what happens to Books when their Publisher record is deleted? The default is 'set
null', setting an empty value on the field. It can also be 'restrict', which prevents the
related record from being deleted, or 'cascade', which causes the linked record to also
be deleted.

The last two (context and domain) are also valid for the other relational fields. They are
mostly meaningful on the client side and at the model level act just as default values to be
used in the client-side views.

 f context adds variables to the client context when clicking through the field to the
related record's view. We can, for example, use it to set default values on that view.

 f domain is a search filter used to limit the list of related records available for selection
when choosing a value for our field.

Both context and domain are explained in more detail in Chapter 8, Backend Views.

One-to-many fields are the reverse of many-to-one relations, and although they are added to
models just like other fields, they have no actual representation in the database. They are
instead programmatic shortcuts and enable views to represent these lists of related records.

Many-to-many relations also don't add columns in the tables for the models. This type of
relation is represented in the database using an intermediate relation table, with two columns
to store the two related IDs. Adding a new relation between a Book and an Author creates a
new record in the relation table with the ID for the Book and the ID for the Author.

Odoo automatically handles the creation of this relation table. The relation table name is,
by default, built using the name of the two related models plus a _rel suffix. But, we can
override it using the relation attribute. A case to keep in mind is when the two table
names are large enough for the automatically generated database identifiers to exceed the
PostgreSQL limit of 63 characters.

As a rule of thumb, if the names of the two related tables exceed 23 characters, you should
use the relation attribute to set a shorter name. In the next section, we will go into more
detail on this.

There's more…
The Many2one fields support an additional auto_join attribute. It is a flag that allows the
ORM to use SQL joins on this field. Because of this, it bypasses the usual ORM control such
as user access control and record access rules. On a specific case, it can solve a performance
issue, but it is advised to avoid using it.

Chapter 4

77

We have seen the shortest way to define the relational fields. For completeness, these are the
attributes specific to this type of field:

The One2many field attributes are as follows:

 f comodel_name: This is the target model identifier and is mandatory for all relational
fields, but it can be defined position-wise without the keyword

 f inverse_name: This applies only to One2many and is the field name in the target
model for the inverse Many2one relation

 f limit: This applies to One2many and Many2many and sets an optional limit on the
number of records to read that are used at the user interface level

The Many2many field attributes are as follows:

 f comodel_name: (as defined earlier)

 f relation: This is the name to use for the table supporting the relation, overriding
the automatically defined name

 f column1: This is the name for the Many2one field in the relational table linking to
this model

 f column2: This is the name for the Many2one field in the relational table linking to
the comodel

For Many2many relations, in most cases the ORM will take perfect care of the default
values for these attributes. It is even capable of detecting inverse Many2many relations,
detecting the already existing relation table and appropriately inverting the column1
and column2 values.

But there are two cases where we need to step in and provide our own values for these
attributes. One is the case where we need more than one Many2many relation between the
same two models. For this to be possible, we must provide ourselves with a relation table
name that is different from the first relation. The other case is when the database names of
the related tables are long enough for the automatically generated relation name to exceed
the 63 character PostgreSQL limit for database object names.

The relation table's automatic name is <model1>_<model2>_rel. But this relation table
also creates an index for its primary key with the following identifier:

<model1>_<model2>_rel_<model1>_id_<model2>_id_key

It also needs to meet the 63 characters limit. So, if the two table names combined exceed
a total of 63 characters, you will probably have trouble meeting the limits and will need to
manually set the relation attribute.

Application Models

78

Adding a hierarchy to a Model
Hierarchies are represented using model relations with itself; each record has a parent record
in the same model and also has many child records. This can be achieved by simply using
many-to-one relations between the model and itself.

But Odoo also provides improved support for this type of field using the Nested set model
(https://en.wikipedia.org/wiki/Nested_set_model). When activated, queries
using the child_of operator in their domain filters will run significantly faster.

Staying with the Library Books example, we will build a hierarchical category tree that could be
used to categorize books.

Getting ready
We will reuse the my_module addon module from Chapter 3, Creating Odoo Modules.

How to do it…
We will add a new Python file, models/library_book_categ.py, for the category tree,
shown as follows:

1. To have the new Python code file loaded, add this line to models/__init__.py:
from . import library_book_categ

2. To create the Book Category model with the parent and child relations, create the
models/library_book_categ.py file with the following:
-*- coding: utf-8 -*-
from openerp import models, fields, api
class BookCategory(models.Model):
 _name = 'library.book.category'
 name = fields.Char('Category')
 parent_id = fields.Many2one(
 'library.book.category',
 string='Parent Category',
 ondelete='restrict',
 index=True)
 child_ids = fields.One2many(
 'library.book.category', 'parent_id',
 string='Child Categories')

https://en.wikipedia.org/wiki/Nested_set_model

Chapter 4

79

3. To enable the special hierarchy support, also add the following:
_parent_store = True
parent_left = fields.Integer(index=True)
parent_right = fields.Integer(index=True)

4. To add a check preventing looping relations, add the following line to the model:
@api.constrains('parent_id')
def _check_hierarchy(self):
 if not self._check_recursion():
 raise models.ValidationError(
 'Error! You cannot create recursive categories.')

Finally, a module upgrade should make these changes effective.

How it works…
Steps 1 and 2 create the new model with hierarchic relations. The Many2one relation adds
a field to reference the parent record. For faster child record discovery, this field is indexed in
the database using the index=True parameter. The parent_id field must have ondelete
set to either 'cascade' or 'restrict'.

At this point, we have all that is required to have a hierarchic structure. But there are a few
more additions we can make to enhance it.

The One2many relation does not add any additional fields to the database but provides a
shortcut to access all the records with this record as their parent.

In step 3, we activate the special support for hierarchies. This is useful for high-read but
low-write instructions, since it brings faster data browsing at the expense of costlier write
operations. It is done by adding two helper fields, parent_left and parent_right, and
setting the model attribute to _parent_store=True. When this attribute is enabled, the two
helper fields will be used to store data in searches in the hierarchic tree.

By default, it is assumed that the field for the record's Parent is called parent_id, but a
different name can be used. In that case, the correct field name should be indicated using the
additional model attribute _parent_name. The default is as follows:

 _parent_name = 'parent_id'

Step 4 is advised in order to prevent cyclic dependencies in the hierarchy— that is, having
a record both in the ascending and descending trees. This is dangerous for programs that
navigate through the tree, since they can get into an infinite loop. The models.Model
provides a utility method for this (_check_recursion) that we have reused here.

Application Models

80

There's more…
The technique shown here should be used for "static" hierarchies, which are read and queried
often but seldom updated. Book categories are a good example, since the Library will not
be continuously creating new categories, but readers will often be restricting their searches
to a category and all its children categories. The reason for this lies in the implementation
of the Nested Set Model in the database, which requires an update of the parent_left
and parent_right columns (and the related database indexes) for all records whenever a
category is inserted, removed, or moved. This can be a very expensive operation, especially
when multiple editions are being performed in parallel transactions.

If you are dealing with a very dynamic hierarchical structure, the standard parent_id and
child_ids relations can result in better performance.

Adding constraint validations to a Model
Models can have validations preventing them from entering undesired conditions. Two
different types of constraint can be used: the ones checked at the database level and
the ones checked at the server level.

Database level constraints are limited to the constraints supported by PostgreSQL. The most
commonly used are the UNIQUE constraints, but CHECK and EXCLUDE constraints can also
be used. If these are not enough for our needs, we can use Odoo server level constraints,
written in Python code.

We will use the Library Book model created in Chapter 3, Creating Odoo Modules, and add a
couple of constraints to it. We will add a database constraint preventing duplicate book titles,
and a Python model constraint preventing release dates in the future.

Getting ready
We will reuse the my_module addon module from Chapter 3, Creating Odoo Modules.

We expect it to contain at least the following:

-*- coding: utf-8 -*-
from openerp import models, fields
class LibraryBook(models.Model):
 _name = 'library.book'
 name = fields.Char('Title', required=True)
 date_release = fields.Date('Release Date')

Chapter 4

81

How to do it…
We will edit the LibraryBook class in the models/library_book_categ.py Python file:

1. To create the database constraint, add a model attribute:
class LibraryBook(models.Model):
 # ...
 _sql_constraints = [
 ('name_uniq',
 'UNIQUE (name)',
 'Book title must be unique.')
]

2. To create the Python code constraint, add a model method:
from openerp import api
class LibraryBook(models.Model):
 # ...
 @api.constrains('date_release')
 def _check_release_date(self):
 for r in self:
 if r.date_release > fields.Date.today():
 raise models.ValidationError(
 'Release date must be in the past')

After these changes are made to the code file, an addon module upgrade and server restart
are needed.

How it works…
The first step has a database constraint created on the model's table. It is enforced at the
database level. The _sql_constraints model attribute accepts a list of constraints to
create. Each constraint is defined by a three element tuple; they are listed as follows:

 f A suffix to use for the constraint identifier. In our example, we used name_uniq and
the resulting constraint name is library_book_name_uniq.

 f The SQL to use in the PostgreSQL instruction to alter or create the database table.

 f A message to report to the user when the constraint is violated.

As mentioned earlier, other database table constraints can be used. Note that column
constraints, such as NOT NULL, can't be added this way. For more information on
PostgreSQL constraints in general and table constraints in particular, take a look
at http://www.postgresql.org/docs/9.4/static/ddl-constraints.html.

http://www.postgresql.org/docs/9.4/static/ddl-constraints.html

Application Models

82

In the second step, we added a method to perform a Python code validation. It is decorated
with @api.constrains, meaning that it should be executed to run checks when one of
the fields in the argument list is changed. If the check fails, a ValidationError exception
should be raised.

The _constraints model attribute is still available but has been
deprecated since version 8.0. Instead, we should use methods with
the new @api.constrains decorator.

Adding computed fields to a Model
Sometimes, we need to have a field that has a value calculated or derived from other
fields in the same record or in related records. A typical example is the total amount that is
calculated by multiplying a unit price with a quantity. In Odoo models, this can be achieved
using computed fields.

To show how computed fields work, we will add one to the Library Books model to calculate
the days since the book's release date.

It is also possible to make computed fields editable. We will also implement this in our example.

Getting ready
We will reuse the my_module addon module from Chapter 3, Creating Odoo Modules.

How to do it…
We will edit the models/library_book.py code file to add a new field and the methods
supporting its logic:

1. Start by adding the new field to the Library Books model:
class LibraryBook(models.Model):
 # ...
 age_days = fields.Float(
 string='Days Since Release',
 compute='_compute_age',
 inverse='_inverse_age',
 search='_search_age',
 store=False,
 compute_sudo=False,
)

Chapter 4

83

2. Next, add the method with the value computation logic:
...
from openerp import api # if not already imported
from openerp.fields import Date as fDate
...
class LibraryBook(models.Model):
 # …
 @api.depends('date_release')
 def _compute_age(self):
 today = fDate.from_string(fDate.today())
 for book in self.filtered('date_release'):
 delta = (fDate.from_string(book.date_release -
 today)
 book.age_days = delta.days

3. To add the method implementing the logic to write on the computed field, use the
following code:
from datetime import timedelta as td
...
class LibraryBook(models.Model):
 # …
 def _inverse_age(self): today =
 fDate.from_string(fDate.today())
 for book in self.filtered('date_release'):
 d = td(days=book.age_days) - today
 book.date_release = fDate.to_string(d)

4. To implement the logic allowing you to search on the computed field, use the
following code:
from datetime import timedelta as td
class LibraryBook(models.Model):
 # …
 def _search_age(self, operator, value):
 today = fDate.from_string(fDate.today())
 value_days = td(days=value)
 value_date = fDate.to_string(today - value_days)
 return [('date_release', operator, value_date)]

An Odoo restart followed by a module upgrade should be needed to correctly activate these
new additions.

Application Models

84

How it works…
The definition of a computed field is the same as the one for a regular field, except that a
compute attribute is added to specify the name of the method to use for its computation.

The similarity can be deceptive, since computed fields are internally quite different from
regular fields. Computed fields are dynamically calculated at runtime, and unless you
specifically add that support yourself, they are not writeable or searchable.

The computation function is dynamically calculated at runtime, but the ORM uses caching to
avoid inefficiently recalculating it every time its value is accessed. So, it needs to know what
other fields it depends on, using the @depends decorator to detect when its cached values
should be invalidated and recalculated.

Make sure that the compute function always sets a value on the
computed field. Otherwise, an error will be raised. This can happen
when you have if conditions in your code that sometimes fail to set a
value on the computed field, and can be tricky to debug.

Write support can be added by implementing the inverse function; it uses the value
assigned to the computed field to update the origin fields. Of course, this only makes sense
for simpler calculations; nevertheless, there are still cases where it can be useful. In our
example, we make it possible to set the book release date by editing the Days Since Release
computed field.

It is also possible to make searchable a non-stored computed field by setting the search
attribute to the method name to use (similar to compute and inverse).

However, this method is not expected to implement the actual search. Instead, it receives as
parameters the operator and value used to search on the field and is expected to return a
domain with the replacement search conditions to use. In our example, we translate a search
of the Days Since Release field into an equivalent search condition on the Release Date field.

The optional store=True flag makes the field stored in the database. In this case, after
being computed, the field values are stored in the database, and from there on, they are
retrieved like regular fields instead of being recomputed at runtime. Thanks to the @api.
depends decorator, the ORM will know when these stored values need to be recomputed
and updated. You can think of it as a persistent cache. It also has the advantage of making
the field usable for search conditions, sorting and grouping by operations, without the need to
implement the search method.

The compute_sudo=True flag is to be used in those cases where the computations need
to be done with elevated privileges. This can be the case when the computation needs to use
data that may not be accessible to the end user.

Chapter 4

85

Exposing Related fields stored in other
models

When reading data from the server, Odoo clients can only get values for the fields available in
the model being queried. Client-side code can't use dot notation to access data in the related
tables like server-side code can.

But those fields can be made available there by adding them as related fields. We will do this
to make the publisher's city available in the Library Book model.

Getting ready
We will reuse the my_module addon module from Chapter 3, Create Odoo Modules.

How to do it…
Edit the models/library_book.py file to add the new "related" field:

1. Make sure that we have a field for the book Publisher:
class LibraryBook(models.Model):
 # ...
 publisher_id = fields.Many2one(
 'res.partner', string='Publisher')

2. Now, add the related field for the Publisher's city:
class LibraryBook(models.Model):
 # ...
 publisher_city = fields.Char(
 'Publisher City',
 related='publisher_id.city')

Finally, we need to upgrade the addon module for the new fields to be available in the Model.

How it works…
Related fields are just like regular fields, but they have the additional attribute, related, with
a string for the separated chain of fields to traverse.

In our case, we access the Publisher related record through publisher_id, and then
read its city field. We can also have longer chains, such as publisher_id.country_
id.country_code.

Application Models

86

There's more…
Related fields are in fact computed fields. They just provide a convenient shortcut syntax
to read field values from related models. As a computed field, this means that the store
attribute is also available to them. As a shortcut, they also have all the attributes from the
referenced field, such as name, translatable, required, and so on.

Additionally, they support a related_sudo flag similar to compute_sudo; when set to True,
the field chain is traversed without checking user access rights.

Adding dynamic relations using Reference
fields

With relational fields, we need to decide beforehand the relation's target model (or comodel).
But sometimes, we may need to leave that decision to the user and first choose the model we
want and then the record we want to link to.

With Odoo, this can be achieved using Reference fields.

Getting ready
We will reuse the my_module addon module from Chapter 3, Creating Odoo Modules.

How to do it…
Edit the models/library_book.py file to add the new related field:

1. We first add a helper method to dynamically build the list of selectable target models:
from openerp import models, fields, api
class LibraryBook(models.Model):
 # …
 @api.model
 def _referencable_models(self):
 models = self.env['res.request.link'].search([])
 return [(x.object, x.name) for x in models]

2. Then, we add the Reference field and use the previous function to provide the list of
selectable models:
 ref_doc_id = fields.Reference(
 selection='_referencable_models',
 string='Reference Document')

Chapter 4

87

Since we are changing the model's structure, a module upgrade is needed to activate
these changes.

How it works…
Reference fields are similar to many-to-one fields, except that they allow the user to select the
model to link to.

The target model is selectable from a list provided by the selection attribute. The
selection attribute must be a list of two element tuples, where the first is the model
internal identifier, and the second is a text description for it.

Here is an example:

[('res.users', 'User'), ('res.partner', 'Partner')]

However, rather than providing a fixed list, we can use a model list configurable by end
users. That is the purpose of the built-in Referenceable Models available in the Settings
| Technical | Database Structure menu option. This model's internal identifier is res.
request.link.

Our recipe started with providing a function to browse all the Model records that can be
referenced to dynamically build a list to be provided to the selection attribute. Although
both forms are allowed, we declared the function name inside quotes, instead of a direct
reference to the function without quotes. This is more flexible, and for example, allows for
the referenced function to be defined only later in the code, which is something that is not
possible when using a direct reference.

The function needs the @api.model decorator because it operates on the model level, not
on the recordset level.

While this feature looks nice, it comes with a significant execution overhead.
Displaying the reference fields for a large number of records, for instance, in
a list view, can create heavy database loads as each value has to be looked
up in a separate query. It is also unable to take advantage of database
referential integrity like regular relation fields can.

Adding features to a Model using inheritance
One of the most important Odoo features is the ability of module addons extending features
defined in other module addons without having to edit the code of the original feature. This
might be to add fields or methods, or modify existing fields, or extend existing methods to
perform additional logic.

Application Models

88

It is the most frequently used method of inheritance and is referred to by the official
documentation as traditional inheritance or classical inheritance.

We will extend the built in Partner model to add it to a computed field with the authored book
count. This involves adding a field and a method to an existing model.

Getting ready
We will reuse the my_module addon module from Chapter 3, Creating Odoo Modules.

How to do it…
We will be extending the built-in Partner model. We should do this in its own Python code file,
but to keep the explanation as simple we can, we will reuse the models/library_book.py
code file:

1. First, we make sure the authored_book_ids inverse relation is in the Partner
model and add the computed field:
class ResPartner(models.Model):
 _inherit = 'res.partner'
 _order = 'name'
 authored_book_ids = fields.Many2many(
 'library.book', string='Authored Books')
 count_books = fields.Integer(
 'Number of Authored Books',
 compute='_compute_count_books'
)

2. Next, add the method needed to compute the book count:
...
from openerp import api # if not already imported
class ResPartner(models.Model):
 # ...
 @api.depends('authored_book_ids')
 def _compute_count_books(self):
 for r in self:
 r.count_books = len(r.authored_book_ids)

Finally, we need to upgrade the addon module for the modifications to take effect.

How it works…
When a model class is defined with the _inherit attribute, it adds modifications to the
inherited model rather than replacing it.

Chapter 4

89

This means that fields defined in the inheriting class are added or changed on the parent
model. At the database layer, it is adding fields on the same database table.

Fields are also incrementally modified. This means that if the field already exists in the super
class, only the attributes declared in the inherited class are modified; the other ones are kept
as in the parent class.

Methods defined in the inheriting class replace the method in the parent class. So, unless
they include a call to the parent's version of the method, we will lose features. Because of
this, when we want to add logic to existing methods, they should include a statement with
super to call its version in the parent class. This is discussed in more detail in Chapter 5,
Basic Server Side Business Log.

There's more…
With the _inherit traditional inheritance, it's also possible to copy the parent model's
features into a completely new model. This is done by simply adding a _name model
attribute with a different identifier. Here is an example:

class LibraryMember(models.Model):
 _inherit = 'res.partner'
 _name = 'library.member'

The new model has its own database table with its own data totally independent from
the res.partner parent model. Since it still inherits from the Partner model, any later
modifications to it will also affect the new model.

In the official documentation, this is called prototype inheritance, but in practice, it is seldom
used. The reason is that delegation inheritance usually answers to that need in a more
efficient way, without the need to duplicate data structures. For more information on it, you
can refer to the Use Delegation inheritance to copy features to another Model recipe.

Using Abstract Models for reusable Model
features

Sometimes, there is a particular feature that we want to be able to add to several different
models. Repeating the same code in different files is bad programming practice, so it would
be nice to be able to implement it once and be able to reuse it many times.

Abstract models allow us to just create a generic model that implements some feature that
can then be inherited by regular models in order to make that feature available in them.

Application Models

90

As an example, we will implement a simple Archive feature. It adds the active field to
the model (if it doesn't exist already) and makes available an archive method to toggle the
active flag. This works because active is a magic field; if present in a model by default,
the records with active=False will be filtered out from queries.

We will then add it to the Library Book model.

Getting ready
We will reuse the my_module addon module from Chapter 3, Creating Odoo Modules.

How to do it…
The archive feature would certainly deserve its own addon module, or at least its own Python
code file. But to keep the explanation as simple as possible, we will cram it into the models/
library_book.py file:

1. Add the abstract model for the archive feature. It must be defined in the Library
Book model, where it will be used:
class BaseArchive(models.AbstractModel):
 _name = 'base.archive'
 active = fields.Boolean(default=True)

 def do_archive(self):
 for record in self:
 record.active = not record.active

2. Now, we will edit the Library Book model to inherit the Archive model:
class LibraryBook(models.Model):
 _name = 'library.book'
 _inherit = ['base.archive']
 # ...

An upgrade to the addon module is needed for the changes to be activated.

How it works…
An Abstract model is created by a class based on models.AbstractModel instead of
the usual models.Model. It has all the attributes and capabilities of regular models; the
difference is that the ORM will not create an actual representation for it in the database. So,
it can have no data stored in it. It serves only as a template for a reusable feature that is to be
added to regular models.

Chapter 4

91

Our Archive abstract model is quite simple; it just adds the active field and a method to
toggle the value of the active flag, which we expect to later be used via a button on the
user interface.

When a model class is defined with the _inherit attribute, it inherits the attribute methods
of those classes, and what is defined in our class adds modifications to these inherited
features.

The mechanism at play here is the same as that for a regular model extension (as per the Add
features to a Model using inheritance recipe). You may have noticed that here, _inherit
uses a list of model identifiers instead of a string with one model identifier. In fact, _inherit
can have both forms. Using the list form allows us to inherit from multiple (usually Abstract)
classes. In this case, we are inheriting just one, so a text string would be fine. A list was used
instead to underline that a list can be used.

There's more…
A noteworthy built-in abstract model is ir.needaction_mixin. It allows for records to
signal that a user action is needed on them and is widely used together with the Social
Network messaging features.

Another widely used abstract model is mail.thread, provided by the mail (Discuss) addon
module. It enables, on models, the message features that power the message wall seen at
the bottom of many forms.

Other than AbstractModel, a third model type is available: models.TransientModel.

It has database representation like models.Model, but the records created there are
supposed to be temporary and regularly purged by a server-scheduled job. Other than that,
Transient models work just like regular models.

They are useful for more complex user interactions known as wizards, for example, to request
the user some input to then run a process or a report. In Chapter 6, Advanced Server Side
Development Techniques, we explore how to use them for advanced user interaction.

Using Delegation inheritance to copy
features to another Model

Traditional inheritance using _inherit performs in-place modification to extend the
model's features.

But there are cases where rather than modifying an existing model, we want to create a new
model based on an existing one to leverage the features it already has. This is one with Odoo's
delegation inheritance that uses the model attribute, _inherits (note the additional s).

Application Models

92

Traditional inheritance is quite different than the concept in object-oriented programming.
Delegation inheritance in turn is similar in that a new model can be created to include the
features from a parent model. It also supports polymorphic inheritance, where we inherit
from two or more other models.

We have a library with books. It's about time for our library to also have members. For a library
member, we need all the identification and address data found in the Partner model, and we
also want it to keep some information regarding the membership: a start date, termination
date, and card number.

Adding those fields to the Partner model is not the best solution since they will be not be used
for Partners that are not members. It would be great to extend the Partner model to a new
model with some additional fields.

Getting ready
We will reuse the my_module addon module from Chapter 3, Creating Odoo Modules.

How to do it…
The new Library Member model should be in its own Python code file, but to keep the
explanation as simple as possible, we will reuse the models/library_book.py file:

1. Add the new model, inheriting from res.partner:
from openerp import models, fields # if not done yet
class LibraryMember(models.Model):
 _name = 'library.member'
 _inherits = {'res.partner': 'partner_id'}
 partner_id = fields.Many2one(
 'res.partner',
 ondelete='cascade')

2. Next, we add the fields that are specific to Library Members:
class LibraryMember(models.Model):
 # ...
 date_start = fields.Date('Member Since')
 date_end = fields.Date('Termination Date')
 member_number = fields.Char()

Now, we should upgrade the addon module to have the changes activated.

Chapter 4

93

How it works…
The _inherits model attribute sets the parent models that we want to inherit from. In
this case, just one: res.partner. Its value is a key-value dictionary where the keys are
the inherited models, and the values are the field names used to link to them. These are
Many2one fields that we must also define in the model. In our example, partner_id is the
field that will be used to link with the Partner parent model.

To better understand how it works, let's look at what happens on the database level when we
create a new Member:

 f A new record is created in the res_partner table

 f A new record is created in the library_member table

 f The partner_id field of the library_member table is set to the id of the
res_partner record that is created for it

The Member record is automatically linked to a new Partner record. It's just a many-to-one
relation, but the delegation mechanism adds some magic so that the Partner's fields are seen
as if belonging to the Member record, and a new Partner record is also automatically created
with the new Member.

You might like to know that this automatically created Partner record has nothing special
about it. It's a regular Partner, and if you browse the Partner model, you will be able to find
that record (without the additional Member data, of course). All Members are at the same
time Partners, but only some Partners are also Members.

So, what happens if you delete a Partner record that is also a Member? You decide by
choosing the ondelete value for the relation field. For partner_id, we used cascade. This
means that deleting the Partner would also delete the corresponding Member. We could have
used the more conservative setting restrict to forbid deleting the Partner while it has a
linked Member. In this case, only deleting the Member would work.

It's important to note that delegation inheritance only works for fields and not for methods.
So, if the Partner model has a do_something() method, the Members model will not
automatically inherit it.

There's more…
A noteworthy case of delegation inheritance is the Users model, res.users. It inherits from
Partners (res.partner). This means that some of the fields that you can see on the User
are actually stored in the Partner model (notably the name field). When a new User is created,
we also get a new automatically created Partner.

We should also mention that traditional inheritance with _inherit can also copy features
into a new model, although in a less efficient way. This was discussed in the Add features to a
Model using inheritance recipe.

95

5
Basic Server Side

Development

In this chapter, we will cover the following topics:

 f Defining model methods and use the API decorators

 f Reporting errors to the user

 f Obtaining an empty recordset for a different model

 f Creating new records

 f Updating values of recordset records

 f Searching for records

 f Combining recordsets

 f Filtering recordsets

 f Traversing recordset relations

 f Extending the business logic defined in a model

 f Extending write() and create()

 f Customizing how records are searched

Introduction
In Chapter 4, Application Models, we have seen how to declare or extend business models
in custom modules. The recipes in that chapter cover writing methods for computed fields
as well as methods to constrain the values of fields. This chapter focuses on the basics of
server side development in Odoo—method definitions, recordset manipulation, and extending
inherited methods.

Basic Server Side Development

96

Defining model methods and use the API
decorators

The model classes defining custom data models declare fields for the data processed by the
model. They can also define custom behavior by defining methods on the model class.

In this recipe, we will see how to write a method that can be called by a button in the
user interface, or by some other piece of code in our application. This method will act on
LibraryBooks and perform the required actions to change the state of a selection of books.

Getting ready
This recipe assumes you have an instance ready, with the my_module addon module
available, as described in Chapter 3, Creating Odoo Modules. You will need to add a state
field to the LibraryBook model defined as follows:

from openerp import models, fields, api
class LibraryBook(models.Model):
 # […]
 state = fields.Selection([('draft', 'Unavailable'),
 ('available', 'Available'),
 ('borrowed', 'Borrowed'),
 ('lost', 'Lost')],
 'State')

Please refer to Chapter 4, Adding data fields to a Model for more clarity.

How to do it…
For defining a method on LibraryBook to allow changing the state of a selection of books,
you need to add the following code to the model definition:

1. Add a helper method to check whether a state transition is allowed:
 @api.model
 def is_allowed_transition(self, old_state, new_state):
 allowed= [('draft', 'available'),
 ('available', 'borrowed'),
 ('borrowed', 'available'),
 ('available', 'lost'),
 ('borrowed', 'lost'),
 ('lost', 'available')]
 return (old_state, new_state) in allowed

Chapter 5

97

2. Add a method to change the state of some books to a new one passed as an argument:
 @api.multi
 def change_state(self, new_state):
 for book in self:
 if book.is_allowed_transition(book.state,
 new_state):
 book.state = new_state
 else:
 continue

How it works…
The code in the recipe defines two methods. They are normal Python methods, having self
as their first argument and can have additional arguments as well.

The methods are decorated with decorators from the openerp.api module. These
decorators are there to ensure the conversion of calls made using the old or traditional API to
the new API. The old API is used by the remote procedure call (RPC) protocol of the web client
and by modules that have not yet been ported to the new API. A key part of this conversion is
the creation of an execution environment stored in self.env; it contains the following:

 f self.env.cr: This is a database cursor

 f self.env.user: This is the user executing the action

 f self.env.context: This is context, which is a Python dictionary containing various
information such as the language of the user, his configured time zone, and other
specific keys that can be set at run time by the actions of the user interface

When writing a new method, you will generally be using @api.multi. In addition to the
creation of the environment, this decorator tells the RPC layer to initialize self using the
record IDs supplied in the RPC argument ids. In such methods, self is a recordset that can
refer to an arbitrary number of database records.

The @api.model decorator is similar but is used on methods for which only the model is
important, not the contents of the recordset, which is not acted upon by the method. The
concept is similar to Python's @classmethod decorator (but we generally cannot use this in
Odoo models because we need access to self.env and other important instance attributes).

The @api.model and @api.multi decorators also have specific meaning
when ensuring the compatibility of your addon module with other modules still
using the "old API". You will find more information on this in the Porting old API
code to the new API recipe in Chapter 6, Advanced Server Side Development
Techniques.

Basic Server Side Development

98

Here is an example code snippet called change_state():

returned_book_ids is a list of book ids to return
books = self.env['library.book']
books.browse(returned_book_ids).change_state('available')

When change_state() is called, self is a (possibly empty) recordset containing records
of the library.book model. The body of the change_state() method loops over self
to process each book in the recordset. Looping on self looks strange at first, but you will get
used to this pattern very quickly.

Inside the loop, change_state() calls is_allowed_transition(). The call is
made using the local variable book, but it could have been made on any recordset for the
library.book model, including, for example, self, since is_allowed_transition() is
decorated with @api.model. If the transition is allowed, change_state() assigns the new
state to the book by assigning a value to the attribute of the recordset. This is only valid on
recordsets of length 1, which is guaranteed to be the case when iterating over self.

There's more…
There are some important factors that are worth understanding.

Hiding methods from the RPC interface
In the old API, methods with a name prefixed by an underscore are not exposed through the
RPC interface and are therefore not callable by the web client. This is still the case with the
new API, which also offers another way to make a method unavailable to the RPC interface;
if you don't put an @api.model or @api.multi decorator on it (or on one of the decorators
mentioned in the Porting old API code to the new API recipe in Chapter 6, Advanced Server
Side Development Techniques), then the method will neither be callable by extensions of the
model using the traditional API nor via RPC.

The @api.one decorator
You may encounter the @api.one decorator while reading source code. In Odoo 9.0, this
decorator is deprecated because its behavior can be confusing—at first glance, and knowing
of @api.multi, it looks like this decorator allows the method to be called only on recordsets
of size 1, but it does not. When it comes to recordset length, @api.one is similar to @api.
multi, but it does a for loop on the recordset outside the method and aggregates the
returned value of each iteration of the loop in a list, which is returned to the caller. Avoid using
it in your code.

See also
In Chapter 8, Backend Views, refer to the Adding buttons to form recipe to learn how to call
such a method from the user interface.

Chapter 5

99

You will find additional information on the decorators defined in openerp.api in the recipe
from Chapter 6, Advanced Server Side Development Techniques: Porting old API code to the
new API.

Reporting errors to the user
During method execution, it is sometimes necessary to abort the processing because an
error condition was met. This recipe shows how to do this so that a helpful error message is
displayed to the user when a method which writes a file to disk encounters an error.

Getting ready
To use this recipe, you need a method, which can have an abnormal condition. We will use the
following one:

import os
from openerp import models, fields, api

class SomeModel(models.Model):
 data = fields.Text('Data')

 @api.multi
 def save(self, filename):
 path = os.path.join('/opt/exports', filename)
 with open(path, 'w') as fobj:
 for record in self:
 fobj.write(record.data)
 fobj.write('\n')

This method can fail because of permission issues, or a full disk, or an illegal name, which
would cause an IOError or an OSError exception to be raised.

How to do it…
To display an error message to the user when an error condition is encountered, you need to
take the following steps:

1. Add the following import at the beginning of the Python file:
from openerp.exceptions import UserError

2. Modify the method to catch the exception raised and raise a UserError exception:
 @api.multi
 def save(self, filename):
 if '/' in filename or '\\' in filename:

Basic Server Side Development

100

 raise UserError('Illegal filename %s' % filename)
 path = os.path.join('/opt/exports', filename)
 try:
 with open(path, 'w') as fobj:
 for record in self:
 fobj.write(record.data)
 fobj.write('\n')
 except (IOError, OSError) as exc:
 message = 'Unable to save file: %s' % exc
 raise UserError(message)

How it works…
When an exception is raised in Python, it propagates up the call stack until it is processed. In
Odoo, the RPC layer that answers the calls made by the web client catches all exceptions and,
depending on the exception class, it will trigger different possible behaviors on the web client.

Any exception not defined in openerp.exceptions will be handled as an Internal Server
Error (HTTP status 500), with the stack trace. A UserError will display an error message in
the user interface. The code of the recipe changes the OSError to a UserError to ensure
the message is displayed in a friendly way. In all cases, the current database transaction is
rolled back.

Of course, it is not required to catch an exception with a try..except, construct to raise
a UserError exception. It is perfectly OK to test for some condition, such as the presence
of illegal characters in a filename, and to raise the exception when that test is True. This will
prevent further processing of the user request.

There's more…
There are a few more exception classes defined in openerp.exceptions, all deriving the
base legacy except_orm exception class. Most of them are only used internally, apart from
the following:

 f Warning: In Odoo 8.0, openerp.exceptions.Warning played the role of
UserError in 9.0. It is now deprecated because the name was deceptive (it is an
error, not a warning) and it collided with the Python built-in Warning class. It is kept
for backward compatibility only and you should use UserError in 9.0.

 f ValidationError: This exception is raised when a Python constraint on a field
is not respected. In Chapter 4, Application Models, refer to the Adding constraint
validations to a Model recipe for more information.

Chapter 5

101

Obtaining an empty recordset for a different
model

When writing Odoo code, the methods of the current model are available via self. If you
need to work on a different model, it is not possible to directly instantiate the class of that
model—you need to get a recordset for that model to start working.

This recipe shows how to get an empty recordset for any model registered in Odoo inside a
model method.

Getting ready
This recipe will reuse the setup of the library example in the addon module my_module.

We will write a small method in the library.book model searching for all library.
members. To do this, we need to get an empty recordset for library.members.

How to do it…
To get a recordset for library.members in a method of library.book, you need to take
the following steps:

1. In the LibraryBook class, write a method called get_all_library_members:
class LibraryBook(models.Model):
 # ...
 @api.model
 def get_all_library_members(self):
 # ...

2. In the body of the method, use the following code:
 library_member_model = self.env['library.member']
 return library_member_model.search([])

How it works…
At start up, Odoo loads all the modules and combines the various classes deriving from
Model and defining or extending a given model. These classes are stored in the Odoo
registry indexed by name. The environment in self.env provides a shortcut access to the
registry by emulating a Python dictionary; if you know the name of the model you're looking
for, self.env[model_name] will get you an empty recordset for that model. Moreover, the
recordset will share the environment of self.

The call to search() is explained in the Searching for records recipe later.

Basic Server Side Development

102

See also
The Changing the user performing an action and Calling a method with a modified enviroment
recipes in Chapter 6, Advanced Server Side Development Techniques, deal with modifying
self.env at runtime.

Creating new records
A frequent need when writing business logic methods is to create new records. This recipe
explains how to create records of the res.partner model, which is defined in Odoo's base
addon module. We will create a new partner representing a company, with some contacts.

Getting ready
You need to know the structure of the models for which you want to create a record, especially
their names and types as well as any constraints existing on these fields (for example,
whether some of them are mandatory). The res.partner model defined in Odoo has a very
large number of fields, and to keep things simple, we will only use a few of these. Moreover,
the model definition in Odoo uses the old API. To help you follow the recipe, here is a port of
the model definition we will be using for the new API:

class ResPartner(models.Model):
 _name = 'res.partner'
 name = fields.Char('Name', required=True)
 email = fields.Char('Email')
 date = fields.Date('Date')
 is_company = fields.Boolean('Is a company')
 parent_id = fields.Many2one('res.partner', 'Related Company')
 child_ids = fields.One2many('res.partner', 'parent_id',
 'Contacts')

How to do it…
In order to create a partner with some contacts, you need to take the following steps:

1. Inside the method that needs to create a new partner, get the current date formatted
as a string expected by create():
 today_str = fields.Date.context_today()

2. Prepare a dictionary of values for the fields of the first contact:
 val1 = {'name': u'Eric Idle',
 'email': u'eric.idle@example.com'
 'date': today_str}

Chapter 5

103

3. Prepare a dictionary of values for the fields of the second contact:
 val2 = {'name': u'John Cleese',
 'email': u'john.cleese@example.com',
 'date': today_str}

4. Prepare a dictionary of values for the fields of the company:
 partner_val = {
 'name': u'Flying Circus',
 'email': u'm.python@example.com',
 'date': today_str,
 'is_company': True,
 'child_ids': [(0, 0, val1),
 (0, 0, val2),
]
 }

5. Call the create() method to create the new records:
record = self.env['res.partner'].create(partner_val)

How it works…
To create a new record for a model, we can call the create(values) method on any
recordset related to the model. This method returns a new recordset of length 1 containing
the new record, with fields values specified in the values dictionary.

In the dictionary:

 f Text field values are given with Python strings (preferably Unicode strings).

 f Float and Integer field values are given using Python floats or integers.

 f Boolean field values are given, preferably using Python booleans or integer.

 f Date (resp. Datetime) field values are given as Python strings. Use fields.Date.
to_string() (resp. fields.Datetime.to_string()) to convert a Python
datetime.date (resp. datetime.datetime) object to the expected format.

 f Binary field values are passed as a Base64 encoded string. The base64 module
from the Python standard library provides methods such as encodestring(s) to
encode a string in Base64.

 f Many2one field values are given with an integer, which has to be the database ID of
the related record.

Basic Server Side Development

104

 f One2many and Many2many fields use a special syntax. The value is a list containing
tuples of three elements, as follows:

Tuple Effect
(0, 0, dict_val) Create a new record that will be related to the main record
(6, 0, id_list) Create a relation between the record being created and existing

records, whose IDs are in the Python list id_list

Caution: When used on a One2many, this will remove the records
from any previous relation

In the recipe, we create the dictionaries for two contacts in the company we want to create,
and then we use these dictionaries in the child_ids entry of the dictionary for the company
being created, using the (0, 0, dict_val) syntax explained previously.

When create() is called in step 5, three records are created:

 f One for the main partner company, which is returned by create

 f One for each of the two contacts, which are available in record.child_ids

There's more
If the model defined some default values for some fields, nothing special needs to be done;
create() will take care of computing the default values for the fields not present in the
supplied dictionary.

On the other hand, onchange methods are not called by create(), because they are called
by the web client during the initial edition of the record. Some of these methods compute
default values for fields related to a given field. When creating records by hand you have to
do the work yourself, either by providing explicit values or by calling the onchange methods.
The Calling onchange methods on the server side recipe in Chapter 6, Advanced Server Side
Development Techniques explains how to do this.

Updating values of recordset records
Business logic often means updating records by changing the values of some of their fields.
This recipe shows how to add a contact for a partner and modify the date field of the partner
as we go.

Chapter 5

105

Getting ready
This recipe will be using the same simplified res.partner definition as the Creating new
records recipe previously. You may refer to this simplified definition to know the fields.

The date field of res.partner has no defined meaning in Odoo. In order to illustrate our
purpose, we will use this to record an activity date on the partner, so creating a new contact
should update the date of the partner.

How to do it…
To update a partner, you can write a new method called add_contact() defined like this:

 @api.model
 def add_contacts(self, partner, contacts):
 partner.ensure_one()
 if contacts:
 partner.date = fields.Date.context_today()
 partner.child_ids |= contacts

How it works…
The method starts by checking whether the partner passed as an argument contains exactly
one record by calling ensure_one(). This method will raise an exception if this is not the
case and the processing will abort. This is needed, as we cannot add the same contacts to
several partners at the same time.

Then the method checks that the contacts recordset is not empty, because we don't want to
update the date of the partner if we are not modifying it.

Finally, the method modifies the values of the attributes of the partner record. Since
child_ids is a One2many relation, its value is a recordset. We use |= to compute the
union of the current contacts of the partner and the new contacts passed to the method.
See the following recipe, Combining recordsets, for more information on these operators.

Note that no assumption is made on self. This method could be defined on any model class.

There's more…
There are three options available if you want to write new values to the fields of records.

Option 1 is the one explained in the recipe, and it works in all contexts—assigning values
directly on the attribute representing the field of the record. It is not possible to assign a value
to all recordset elements in one go, so you need to iterate on the recordset, unless you are
certain that you are only handling a single record.

Basic Server Side Development

106

Option 2 is to use the update() method by passing a dictionary mapping field names to
the values you want to set. This also only works for recordsets of length 1. It can save some
typing when you need to update the values of several fields at once on the same record.
Here is step 2 of the recipe, rewritten to use this option:

 @api.model
 def add_contacts(self, partner, contacts):
 partner.ensure_one()
 if contacts:
 today = fields.Date.context_today()
 partner.update(
 {'date': today,
 'child_ids': partner_child_ids | contacts}
)

Option 3 is to call the write() method, passing a dictionary mapping field names to the
values you want to set. This method works for recordsets of arbitrary size and will update all
records with the specified values in one single database operation when the two previous
options perform one database call per record and per field. However, it has some limitations:

 f It does not work if the records are not yet present in the database (see Writing
onchange methods in Chapter 6, Advanced Server Side Development Techniques for
more information on this)

 f It requires using a special format when writing relational fields, similar to the one
used by the create() method

Tuple Effect
(0, 0, dict_val) This creates a new record that will be related to the main record.
(1, id, dict_val) This updates the related record with the specified ID with the

supplied values.
(2, id) This removes the record with the specified ID from the related

records and deletes it from the database.
(3, id) This removes the record with the specified ID from the related

records. The record is not deleted from the database.
(4, id) This adds an existing record with the supplied ID to the list of

related records.
(5,) This removes all the related records, equivalent to calling

(3, id) for each related id.
(6, 0, id_list) This creates a relation between the record being updated and the

existing record, whose IDs are in the Python list id_list.

Chapter 5

107

At the time of this writing, the official documentation is outdated and
mentions that the operation numbers 3, 4, 5, and 6 are not available on
One2many fields, which is no longer true. However, some of these may not
work with One2many fields, depending on constraints on the models; for
instance, if the reverse Many2one relation is required, then operation 3
will fail because it would result in an unset Many2one relation.

Searching for records
Searching for records is also a common operation in business logic methods. This recipe
shows how to find all the Partner companies and their contacts by company name.

Getting ready
This recipe will be using the same simplified res.partner definition as the Creating new
records recipe previously. You may refer to this simplified definition to know the fields.

We will write the code in a method called find_partners_and_contact(self, name).

How to do it…
In order to find the partners, you need to perform the following steps:

1. Get an empty recordset for res.partner:
 @api.model
 def find_partners_and_contacts(self, name):
 partner = self.env['res.partner']

2. Write the search domain for your criteria:
 domain = ['|',
 '&',
 ('is_company', '=', True),
 ('name', 'like', name),
 '&',
 ('is_company', '=', False),
 ('parent_id.name', 'like', name)
]

3. Call the search() method with the domain and return the recordset:
 return partner.search(domain)

Basic Server Side Development

108

How it works…
Step 1 defines the method. Since we are not using the contents of self, we decorate it with
@api.model, but this is not linked to the purpose of this recipe. Then, we get an empty
recordset for the res.partner model because we need it to search res.partner records.

Step 2 creates a search domain in a local variable. Often you'll see this creation inlined in the
call to search, but with complex domains, it is a good practice to define it separately.

For a full explanation of the search domain syntax, please refer to the Defining filters on
record lists: Domain recipe in Chapter 8, Backend Views.

Step 3 calls the search() method with the domain. The method returns a recordset
containing all records matching the domain, which can then be further processed. In the
recipe, we call the method with just the domain, but the following keyword arguments are
also supported:

 f offset=N: This is used to skip the N first records that match the query. This
can be used together with limit to implement pagination or to reduce memory
consumption when processing a very large number of records. It defaults to 0.

 f limit=N: return at most N records. By default, there is no limit.

 f order=sort_specification: This is used to force the order on the returned
recordset. By default, the order is given by the _order attribute of the model class.

 f count=boolean: If True, this returns the number of records instead of the
recordset. It defaults to False.

We recommend using the search_count(domain) method rather than
search(domain, count=True), as the name of the method conveys
the behavior in a much clearer way; both will give the same result.

There's more…
We said that the search() method returned all the records matching the domain. This is
not completely true. The method ensures that only records to which the user performing the
search has access are returned. Additionally, if the model has a boolean field called active
and no term of the search domain is specifying a condition on that field, then an implicit
condition is added by search to only return active=True records. So if you expect a search
to return something but you only get empty recordsets, be sure to check the value of the
active field (if present) and to check for record rules.

See the recipe Calling a method with a different context in Chapter 6, Advanced Server Side
Development Techniques for a way to not have the implicit active = True condition added.
See the Limit record access using record rules recipe in Chapter 10, Accessing Security for
more information about record level access rules.

Chapter 5

109

If for some reason you find yourself writing raw SQL queries to find record IDs, be sure to
use self.env['record.model'].search([('id', 'in', tuple(ids)).ids after
retrieving the IDs to make sure that security rules are applied. This is especially important in
multicompany Odoo instances where record rules are used to ensure proper discrimination
between companies.

Combining recordsets
Sometimes, you will find that you have obtained recordsets which are not exactly what you
need. This recipe shows various ways of combining them.

Getting ready
To use this recipe, you need to have two or more recordsets for the same model.

How to do it…
Here is the way to achieve common operations on recordsets:

1. To merge two recordsets into one while preserving their order, use the following
operation:
result = recordset1 + recordset2

2. To merge two recordsets into one ensuring that there are no duplicates in the result,
use the following operation:
result = recordset1 | recordset2

3. To find the records that are common to two recordsets, use the following operation:
result = recordset1 & recordset2

How it works…
The class for recordsets implements various Python operator redefinitions, which are used
here. Here is a summary table of the most useful Python operators that can be used on
recordsets:

Operator Action performed
R1 + R2 This returns a new recordset containing the records from R1 followed by the

records from R2. This can generate duplicate records in the recordset.
R1 – R2 This returns a new recordset consisting of the records from R1, which are not

in R2. The order is preserved.

Basic Server Side Development

110

Operator Action performed
R1 & R2 This returns a new recordset with all the records that belong to both R1 and R2

(intersection of recordsets). The order is not preserved here.
R1 | R2 This returns a new recordset with the records belonging to either R1 or R2

(union of recordsets). The order is not preserved, but there are no duplicates.
R1 == R2 True if both recordsets contain the same records.
R1 <= R2
R1 in R2

True if all records in R1 are also in R2. Both syntaxes are equivalent.

R1 >= R2
R2 in R1

True if all records in R2 are also in R1. Both syntaxes are equivalent.

R1 != R2 True if R1 and R2 do not contain the same records.

There are also in-place operators +=, -=, &=, and |=, which modify the left-hand operand
instead of creating a new recordset. These are very useful when updating a record's
One2many or Many2many fields. See the Updating values of recordset records recipe
previously for an example.

There's more…
The sorted() method will sort the records in a recordset. Called without arguments, the
_order attribute of the model will be used. Otherwise, a function can be passed to compute
a comparison key in the same fashion as the Python built-in sorted(sequence, key)
function. The reverse keyword argument is also supported.

Note about performance
When the default _order parameter of the model is used, the sorting is
delegated to the database and a new SELECT function is performed to get
the order. Otherwise, the sorting is performed by Odoo. Depending on what
is being manipulated, and on the size of the recordsets, there can be some
important performance differences.

Filtering recordsets
In some cases, you already have a recordset, but you need to operate only on some records.
You can, of course, iterate on the recordset, checking for the condition on each iteration
and acting depending on the result of the check. It can be easier, and in some cases, more
efficient to construct a new recordset containing only the interesting records and calling a
single operation on that recordset.

This recipe shows how to use the filter() method to extract a recordset from another one.

Chapter 5

111

Getting ready
We will reuse the simplified res.partner model shown in the Create new records recipe
previously. This recipe defines a method to extract partners having an e-mail address from a
supplied recordset.

How to do it…
In order to extract records with an e-mail address from a recordset, you need to perform the
following steps:

1. Define the method accepting the original recordset:
 @api.model
 def partners_with_email(self, partners):

2. Define an inner predicate function:
 def predicate(partner):
 if partner.email:
 return True
 return False

3. Call filter() as follows:
 return partners.filter(predicate)

How it works…
The implementation of the filter() method of recordsets creates an empty recordset in
which it adds all the records for which the predicate function evaluates to True. The new
recordset is finally returned. The order of records in the original recordset is preserved.

The preceding recipe used a named internal function. For such simple predicates, you will
often find an anonymous lambda function used:

@api.model
def partners_with_email(self, partners):
 return partners.filter(lambda p: p.email)

Actually, to filter a recordset based on the fact that one attribute is truthy in the Python sense,
you can use partners.filter('email').

Basic Server Side Development

112

There's more…
Keep in mind that filter() operates in the memory. If you are trying to optimize the
performance of a method on the critical path, you may want to use a search domain
or even move to SQL, at the cost of readability.

Traversing recordset relations
When working with a recordset of length 1, the various fields are available as record
attributes. Relational attributes (One2many, Many2one, and Many2many) are also available
with values that are recordsets too. When working with recordsets with more than one record,
the attributes cannot be used.

This recipe shows how to use the mapped() method to traverse recordset relations; we will
write two methods performing the following operations:

 f Retrieving the e-mails of all contacts of a single partner company passed as
an argument

 f Retrieving the various companies to which some contact partners are related

Getting ready
We will be reusing the simplified Partner model shown in the Create new records recipe of
this chapter.

How to do it…
To write the partner manipulation methods, you need to perform the following steps:

1. Define a method called get_email_addresses():
 @api.model
 def get_email_addresses(self, partner):
 partner.ensure_one()

2. Call mapped() to get the e-mail addresses of the contacts of the partner:
 return partner.mapped('child_ids.email')

3. Define a method called get_companies():
 @api.model
 def get_companies(self, partners):

4. Call mapped() to get the different companies of the partners:
 return partners.mapped('parent_id')

Chapter 5

113

How it works…
In step 1, we call ensure_one() to make sure we have a single partner. This is not required
for the recipe, as mapped() works very well on recordsets of arbitrary size. However, it is
mandated by the specification of the method we are writing, as we don't want to retrieve
contacts from multiple companies by mistake.

In step 2 and step 4, we call the mapped(path) method to traverse the fields of the
recordset; path is a string containing field names separated by dots. For each field in the
path, mapped() produces a new recordset containing all the records related by this field to all
elements in the current recordset and then applies the next element in the path on that new
recordset. If the last field in the path is a relational field, mapped() will return a recordset;
otherwise, a Python list is returned.

The mapped() method has two remarkable properties:

 f If the path is a single scalar field name, then the returned list is in the same order as
the processed recordset.

 f If the path contains a relational field, then order is not preserved, but duplicates are
removed from the result.

This second property is very useful in a method decorated with
@api.multi where you want to perform an operation on all
the records pointed by a Many2many field of all records in
self, but need to make sure that the action is performed only
once (even if two records of self share the same target record).

There's more…
When using mapped(), keep in mind that it operates in the memory inside the Odoo server by
repeatedly traversing relations and therefore making SQL queries, which may not be efficient;
however, the code is terse and expressive. If you are trying to optimize a method on the critical
path of the performance of your instance, you may want to rewrite the call to mapped() and
express it as a search() with the appropriate domain, or even move to SQL (at the cost
of readability).

The mapped() method can also be called with a function as argument. In this case, it returns
a list containing the result of the function applied to each record of self, or the union of the
recordsets returned by the function, if the function returns a recordset.

Basic Server Side Development

114

See also
 f The Search for records recipe

 f The Executing raw SQL queries recipe In Chapter 6, Advanced Server Side
Development Techniques

Extending the business logic defined in a
Model

When defining a model that extends another model, it is often necessary to customize the
behavior of some methods defined on the original model. This is a very easy task in Odoo, and
one of the most powerful features of the underlying framework.

We will demonstrate this by extending a method that creates records to add a new field in the
created records.

Getting ready
If you want to follow the recipe, make sure you have the my_module addon from Chapter 3,
Creating Odoo Modules, with the loan wizard defined in the Writing a wizard to guide the user
recipe from Chapter 6, Advanced Server Side Development Techniques.

Create a new addon module called library_loan_return_date that depends on
my_module. In this module, extend the library.book.loan model as follows:

class LibraryBookLoan(models.Model):
 _inherit = 'library.book.loan'
 expected_return_date = fields.Date('Due for', required=True)

Extend the library.member model as follows:

class LibraryMember(models.Model):
 _inherit = 'library.member'
 loan_duration = fields.Integer('Loan duration',
 default=15,
 required=True)

Since the expected_return_date field is required and no default is provided, the wizard
to record loans will cease functioning because it does not provide a value for that field when it
creates loans.

Chapter 5

115

How to do it…
To extend the business logic in the library.loan.wizard model, you need to perform the
following steps:

1. In my_module, modify the method record_loans() in the LibraryLoanWizard
class. The original code is in the Writing a wizard to guide the user recipe in Chapter
6, Advanced Server Side Development Techniques. The new version is:
 @api.multi
 def record_loans(self):
 for wizard in self:
 books = wizard .book_ids
 loan = self.env['library.book.loan']
 for book in wizard.book_ids:
 values = self._prepare_loan(book)
 loan.create(values)
 @api.multi
 def _prepare_loan(self, book):
 return {'member_id': self.member_id.id,
 'book_id': book.id}

2. In library_loan_return_date, create a class which extends library.loan.
wizard and defines the _prepare_loan method as follows:
from datetime import timedelta
from openerp import models, fields, api
class LibraryLoanWizard(models.TransientModel):
 _inherit = 'library.load.wizard'

 def _prepare_loan(self, book):
 values = super(LibraryLoanWizard,
 self
)._prepare_loan(book)
 loan_duration = self.member_id.loan_duration
 today_str = fields.Date.context_today()
 today = fields.Date.from_string(today_str)
 expected = today + timedelta(days=loan_duration)
 values.update(
 {'expected_return_date':
 fields.Date.to_string(expected)}
)
 return values

Basic Server Side Development

116

How it works…
In step 1, we refactor the code from the Writing a wizard to guide the user recipe in Chapter
6, Advanced Server Side Development Techniques, to use a very common and useful coding
pattern to create the library.book.loan records: the creation of the dictionary of values is
extracted in a separate method rather than hardcoded in the method calling create(). This
eases extending the addon module in case new values have to be passed at creation time,
which is exactly the case we are facing.

Step 2 then does the extension of the business logic. We define a model that extends
library.loan.wizard and redefines the _prepare_loan() method. The redefinition
starts by calling the implementation from the parent class:

values = super(LibraryLoanWizard, self)._prepare_loan(book)

In the case of Odoo models, the parent class is not what you'd expect by looking at the
Python class definition. The framework has dynamically generated a class hierarchy for our
recordset, and the parent class is the definition of the model from the modules on which we
depend. So the call to super() brings back the implementation of library.loan.wizard
from my_module. In this implementation, _prepare_loan() returns a dictionary of values
with 'member_id' and 'book_id'. We update this dictionary by adding the 'expected_
return_date' key before returning it.

There's more…
In this recipe, we chose to extend the behavior by calling the normal implementation and
modifying the returned result afterwards. It is also possible to perform some actions before
calling the normal implementation, and of course, we can also do both.

However, what we saw in this recipe is that it is harder to change the behavior of the middle of
a method. We had to refactor the code to extract an extension point to a separate method and
override this new method in the extension module.

You may be tempted to completely rewrite a method. Always be very
cautious when doing so—if you do not call the super() implementation
of your method, you are breaking the extension mechanism and potentially
breaking addons for which their extension of the same method will never
be called. Unless you are working in a controlled environment, in which
you know exactly which addons are installed and you've checked that you
are not breaking them, avoid doing this. And if you have to, be sure to
document what you are doing in a very visible way.

Chapter 5

117

What can you do before and after calling the original implementation of the method? Lots of
things, including (but not limited to):

 f Modifying the arguments that are passed to the original implementation (before)

 f Modifying the context that is passed to the original implementation (before)

 f Modifying the result that is returned by the original implementation (after)

 f Calling another method (before, after)

 f Creating records (before, after)

 f Raising a UserError to cancel the execution in forbidden cases (before, after)

 f Splitting self in smaller recordsets, and calling the original implementation on each
of the subsets in a different way (before)

Extending write() and create()
The Extending the business logic defined in a Model recipe showed how to extend
methods defined on a model class. If you think about it, methods defined on the parent
class of the model are also part of the model. This means that all the base methods
defined on models.Model (actually on models.BaseModel, which is the parent
class of models.Model) are also available and can be extended.

This recipe shows how to extend create() and write() to control access to some fields of
the records.

Getting ready
We will extend on the library example from the my_module addon module in Chapter 3,
Creating Odoo Modules.

You will also need the security groups defined in Chapter 10, Accessing Security in the
Creating security Groups and assigning them to Users recipe and the access rights defined
in the Adding security access to models recipe from the same chapter.

Modify the file security/ir.model.access.csv to give write access to library users
to books:

id,name,model_id:id,group_id:id,perm_read,perm_write,perm_create,perm_
unlink
access_library_book_user,library.book.user,model_library_book,base.
group_user,1,1,0,0
access_library_book_admin,library.book.admin,model_library_book,base.
group_system,1,0,0,0

Basic Server Side Development

118

Add a field manager_remarks to the library.book model. We want only members of the
Library Managers group to be able to write to that field:

class LibraryBook(models.Model):
 _name = 'library.book'
 manager_remarks = fields.Text('Manager Remarks')

How to do it…
In order to prevent users who are not members of the Library Managers group from modifying
the value of manager_remarks, you need to perform the following steps:

1. Extend the create() method like this:
 @api.model
 @api.returns('self', lambda rec: rec.id)
 def create(self, values):
 if not self.user_has_groups(
 'library.group_library_manager'):
 if 'manager_remarks' in values:
 raise exceptions.UserError(
 'You are not allowed to modify '
 'manager_remarks'
)
 return super(LibraryBook, self).create(values)

2. Extend the write() method as follows:
 @api.multi
 def write(self, values):
 if not self.user_has_groups(
 'library.group_library_manager'):
 if 'manager_remarks' in values:
 raise exceptions.UserError(
 'You are not allowed to modify '
 'manager_remarks'
)
 return super(LibraryBook, self).write(values)

3. Extend the fields_get() method as follows:
 @api.model
 def fields_get(self,
 allfields=None,
 write_access=True,
 attributes=None):
 fields = super(LibraryBook, self).fields_get(

Chapter 5

119

 allfields=allfields,
 write_access=write_access,
 attributes=attributes
)
 if not self.user_has_groups(
 'library.group_library_manager'):
 if 'manager_remarks' in fields:
 fields['manager_remarks']['readonly'] = True

How it works…
Step 1 redefines the create() method. It uses a decorator we have not seen so far,
@api.returns.

This decorator maps the returned value from the new API to the old
API, which is expected by the RPC protocol. In this case, the RPC calls
to create expect the database id for the new record to be created, so
we pass the @api.returns decorator an anonymous function, which
fetches the id from the new record returned by our implementation. It is
also needed if you want to extend the copy() method. Do not forget it
when extending these methods if the base implementation uses the old
API or you will crash with hard to interpret messages.

Before calling the base implementation of create(), our method uses the user_has_
groups() method to check whether the user belongs to the group library.group_
library_manager (this is the XML ID of the group). If it is not the case and a value is
passed for manager_remarks, a UserError exception is raised preventing the creation of
the record. This check is performed before the base implementation is called.

Step 2 does the same thing for the write() method; before writing, we check the group and
the presence of the field in the values to write and raise UserError if there is a problem.

Step 3 is a small bonus; the fields_get() method is used by the web client to query for the
fields of the model and their properties. It returns a Python dictionary mapping field names to
a dictionary of field attributes, such as the display string or the help string. What interests
us is the readonly attribute, which we force to True if the user is not a library manager. This
will make the field read only in the web client, which will avoid unauthorized users from trying
to edit it only to be faced with an error message.

Having the field set to read-only in the web client does not prevent RPC
calls from writing it. This is why we extend create() and write().

Basic Server Side Development

120

There's more…
When extending write(), note that before calling the super() implementation of write(),
self is still unmodified. You can use this to compare the current values of the fields to the
ones in the values dictionary.

In the recipe, we chose to raise an exception, but we could have also removed the offending
field from the values dictionary and silently skipped updating that field in the record:

 @api.multi
 def write(self, values):
 if not self.user_has_groups(
 'library.group_library_manager'):
 if 'manager_remarks' in values:
 del values['manager_remarks']
 return super(LibraryBook, self).write(values)

After calling super().write(), if you want to perform additional actions, you have to
be wary of anything that can cause another call to write(), or you will create an infinite
recursion loop. The workaround is to put a marker in the context to be checked to break
the recursion:

class MyModel(models.Model):
 @api.multi
 def write(self, values):
 super(MyModel, self).write(values)
 if self.env.context.get('MyModelLoopBreaker'):
 return
 self = self.with_context(MyModelLoopBreaker=True)
 self.compute_things() # can cause calls to writes

Customizing how records are searched
The Defining the Model representation and order recipe in Chapter 3, Creating Odoo Modules
introduced the name_get() method, which is used to compute a representation of the record
in various places, including in the widget used to display Many2one relations in the web client.

This recipe shows how to allow searching for a book in the Many2one widget by title, author,
or ISBN by redefining name_search.

Chapter 5

121

Getting ready
For this recipe, we will be using the following model definition:

class LibraryBook(models.Model):
 _name = 'library.book'
 name = fields.Char('Title')
 isbn = fields.Char('ISBN')
 author_ids = fields.Many2many('res.partner', 'Authors')

 @api.model
 def name_get(self):
 result = []
 for book in self:
 authors = book.author_ids.mapped('name')
 name = u'%s (%s)' % (book.title,
 u', '.join(authors))
 result.append((book.id, name))
 return result

When using this model, a book in a Many2one widget is displayed as Book Title (Author1,
Author2...). Users expect to be able to type in an author's name and find the list filtered
according to this name, but this will not work as the default implementation of name_search
only uses the attribute referred to by the _rec_name attribute of the model class, in our case,
'name'. As a service to the advanced users, we also want to allow filtering by ISBN number.

How to do it…
In order to allow searching library.book either by book title, one of the authors, or ISBN,
you need to define the _name_search() method in the LibraryBook class as follows:

 @api.model
 def _name_search(self, name='', args=None, operator='ilike',
 limit=100, name_get_uid=None):
 args = [] if args is None else args.copy()
 if not(name == '' and operator == 'ilike'):
 args += ['|', '|',
 ('name', operator, name),
 ('isbn', operator, name),
 ('author_ids.name', operator, name)
]
 return super(LibraryBook, self)._name_search(
 name='', args=args, operator='ilike',
 limit=limit, name_get_uid=name_get_uid)

Basic Server Side Development

122

How it works…
The default implementation of name_search() actually only calls the _name_search()
method, which does the real job. This _name_search() method has an additional argument,
name_get_uid, which is used in some corner cases to compute the results using sudo().

We pass most of the arguments that we receive unchanged to the super() implementation
of the method:

 f name is a string containing the value the user has typed so far

 f args is either None or a search domain used as a prefilter for the possible records (it
can come from the domain parameter of the Many2one relation for instance)

 f operator is a string containing the match operator. Generally, you will have
'ilike' or '='

 f limit is the maximum number of rows to retrieve

 f name_get_uid can be used to specify a different user when calling name_get() in
the end to compute the strings to display in the widget

Our implementation of the method does the following:

1. It generates a new empty list if args is None, or makes a copy of args otherwise. We
make a copy to avoid our modifications to the list having side effects on the caller.

2. Then, we check whether name is not an empty string or if operator is not 'ilike'.
This is to avoid generating a dumb domain [('name', ilike, '')] that
does not filter anything. In that case, we jump straight to the call to the super()
implementation.

3. If we have a name, or if the operator is not 'ilike', then we add some filtering
criteria to args. In our case, we add clauses that will search for the supplied name in
the title of the books, or in their ISBN, or in the authors' names.

4. Finally, we call the super() implementation with the modified domain in args
and forcing name to '' and operator to ilike. We do this to force the default
implementation of _name_search() to not alter the domain it receives, so the one
we specified is to be used.

Chapter 5

123

There's more…
We mentioned in the introduction that this method is used in the Many2one widget. For
completeness, it is also used in the following parts of Odoo:

 f Proposals in the search widget

 f When using the in operator on One2many and Many2many fields in the domain

 f To search for records in the many2many_tags widget

 f To search for records in the CSV file import

See also
The Define the Model Representation and Order recipe in Chapter 3, Creating Odoo Modules
presents how to define the name_get() method, which is used to create a text representation
of a record.

The Defining filters on record lists: Domain recipe in Chapter 8, Backend Views provides more
information about search domain syntax.

125

6
Advanced

Server Side
Development

Techniques

In this chapter, we will see how to:

 f Change the user performing an action

 f Call a method with a modified context

 f Execute raw SQL queries

 f Write a wizard to guide the user

 f Define onchange methods

 f Call onchange methods on the server side

 f Port old API code to the new API

Introduction
In Chapter 5, Basic Server Side Development, we saw how to write methods on a model class,
how to extend methods from inherited models, and how to work with recordsets. This chapter
deals with more advanced topics such as working with the environment of a recordset and
working with onchange methods.

Advanced Server Side Development Techniques

126

Change the user performing an action
When writing business logic code, you may have to perform some actions with a different
security context. A typical case is performing an action with the rights of the Administrator,
who bypasses security checks.

This recipe shows how to let normal users modify the phone number of a company by using
sudo().

Getting ready
We will be working on records of the res.company model. By default, only members of the
Administration/Access Rights user group can modify records of res.company, but in our
case, we need to provide an access point to change only the phone number to users who are
not necessarily members of that group.

How to do it…
In order to let normal users modify the phone number of a company, you need to perform the
following steps:

1. Define a model extending the res.company model:
class ResCompany(models.Model):
 _inherit = 'res.company'

2. Add a method called update_phone_number():
 @api.multi
 def update_phone_number(self, new_number):

3. In the method, ensure we are acting on a single record:
 self.ensure_one()

4. Modify the user of the environment:
 company_as_superuser = self.sudo()

5. Write the new phone number:
 company_as_superuser.phone = new_number

Chapter 6

127

How it works…
In step 4, we call self.sudo(). This method returns a new recordset with a new
environment in which the user is not the same as the one in self. When called without an
argument, sudo() will link the Odoo superuser, Administrator, to the environment. All method
calls via the returned recordset are made with the new environment, and therefore with
superuser privileges.

If you need a specific user, you can pass either a recordset containing that user or the
database id of the user. The following snippet allows you to search books that are visible,
using the public user:

 public_user = self.env.ref('base.public_user')
 public_book = self.env['library.book'].sudo(public_user)

Caution when using sudo()
There is no traceability of the action; the author of the last modification
of the company in our recipe will be Administrator, not the user originally
calling update_phone_number.
The community addon, base_suspend_security, found at
https://github.com/OCA/server-tools/ can be used to work
around this limitation.

There is more…
When using sudo() without an argument, you set the user of the context to the Odoo superuser.
This superuser bypasses all the security rules of Odoo, both the access control lists and the
record rules. By default, this user also has a company_id field set to the main company of the
instance (the one with id 1). This can be problematic in a multi company instance:

 f If you are not careful, new records created in this environment will be linked to the
company of the superuser

 f If you are not careful, records searched in this environment may be linked to any
company present in the database, which means that you may be leaking information
to the real user, or worse, you may be silently corrupting the database by linking
together records belonging to different companies

Using sudo() also involves creating a new Environment instance. This environment will
have an initially empty recordset cache, and that cache will evolve independently from the
cache of self.env. This can cause spurious database queries. In any case, you should avoid
creating new environment inside loops, and try to move these environment creations to the
outmost possible scope.

https://github.com/OCA/server-tools/

Advanced Server Side Development Techniques

128

See also
 f The Obtain an empty recordset for a model recipe in Chapter 5, Basic Server Side

Development, explains what the environment is.

Call a method with a modified context
The context is part of the environment of a recordset. It is used to pass information such as the
timezone or the language of the user from the user interface as well as contextual parameters
specified in actions. A number of methods in the standard addons use the context to adapt
their behavior to these values. It is sometimes necessary to modify the context on a recordset
to get the desired results from a method call or the desired value for a computed field.

This recipe shows how to read the stock level for all product.product models in a given
stock.location.

Getting ready
This recipe uses the stock and product addons. For our purposes, here is a simplified
version of the product.product model:

class product.product(models.Model):
 _name = 'product.product'
 name = fields.Char('Name', required=True)
 qty_available = fields.Float('Quantity on Hand',
 compute='_product_available')
 def _product_available(self):
 """if context contains a key 'location' linked to a
 database id, then the stock available is computed within
 that location only. Otherwise the stock of all internal
 locations is computed"""
 pass # read the real source in addons/stock/product.py :)

We intentionally don't provide the implementation of the computation and we skipped a few
other keys that are looked for in the context in order to focus on the recipe.

How to do it…
In order to compute the stock levels in a given location for all the products, you need to
perform the following steps:

1. Create a model class extending product.product:
class ProductProduct(models.Model):
 _inherit = 'product.product'

Chapter 6

129

2. Add a method called stock_in_location():
 @api.model
 def stock_in_location(self, location):

3. In the method, get a product.product recordset with a context modified as
follows:
 product_in_loc = self.with_context(
 location=location.id,
 active_test=False
)

4. Search all products:
 all_products = product_in_loc.search([])

5. Create an array with the product name and stock level of all products present in the
specified location:
 stock_levels = []
 for product in all_products:
 if product.qty_available:
 stock_levels.append((product.name,
 product.qty_available))
 return stock_levels

How it works…
Step 3 calls self.with_context() with some keyword arguments. This returns a new
version of self (which is a product.product recordset) with the keys added to the
current context. We are adding two keys:

 f location: This one is mentioned in the docstring of the product.product
method computing the qty_available field.

 f active_test: When this key is present and linked to the False value, the
search() method does not automatically add ('active', '=', True) to the
search domain. Using this ensures that in step 4, we get all products, including the
disabled ones.

When we read the value of product.qty_available in step 5, the computation of that
field is made using only the specified stock location.

Advanced Server Side Development Techniques

130

There's more…
It is also possible to pass a dictionary to self.with_context(), in which case the
dictionary is used as the new context, overwriting the current one. So step 3 could also have
been written like this:

 new_context = self.env.context.copy()
 new_context.update({'location': location.id,
 'active_test': False})
 product_in_loc = self.with_context(new_context)

Using with_context() involves creating a new Environment instance. This environment
will have an initially empty recordset cache, and that cache will evolve independently of the
cache of self.env. This can cause spurious database queries. In any case, you should avoid
creating new environments inside loops and try to move these environment creations to the
outmost possible scope.

See also
 f The Obtain an empty recordset for a model recipe in Chapter 5, Basic Server Side

Development, explains what the environment is

 f The Passing parameters to forms and actions: Context recipe in Chapter 8, Backend
Views, explains how to modify the context in action definitions

 f The Search for records recipe in Chapter 5, Basic Server Side Development, explains
active records

Execute raw SQL queries
Most of the time, you can perform the operations you want using the search() method.
However, sometimes, you need more—either you cannot express what you want using the
domain syntax, for which some operations are tricky if not downright impossible, or your
query requires several calls to search(), which ends up being inefficient.

This recipe shows you how to use raw SQL queries to read res.partner records grouped
by country.

Getting ready
We will be using a simplified version of the res.partner model:

class ResPartner(models.Model):
 _name = 'res.partner'
 name = fields.Char('Name', required=True)

Chapter 6

131

 email = fields.Char('Email')
 is_company = fields.Boolean('Is a company')
 parent_id = fields.Many2one('res.partner', 'Related Company')
 child_ids = fields.One2many('res.partner', 'parent_id',
 'Contacts')
 country_id = fields.Many2one('res.country', 'Country')

How to do it…
To write a method that returns a dictionary that contains the mapped names of countries to a
recordset of all active partners from that country, you need to perform the following steps:

1. Write a class extending res.partner:
class ResPartner(models.Model):
 _inherit = 'res.partner'

2. Add a method called partners_by_country():
 @api.model:
 def partners_by_country(self):

3. In the method, write the following SQL query:
 sql = ('SELECT country_id, array_agg(id) '
 'FROM res_partner '
 'WHERE active=true AND country_id IS NOT NULL '
 'GROUP BY country_id')

4. Execute the query:
 self.env.cr.execute(sql)

5. Iterate over the results of the query to populate the result dictionary:
 country_model = self.env['res.country']
 result = {}
 for country_id, partner_ids in self.env.cr.fetchall():
 country = country_model.browse(country_id)
 partners = self.search(
 [('id', 'in', tuple(partner_ids))]
)
 result[country] = partners
 return result

Advanced Server Side Development Techniques

132

How it works…
In step 3, we declare an SQL SELECT query. It uses the id field and the country_id
foreign key, which refers to the res_country table. We use a GROUP BY statement so that
the database does the grouping by country_id for us, and the array_agg aggregation
function. This is a very useful PostgreSQL extension to SQL that puts all the values for the
group in an array, which Python maps to a list.

Step 4 calls the execute() method on the database cursor stored in self.env.cr. This
sends the query to PostgreSQL and executes it.

Step 5 uses the fetchall() method of the cursor to retrieve a list of rows selected by the
query. From the form of the query we executed, we know that each row will have exactly two
values, the first being country_id and the other one, the list of ids for the partners having
that country. We loop over these rows and create recordsets from the values, which we store
in the result dictionary.

There's more…
The object in self.env.cr is a thin wrapper around a psycopg2 cursor. The following
methods are the ones you will want to use most of the time:

 f execute(query, params): This executes the SQL query with the parameters
marked as %s in the query substituted with the values in params, which is a tuple

Warning: never do the substitution yourself, as this can make the
code vulnerable to SQL injections.

 f fetchone(): This returns one row from the database, wrapped in a tuple (even if
there is only one column selected by the query)

 f fetchall(): This returns all the rows from the database as a list of tuples

 f fetchalldict(): This returns all the rows from the database as a list of
dictionaries mapping column names to values

Be very careful when dealing with raw SQL queries:

 f You are bypassing all the security of the application. Be sure to call
search([('id', 'in', tuple(ids)]) with any list of ids you are retrieving to
filter out records to which the user has no access to.

 f Any modification you are making is bypassing the constraints set by the addon
modules, except the NOT NULL, UNIQUE, and FOREIGN KEY constraints, which are
enforced at the database level. So are any computed field recomputation triggers, so
you may end up corrupting the database.

Chapter 6

133

See also
 f For access rights management, see Chapter 10, Access Security.

Write a wizard to guide the user
In the Use Abstract Models for reusable Model features recipe in Chapter 4, Application
Models, the base class models.TransientModel was introduced; this class shares a lot
with normal Models except that the records of transient models are periodically cleaned up
in the database, hence the name transient. These are used to create wizards or dialog boxes,
which are filled in the user interface by the users and generally used to perform actions on the
persistent records of the database.

This recipe extends the code from Chapter 3, Creating Odoo Modules, by creating a wizard to
record the borrowing of books by a library member.

Getting ready
If you want to follow the recipe, make sure you have the my_module addon module from
Chapter 3, Creating Odoo Modules.

We will also use a simple model to record book loans:

class LibraryBookLoan(models.Model):
 _name = 'library.book.loan'
 book_id = fields.Many2one('library.book', 'Book',
 required=True)
 member_id = fields.Many2one('library.member', 'Borrower',
 required=True)
 state = fields.Selection([('ongoing', 'Ongoing'),
 ('done', Done')],
 'State',
 default='ongoing', required=True)

How to do it…
To add a wizard for recording borrowed books to the addon module, you need to perform the
following steps:

1. Add a new transient model to the module with the following definition:
class LibraryLoanWizard(models.TransientModel):
 _name = 'library.loan.wizard'
 member_id = fields.Many2one('library.member', 'Member')
 book_ids = fields.Many2many('library.book', 'Books')

Advanced Server Side Development Techniques

134

2. Add the callback method performing the action on the transient model. Add the
following code to the LibraryLoanWizard class:
 @api.multi
 def record_loans(self):
 for wizard in self:
 member = wizard.member_id
 books = wizard.book_ids
 loan = self.env['library.book.loan']
 for book in wizard.book_ids:
 loan.create({'member_id': member.id,
 'book_id': book.id})

3. Create a form view for the model. Add the following view definition to the module views:
<record id='library_loan_wizard_form' model='ir.ui.view'>
 <field name='name'>library loan wizard form view</field>
 <field name='model'>library.loan.wizard</field>
 <field name='arch' type='xml'>
 <form string="Borrow books">
 <sheet>
 <group>
 <field name='member_id'/>
 </group>
 <group>
 <field name='book_ids'/>
 </group>
 <sheet>
 <footer>
 <button name='record_loans'
 string='OK'
 class='btn-primary'
 type='object'/>
 or
 <button string='Cancel'
 class='btn-default'
 special='cancel'/>
 </footer>
 </form>
 </field>
</record>

4. Create an action and a menu entry to display the wizard. Add the following
declarations to the module menu file:
<act_window id="action_wizard_loan_books"
 name="Record Loans"

Chapter 6

135

 res_model="library.loan.wizard"
 view_mode="form"
 target="new"
 />
<menuitem id="menu_wizard_loan_books"
 parent="library_book_menu"
 action="action_wizard_loan_books"
 sequence="20"
 />

How it works…
Step 1 defines a new model. It is no different from other models, apart from the base
class, which is TransientModel instead of Model. Both TransientModel and Model
share a common base class called BaseModel, and if you check the source code of
Odoo, you will see that 99 percent of the work is in BaseModel and that both Model and
TransientModel are almost empty.

The only things that change for TransientModel records are as follows:

 f Records are periodically removed from the database so the tables for transient
models don't grow up in size over time

 f You cannot define access rules on TransientModels. Anyone is allowed to create a
record, but only the user who created a record can read it and use it.

 f You must not define One2many fields on a TransientModel that refer to a normal
model, as this would add a column on the persistent model linking to transient data.
Use Many2many relations in this case. You can of course define Many2one and
One2many fields for relations between transient models.

We define two fields in the model, one to store the member borrowing the books and one to
store the list of books being borrowed. We could add other scalar fields to record a scheduled
return date, for instance.

Step 2 adds the code to the wizard class that will be called when the button defined in step 3
is clicked on. This code reads the values from the wizard and creates library.book.loan
records for each book.

Step 3 defines a view for our wizard. Please refer to the Document-style forms recipe in
Chapter 8, Backend Views, for details. The important point here is the button in the footer: the
type attribute is set to 'object', which means that when the user clicks on the button, the
method with the name specified by the name attribute of the button will be called.

Advanced Server Side Development Techniques

136

Step 4 makes sure we have an entry point for our wizard in the menu of the application. We
use target='new' in the action so that the form view is displayed as a dialog box over the
current form. Please refer to the Add a Menu Item and Window Action recipe in Chapter 8,
Backend Views, for details.

There's more…
Here are a few tips to enhance your wizards.

Using the context to compute default values
The wizard we are presenting requires the user to fill in the name of the member in the
form. There is a feature of the web client we can use to save some typing. When an action is
executed, the context is updated with some values that can be used by wizards:

Key Value
active_model This is the name of the model related to the action. This is generally the

model being displayed on screen.
active_id This indicates that a single record is active, and provides the ID of that

record.
active_ids If several records were selected, this will be a list with the IDs (this

happens when several items are selected in a tree view when the action
is triggered. In a form view, you get [active_id]).

active_domain An additional domain on which the wizard will operate.

These values can be used to compute default values of the model, or even directly in the
method called by the button. To improve on the recipe example, if we had a button displayed
on the form view of a library.member model to launch the wizard, then the context of
the creation of the wizard would contain {'active_model': 'library.member',
'active_id': <member id>}. In that case, you could define the member_id field
to have a default value computed by the following method:

def _default_member(self):
 if self.context.get('active_model') == 'library.member':
 return self.context.get('active_id', False)

Wizards and code reuse
In step 2, we could have dispensed with the for wizard in self loop, and assumed that
len(self) is 1, possibly adding a call to self.ensure_one() at the beginning of the
method, like this:

@api.multi
def record_borrows(self):
 self.ensure_one()

Chapter 6

137

 member = self.member_id
 books = self.book_ids
 member.borrow_books(books)

We recommend using the version in the recipe though, because it allows reusing the wizard
from other parts of the code by creating records for the wizard, putting them in a single
recordset (see the Combine recordsets recipe in Chapter 5, Basic Server Side Development,
to see how to do this) and then calling record_loans() on the recordset. Granted, here the
code is trivial and you don't really need to jump through all those hoops to record that some
books were borrowed by different members. However, in an Odoo instance, some operations
are much more complex, and it is always nice to have a wizard available that does "the right
thing." When using such wizards, be sure to check the source code for any possible use of the
active_model / active_id / active_ids keys from the context, in which case, you need
to pass a custom context (see the Call a method with a modified context recipe previously for
how to do this).

Redirecting the user
The method in step 2 does not return anything. This will cause the wizard dialog to be closed
after the action is performed. Another possibility is to have the method return a dictionary with
the fields of an ir.action. In this case, the web client will process the action as if a menu
entry had been clicked on by the user. For instance, if we wanted to display the form view of
the member who has just borrowed the books, we could have written the following:

 @api.multi
 def record_borrows(self):
 for wizard in self:
 member = wizard.member_id
 books = wizard.book_ids
 member.borrow_books(books)
 member_ids = self.mapped('member_id').ids
 action = {
 'type': 'ir.action.act_window',
 'name': 'Borrower',
 'res_model': 'library.member',
 'domain': [('id', '=', member_ids)],
 'view_mode': 'form,tree',
 }
 return action

This builds a list of members who has borrowed books from this wizard (in practice, there will
only be one such member, when the wizard is called from the user interface) and creates a
dynamic action, which displays the members with the specified IDs.

Advanced Server Side Development Techniques

138

This trick can be extended by having a wizard (with several steps to be performed one after the
other), or depending on some condition from the preceding steps, by providing a Next button
that calls a method defined on the wizard. This method will perform the step (maybe using a
hidden field and storing the current step number), update some fields on the wizard, and return
an action that will redisplay the same updated wizard and get ready for the next step.

Define onchange methods
When writing Odoo models, it is often the case that some fields are interrelated. We have seen
how to specify constraints between fields in the Add constraint validations to a Model recipe
in Chapter 4, Application Models. This recipe illustrates a slightly different concept—onchange
methods are called when a field is modified in the user interface to update the values of other
fields of the record in the web client, usually in a form view.

We will illustrate this by providing a wizard similar to the one defined in the preceding recipe,
Write a wizard to guide the user, but which can be used to record loan returns. When the
member is set on the wizard, the list of books is updated to the books currently borrowed by
the member. While we are demonstrating onchange methods on a TransientModel, these
features are also available on normal Models.

Getting ready
If you want to follow the recipe, make sure you have the my_module addon from Chapter 3,
Creating Odoo Modules, with the Write a wizard to guide the user recipe's changes applied.

You will also want to prepare your work by defining the following transient model for
the wizard:

class LibraryReturnsWizard(models.TransientModel):
 _name = 'library.returns.wizard'
 member_id = fields.Many2one('library.member', 'Member')
 book_ids = fields.Many2many('library.book', 'Books')
 @api.multi
 def record_returns(self):
 loan = self.env['library.book.loan']
 for rec in self:
 loans = loan.search(
 [('state', '=', 'ongoing'),
 ('book_id', 'in', rec.book_ids.ids),
 ('member_id', '=', rec.member_id.id)]
)
 loans.write({'state': 'done'})

Finally, you will need to define a view, an action, and a menu entry for the wizard. This is left
as an exercise.

Chapter 6

139

How to do it…
To automatically populate the list of books to return when the user is changed, you need to
add an onchange method in the LibraryReturnsWizard step with the following definition:

 @api.onchange('member_id')
 def onchange_member(self):
 loan = self.env['library.book.loan']
 loans = loan.search(
 [('state', '=', 'ongoing'),
 ('member_id', '=', self.member_id.id)]
)
 self.book_ids = loans.mapped('book_id')

How it works…
An onchange method uses the @api.onchange decorator, which is passed the names of
the fields that change and thus will trigger the call to the method. In our case, we say that
whenever member_id is modified in the user interface, the method must be called.

In the body of the method, we search the books currently borrowed by the member, and we
use an attribute assignment to update the book_ids attribute of the wizard.

The @api.onchange decorator takes care of modifying the view sent
to the web client to add an on_change attribute to the field. This
used to be a manual operation in the "old API".

There's more…
The basic use of onchange methods is to compute new values for fields when some other
fields are changed in the user interface, as we've seen in the recipe.

Inside the body of the method, you get access to the fields displayed in the current view of
the record, but not necessarily all the fields of the model. This is because onchange methods
can be called while the record is being created in the user interface before it is stored in the
database! Inside an onchange method, self is in a special state, denoted by the fact that
self.id is not an integer, but an instance of openerp.models.NewId. Therefore, you
must not make any changes to the database in an onchange method, because the user may
end up canceling the creation of the record, which would not roll back any changes made
by the onchanges called during the edition. To check for this, you can use self.env.in_
onchange() and self.env.in_draft()—the former returns True if the current context of
execution is an onchange method and the latter returns True if self is not yet committed to
the database.

Advanced Server Side Development Techniques

140

Additionally, onchange methods can return a Python dictionary. This dictionary can have the
following keys:

 f warning: The value must be another dictionary with the keys title and message
respectively containing the title and the content of a dialog box, which will be
displayed when the onchange method is run. This is useful for drawing the attention
of the user to inconsistencies or to potential problems.

 f domain: The value must be another dictionary mapping field names to domains. This
is useful when you want to change the domain of a One2many field depending on the
value of another field.

For instance, suppose we have a fixed value set for expected_return_date in our
library.book.loan model, and we want to display a warning when a member has
some books that are late. We also want to restrict the choice of books to the ones currently
borrowed by the user. We can rewrite the onchange method as follows:

 @api.onchange('member_id')
 def onchange_member(self):
 loan = self.env['library.book.loan']
 loans = loan.search(
 [('state', '=', 'ongoing'),
 ('member_id', '=', self.member_id.id)]
)
 self.book_ids = loans.mapped('book_id')
 result = {
 'domain': {'book_ids': [
 ('id', 'in', self.book_ids.ids)]
 }
 }
 late_domain = [
 ('id', 'in', loans.ids),
 ('expected_return_date', '<', fields.Date.today())
]
 late_loans = loans.search(late_domain)
 if late_loans:
 message = ('Warn the member that the following '
 'books are late:\n')
 titles = late_loans.mapped('book_id.name')
 result['warning'] = {
 'title': 'Late books',
 'message': message + '\n'.join(titles)
 }
 return result

Chapter 6

141

Call onchange methods on the server side
The Create new records and Update values of a recordset record recipes in Chapter 5, Basic
Server Side Development, mentioned that these operations did not call onchange methods
automatically. Yet in a number of cases it is important that these operations are called
because they update important fields in the created or updated record. Of course, you can do
the required computation yourself, but this is not always possible as the onchange method
can be added or modified by a third-party addon module installed on the instance that you
don't know about.

This recipe explains how to call the onchange methods on a record by manually playing the
onchange method before creating a record.

Getting ready
We will reuse the settings from the preceding recipe, Write onchange methods. The action will
take place in a new method of library.member called return_all_books(self).

How to do it…
In this recipe, we will manually create a record of the library.returns.wizard model,
and we want the onchange method to compute the returned books for us. To do this, you need
to perform the following steps:

1. Create the method return_all_books in the LibraryMember class:
 @api.multi
 def return_all_books(self):
 self.ensure_one

2. Get an empty recordset for library.returns.wizard:
 wizard = self.env['library.returns.wizard']

3. Prepare the values to create a new wizard record:
 values = {'member_id': self.id, book_ids=False}

4. Retrieve the onchange specifications for the wizard:
 specs = wizard._onchange_spec()

5. Get the result of the onchange method:
 updates = wizard.onchange(values, ['member_id'], specs)

6. Merge these results with the values of the new wizard:
 value = updates.get('value', {})
 for name, val in value.iteritems():

Advanced Server Side Development Techniques

142

 if isinstance(val, tuple):
 value[name] = val[0]
 values.update(value)

7. Create the wizard:
 record = wizard.create(values)

How it works…
For an explanation of step 1 to step 3, please refer to the recipe Create new records in
Chapter 5, Basic Server Side Development.

Step 4 calls the _onchange_spec method on the model, passing no argument. This method
will retrieve the updates that are triggered by the modification of which other field. It does this
by examining the form view of the model (remember, onchange methods are normally called
by the web client).

Step 5 calls the onchange(values, field_name, field_onchange) method of the
model with 3 arguments:

 f values: The list of values we want to set on the record. You need to provide a value
for all the fields you expect to be modified by the onchange method. In the recipe, we
set book_ids to False for this reason.

 f field_name: A list of fields for which we want to trigger the onchange methods.
You can pass an empty list, and it will use the fields defined in values. However, you
will often want to specify that list manually to control the order of evaluation, in case
different fields can update a common field.

 f field_onchange: The onchange specifications that were computed in step 4. This
method finds out which onchange methods must be called and in what order and
returns a dictionary, which can contain the following keys:

 � value: This is a dictionary of newly computed field values. This
dictionary only features keys that are in the values parameter passed to
onchange(). Note that Many2one fields are mapped to a tuple containing
(id, display_name) as an optimization for the web client.

 � warning: This is a dictionary containing a warning message that the web
client will display to the user.

 � domain: This is a dictionary mapping field names to new validity domains.

Generally, when manually playing onchange methods, we only care about what is in value.

Chapter 6

143

Step 6 updates our initial values dictionary with the values computed by the onchange. We
process the values corresponding to Many2one fields to only keep the id. To do so, we take
advantage of the fact that these fields are only those whose value is returned as a tuple.

Step 7 finally creates the record.

There's more…
If you need to call an onchange method after modifying a field, the code is the same. You
just need to get a dictionary for the values of the record, which can be obtained by using
values = dict(record._cache) after modifying the field.

See also
 f The Create new records and Update values of recordset records recipes in Chapter 5,

Basic Server Side Development

Port old API code to the new API
Odoo has a long history and the so-called "traditional" or "old" API has been in use for a very
long time. When designing the "new" API in Odoo 8.0, time was taken to ensure that the APIs
would be able to coexist, because it was foreseen that porting the huge codebase to the
new API would be a huge effort. So you will probably come across addon modules using the
traditional API. When migrating them to the current version of Odoo, you may want to port
them to the new API.

This recipe explains how to perform this translation. It can also serve as an aide memoire
when you need to extend a module that uses the traditional API with the new API.

Getting ready
Let's port the following addon module code developed with the traditional API:

from datetime import date, timedelta
from openerp.osv import orm, fields
from openerp.tools import _, DEFAULT_SERVER_DATE_FORMAT as DATE_FMT

class library_book(orm.Model):
 _name = 'library.book'
 _columns = {
 'name': fields.char('Name', required=True),

Advanced Server Side Development Techniques

144

 'author_ids': field.many2many('res.partner'),
 }

class library_member(orm.Model):
 _name = 'library.member'
 _inherits = {'res.partner': 'partner_id'}

 _columns = {
 'partner_id': fields.many2one('res.partner',
 'Partner',
 required=True),
 'loan_duration': fields.integer('Loan duration',
 required=True),
 'date_start': fields.date('Member since'),
 'date_end': fields.date('Expiration date'),
 'number': fields.char('Number', required=True),
 }

 _defaults = {
 'loan_duration': 10,
 }

 def on_change_date_end(self, cr, uid, date_end, context=None):
 date_end = date.strptime(date_end, DATE_FMT)
 today = date.today()
 if date_end <= today:
 return {
 'value': {'loan_duration': 0},
 'warning': {
 'title': 'expired membership',
 'message': "This member's membership " \
 "has expired",
 },
 }

 def borrow_books(self, cr, uid, ids, book_ids, context=None):
 if len(ids) != 1:
 raise orm.except_orm(
 _('Error!'),
 _('It is forbidden to loan the same books '
 'to multiple members.'))
 loan_obj = self.pool['library.book.loan']
 member = self.browse(cr, uid, ids[0], context=context)
 for book_id in book_ids:

Chapter 6

145

 val = self._prepare_loan(
 cr, uid, member, book_id, context=context
)
 loan_id = loan_obj.create(cr, uid, val,
 context=context)

 def _prepare_loan(self, cr, uid,
 member, book_id,
 context=None):
 return {'book_id': book_id,
 'member_id': member.id,
 'duration': member.loan_duration}

class library_book_loan(orm.Model):
 _name = 'library.book.loan'

 def _compute_date_due(self, cr, uid, ids,
 fields, arg, context=None):
 res = {}
 for loan in self.browse(cr, uid, ids, context=context):
 start_date = date.strptime(loan.date, DATE_FMT)
 due_date = start_date + timedelta(days=loan.duration)
 res[loan.id] = due_date.strftime(DATE_FMT)
 return res

 _columns = {
 'book_id': fields.many2one('library.book', required=True),
 'member_id': fields.many2one('library.member',
 required=True),
 'state': fields.selection([('ongoing', 'Ongoing'),
 ('done', 'Done')],
 'State', required=True),
 'date': fields.date('Loan date', required=True),
 'duration': fields.integer('Duration'),
 'date_due': fields.function(
 fnct=_compute_date_due,
 type='date',
 store=True,
 string='Due for'),
 }

 def _default_date(self, cr, uid, context=None):

Advanced Server Side Development Techniques

146

 return date.today().strftime(DATE_FMT)

 _defaults = {
 'duration': 15,
 'date': _default_date,
 }

The module, of course, defined some views. Most of them will need no change, so we won't
show them. The only one relevant in this recipe is the library.member form view. Here is
the relevant excerpt for that view:

<record id='library.member_form_view' model='ir.ui.view'>
 <field name='model'>library.member</field>
 <field name='arch' type='xml'>
 <!-- [...] -->
 <field name='date_end'
 on_change='on_change_date_end(date_end)'/>
 <!-- [...] -->
 </field>
</record>

How to do it…
To port this module code to the new API, you need to perform the following steps:

1. Copy the original source file to make a backup.

2. In the new file, modify the module imports as follows:
from datetime import date, timedelta
from openerp import models, fields, api, exceptions
from openerp.tools import _

3. Modify the class definitions to the new API base classes, and rename the classes to
use CamelCase:
class LibraryBook(models.Model):
 _name = 'library.book'

class LibraryMember(models.Model):
 _name = 'library.member'
 _inherits = {'res.partner': 'partner_id'}

class LibraryBookLoan(models.Model):
 _name = 'library.book.loan'

Chapter 6

147

4. Migrate the _columns definitions to attribute declaration of fields in the
LibraryBook class:

 � The _columns keys become class attributes

 � The names of the field types get capitalized

class LibraryBook(models.Model):
 _name = 'library.book'

 name = fields.Char('Name', required=True)
 author_ids = field.Many2many('res.partner')

Don't forget to remove the commas at the ends of the lines.

5. Do the same thing for LibraryMember, taking care to move _defaults
declarations to the field definition:
class LibraryMember(models.Model):
 # [...]

 partner_id = fields.Many2one('res.partner',
 'Partner',
 required=True)
 loan_duration = fields.Integer('Loan duration',
 default=10,
 required=True)
 date_start = fields.Date('Member since')
 date_end = fields.Date('Expiration date')
 number = fields.Char('Number', required=True)

6. Migrate the column's definition of the LibraryBookLoan class, changing the type of
the function field to fields.Date:
class LibraryBookLoan(models.Model):
 # [...]

 book_id = fields.Many2one('library.book', required=True)
 member_id = fields.Many2one('library.member',
 required=True)
 state = fields.Selection([('ongoing', 'Ongoing'),
 ('done', 'Done')],
 'State', required=True)
 date = fields.Date('Loan date', required=True,
 default=_default_date)

Advanced Server Side Development Techniques

148

 duration = fields.Integer('Duration', default=15)
 date_due = fields.Date(
 compute='_compute_date_due',
 store=True,
 string='Due for'
)

7. In the LibraryBookLoan class, migrate the definition of the _compute_date_due
function to the new API:

 � Remove all the arguments except self

 � Add an @api.depends decorator

 � Change the body of the method to use the new computed field protocol (see
the Add computed fields to a Model recipe in Chapter 4, Application Models,
for details):

in class LibraryBookLoan
 @api.depends('start_date', 'due_date')
 def _compute_date_due(self):
 for loan in self:
 start_date = fields.Date.from_string(loan.date)
 due_date = start_date + timedelta(days=loan.duration)
 loan.date_due = fields.Date.to_string(due_date)

8. In the LibraryBookLoan class, migrate the definition of the _default_date
function:

 � The function definition must be moved before the field declaration

 � The new prototype only has one argument, self (see the Add data fields to
a Model recipe in Chapter 4, Application Models, for details):

in class LibraryBookLoan, before the fields definitions
 def _default_date(self):
 return fields.Date.today()

9. Rewrite the borrow_books and _prepare_loan methods in the LibraryMember
class:

 � Add an @api.multi decorator

 � Remove the arguments cr, uid, ids, context

 � Port the code to the new API (see the various recipes in this chapter for
details)

 � Replace the orm.except_orm exception with UserError:
in class LibraryMember
 @api.multi
 def borrow_books(self, book_ids):

Chapter 6

149

 if len(self) != 1:
 raise exceptions.UserError(
 _('It is forbidden to loan the same books '
 'to multiple members.')
)
 loan_model = self.env['library.book.loan']
 for book in self.env['library.book'].browse(book_ids):
 val = self._prepare_loan(book)
 loan = loan_model.create(val)
 @api.multi
 def _prepare_loan(self, book)
 self.ensure_one()
 return {'book_id': book.id,
 'member_id': self.id,
 'duration': self.loan_duration}

10. Port the on_change_date_end method in the LibraryMember class:

 � Add an @api.onchange decorator

 � Port the code to the new API (see the Write onchange methods recipe in this
chapter for details):

in LibraryMember
 @api.onchange('date_end')
 def on_change_date_end(self):
 date_end = fields.Date.from_string(self.date_end)
 today = date.today()
 if date_end <= today:
 self.loan_duration = 0
 return {
 'warning': {
 'title': 'expired membership',
 'message': "Membership has expired",
 },
 }

11. Edit the library.member form's view definition and remove the on_change
attribute in the date_end field:
<record id='library.member_form_view' model='ir.ui.view'>
 <field name='model'>library.member</field>
 <field name='arch' type='xml'>
 <!-- [...] -->
 <field name='date_end'/>
 <!-- [...] -->
 </field>
</record>

Advanced Server Side Development Techniques

150

How it works
Step 1 changes the imports. The old API lives in the openerp.osv package, which we change
to use openerp.models, openerp.fields, openerp.api, and openerp.exceptions.
We also drop the import of DEFAULT_SERVER_DATE_FORMAT, because we will use the
helper methods on fields.Date to perform datetime / string conversions.

Step 2 changes the base classes of the models. Depending on the age of the code you are
migrating, you may need to replace the following:

 f osv.osv, osv.Model or orm.Model with models.Model

 f osv.osv_memory, osv.TransientModel, or orm.TransientModel with
models.TransientModel

The usual class attributes such as _name, _order, _inherit, _inherits, and so on are
unchanged.

Steps 3 to 8 deal with the migration of the field's definitions. The _columns dictionaries
mapping field names to field definitions in the old API are migrated to class attributes.

When doing so, don't forget to remove the commas following each field
definition in the dictionary, otherwise the attribute value will be a 1-element
tuple, and you will get errors. You also get a warning log line for these.

The field classes in openerp.fields usually have the same name as their counterparts in
openerp.osv.fields, but capitalized (openerp.osv.fields.char becomes openerp.
fields.Char). Default values are moved from the _defaults class attribute to a default
parameter in the type declaration:

_columns = {
 'field1': fields.char('Field1'),
 'field2': fields.integer('Field2'),
}
_defaults = {
 'field2': 42,
}

Now the preceding code is modified to the following:

field1 = fields.Char('Field1')
field2 = fields.Integer('Field2', default=42)

Chapter 6

151

The biggest change is for function fields. The old API uses fields.function defined with a
type parameter giving the type of the column. The new API uses a field of the expected type,
defined with a compute parameter, which gives the method used to compute the field:

_columns = {
 'field3': fields.function(
 _compute_field3,
 arg=None,
 fnct_inv=_store_field3,
 fnct_inv_arg=None,
 type='char',
 fnct_search=_search_field3,
 store=trigger_dict,
 multi=keyword
),
}

Now the preceding code is modified to the following:

field3 = fields.Char('Field1'
 compute='_compute_field3',
 inverse='_store_field3',
 search='_search_field3',
 store=boolean)

The trigger_dict in the old API is replaced with @api.depends decorators, and there is
no need for the multi parameter in the new API, as the compute method can update several
fields sharing the same compute parameter value. See the Add Computed Fields to a Model
recipe in Chapter 4, Application Models, for more detailed information.

Step 9 migrates the business logic methods. The decorator to use on the method defines
the parameter conversions, which are to be used to map the arguments. You need to choose
them carefully because this can break modules using the old API extending the ported
module. The same advice is valid if you need to extend a model defined using the old API with
the new API. Here are the most common cases, with <args> denoting additional arbitrary
arguments and keyword arguments:

Old API prototype New API prototype
def m(self, cr, uid, ids, <args>,

 context=None)

@api.multi

def m(self, <args>)

def m(self, cr, uid, <args>, context=None) @api.model

def m(self, <args>)

def m(self, cr, <args>) @api.cr

def m(self, <args>)

Advanced Server Side Development Techniques

152

Old API prototype New API prototype
def m(self, cr, uid, <args>) @api.cr_uid

def m(self, <args>)

Finally, steps 10 and 11 migrate the onchange method. Things have changed quite a bit
between the two versions of the API; in the traditional API, onchange methods are declared in
the view definitions by using an attribute on_change on the <field> element with a value
describing the call to be performed when the field is edited. In the new API, this declaration is
not necessary because the framework dynamically generates it in the view by analyzing the
methods decorated with @api.onchange.

153

7
Debugging and

Automated Testing

In this chapter, we will cover the following topics:

 f Producing server logs to help debug methods

 f Using the Odoo shell to interactively call methods

 f Using the Python debugger to trace method execution

 f Writing tests for your module using YAML

 f Writing tests for your module using Python unit tests

 f Running server tests

 f Using the Odoo Community Association maintainer quality tools

Introduction
We saw in Chapter 5, Basic Server Side Business Logic, how to write model methods to
implement the logic of our module. However, a responsible developer not only writes the
implementation but also provides automated tests for this implementation. The recipes
in this chapter cover the debugging and testing of server side methods.

Producing server logs to help debug
methods

Server logs are helpful when trying to figure out what has been happening at runtime before
a crash. They can also be added to provide additional information when debugging an issue.
This recipe shows how to add logging to an existing method.

Debugging and Automated Testing

154

Getting ready
We will add some logging statements to the following method, which saves the stock levels of
products to a file:

from os.path import join
from openerp import models, api, exceptions
EXPORTS_DIR = '/srv/exports'

class ProductProduct(models.Model):
 _inherit = 'product.product'
 @api.model
 def export_stock_level(self, stock_location):
 products = self.with_context(
 location=stock_location.id
).search([])
 products = products.filtered('qty_available')
 fname = join(EXPORTS_DIR, 'stock_level.txt')
 try:
 with open(fname, 'w') as fobj:
 for prod in products:
 fobj.write('%s\t%f\n' % (prod.name,
 prod.qty_available))
 except IOError:
 raise exceptions.UserError('unable to save file')

How to do it…
In order to get some logs when this method is being executed, perform the following steps:

1. At the beginning of the code, import the logging module:
import logging

2. Before the definition of the model class, get a logger for the module:
_logger = logging.getLogger(__name__)

3. Modify the code of the export_stock_level() method as follows:
 @api.model
 def export_stock_level(self, stock_location):
 _logger.info('export stock level for %s',
 stock_location.name)
 products = self.with_context(
 location=stock_location.id).search([])
 products = products.filtered('qty_available')

Chapter 7

155

 _logger.debug('%d products in the location',
 len(products))
 fname = join(EXPORTS_DIR, 'stock_level.txt')
 try:
 with open(fname, 'w') as fobj:
 for prod in products:
 fobj.write('%s\t%f\n' % (prod.name,
 prod.qty_available))
 except IOError:
 _logger.exception(
 'Error while writing to %s in %s',
 'stock_level.txt', EXPORTS_DIR)
 raise exceptions.UserError('unable to save
 file')

How it works…
Step 1 imports the module logging from the Python standard library. Odoo uses this module
to manage its logs.

Step 2 sets up a logger for the Python module. We use a common idiom in Odoo by using the
__name__ automatic variable for the logger name and calling the logger _logger.

The __name__ variable is set automatically by the Python interpreter at
module import time and its value is the full name of the module. Since
Odoo does a little trick with the imports, the addon modules are seen by
Python as belonging to the openerp.addons Python package. So if the
code of the recipe is in my_module/models/book.py, __name__
will be openerp.addons.my_module.models.book.

By doing this, we get two benefits:

 f The global logging configuration set on the openerp logger is applied to our logger,
because of the hierarchical structure of loggers in the logging module

 f The logs will be prefixed with the full module path, which is a great help when trying
to find where a given log line is produced

Debugging and Automated Testing

156

Step 3 uses the logger to produce log messages. Available methods for this are (by increasing
log level) debug, info, warning, error, and critical. All these methods accept a
message in which you can have % substitutions and additional arguments to be inserted in the
message. You should not do the % substitution yourself; the logging module is smart enough
to perform this operation only if the log has to be produced. If you are running with log level of
INFO, then DEBUG logs will avoid doing the substitution.

Another useful method shown in the recipe is _logger.exception(), which can be used in
an exception handler. The message will be logged with a level of ERROR and the stack trace is
also printed in the application log.

There's more…
You can control the logging level of the application from the command line or from the
configuration file. There are two main ways of doing this:

 f To control the log level globally, you can use the --log-level command line option.
See Chapter 2, Managing Odoo Server Instances, for more information.

 f To set the log level for a given logger, you can use --log-handler=prefix:level.
In this case, prefix is a piece of the path of the logger name, and level is one
of DEBUG, INFO, WARNING, ERROR, or CRITICAL. If you omit prefix, then you set
the default level for all loggers. For instance, to set the logging level of my_module
loggers to DEBUG and keep the default log level for the other addons, you can start
Odoo like this:
$ python odoo.py --log-handler=openerp.addons.my_module:DEBUG

 f It is possible to specify --log-handler multiple times on the command line.

 f You can also configure the log handler in the configuration file of your Odoo instance.
In that case, you can use a comma-separated list of prefix:level pairs. For
example, the following line is a sane configuration for minimal logging output, still
keeping the most important messages: we keep error messages by default, except
for messages produced by werkzeug for which we only want critical messages, and
openerp.service.server for which we keep info level messages (this includes
the notification of server start up):
log_handler = :ERROR,werkzeug:CRITICAL,openerp.service.server:INFO

Chapter 7

157

Using the Odoo shell to interactively call
methods

The Odoo web interface is meant for end users, although the developer mode unlocks a
number of powerful features. However, testing and debugging through the web interface is not
the easiest way to do things, as you need to manually prepare data, navigate in the menus
to perform actions, and so on. The Odoo shell is a command-line interface, which you can
use to issue calls. This recipe shows how to start the Odoo shell and perform actions such as
calling a method inside the shell.

Getting ready
We will reuse the same code as in the previous recipe to produce server logs to help debug
methods; this enables the product.product model to add a new method. We assume that
you have an instance with the addon installed available. In the recipe, we expect that you have
an Odoo configuration file for this instance called project.conf.

How to do it…
In order to call the export_stock_level() method from the Odoo shell, you need to
perform the following steps:

1. Start the Odoo shell specifying your project configuration file:
$ odoo/odoo.py shell -c project.conf --log-level=error

2. Check for error messages, and read the information text displayed before the usual
Python command-line prompt:
env: <openerp.api.Environment object at 0x7fbc244e3a90>

openerp: <module 'openerp' from '/home/cookbook/odoo/openerp/__
init__.pyc'>

self: res.users(1,)

Python 2.7.9 (default, Mar 1 2015, 12:57:24)

[GCC 4.9.2] on linux2

Type "help", "copyright", "credits" or "license" for more
information.

(Console)

>>>

3. Get a recordset for product.product:
>>> product = env['product.product']

Debugging and Automated Testing

158

4. Get the main stock location record:
>>> location_stock = env.ref('product.stock_location_stock')

5. Call the export_stock_level() method:
>>> product.export_stock_level(location_stock)

6. Commit the transaction before exiting:
>>> env.cr.commit()

7. Exit the shell by pressing Ctrl+D.

How it works…
Step 1 uses odoo.py shell to start the Odoo shell. All the usual command line arguments
are available. We use -c to specify a project configuration file and --log-level to reduce
the verbosity of the logs. When debugging, you may want to have a logging level of DEBUG only
for some specific addons.

Before providing you with a Python command-line prompt, odoo.py shell starts an Odoo
instance that does not listen on the network and initializes some global variables, which are
mentioned in the output:

 f env is an environment connected to the database specified on the command line or
in the configuration file.

 f openerp is the openerp package imported for you. You get access to all the Python
modules within that package so you can do what you want.

 f self is a recordset of res.users containing a single record for the Odoo super user
(Administrator), which is linked to the environment env.

Step 3 and 4 use env to get an empty recordset and find a record by XML ID. Step 5 calls
the method on the product.product recordset. These operations are identical to what
you would use inside a method, with the small difference that we use env and not self.
env (although we could have both as they are identical). See Chapter 5, Basic Server Side
Development, for more information on what is available.

Step 6 commits the database transaction. This is not strictly necessary here because
we did not modify any record in the database, but if we had done so and wanted these
changes to persist, this is necessary—when you use Odoo through the web interface,
each RPC call runs in its own database transaction and Odoo manages these for you. When
running in the shell mode, this no longer happens and you have to call env.cr.commit()
or env.cr.rollback() yourself. Otherwise, when you exit the shell, any transaction in
progress is automatically rolled back. When testing, this is fine, but if you use the shell, for
example, to script the configuration of an instance, don't forget to commit your work!

Chapter 7

159

Using the Python debugger to trace method
execution

Sometimes, application logs are not enough to figure out what is going wrong. Fortunately, we
have the Python debugger available to us. This recipe shows how to insert a break point in a
method and trace the execution by hand.

Getting ready
We will be reusing the export_stock_level() method shown in the two previous recipes.
Be sure to have a copy at hand.

How to do it…
In order to trace the execution of export_stock_level() with pdb, follow the following steps:

1. Edit the code of the method, and insert the line highlighted here:
def export_stock_level(self, stock_location):
 import pdb; pdb.set_trace()
 products = self.with_context(
 location=stock_location.id
).search([])
 fname = join(EXPORTS_DIR, 'stock_level.txt')
 try:
 with open(fname, 'w') as fobj:
 for prod in products.filtered('qty_available'):
 fobj.write('%s\t%f\n' % (
 prod.name, prod.qty_available))
 except IOError:
 raise exceptions.UserError('unable to save file')

2. Run the method. We will use the Odoo shell, as explained in the Use the Odoo shell to
interactively call methods recipe previously:
$ odoo.py shell -c project.cfg --log-level=error

[...]

>>> product = env['product.product']

>>> location_stock = env.ref('product.stock_location_stock')

>>> product.export_stock_level(location_stock)

> /home/cookbook/stock_level/models.py(16)export_stock_level()

-> products = self.with_context(

(Pdb)

Debugging and Automated Testing

160

3. At the (Pdb) prompt, issue the args (shortcut a) command to get the values of the
arguments passed to the method:
(Pdb) a

self = product.product()
stock_location = stock.location(12,)

4. Enter the list command to check where in the code you are standing:
(Pdb) list

def export_stock_level(self, stock_location):
 import pdb; pdb.set_trace()
 products = self.with_context(
 location=stock_location.id
).search([])
 fname = join(EXPORTS_DIR, 'stock_level.txt')
 try:
 with open(fname, 'w') as fobj:
 for prod in products.filtered('qty_available'):
 fobj.write('%s\t%f\n' % (prod.name,
 prod.qty_available))

5. Enter the next command three times to walk through the first lines of the method.
You may also use n, which is a shortcut:
(Pdb) next

> /home/cookbook/stock_level/models.py(17)export_stock_level()

-> location=stock_location.id

(Pdb) n

> /home/cookbook/stock_level/models.py(18)export_stock_level()

->).search([])

(Pdb) n

> /home/cookbook/stock_level/models.py(19)export_stock_level()

-> fname = join(EXPORTS_DIR, 'stock_level.txt')

(Pdb) n

> /home/cookbook/stock_level/models.py(20)export_stock_level()

-> try:

6. Use the p command to display the values of the products and fname variables:
(Pdb) p products

product.product(67, 14, 12, 6, 7, 8, 17, 18, 13, 55, 15, 10, 11,
64, 31, 23, 42, 30, 29, 53, 56, 63, 62, 43, 61, 35, 51, 26, 24,
25, 39, 40, 45, 34, 32, 33, 57, 65, 28, 27, 38, 16, 19, 49, 5, 36,
37, 44, 21, 22, 20, 59, 52, 66, 58, 54, 60, 46, 41, 47, 48, 50, 3,

Chapter 7

161

2, 1, 4)

(Pdb) p fname

'/srv/exports/stock_level.txt'

7. Change the value of fname to point to the /tmp directory:
(Pdb) !fname = '/tmp/stock_level.txt'

8. Use the return (shortcut r) command to execute the current function to its end:
(Pdb) return

--Return--

> /home/afayolle/work/OdooCookbook/project1/stock_level/models.
py(22)export_stock_level()->None

-> for product in products.filtered('qty_available'):

9. Use the cont (shortcut c) command to resume execution of the program:
(Pdb) c

>>>

How it works…
In step 1, we hardcode a break point in the source code of the method by calling the
set_trace() method of the pdb module from the Python standard library. When this
method is executed, the normal flow of the program stops, and you get a (Pdb) prompt
in which you can enter pdb commands.

Step 2 calls the stock_level_export() method using the shell mode. It is also possible to
restart the server normally and to use the web interface to generate a call to the method you
need to trace by clicking on the appropriate elements of the user interface.

When you need to manually step through some code using the Python debugger, here are a
few tips that will make your life easier:

 f Reduce the logging level to avoid having too many log lines polluting the output
of the debugger. Starting at the ERROR level is generally fine. You may want to
enable some specific loggers with a higher verbosity, which you can do by using the
--log-handler command line option (see the preceding recipe, Produce server
logs to help debug methods).

 f Run the server with --workers=0 to avoid any multiprocessing issues that could
cause the same break point to be reached twice in two different processes.

 f Run the server with --max-cron-threads=0 to disable the processing of ir.cron
periodic tasks, which otherwise may trigger while you are stepping through the
method, producing unwanted logs and side effects.

Debugging and Automated Testing

162

Steps 3 to 8 use several pdb commands to step through the execution of the method. Here
is a summary of the main commands of pdb. Most of them are also available using the first
letter as a shortcut. We indicate this by having the optional letters between parenthesis:

 f h(elp): This displays help on the pdb commands.

 f a(rgs): This shows the value of the arguments of the current function/methods.

 f l(ist): This displays the source code being executed by chunks of 11 lines, initially
centered on the current line. Successive calls will move further in the source code
file. Optionally, you can pass two integers, start and end, specifying the region
to display.

 f p: This prints a variable.

 f pp: This pretty-prints a variable (useful with lists and dictionaries).

 f w(here): This shows the call stack, with the current line at the bottom and the
Python interpreter at the top.

 f u(p): This moves up one level in the call stack.

 f d(own): This moves down one level in the call stack.

 f n(ext): This executes the current line of code and then stops.

 f s(tep): This is to step inside the execution of a method call.

 f r(eturn): This resumes the execution of the current method until it returns.

 f c(ont): This resumes the execution of the program until the next break point is hit.

 f b(reak) <args>: This creates a new break point, and displays its identifier. args
can be one of the following:

 � <empty>: This lists all break points

 � line_number: This breaks at the specified line in the current file

 � filename:line_number: This breaks at the specified line of the specified
file (which is searched for in the directories of sys.path)

 � function_name: This breaks at the first line of the specified function

 f tbreak <args>: This is similar to break but the break point will be canceled after
it has been reached, so successive execution of the line won't trigger it twice.

 f disable bp_id: This disables a breakpoint by ID.

 f enable bl_id: This enables a disabled breakpoint by ID.

 f j(ump) lineno: The next line to execute will be the one specified. This can be used
to rerun or to skip some lines.

 f (!) statement: This executes a Python statement. The ! character can be omitted
if the command does not look like a pdb command; for instance, you need it if you
want to set the value of a variable named a, because a is the shortcut for the args
command.

Chapter 7

163

There's more…
In the recipe, we inserted a pdb.set_trace() statement to break into pdb. We can also
start pdb directly from within the Odoo shell, which is very useful when you cannot easily
modify the code of the project by using pdb.runcall(). This function takes a method as the
first argument and the arguments to pass to the function as the next arguments. So inside the
Odoo shell, you do this:

>>> import pdb

>>> product = env['product.product']

>>> location_stock = env.ref('stock.stock_location_stock')

>>> pdb.runcall(product.export_stock_level, location_stock)

> /home/cookbook/odoo/openerp/api.py(235)wrapper()

-> if '_ids' in self.__dict__:

(Pdb)

Notice that in this case you do not end up in the export_stock_level() method but
in the wrapper() function from openerp.api. This is part of the implementation of the
@api.model decorator we set on expert_stock_level() and you will encounter lots of
these in your pdb sessions when stepping inside method calls. You can either manually walk
through the decorators or add breakpoints inside the source code of the methods.

If you choose to step manually, you will need to use next until you the line calling new_api()
and step inside that call:

(Pdb) n

> /home/cookbook/odoo/openerp/api.py(236)wrapper()

-> return new_api(self, *args, **kwargs)

(Pdb) s

--Call--

> /home/cookbook/stock_level/models.py(13)export_stock_level()

-> @api.model

(Pdb) n

> /home/cookbook/stock_level/models.py(15)export_stock_level()

-> products = self.with_context(

If you'd rather add a breakpoint, check the file name and line number and use the break
command like this:

(Pdb) b /home/cookbook/stock_level/models.py:15

Breakpoint 1 at /home/cookbook/stock_level/models.py:15

(Pdb) cont

Debugging and Automated Testing

164

> /home/cookbook/stock_level/models.py(15)export_stock_level()

-> products = self.with_context(

(Pdb)

Notice that we had to use the full path to the file because it is not in a directory inside
sys.path.

In this recipe, we focused on the Python debugger from the Python standard library, pdb.
It is very useful to know this tool because it is guaranteed to be available on any Python
distribution. There are other Python debuggers available, such as ipdb (https://pypi.
python.org/pypi/ipdb) and pudb (https://pypi.python.org/pypi/pudb), which
can be used as drop-in replacements for pdb. They share the same API and most commands
seen in this recipe are unchanged. And, of course, if you develop for Odoo using a Python IDE,
you certainly have access to a debugger integrated with it.

See also
 f For the full documentation of pdb, refer to https://docs.python.org/2.7/

library/pdb.html

Writing tests for your module using YAML
Odoo supports different ways of writing addon module tests, YAML tests, and Python tests.
In this recipe, we will see how to write YAML tests for the my_module methods we wrote in
Chapter 5, Basic Server Side Development, in the recipe Define Model methods and use the
API decorators.

Getting ready
This recipe assumes you have an instance ready with the code for the my_module module
defined in Chapter 3, Creating Odoo Modules, and the code from the Define Model methods
and use the API decorators recipe in Chapter 5, Basic Server Side Development.

How to do it…
In order to write YAML unit tests for my_module, you need to follow these steps:

1. Edit the __openerp__.py file of the module, and add the test's entry:
{ # …

 'test': ['test/test_books.yml']

}

https://pypi.python.org/pypi/ipdb
https://pypi.python.org/pypi/ipdb
https://pypi.python.org/pypi/pudb
https://docs.python.org/2.7/library/pdb.html
https://docs.python.org/2.7/library/pdb.html

Chapter 7

165

2. Create a test directory in my_module:
$ mkdir test

3. Create a file called test_books.yml in the directory. Add a test description at
the top:
-

 Test LibraryBook.change_state

4. Add a step changing the current user to the demo user:
-

 !context

 uid: 'base.user_demo'

5. Add a test step creating a book:
-

 create book in draft state

-

 !record {model: library.book, id: testbook}:

 - name: Test Book

 - state: draft

6. Add a step calling the change_state method:
-

 call change_state to make book available

-

 !python {model: library.book, id: testbook}: |

 self.change_state('available')

7. Add a step checking the successful result of the call:
-

 !assert {model: library.book, id: testbook, string: wrong
state}:

 - state == 'available'

8. Add a step calling the change_state method with a forbidden state:
-

 try to call change_state to make book draft

-

 !python {model: library.book, id: testbook}: |

 self.change_state('draft')

Debugging and Automated Testing

166

-

 check the book is still available

-

 !assert {model: library.book, id: testbook, string: wrong
state}:

 - state == 'available'

How it works…
The YAML files we are using here are the same as the ones used to load data files
(see Chapter 9, Module Data), except that they are included in the test key of the
__openerp__.py rather than in the data key. We add that key in step 1. They are therefore
processed only when running the tests (see the Running Server Tests recipe in this chapter).

Traditionally, YAML tests are added to the test/ subdirectory
of the addon module, while Python unit tests live in the tests/
subdirectory.

Step 3 adds a description at the top of the test file in a YAML test node. Mind the indentation
of the text, after the - delimiting a node. This description will be printed in the test log (at log
level DEBUG).

Step 4 uses a !context YAML node to change the evaluation context used in the test.
The most common use of this node is to modify the user used to run the test from the
administrator to someone else by assigning a string containing the XML ID of the user to uid.

It is always good practice, when writing tests, to have them run with a specific
user, and in any case not with the administrator; this user bypasses all the
security checks, so this will hide issues in your security rules.

Step 5 creates some test data using a !record YAML node. The YAML attributes, between
braces, give the name of the model to be used and the XML ID to use for the new record.

In all the YAML files, pay attention to the spacing, as the syntax is quite
stringent; you need a single space after the commas, a single space before
the opening brace, and the trailing colon has to be just after the closing brace.

Step 6 uses a !python YAML node to execute some Python code. The attributes specify the
model to be used and the XML ID of the record. Inside the block, self is a recordset of the
specified model containing a single record with the supplied XML ID.

Chapter 7

167

YAML Syntax
Take note of the | character at the end of the !python node. It is used
to denote a literal text node, in which whitespace is not processed. You
need this for Python code where spacing is significant.

Inside the Python block, you may also use the following variables:

 f ref: This is a function returning a recordset from an XML ID passed as a string

 f time: This is the time module from the Python standard library

 f datetime: This is the datetime type from the datetime module of the Python
standard library

 f timedelta: This is the timedelta type from the datetime module of the Python
standard library

In step 7, we use an !assert YAML node to make assertions about the record. The attributes
specify the model to use and on which XML ID the assertions must be checked. The string
attribute is used in the error message if one of the checks in the node is not True.

See the following recipe, Run server tests, to see how to run the test.

There's more…
When !assert is not convenient for writing checks, for instance, if you don't have an XML
ID for the record you want to check, you can use a !python block and the assert Python
keyword. We could also rewrite the last check of the recipe like this:

-
 try to call change_state to make book draft, check this has no
effect
-
 !python {model: library.book, id: testbook}: |
 self.change_state('draft')
 assert self.state == 'available', 'wrong state %s' % self.state

Debugging and Automated Testing

168

Writing tests for your module using Python
unit tests

YAML is not the only way of writing tests with Odoo. If you are familiar with the Python unit
testing tools, you will be pleased to know that these are also available within the Odoo
framework. In this recipe, we will see how to write Python unit tests for the my_module
methods we wrote in Chapter 5, Basic Server Side Development, in the recipe Define Model
methods and use the API decorators.

Getting ready
This recipe assumes you have a instance ready with the code for the my_module module
defined in Chapter 3, Creating Odoo Modules, and the code from Chapter 5, Basic Server Side
Development, in the recipe Define Model methods and use the API decorators.

How to do it…
In order to write unit tests for the module, perform the following steps:

1. Create a subdirectory called tests inside the addon module directory:
$mkdir my_module/tests

2. Create an __init__.py file in that directory with the following contents:
from . import test_library

3. Create a test_library.py file in tests/ subdirectory. Inside the test_
library.py file, import the Odoo test base class:
from openerp.test.common import TransactionCase

4. Create a TestCase class:
class LibraryTestCase(TransactionCase):

5. Add a setUp method that creates a book:
def setUp(self):
 super(LibraryTestCase, self).setUp()
 book_model = self.env['library.book'].sudo(
 self.ref('base.user_demo')
)
 self.book = book_model.create(

Chapter 7

169

 {'name': 'Test book',
 'state': 'draft',
 }
)

6. Add a test method changing the state:
def test_change_draft_available(self):
 '''test changing state from draft to available'''
 self.book.change_state('available')
 self.assertEqual(self.book.state, 'available')

7. Add a second test method trying to make an illegal state change:
def test_change_available_draft_no_effect(self):
 '''test forbidden state change from available to draft'''
 self.book.change_state('available')
 self.book.change_state('draft')
 self.assertEqual(
 self.book.state,
 'available',
 'the state cannot change from available to %s' % \
 self.book.state
)

How it works…
We create a Python subpackage in our module called tests and add a test module with a
name starting with test_. This is the convention used by Odoo for test discovery.

In this file, we import the base test class, TransactionCase, from openerp.test.common.
This class extends the unittest.TestCase class from the Python standard library to make it
suitable for use in Odoo:

 f The setUp() method initializes the self.env attribute, which you can use to perform
the usual operations (see the recipes in Chapter 5, Basic Server Side Development)

 f The tearDown() method rolls back the database transaction so that the tests are
run in isolation

If your test case redefines these two methods, be sure to call
the super() implementation.

Debugging and Automated Testing

170

The tests are defined in methods named with a test prefix. The test runner will run then one
after the other with a call to setUp() before each test method and a call to tearDown()
after each. Inside the method, you can use all the usual assertion methods from
unittest.TestCase. Here are the most commonly used ones:

Method Checks that
assertEqual(a, b) a == b

assertNotEqual(a, b) a != b

assertTrue(x) bool(x) is True

assertFalse(x) bool(x) is False

assertIn(a, b) a in b

assertNotIn(a, b) a not in b

assertRaises(exc, fun,
*args, **kwargs)

fun(*args, **kwargs) raises exc

All these methods except assertRaises() accept an optional msg argument, which will be
displayed in the error message when the assertion is not true. Otherwise, a standard error
message is used.

assertRaises is best used as a context manager. Suppose you want to test that modifying a
record raises a UserError exception. You can write the following test:

class TestCase(TransactionCase):
 # setUp method defines self.record
 def testWriteRaisesUserError(self):
 with self.assertRaises(UserError):
 self.record.write({'some_field': some_value})

The test will succeed if the exception passed to assertRaises is generated by the block of
code; otherwise it will fail.

For more information on unit tests in Python, please refer to the standard library
documentation at https://docs.python.org/2.7/library/unittest.html#test-
cases.

Note that in the setUp() method, we use sudo() to change the user in the environment
of self.book_model. This ensures that the tests will not run using the administrator user,
which bypasses the access rules and that the security rules we set up in our module are
getting exercised.

See the following recipe, Run server tests, to see how to run the test.

https://docs.python.org/2.7/library/unittest.html#test-cases
https://docs.python.org/2.7/library/unittest.html#test-cases

Chapter 7

171

There's more…
The module openerp.test.common defines several classes that can be used as base
classes for test cases:

 f TransactionCase: Each test method is run independently and the database
transaction is rolled back after each. This means that any changes made in one test
method are not seen by the other test methods. You can use the traditional setUp()
and tearDown() methods to perform test initialization and cleanup.

 f SingleTransactionCase: All the tests methods are run in the same transaction,
which is only rolled back after the last method. If you need to perform initialization
and cleanup for the test case, you need to extend the setUpClass() and
tearDownClass() methods. Don't forget to decorate these with @classmethod, or
you will get strange errors when calling the super() implementation.

 f SavePointCase: It is an extension of SingleTransactionCase that creates
a database SAVEPOINT before running test methods and restoring them after
the test is run. The net effect is that you can run your tests in isolation as with
TransactionCase without having to pay the price of a costly setUp() method
recreating all the data between all tests—the initialization is performed in
setUpClass() and we roll back the transaction to the saved state after each test.

The module also defines two decorators, at_install(bool) and post_install(bool).
By default, the tests for a given addon module are run just after the module is initialized,
before initializing the next addon module; this corresponds to decorating the test methods
with both @at_install(True) and @post_install(False). Sometimes, you can
need to change this. A typical case is the following: module_a and module_b both extend
the same model, but they do not depend on one another. Both add a required field to the
model field_a and field_b and provide a default value for that field. In the tests of these
modules, new records are created. If both modules are installed when the tests are run,
the tests will fail, whereas if only module_a or module_b is installed, the tests will pass.
The reason is that if, for instance, module_a is loaded first, when the tests create a new
record the default value for field_b is not computed because module_b is not loaded yet.
However, the database NOT NULL constraint for field_b is present and will prevent the
record from being created. A solution is to decorate the test methods of both modules with
@at_install(False) and @post_install(True), which will force the tests to be run
after all modules have been initialized.

Debugging and Automated Testing

172

Running server tests
The two previous recipes showed how to write tests. Let's see how to run them! This recipe
works for both YAML and Python unit tests.

Getting ready
We will be reusing the tests for the my_module module from one of the previous recipes. You
will need an instance with the addon installed. In this recipe, we assume that the instance
configuration file is in project.cfg.

How to do it…
To run the tests for my module addon, run the following command:

$ odoo/odoo.py -c project.cfg --test-enable --log-level=error --stop-
after-init -u my_module

How it works…
The key part in this recipe is the --test-enable command-line flag that tells Odoo to run
the tests. The --stop-after-init flag will stop the instance after the tests have run and
-u will update the specified module. When an update (or install) is performed in test mode, all
the affected addon modules' tests are run (this includes dependencies automatically installed
or reverse dependencies automatically updated; see the recipe Install and upgrade local
addon modules in Chapter 2, Managing Odoo Server Instances, for more information on this).

How do you know that the tests ran successfully? The exit status of
Odoo will be equal to the number of failed tests, so if it is not 0, then
at least one test has failed. You will get more information about the
failures in the server log messages.

You can run the tests using the following log configuration: --log-level=error --log-
handler=openerp.modules.loading:INFO. This allows to have information about the
various tests' files to be processed but not the details of the logs of the operations, only the
error messages.

There's more…
The main drawback of this way of running tests is that you have to run all the tests for a given
addon module, even if you know that they all pass but the one you are trying to fix, and you
also have to update the addon (which can be in itself a costly operation).

Chapter 7

173

There is a way around this. If you want to run the tests in my_module/tests/test_
library.py, you can use the following command:

$ odoo/odoo.py -c project.cfg --log-level=error --stop-after-init --test-
file my_module/tests/test_library.py

This will run only the tests defined in that file, and it works too if you specify a file containing
YAML tests. It will also skip updating the module, so it will not work if you have changed the
model structure by adding new fields or modified the data files of the addon since the last
time the module was updated.

One final note about tests:
Always be suspicious if your tests are not in error on the first run. There is a
good chance this means you made a mistake. A typical goof is to forget to
add the YAML test file in the __openerp__.py file, or to forget to import
the test file in tests/__init__.py. It is always a good idea when
tests are passing on the first run to force a failure, for instance, by adding
assert False to the first line of a method and running them again.

Using the Odoo Community Association
maintainer quality tools

The Odoo Community Association (OCA) manages a large number of Odoo projects using the
GitHub infrastructure. The association projects use Travis CI for continuous integration. This
recipe shows how you can use the maintainer QA tools developed by the community in your
own GitHub repositories.

Getting ready
To use this recipe, you need to have a public GitHub repository with your modules. At the time
of writing, the OCA tools expect that this repository contains several addons in subdirectories.

Debugging and Automated Testing

174

How to do it…
To integrate the OCA maintainer-quality-tools with your repository, you need to perform the
following steps:

1. Connect to https://travis-ci.org/.

2. To sign in, choose Sign in with Github.

https://travis-ci.org/

Chapter 7

175

3. Click on your name in the top right corner to access to your profile's settings, as
shown in the following screenshot:

4. Click on the Sync button to load the information about all your public repositories
in Travis. This can take a couple of minutes depending on how many repositories
you have.

5. For all the repositories you want to use Travis on, enable them by toggling the grey
cross to a green check mark.

6. You can click on the cogwheel to access each repository's settings, but the defaults
are OK too.

Debugging and Automated Testing

176

7. Inside a local clone of your repository, create a file called .travis.yml with the
following content:
language: python
sudo: false
cache:
 apt: true
 directories:
 - $HOME/.cache/pip
python:
 - "2.7"
addons:
 apt:
 packages:
 - expect-dev # provides unbuffer utility
 - python-lxml # because pip installation is slow
 - python-simplejson
 - python-serial
 - python-yaml
virtualenv:
 system_site_packages: true
env:
 global:
 - VERSION="9.0" TESTS="0" LINT_CHECK="0"
 matrix:
 - LINT_CHECK="1"
 - TESTS="1" ODOO_REPO="odoo/odoo"
 - TESTS="1" ODOO_REPO="OCA/OCB"
install:
 - git clone --depth=1 https://github.com/OCA/maintainer-quality-
tools.git ${HOME}/maintainer-quality-tools
 - export PATH=${HOME}/maintainer-quality-tools/travis:${PATH}
 - travis_install_nightly
script:
 - travis_run_tests
after_success:
 - travis_after_tests_success

Chapter 7

177

8. Commit the file and push it to GitHub:
$ git add .travis.yml

$ git commit -m "add travis configuration"

$ git push origin

9. Go to your travis-ci.org page and click on your project's name. You should see
a first build in progress. If your code follows the OCA coding standard, it may even be
green on the first run:

Debugging and Automated Testing

178

How it works…
When you enable Travis CI on a repository, Travis registers a hook on GitHub. By default, the
hook will trigger a Travis CI build for each push to a branch of the repository and for each pull
request. Pull requests are built on a temporary merge of the PR, to ensure that the merged
branches pass the tests.

The Travis CI configuration file proposed here is fairly advanced and very close to the one
found in the sample_files subdirectory of the maintainer-quality-tools project you can see
at https://github.com/OCA/maintainer-quality-tools (we removed the transifex
configuration used to manage module translations). Here's an explanation of the customized
sections in the file:

 f addons: This has nothing to do with Odoo addon modules. It's used to ask Travis to
install some Ubuntu packages using distribution packages in the testing environment.
This saves us from installing Python packages such as python-lxml from source,
which takes a lot of time.

 f env: This section defines environment variables and the build matrix. The maintainer
quality tools use these environment variables to know what to test, and will run each
env line in a separate test run:

 � VERSION: This is the Odoo version to test against.

 � LINT_CHECK: Use 0 for a build with no flake8 or Pylint tests, and 1
otherwise. In the matrix, we set the first build to perform the lint check, as
this is fast and we want rapid feedback if the coding standards are not met
or if the linter finds errors.

 � TESTS: Use 0 for a build in which the module tests are not run; otherwise
use 1.

 � ODOO_REPO: This is the GitHub repository for Odoo to test against when
TESTS is 1. In the recipe, we set up a build against both the official
https://github.com/odoo/odoo repository and the community
backports repository https://github.com/OCA/OCB. If unset,
only the official repository is used.

 f install: This sections downloads maintainer-quality-tools in the build
environment and calls the travis_install_nightly utility, which will set up
Odoo in Travis for you.

 f script: This section calls travis_run_tests from maintainer-quality-
tools. This is the script in charge of checking the environment variables from the
build matrix and performing the appropriate actions.

 f after_success: After the tests in the script section have run successfully, the
travis_after_test_success script is run. In the context of the recipe, this script
will check the test coverage of the modules using https://coveralls.io and
produce a report in the build.

https://github.com/OCA/maintainer-quality-tools
https://github.com/odoo/odoo
https://github.com/OCA/OCB
https://coveralls.io

179

8
Backend Views

In this chapter, we will cover the following topics:

 f Adding a menu item and window action

 f Having an action open a specific view

 f Adding content and widgets to a form view

 f Adding buttons to forms

 f Passing parameters to forms and actions: Context

 f Defining filters on record lists: Domain

 f List views

 f Search views

 f Changing existing views: View inheritance

 f Document-style forms

 f Dynamic form elements using attrs

 f Embedded views

 f Kanban views

 f Show kanban cards in columns according to their state

 f Calendar and gantt views

 f Graph and pivot views

 f QWeb reports

Backend Views

180

Throughout this chapter, we will assume that you have a database with the base addon
installed and an empty Odoo addon module where you add XML code from the recipes to a
data file referenced in the addon's manifest. Refer to Chapter 3, Creating Odoo Modules for
how to activate changes in your addon.

Introduction
This chapter covers all the UI elements that users are confronted with when they use anything
other than the website part of Odoo. Historically, this basically was all of OpenERP, so also in
an Odoo context, it is often just referred to as the web client. To be more specific, we will call
this the backend as opposed to the website frontend.

Adding a menu item and window action
The most obvious way to make a new feature available to the users is by using a menu item.
When you click on a menu item, something happens. This recipe walks you through how to
define that something.

We will create a top level menu displaying a sub menu in the left hand menu bar, opening a
list of all the customers.

This can also be done using the web user interface, via the settings menu, but we prefer to
use XML data files since this is what we'll have to use when creating our addon modules.

How to do it...
In an XML data file of our addon module, perform the following steps:

1. Define an action to be executed:
<act_window id="action_all_customers"

 name="All customers"

 res_model="res.partner"

 view_mode="tree,form"

 domain="[('customer', '=', True)]"

 context="{'default_customer': True}"

 limit="80" />

2. Create the menu structure:
<menuitem id="menu_custom_toplevel"

 name="My custom menu" />

<menuitem id="menu_custom_left"

Chapter 8

181

 parent="menu_custom_toplevel"

 name="This will appear in the left bar" />

3. Refer to our action in menu:
<menuitem id="menu_all_customers"

 parent="menu_custom_left"

 action="action_all_customers"

 sequence="10"

 groups="" />

If we now upgrade the module, we will see a top level menu that opens a sub menu in the left
menu bar. Clicking on that menu item will open a list of all the customers.

How it works...
The first XML element, act_window, declares a window action to display a list view with all
the customers. We used the most important attributes:

 f name: To be used as the title for the views opened by the action.

 f res_model: This is the model to be used. We are using res.partner, where Odoo
stores all the partners and addresses, including customers.

 f view_mode: This lists the view types to make available. The default value is tree,
view, making available the list and form views. Other possible choices are kanban,
graph, calendar, and gantt, explained later in this chapter.

 f domain: This is optional and allows you to set a filter on the records to be made
available in the views. In this case, we want to limit the partners to only those that are
customers. We will explain this in more detail in a dedicated recipe later.

 f context: This can set values made available to the opened views, affecting their
behavior. In our example, on new records we want the customer flag's default value to
be True. This will be covered in more depth in another recipe.

 f limit: This sets the default amount of records that can be seen on list views. It
defaults to 80.

Next we create the menu item hierarchy; from the top level menu to the clickable end menu
item. The most important attributes for the menuitem element are:

 f name: This is used as the text the menu items display. If your menu item links to an
action you can leave this out, because in that case the action's name will be used.

 f parent (parent_id if using the record element): This is the XML ID referencing
the parent menu item. Items with no parent are top level menus.

 f action: This is the XML ID referencing the action to be called. Only menu items
without child elements are clickable, so this option is only effective in those cases.

Backend Views

182

 f sequence: This is used to order sibling menu items.

 f groups (groups_id with the record tag): This is an optional list of user groups
that can access this menu item. If empty, it will be available to all the users.

Window actions automatically determine the view to be used by looking up views for the target
model, with the intended type (form, tree, and so on) and picking the one with the lowest
sequence number.

act_window and menuitem are convenient shortcut XML tags that hide what you're actually
doing: You create a record of the models ir.actions.act_window and ir.ui.menu
respectively.

Be aware that names used with the menuitem shortcut may not map to
the field names used when using a record element: parent should be
parent_id and groups should be groups_id.

To build the menu, the web client reads all the records from ir.ui.menu and infers their
hierarchy from the parent_id field. Menus are also filtered based on user permissions to
models and groups assigned to menus and actions. When a user clicks a menu item, its
action is executed.

There's more...
Window actions also support a target attribute to specify how the view is to be presented.
Possible choices are:

 f current: This is the default and opens the view in the web client main content area.

 f new: This opens in a popup.

 f inline: This makes most sense for forms. It opens a form in the edit mode but neither
with the standard buttons to edit, create, or delete, nor with the More actions menu.

 f inlineview: This is similar to inline, but opens in the read mode instead of edit.

The window action's view_type attribute is mostly obsolete by now. The alternative to the
default form is tree, which causes the groups lists to render a hierarchical tree. Don't confuse
this attribute with the view_mode attribute used and explained earlier, which actually decides
which types of views are used.

There are also some additional attributes available for window actions that are not supported
by the act_window shortcut tag. So to use them, we must use the record element with the
following fields:

 f res_id: If opening a form, you can have it open a specific record by setting its ID
here. This can be useful for multi step wizards, or in cases when you often have
to view/edit a specific record.

Chapter 8

183

 f search_view_id: This specifies a specific search view to use for the tree and
graph views.

 f auto_search: This is True by default. Set this to False if searching for your object
is very time and/or resource consuming. This way, the user can review the search
parameters and press Search when satisfied. With the default, the search is triggered
immediately when the action is opened.

Keep in mind that the menu bar at the top and the menu to the left are all made up of the
same stuff, the menu items. The only difference is that the items in the top bar don't have any
parent menus, while the ones on the left bar have the respective menu item from the top bar
as parent. In the left bar, the hierarchical structure is more obvious.

Also bear in mind that for design reasons, the first level menus in the left bar are rendered as
a kind of header and standard Odoo doesn't assign an action to them very often. So even if
you technically can assign an action to them, your users won't be used to click them and will
probably be confused if you expect them to do so.

See also
You'll find a more detailed discussion of the XML ID reference mechanism in Chapter 9,
Module Data. For now, just keep in mind that you can set references this way and – very
importantly – that order matters. If the tags above were inverted, the addon containing this
XML code wouldn't install because menuitem would refer to an unknown action.

This can become a pitfall when you add new data files and new elements
during your development process, because then the order in which you
add those files and elements does not necessarily reflect the order they
will be loaded in an empty database. Always check before deployment if
your addon installs in an empty database.

The action type ir.actions.act_window is the most common one, but a menu can refer
to any type of action. Technically, it is just the same if you link to a client action, a server
action, or any other model defined in the ir.actions.* namespace. It just differs in what the
backend makes out of the action.

If you need just a tiny bit more flexibility in the concrete action to be called, look into the
server actions that return a window action in turn. If you need complete flexibility on what you
present, look into the client actions (ir.actions.client) which allow you to have a completely
custom user interface. But only do so as last resort as you lose a lot of Odoo's convenient
helpers when using them.

Backend Views

184

Having an action open a specific view
Window actions automatically determine the view to be used, but sometimes we want an
action to open a specific view.

We will create a basic form view for the partner model and make the window action
specifically open it.

How to do it...
1. Define the partner minimal form view:

<record id="form_all_customers" model="ir.ui.view">
 <field name="name">All customers</field>
 <field name="model">res.partner</field>
 <field name="arch" type="xml">
 <form>
 <group>
 <field name="name" />
 </group>
 </form>
 </field>
</record>

2. Tell the action from the previous recipe to use it:
<record id="action_all_customers_form"
 model="ir.actions.act_window.view">
 <field name="act_window_id" ref="action_all_customers" />
 <field name="view_id" ref="form_all_customers" />
 <field name="view_mode">form</field>
 <field name="sequence">10</field>
</record>

Now if you open your menu and click some partner in the list, you should see the very minimal
form we just defined.

Chapter 8

185

How it works...
This time, we used the generic XML code for any type of record that is, the record element
with the required attributes id and model. As earlier, the id attribute is an arbitrary string
that must be unique for your addon. The model attribute refers to the name of the model
you want to create. Given that we want to create a view, we need to create a record of model
ir.ui.view. Within this element, you set fields as defined in the model you chose via the
model attribute. For ir.ui.view, the crucial fields are model and arch. The model field
contains the model you want to define a view for, while the arch field contains the definition
of the view itself. We'll come to its contents in a short while.

The name field, while not strictly necessary, is helpful when debugging problems with views,
so set it to some string that tells you what this view is intended to do. This field's content is not
shown to the user, so you can fill in all the technical hints to yourself that you deem sensible.
If you set nothing here, you'll get a default containing the model name and view type.

ir.actions.act_window.view
The second record we defined works in unison with act_window we defined previously. We
know already that by setting the field view_id there, we can select which view is used for
the first view mode. But given we set the field view_mode to the default tree, form, view_id
would have to pick a tree view, but we want to set the form view, which comes second here.

If you find yourself in a situation like this, use the model ir.actions.act_window.view,
which gives you fine grained control over which views to load for which view type. The first two
fields defined here are an example of the generic way to refer to other objects; you keep the
element's body empty but add an attribute called ref which contains the XML ID of the object
you want to reference. So what happens here is that we refer to our action from the previous
recipe in the act_window_id field, and refer to the view we just created in the view_id field.
Then, though not strictly necessary, we add a sequence number to position this view assignment
relatively to the other view assignments for the same action. This is only relevant if you assign
views for different view modes by creating multiple ir.actions.act_window.view records.

Once you define the ir.actions.act_window.view records, they
take precedence over what you filled in the action's view_mode field.
So with only the above records, you won't see a list at all, but only a form.
So you should add another ir.actions.act_window.view record
pointing to a list view.

Backend Views

186

Adding content and widgets to a form view
The previous recipe showed how to pick a specific view for an action. Now we'll demonstrate
how to make the form we defined previously more useful.

How to do it...
1. Define the form view basic structure:

<record id="form_all_customers" model="ir.ui.view">
 <field name="name">All customers</field>
 <field name="model">res.partner</field>
 <field name="arch" type="xml">
 <form>
 <!--form content goes here -->
 </form>
 </field>
</record>

2. To add a head bar, usually used for action buttons and stage pipeline, add inside
the form:
 <header>
 <button type="object"
 name="open_commercial_entity"
 string="Open commercial partner"
 class="oe_highlight" />
 </header>

3. Add fields to the form, using group tags to visually organize them:
 <group string="Content" name="my_content">
 <field name="name" />
 <field name="category_id" widget="many2many_tags" />
 </group>

Now the form should display a top bar with a button and two vertically aligned fields.

How it works...
We'll look at the arch field of the ir.ui.view model. Here, everything that the user sees
happens. First, note that views are defined in XML themselves, so you need to pass the
attribute type="xml" for the arch field, otherwise the parser will be confused. It is also
mandatory that your view definition contains well formed XML, otherwise you'll get in trouble
when loading this snippet.

Chapter 8

187

Now, we'll walk through the tags used previously and summarize the others that are available.

Form
When you define a form view, it is mandatory that the first element within the arch field is a
form element. This fact is used internally to derive the record's type field, which is why you're
not supposed to set this field. You'll see this a lot in legacy code though.

The form element can have two legacy attributes itself, which are string and version.
In the previous versions of Odoo, those were used to decide on the title you saw in the
breadcrumb and to differentiate between the forms written in pre-7.0 style and afterwards,
but both can be considered obsolete by now. The title in the breadcrumb is now inferred from
the model's name_get function, while the version is assumed to be 7.0 or above.

In addition to the elements listed next, you can use arbitrary HTML within the form tag. The
algorithm is that every element unknown to Odoo is considered plain HTML and simply passed
through to the browser. Be careful with that, as the HTML you fill in can interact with the HTML
code the Odoo elements generate, which might distort the rendering.

Header
This element is a container for the elements that should be shown in a form's header, which is
rendered as a gray bar. Usually, as in this example, you place action buttons here or a status
bar if your model has a state field.

Button
The button element is used to allow the user to trigger an action. See the following recipe
Adding buttons to forms for details.

Group
The group element is Odoo's main means for organizing content. Fields placed within a
group element are rendered with their title, and all the fields within the same group are
aligned so that there's also a visual indicator that they belong together. You can also nest the
group elements; this causes Odoo to render the contained fields in adjacent columns.

In general, you should use this mechanism for all your fields and only revert to other methods
(see next) when necessary.

If you assign the attribute string on a group, its content will be rendered as a heading for
the group.

You should develop the habit of assigning a name to every logical group of fields too. This
name is not visible to the user, but very helpful when we override views in the following
recipes. Keep the name unique within a form definition to avoid confusion about which
group you refer to.

Backend Views

188

Field
In order to actually show and manipulate data, your form should contain some field
elements. They have one mandatory attribute name, which refers to the field's name in the
model. So above, we offer the user to edit the partner's name and categories. If we only
want to show one of them, without the user being able to edit the field, we set the attribute
readonly to 1 or True. This attribute actually may contain a small subset of Python code,
so readonly="2>1" would make the field read only too. The same applies to the attribute
invisible, that you use to have the value read from the database, but not shown to the
user. We'll see later in which situations we want to have that.

Take care not to put the same field twice on your form. Odoo is not
designed to support this, and the result will be that all but one of
those fields will behave as if they were empty.

You must have noticed the attribute widget on the categories field. It defines how the data
in the field is supposed to be presented to the user. Every type of field has its standard
widget, so you don't have to explicitly choose a widget. But several types provide multiple
ways of representation, in which case you might opt for something else than the default. As a
complete list of available widgets would exceed the scope of this recipe, you'll have to resort
to Odoo's source code to try them out and consult Chapter 15, Web Client Development for
details on how to make your own.

General attributes
On most elements (this includes group, field, and button), you can set the attributes
attrs and groups. While attrs is discussed next, the groups attribute gives you the
possibility to show some elements only to the members of certain groups. Simply put the
group's XML ID (separated by commas for multiple groups) in the attribute, and the element
will be hidden for everyone who is not a member of at least one of the groups mentioned.

Other tags
There are situations where you might want to deviate from the strict layout groups prescribed.
A good example is, if you want the name field of a record to be rendered as a heading, the
field's label would interfere with the appearance. In this case, don't put your field into a group
element, but for example, into the plain HTML h1 element. Then before the h1 element, put a
label element with the for attribute set to your field name:

<label for="name" />
<h1><field name="name" /></h1>

This will be rendered with the field's content as a big heading, but the field's name only small
above. That's basically what the standard partner form does.

Chapter 8

189

If you need a line break within a group, use the newline element. It's always empty.

<newline />

Another useful element is the footer element. When you open a form as a popup, this is the
good place to place the action buttons. It will be rendered as a gray bar too, analogous to the
header element.

There's more...
Since form views are basically HTML with some extensions, Odoo also makes extensive use
of CSS classes. Two very useful ones are oe_read_only and oe_edit_only – they cause
elements with these classes applied to be visible only in read/view mode or only in edit mode.
So to have the label visible only in edit mode:

<label for="name" class="oe_edit_only" />

Further, the form element can have attributes create, edit, and delete. If you set one of
those to false, the corresponding action won't be available for this form. Without this being
explicitly set, the availability of the action is inferred from the user's permissions. Note that
this is purely for straightening the UI; don't use this for security.

See also
The widgets described earlier already offer a lot of functionality, but sooner or later you will
encounter cases where they don't do exactly what you want. For defining your own widgets,
refer to Chapter 15, Web Client Development.

Adding buttons to forms
We added a button in the previous form, but there are quite different types of buttons to use.
This recipe will add another button; also put the following code in to the previous recipe's
header element.

How to do it...
Add a button referring to an action:

<button type="action" name="%(base.action_partner_category_form)d"
string="Open partner categories" />

Backend Views

190

How it works...
The button's type attribute determines the semantics of the other fields, so we'll first look into
the possible values:

 f action: This makes the button call an action as defined in the ir.actions.*
namespace. The name attribute needs to contain the action's database id, which you
can conveniently look up with a python format string containing the XML ID of the
action in question.

 f object: This calls a method of the current model. The name attribute contains the
function's name. The function should have the signature @api.multi and will act on
the currently viewed record.

 f workflow: This sends a workflow signal to the current record. The name attribute
needs to contain the signal's name. Use the states attribute to make the workflow
buttons only available in states where they actually do something, that is, in states
that have transitions triggered by the signal in question.

The string attribute is used to assign the text the user sees.

There's more...
Use CSS classes btn-primary to render a button that is highlighted (currently blue) and
btn-default to render a normal button. This is commonly used for the cancel buttons in
wizards or to offer secondary actions in a visually unobtrusive way.

The call with a button of type object can return a dictionary describing an action, which will
then be executed on the client side. This way you can implement multi screen wizards or just
open some other record.

You can also have content within the button tag, replacing the string attribute. This is
commonly used in button boxes as described in the recipe Document style forms.

Passing parameters to forms and actions:
Context

Internally, every method in Odoo has access to a dictionary called context that is propagated
from every action to the methods involved in delivering that action. The UI also has access
to it and can be modified in various ways by setting values in the context. In this recipe, we'll
explore some of the applications of this mechanism by toying with the language, default
values, and implicit filters.

Chapter 8

191

Getting ready
While not strictly necessary, this recipe will be more fun if you install the French language,
in case you didn't start out with this language in the first place. Consult Chapter 11,
Internationalization, for how to do this. If you have a French database, change fr_FR to some
other language; en_US will do for English. Also, click the button Not archived on one of your
customers in order to archive it and verify that this partner doesn't show up any more in
the list.

How to do it...
1. Create a new action, very similar to the one from the first recipe:

<act_window id="action_all_customers_fr"
 name="Tous les clients"
 res_model="res.partner"
 domain="[('customer', '=', True)]"
 context="{'lang': 'fr_FR', 'default_lang': 'fr_FR',
 'active_test': False}" />

2. Add a menu that calls this action. This is left as an exercise for the reader.

When you open this menu, the views will show up in French, and if you create a new partner,
she will have French as the preselected language. A less obvious difference is that you will
also see the partner you deactivated earlier.

How it works...
The context dictionary is populated from several sources. First, some values from the
current user's record (lang and tz, for the user's language and the user's timezone) are read,
then there are addons that add keys for their own purposes. Further, the UI adds keys about
which model and which record we're busy with at the moment (active_id, active_ids,
active_model). And as seen previously, we can also add our own keys in actions. Those are
merged together and passed to the underlying server functions, and also to the client side UI.

So by setting the lang context key, we force the display language to be French. You will note
that this doesn't change the whole UI language, which is because only the list view that we
open lies within the scope of this context. The rest of the UI was loaded already with another
context that contained the user's original language. But if you open a record in this list view,
it will be presented in French too, and if you open some linked record on the form or press a
button that executes an action, the language will be propagated too.

Backend Views

192

By setting default_lang, we set a default value for every record created within the
scope of this context. The general pattern is default_$fieldname: my_default_value,
which enables you to set default values for the partners newly created in this case. Given that
our menu is about customers, it might have made sense to also set default_customer:
True to have the Customer field checked by default. But this is a model wide default for
res.partner anyway, so this wouldn't have changed anything. For scalar fields, the syntax
for this is as you would write it in Python code – string fields go in quotes, numbers just like
that, and boolean fields are either True or False. For relational fields, the syntax is slightly
more complicated – refer to Chapter 9, Module Data, for how to write those. Note that the
default values set in the context override the default values set in the model definition, so you
can have different default values in different situations.

The last key is active_test, which has very special semantics. For every model that has a
field called active, Odoo automatically filters out the records where this field is False. This is
why the partner where you unchecked this field disappeared from the list. By setting this key,
we can suppress this behavior.

This is useful for the UI in its own right, but even more useful in your
Python code when you need to be sure some operation is applied to
all the records, not just the active ones.

There's more...
While defining a context you have access to some variables, the most important one being
uid, which evaluates to the current user's ID. You'll need this for setting the default filters
(see the next recipe). Further, you have access to the function context_today and the
variable current_date, where the first is a date object representing the current date as
seen from the user's time zone and the latter the current date as seen in UTC, formatted
as YYYY-MM-DD. For setting a default for a date field to the current date by default, use
current_date and, for default filters, use context_today().

Further, you can do some date calculations with a subset of Python's datetime, time, and
relativedelta classes.

Chapter 8

193

Why the repeated talk about 'a subset of Python'? For various technical
reasons, domains have to be evaluated as well on the client side as on
the server side. Server side evaluation existed earlier, there full Python
was available (but is restricted by now too for security reasons). When
client side evaluation was introduced, the best option in order not to
break the whole system was to implement a part of Python in JavaScript.
So there is a small JavaScript Python interpreter built into Odoo which
works great for simple expressions, and that is usually enough.
Beware about variables in the context in conjunction with the
<act_window /> shortcut. Those are evaluated at installation time,
which is nearly never what you want. If you need variables in your
context, use <record /> syntax.

The same way that we added some context keys in our action, we can do with buttons. This
causes the function or action the button calls to be run in the context given and by now you
know some of the tricks you can pull this way.

Most form element attributes that are evaluated as Python also have access to the context
dictionary. The attributes invisible and readonly are such attributes. So in cases where
you want an element to show up in a form sometimes, but not at other times, you set the
invisible attribute to context.get('my_key'), and for actions that lead to the case
where the field is supposed to be invisible, you set the context key my_key: True. Such a
strategy enables you to adapt your form without having to rewrite it for different occasions.

You can also set a context on relational fields, which influences how the field is loaded. By
setting the keys form_view_ref or tree_view_ref to the XML ID of a view, you can select
a specific view for this field. This is necessary when you have multiple views of the same type
for the same object. Without this key you get the view with the lowest sequence number,
which might not always be desirable.

See also
One of the very useful applications of the context is to set default search filters as described
in the recipe Search views.

Defining filters on record lists: Domain
We've already seen the first example of a domain in the first action, which was
[('customer', '=', True)]. It is a very common use case when you need to display
a subset of all available records from an action, or to allow only a subset of possible records
to be the target of a many2one relation. The way to describe these filters in Odoo is called a
domain. This recipe illustrates how to use such a domain to display a selection of partners.

Backend Views

194

How to do it...
To display a subset of partners from your action, you need to perform the following steps:

1. Add an action for non-French speaking customers:
<record id="action_my_customers" model="ir.actions.act_window">
 <field name="name">
 All customers who don't speak French
 </field>
 <field name="res_model">res.partner</field>
 <field name="domain">
 [('customer', '=', True), ('user_id', '=', uid), ('lang',
'!=', 'fr_FR')]
 </field>
</record>

2. Add an action for the customers who are customers or suppliers:
<record id="action_customers_or_suppliers"
 model="ir.actions.act_window">
 <field name="name">Customers or suppliers</field>
 <field name="res_model">res.partner</field>
 <field name="domain">
 ['|', ('customer', '=', True), ('supplier', '=', True)]
 </field>
</record>

3. Add menus that call this action. This is left as an exercise for the reader.

How it works...
The simplest form of a domain is a list of 3-tuples that contains a field name of the model
in question as string in the first element, an operator as string in the second element, and
the value the field is to be checked against as the third element. This is what we did in the
first action, and this is interpreted as: All those conditions have to apply to the records we're
interested in. This actually is a shortcut, because the domains know the two prefix operators &
and |, where & is the default. So, in formal form, the first domain would be written as ['&',
'&', ('customer', '=', True), ('user_id', '=', uid), ('lang', '!=',
'fr_FR')].

While a bit hard to read for bigger expressions, the advantage of prefix operators is that
their scope is rigidly defined, which saves you having to worry about operator precedence
and brackets. It's always the following two expressions: The first & applies to '&',
('customer', '=', True), ('user_id', '=', uid) as the first operand and
('lang', '!=', 'fr_FR') as the second. Then, the second & applies to ('customer',
'=', True) as the first operand and ('user_id', '=', uid) as the second.

Chapter 8

195

In the second action, we have to write out the full form because we need the | operator.

There is also a ! operator for negation, but, given logical equivalences and negated
comparison operators such as != and not in, it is not really necessary. Note that this is a
unary prefix operator, so it only applies to the following expression in the domain and not to
everything that follows.

Note that the right operand doesn't need to be a fixed value when you write a domain for
a window action or other client side domains. You can use the same minimal Python as
described earlier for contexts, so you can write filters such as changed last week, my partners,
and so on.

There's more...
The preceding domains work only on fields of the model itself, while we often need to filter
based on the properties of linked records. To do this, you can use the notation also used in
@api.depends definitions or related fields: create a dotted path from the current model to the
model you want to filter for. To search partners which have a sales person that is a member of a
group starting with the letter G, you would use the domain [('user_id.groups_id.name',
'=like', 'G%')]. The path can be arbitrarily long, so you only have to take care that there
are relation fields between the current model and the model you want to filter for.

Operators
The following table lists the available operators and their semantics:

Operator (equivalent) Semantics
=, != (<>) Exact match, not equal (deprecated notation of not equal)
in, not in Checks if the value is one of the values named in a list in the right

operand, given as a Python list: [('uid', 'in', [1, 2, 3])]
<, <= Greater than, greater or equal
>, >= Less than, less or equal
like, not like Checks if the right operand is contained (substring) in the value
ilike, not ilike The same as the preceding one but case insensitive
=like, =ilike You can search for patterns here: % matches any string and _

matches one character. This is the equivalent of PostgreSQL's like.
child_of For models with a parent_id field, this searches for children of the

right operand, with the right operand included in the results.
=? Evaluates to true if the right operand is false, otherwise it behaves like

"= -" this is useful when you generate domains programmatically and
want to filter for some value if it is set, but ignore it otherwise.

Backend Views

196

Pitfalls
This all works fine for traditional fields, but a notorious problem is searching for the value of
a non-stored function field. It's a problem that people often omit the search function, while
this is simple enough to fix by providing the search function in your own code as described in
Chapter 4, Application Models.

Another issue that might baffle the developers is Odoo's behavior when searching through
one2many or many2many fields with a negative operator. Imagine you have a partner with
a tag A and you search for [('category_id.name', '!=', 'B')]. Your partner shows
up in the result and this is what you expected. But if you add the tag B to this partner, it still
shows up in your results, because for the search algorithm it is enough that there is one linked
record (A in this case) that does not fulfill the criterion. Now if you remove the tag A so that B
is the only tag, the partner will be filtered out. If you also remove the tag B so that the partner
has no tags, it is still filtered out, because conditions on the linked records presuppose the
existence of this record. In other situations though, this is the behavior you want, so it is not
really an option to change the standard behavior. In case you need a different behavior here,
provide a search function of your own that interprets the negation the way you need.

A small gotcha is that people forget they are writing XML files when it is
about domains. You need to escape the less-than operator. Searching
for records that have been created before today would have to be
[('create_date', '<', current_date)] in XML.

See also
If you ever need to manipulate a domain you didn't create programmatically, use
the utility functions provided in openerp.osv.expression. Especially is_leaf,
normalize_domain, AND, and OR will allow you to combine domains exactly the way
Odoo does it. Don't do this yourself, because there are many corner cases you have to
take into account and it's very probable you'll overlook one.

For the standard application of domains, see the recipe Search views.

List views
After having spent quite some time on the form view, we'll now have a quick look at how to
define list views. Internally, they are called tree views in some places and list views in others,
but, given there is another construction within the Odoo view framework called tree, we'll stick
to the wording list here.

Chapter 8

197

How to do it...
1. Define your list view:

<record id="tree_all_customers" model="ir.ui.view">
 <field name="model">res.partner</field>
 <field name="arch" type="xml">
 <tree colors="blue: customer and supplier;
 green:customer;
 red: supplier">
 <field name="name" />
 <field name="customer" invisible="1" />
 <field name="supplier" invisible="1" />
 </tree>
 </field>
</record>

2. Tell the action from the first recipe to use it:
<record id="action_all_customers_tree" model="ir.actions.act_
window.view">
 <field name="act_window_id" ref="action_all_customers" />
 <field name="view_id" ref="tree_all_customers" />
 <field name="sequence">5</field>
</record>

How it works...
You already know most of what happens here. We define a view, this time of type tree, and
attach it to our action with an ir.actions.act_window.view element. So the only thing
left to discuss is the tree element and its semantics. With a list you don't have many design
choices, so the only valid children of this element are the field and button elements.
They follow the same semantics as earlier, save for the fact that there are a lot less choices
for widgets – the only really interesting choices are progressbar, many2onebutton, and
handle. The first two behave like their form namesakes. handle is specific to list views. It
is meant for integer fields and renders a drag handle that the user can use to drag a row to a
different position in the list, thereby updating the field's value. This is useful for sequence or
priority fields.

What is new here is the colors attribute in the tree element. It contains rules which
font color is chosen for the row, given in the form color: Python code, separated by
semicolons. The first match wins, so what the previous view does is to render partners who
are both supplier and customer in blue, customers in green, and suppliers in red. In your
Python code, you can use the fields you named in the view definition, which is why we have to
pull the customer and supplier fields too. We made them invisible because we only need
the data and don't want to bother our users with those two extra columns. The possible colors
are those that HTML defines, so you can either use names or a hex string.

Backend Views

198

There's more...
For numeric fields, you can add an attribute sum that causes this column to be summed up
with the text you set in the attribute as a tooltip. Less common are the attributes avg, min,
and max, that display the average, minimum, and maximum respectively. Note that these four
only work on the records currently visible, so you might want to adjust the action's limit (see
above) in order for the user to see all the records immediately.

Analogous to the colors attribute in the tree element is the fonts attribute. With it, you
can choose to have a record be bold, italic, or underline (sic). On the right part of a font
definition, you can run the same Python expressions as previously. There is a subtle difference
though. Here, the last definition wins if multiple expressions apply to a row.

A very interesting attribute for the tree element is editable. If you set this to top or bottom,
the list behaves entirely different than before. Without it, clicking a row opens a form view
for the row. With it, clicking a row makes it editable inline, with the visible fields rendered as
form fields. This is particularly useful in embedded list views, which are discussed later in this
chapter. The choice is if new lines will be added on the top or bottom of the list.

By default, records are ordered according to the _order property of the displayed model. The
user can change ordering by clicking a column header, but you can also set a different initial
order by setting the default_order property in the tree element. The syntax is the same as
in _order.

Ordering is often a source of frustration for new developers. As Odoo lets
PostgreSQL do the work here, you can only order by fields that PostgreSQL
knows about and also only the fields that live in the same database table.
So if you want to order by a function or a related field, be sure to set
store=True. If you need to order by a field inherited from another model,
declare a stored related field.

The create, edit, and delete attributes of the tree element work the same as for the
form element described earlier. They also determine the available controls if the editable
attribute is set.

Search views
When opening your list view, you'll notice the search field to the upper right. If you type
something there, you get suggestions about what to search for and there is also a set of
predefined filters to choose from. This recipe will walk you through how to define those
suggestions and options.

Chapter 8

199

How to do it...
1. Define your search view:

<record id="search_all_customers" model="ir.ui.view">
 <field name="model">res.partner</field>
 <field name="arch" type="xml">
 <search>
 <field name="name" />
 <field name="category_id"
 filter_domain="[('category_id', 'child_of',
self)]" />
 <field name="bank_ids" widget="many2one" />
 <filter name="suppliers"
 string="Suppliers"
 domain="[('supplier', '=', True)]" />
 </search>
 </field>
</record>

2. Tell your action to use it:
<record id="action_all_customers" model="ir.actions.act_window">
 <field name="name">All customers</field>
 <field name="res_model">res.partner</field>
 <field name="domain">[('customer', '=', True)]</field>
 <field name="search_view_id" ref="search_all_customers" />
</record>

When you type something in the search bar now, you'll be offered to search for this term in the
name, categories, and bank accounts fields. If your term happens to be a substring of a bank
account number in your system, you'll even be offered to search exactly for this bank account.

How it works...
In the case of name, we simply listed the field as the one to be offered to the user to search
for. We left the semantics at the defaults, which is a substring search for character fields.

For categories, we do something more interesting. By default, your search term applied to a
many2many field triggers name_search, which would be a substring search in the categorie's
names in this case. But depending on your category structure, it can be very convenient to
search for partners who have the category you're interested in or a child of it. Think about
a main category Newsletter subscribers with sub categories Weekly newsletter, Monthly
newsletter, and a couple of other newsletter types. Searching for newsletter subscribers with
the preceding search view definition will give you everyone who is subscribed to any of those
newsletters in one go, which is a lot more convenient than searching for every single type and
combining the results.

Backend Views

200

The filter_domain attribute can contain an arbitrary domain, so you're neither restricted to
searching for the same field you named in the name attribute, nor to using only one term. The
variable self is what the user filled in, and also the only variable you can use here. A more
elaborate example from the default search view for partners is:

<field name="name" filter_domain="['|','|',
('display_name','ilike',self),('ref','=',self),('email','ilike',se
lf)]"/>

This allows the user to not even think a lot about what to search for; just type some letters, hit
Enter, and, with a bit of luck, one of the fields mentioned contains the string we're looking for.

For the bank_ids field, we used another trick. The type of a field not only decides the default
way of searching for the user's input, it also defines the way Odoo presents the suggestions.
And given many2one fields are the only ones that offer auto completion, we force Odoo to do
that, even though bank_ids is a one2many field by setting the widget attribute. Without this,
the offer would be simply to search in this field, without completion suggestions. The same
applies to many2many fields. Note that every field with a many2one widget set will trigger a
search on its model for every one of the user's keystrokes – don't use too many of them.

You should also put the most used fields to the top, because the first field is what is searched
if the user just types something and hits Enter. It also seems worth mentioning that the
search bar is very well usable with the keyboard; select a suggestion by pressing the down
arrow and open a many2one's completion suggestion by pressing the right arrow. If you
educate your users in this and pay attention to a sensible ordering of fields in the search
view, they will be much more efficient than by typing something first, grabbing the mouse, and
selecting some option.

The filter element creates a button that adds the content of the filter's domain attribute to
the search domain. You should add a logical internal name and a string attribute to describe
the filter to your users.

There's more...
You can group the filters with the group tag, which causes them to be rendered slightly closer
together than the other filters, but this has semantic implications too. If you put multiple filters
in the same group and activate more than one of them, their domains will be combined with
the operator |, while filters and fields not in the same group are combined with the operator
&. Cases where you want disjunction for your filters are when they filter for mutually exclusive
sets, in which case selecting both of them always would lead to an empty result set. Within
the same group, you can achieve the same effect with the separator element.

Note that if the user fills in multiple queries for the same field, they will be combined with |
too, so you don't need to worry about that.

Chapter 8

201

As well as the field, the filter element can have a context attribute whose content will
be merged with the current context and eventual other context attributes in the search view.
This is essential for views that support grouping (see recipes about kanban and graph views),
because the resulting context determines the field(s) to be grouped by with the key group_by.
We'll look into the details of grouping in the appropriate recipes, but the context has other uses
too. For example, you can hide columns depending on a context value by setting the field
element's invisible attribute in the list view to something like the following:

invisible="not context.get('show_col1')"

You can use a filter to switch this column on or off. Or you could write a function field that
returns different values depending on the context, then you can change the values by
activating a filter.

The search view itself also responds to context keys. In a very similar way to default values
when creating records, you can pass defaults for a search view via the context. If we had set
a context of {'search_default_supplier': 1} in our previous action, the suppliers
filter would have been preselected in the search view. This works only if the filter has a name
though, which is why you should always set it. To set defaults for fields in the search view, use
search_default_$fieldname.

Further, the field and the filter elements can have a groups property with the same
semantics as in the form views in order to make the element only visible for certain groups.

See also
For details about manipulating the context, see the recipe Passing parameters to forms and
actions: Context.

Changing existing views: View inheritance
Up until now, we ignored the existing views and declared completely new ones. While this is
didactically sensible, you'll rarely be in situations where you want to define a new view for an
existing model. What you'll rather want to do is to slightly modify the existing views, be it to
simply have it show a field you added to the model in your addon, or to customize it to your
needs or your customer's.

In this recipe, we'll change the default partner form to show the record's last modification date
and also allow searching for that. Then we'll also show this column in the partners' list view.

Backend Views

202

How to do it...
1. Inject the field in the default form view:

<record id="view_partner_form" model="ir.ui.view">
 <field name="model">res.partner</field>
 <field name="inherit_id" ref="base.view_partner_form" />
 <field name="arch" type="xml">
 <field name="website" position="after">
 <field name="write_date" />
 </field>
 </field>
</record>

2. Add the field to the default search view:
<record id="view_res_partner_filter" model="ir.ui.view">
 <field name="model">res.partner</field>
 <field name="inherit_id" ref="base.view_res_partner_filter" />
 <field name="arch" type="xml">
 <xpath expr="." position="inside">
 <field name="write_date" />
 </xpath>
 </field>
</record>

3. Add the field to the default list view:
<record id="view_partner_tree" model="ir.ui.view">
 <field name="model">res.partner</field>
 <field name="inherit_id" ref="base.view_partner_tree" />
 <field name="arch" type="xml">
 <field name="email" position="before">
 <field name="write_date" />
 </field>
 </field>
</record>

After updating your module, you should see the extra field Last updated on beneath the
website field on the partner form. When you type in something that looks like a date (a digit or
two) in the search box, it should propose to search for partners last modified on this date, and
in the partner's list view, you should see the modification date left of the e-mail column.

Chapter 8

203

How it works...
The crucial field here is, as you probably have guessed, inherit_id. You need to pass it
the XML ID of the view you want to modify (inherit from), and the arch field then contains
instructions on how to modify the existing XML nodes within the view you're inheriting from.
You actually should think of the whole process as quite simple XML processing, because all
the semantic parts come only a lot later.

The most canonic instruction within the arch field of an inherited view is the field element,
which has the required attributes name and position. Because you can have every field only
once on a form, the name already uniquely identifies a field, and with the position attribute,
we can place whatever we put within the field element either before (1), inside (2), or
after (3) the field we named. The default is inside, but for readability you should always
name the position you mean. Remember that we're not talking semantics here; this is about
the position in the XML tree relative to the field we have named. How this will be rendered
afterwards is a completely different matter.

Example 2 above demonstrates a different approach. The xpath element selects the
first element matching the XPath expression named in the attribute expr. Also, here the
position attribute tells the processor where to put the xpath element's contents.

XPath might look somewhat scary, but is a very efficient means of selecting the node you need
to work on. Take the time to look through some simple expressions, it's worth it. Probably in
the tutorials you'll find, you'll stumble upon the term context node to which some expressions
are relative. In Odoo's view inheritance, that's always the root element of the view you're
inheriting from.

For all the other elements found in the arch field of an inheriting view, the processor looks
for the first element with the same node name and matching attributes (with the attribute
position excluded, as this is part of the instruction). Use this only in cases where it is very
improbable that this combination is not unique, like a group element combined with a
name attribute.

Note that you can have as many instruction elements within the
arch field as you need. We only used one per inherited view because
there's no more we currently want to change.

There's more...
The position attribute has two other possible values: replace and attributes. Using
replace causes the selected element to be replaced with the content of the instruction
element. Consequently, if you don't have any content, the selected element is simply removed.
In the list or form view above would cause the email field to be removed.

<field name="email" position="replace" />

Backend Views

204

Removing fields can cause other inheriting views to break and
several similarly ugly side effects, so avoid that if possible. If you
really need to remove fields, do so in a view which comes late in
order of evaluation (see next).

Using attributes has a very different semantics from all of the above. The processor
then expects the element to contain the attribute elements with a name attribute. Those
elements will then be used to set attributes on the selected element. If you want to heed the
warning from above, you'd better set the invisible attribute to 1 for the email field:

<field name="email" position="attributes">
 <attribute name="invisible">1</attribute>
</field>

Order of evaluation in view inheritance
Because we have only one parent view and one inheriting view, we don't run into any problems
with conflicting view overrides. When you have installed a couple of modules, you'll find a lot
of overrides for the partner form. This is all fine as long as they change different things in a
view, but there are occasions where it is important to understand how the overriding works
in order to avoid conflicts. Direct descendants of a view are evaluated in ascending order of
their priority field, so views with a lower priority are applied first. Every step of inheritance
is applied to the result of the first, so if a view with priority 3 changes a field and another one
with priority 5 removes it, things are fine, but they break if the priorities are reversed.

Then you can also inherit from a view that is itself an inheriting view. In this case, the second
level inheriting view is applied to the result of the view it inherits from. So, if you have four views
A, B, C, and D, where A is a standalone form, B and C inherit from A, and D inherits from B, the
order of evaluation is A, B, D, C. Use this to enforce an order without having to rely on priorities;
that's safer in general. Especially if some inheriting view adds a field and you need to apply
changes to this field, inherit from the inheriting view and not from the standalone one.

This kind of inheritance always works on the complete XML
tree from the original view, with modifications from the previous
inheriting views applied.

Chapter 8

205

See also
For inheriting views, a very useful and not very well known field is groups_id. This field
causes the inheritance to take place only if the user requesting the parent view is member of
one of the groups mentioned there. This can save you a lot of work when adapting the user
interface for different levels of access, because with inheritance you can have more complex
operations than just showing or not showing the elements based on group membership, as
is possible with the groups attribute on form elements as discussed earlier. You can for
example remove elements if the user is member of some group (which is the inverse of what
the groups attribute does), but also some quite elaborate tricks like adding attributes based
on group membership, think about simple things like making a field read only for certain
groups, or more interesting ones like using different widgets for different groups.

What was described here is the case if the mode field of the original view is set to primary,
while the inheriting views have mode extension, which is the default. We'll look into the case
that mode of an inheriting view is set to primary later, where the rules are slightly different.

Document-style forms
In this recipe, we'll review some design guidelines in order to present a uniform user experience.

How to do it...
1. Start your form with a header element:

<header>
 <button name="do_something_with_the_record"
 string="Do something" type="object" class="oe_
highlight" />
 <button name="do_something_else" string="Second action" />
 <field name="state" widget="statusbar" />
</header>

2. Then add a sheet element for content:
<sheet>

3. Put some prominent field(s) first:
 <div class="oe_left oe_title">
 <label for="name" />
 <h1>
 <field name="name" />
 </h1>
 </div>

Backend Views

206

4. Put buttons that link to resources relevant for the object in its own box (if applicable):
 <div class="oe_right oe_button_box" name="buttons">
 <button name="open_something_interesting"
 string="Open some linked record"
 type="object" class="oe_stat_button" />

5. Add your content, possibly within a notebook if there are a lot of fields:
 <group name="some_fields">
 <field name="field1" />
 <field name="field2" />
 </group>

6. After the sheet, add the chatter widget (if applicable):
</sheet>
<div class="oe_chatter">
 <field name="message_follower_ids" widget="mail_followers"/>
 <field name="message_ids" widget="mail_thread"/>
</div>

How it works...
The header should contain buttons that execute actions on the object the user currently
sees. Use the oe_highlight class to make the buttons visually stand out (that's bright blue
at the time of writing), which is a good way to guide the user regarding which would be the
most logical action to execute at the moment. Try to have all the highlighted buttons to the
left of the non-highlighted buttons and hide the buttons not relevant in the current state (if
applicable). If the model has a state, show it in the header using the statusbar widget. This
will be rendered right aligned in the header.

The sheet element is rendered as a stylized sheet and the most important fields should be the
first thing the user sees when glancing at it. Use the oe_title and oe_left classes to have
them rendered in a prominent place (floating left with slightly adjusted font sizes at the time
of writing).

If there are other records of interest concerning the record the user currently sees (like
the partner's invoices on a partner form), put them in an element with the oe_right and
oe_button_box classes; this aligns the buttons in it to the right. On the buttons themselves,
use the oe_stat_button class to enforce a uniform rendering of the buttons.

Even in case you don't like this layout, stick to the element and class names
described here, and adjust what you need with CSS and possibly JavaScript.
This will make the user interface more compatible with the existing addons
and allow you to integrate better with the core addons.

Chapter 8

207

Dynamic form elements using attrs
So far, we have only looked into changing forms depending on the user's groups (the groups
attribute on elements and the groups_id field on inherited views), but nothing more. This
recipe will show you how to change forms based on the content of some fields in it.

How to do it...
1. Define an attribute attrs on some form element:

<field name="parent_id"
 attrs="{'invisible': [('is_company', '=', True)],
 'required': [('is_company', '=', False)]}" />

2. Take care that all the fields you refer to are available on your form:
<field name="is_company" invisible="True" />

This will make the field parent_id invisible if the partner is a company, and required if it's
not a company.

How it works...
The attrs attribute contains a dictionary with the keys invisible, required, and
readonly (all of them optional). The values are domains that may refer to the fields existing
on the form (and really only those, so no dotted paths), and the whole dictionary is evaluated
according to the rules for client side Python described earlier. So for example, you can access
the context in the right hand operand.

There's more...
While this mechanism is quite straightforward for the scalar fields, it's less obvious how to
handle the one2many and many2many fields. In fact, in standard Odoo you can't do much
with those fields within an attrs attribute. But if you only need to check if such a field is
empty or not, use [[6, False, []]] as your right hand operand.

Embedded views
When you show a one2many or a many2many field on a form, you don't have much control over
how it is rendered up to now if you haven't used one of the specialized widgets. Also, in the
case of many2one fields, it is desirable sometimes to be able to influence the way the linked
record is opened. In this recipe, we'll look into how to define private views for those fields.

Backend Views

208

How to do it...
1. Define your field as usual, but don't close the tag:

<field name="child_ids">

2. Simply write the view definition(s) into the tag:
 <tree>
 <field name="name" />
 <field name="email" />
 <field name="phone" />
 </tree>
 <form>
 <group>
 <field name="name" />
 <field name="function" />
 </group>
 </form>

3. Close the tag:
</field>

How it works...
When Odoo loads a form, it first checks for reference fields if there are views embedded as
outlined previously. Those embedded views can have the exact same elements as views we
defined before. Only if Odoo doesn't find an embedded view of some type, does it use the
model's default view of this type.

There's more...
While embedded views seem like a great feature in the first place, they complicate view
inheritance a lot. For example, as soon as embedded views are involved, the field names are
not guaranteed to be unique and you'll usually have to use some quite elaborate XPaths to
select elements within an embedded view.

So, in general, you should better served defining the standalone views and use the keys
form_view_ref and tree_view_ref described earlier.

Chapter 8

209

Kanban views
Up until now, we have presented the user with a list of records that can be opened to show
a form. While those lists are efficient when presenting a lot of information, they tend to be
rather dull given the lack of design possibilities. In this recipe, we'll have a look at kanban
views, which allow us to present lists of records in a more appealing way.

How to do it...
1. Define a view of type kanban:

<record id="kanban_all_customers" model="ir.ui.view">
 <field name="model">res.partner</field>
 <field name="arch" type="xml">
 <kanban>

2. List the fields you're going to use in your view:
 <field name="name" />
 <field name="supplier" />
 <field name="customer" />

3. Do some design:
 <templates>
 <t t-name="kanban-box">
 <div class="oe_kanban_card">

 <field name="name" />

 <t t-if="record.supplier.raw_value or
 record.customer.raw_value">
 is
 <t t-if="record.customer.raw_value">
 a customer
 <t t-if="record.supplier.
 raw_value"> and </t>
 </t>
 <t t-if="record.supplier.raw_value">
 a supplier
 </t>
 </t>
 </div>
 </t>
 </templates>

Backend Views

210

4. Close all the tags:
 </kanban>
 </field>
</record>

5. Add this view to one of your actions. This is left as an exercise for the reader.

How it works...
We need to give a list of fields to load in (2) in order to be able to access them later. The
content of the templates element must be a single t element with the attribute t-name
set to the value kanban-box.

What you write inside this element will be repeated for each record, with special semantics
for the t elements and the t-* attributes. For details about that, refer to Chapter 15, Web
Client Development, and the recipe Client side QWeb because, technically, kanban views
are a repetition of QWeb templates.

There are a few modifications which are peculiar to kanban views. You have access to the
variables instance, read_only_mode, record, and widget. Fields can be accessed by
using record.fieldname, which is an object with the properties value and raw_value,
where value is the field's value formatted in a way presentable to the user and raw_value
is the field's value as it comes from the database.

Many2many fields make an exception here. You'll only get an id list
via the record variable. For a user readable representation, you
must use the field element.

Note the type attribute of the link at the top of the template. This attribute makes Odoo
generate a link that opens the record in the view mode (open) or in the edit mode (edit), or it
deletes the record (delete). The type attribute can also be object or action, which will render
links that call a function of the model or an action. In both cases, you need to supplement the
attributes for buttons in form views as outlined earlier. Instead of the a element, you can also
use the button element; the type attribute has the same semantics there.

There's more...
There are a few more helper functions worth mentioning. If you need to generate a pseudo-
random color for some element, use the function kanban_color(some_variable), which
will return a CSS class that sets the background and color properties. This is usually used
in the t-att-class elements.

Chapter 8

211

If you want to display an image stored in a binary field, use kanban_image(modelname,
fieldname, record.id.raw_value), which returns a data URI if you included the field
in your fields list and the field is set, a placeholder if the field is not set, or a URL that makes
Odoo stream the field's contents if you didn't include it in your fields list. Do not include the
field in the fields list if you need to display a lot of records simultaneously or you expect very
big images. Usually, you'd use this in a t-att-src attribute of an img element.

For arbitrary length text fields, consider using kanban_text_ellipsis(yourstring,
size), which crops the string to the given size and adds an ellipsis (...).

Show kanban cards in columns according to
their state

This recipe shows you how to setup a kanban view where the user can drag and drop a record
from one column to the other, thereby pushing the record in question into another state.

Getting ready
Now and in the rest of this chapter, we'll make use of the project module here as it defines
models that lend themselves better to date and state based views than the ones defined in the
base module. So before proceeding, add project to the dependencies list of your addon.

How to do it...
1. Define a kanban view for tasks:

<record id="kanban_tasks" model="ir.ui.view">
 <field name="model">project.task</field>
 <field name="arch" type="xml">
 <kanban default_group_by="stage_id">
 <field name="stage_id" />
 <field name="name" />
 <templates>
 <t t-name="kanban-box">
 <div class="oe_kanban_card">
 <field name="name" />
 </div>
 </t>
 </templates>
 </kanban>
 </field>
</record>

2. Add a menu and an action using this view. This is left as an exercise for the reader.

Backend Views

212

How it works...
Kanban views support grouping, which allows you to display records that have the group
field in common in the same column. This is commonly used for a state or stage_id field,
because it allows the user to change this field's value for a record by simply dragging it into
another column. Set the attribute default_group_by on the kanban element to the name
of the field you want to group by in order to make use of this functionality.

There's more...
If not defined in the dedicated attribute, any search filter can add grouping by setting a context
key named group_by to the field name(s) to group by.

Calendar views
This recipe walks you through how to display and edit information about dates and durations
in your records in a visual way.

How to do it...
1. Define a calendar view:

<record id="calendar_project_task" model="ir.ui.view">
 <field name="model">project.task</field>
 <field name="arch" type="xml">
 <calendar date_start="date_start" date_stop="date_end"
 color="project_id">
 <field name="name" />
 <field name="user_id" />
 </calendar>
 </field>
</record>

2. Add menus and actions using this view. This is left as an exercise for the reader.

How it works...
The calendar view needs to be passed field names in the attributes date_start and
date_stop to indicate which fields to look at when building the visual representation. Use
fields of type Datetime as everything else will get you weird results. While date_start is
required, you can leave out date_stop and set the attribute date_delay instead, which is
expected to be a Float field representing the duration in hours.

Chapter 8

213

The calendar view allows you to give records which have the same value in a field the same
(arbitrarily assigned) color. To use this functionality, set the attribute color to the name of
the field you need. In our example, we can see in one glance which tasks belong to the same
project, because we assigned project_id as the field to determine the color groups.

The fields you name in the calendar element's body are shown within the block representing
the time interval covered, separated by commas.

There's more...
The calendar view has some other helpful attributes. If you want to open calendar entries in a
popup instead of the standard form view, set event_open_popup to 1. If you want to be able
to create a new entry by just filling in some text, set quick_add to 1. Internally, this calls the
model's name_create function to actually create the record.

If your model has a notion of covering a whole day, set all_day to a field's name that is true
if the record covers the whole day, and false otherwise.

In case you need more fine grained control over the text displayed within the calendar items,
set the attribute display to a format string using field names in brackets. In our case, we
could say display="[name] (assigned to [user_id])" to have a more verbose
representation of which task is assigned to whom.

Note that this recipe contained information about a legacy view type gantt, which has been
obsoleted during writing and was removed from the text.

Graph and pivot views
In this recipe, we'll have a look at Odoo's business intelligence views. These are read only
views meant to present data.

Getting ready
We're still making use of the project module here. First, we need some configuration. Activate
the checkbox Manage time estimation on tasks in Configuration | Settings and also install
the module project_timesheet in order to be able to record some time on different tasks.

Now create some projects meant to be umbrella projects for the customers. Then, create a
couple of tasks for each customer project. They are meant to model different activities you
have per customer. Assign different managers to these projects and activate the box Use
tasks. Finally, create tasks in these projects, give a time estimation per task, and write some
work hours on these tasks.

Backend Views

214

How to do it...
1. Define a graph view using bars:

<record id="graph_project_task_bar" model="ir.ui.view">
 <field name="model">project.task</field>
 <field name="arch" type="xml">
 <graph type="bar">
 <field name="project_id" type="row" />
 <field name="user_id" type="row" />
 <field name="effective_hours" type="measure" />
 </graph>
 </field>
</record>

2. Define a graph view using pivot tables:
<record id="graph_project_task_pivot" model="ir.ui.view">
 <field name="model">project.task</field>
 <field name="arch" type="xml">
 <graph type="pivot">
 <field name="parent_id" type="row" />
 <field name="user_id" type="row" />
 <field name="planned_hours" type="measure" />
 <field name="effective_hours" type="measure" />
 </graph>

 </field>
</record>

3. Add menus and actions using this view. This is left as an exercise for the reader.

If everything went well, you should see graphs that show you how many hours were worked per
customer (the projects we defined) under the responsibility of the different project managers.

How it works...
The type attribute determines the initial mode of a graph view. Possible values are pivot, bar,
line, and chart, while bar is the default. The graph view is highly interactive, so the user can
switch between the different modes and also add and remove fields.

Chapter 8

215

The field elements tell Odoo what to display on which axis. For all the graph modes, you
need at least one field with type row and one with type measure to see anything useful. Fields
of type row determine the grouping, while type measure stands for the value(s) to be shown.
Line graphs only support one field of each type, while charts and bars handle two group fields
with one measure nicely. The pivot table supports an arbitrary amount of group and measure
fields. No worries, things don't break if you switch to a mode that doesn't support the amount
of groups and measures you defined. It's just that they'll ignore some of the fields and won't
always show a very interesting result.

There's more...
For all the graph types, the Datetime fields are tricky for grouping, because you'll rarely
encounter the same field value here. So if you have a Datetime field of type row, also specify
the interval attribute with one of the following values: day, week, month, quarter, or year.
This will cause the grouping to take place in the given interval.

The pivot table also supports grouping in columns. Use type col for the fields you want to
have there.

Grouping, like sorting, relies heavily on PostgreSQL. So here also the rule
applies that a field must live in the database and in the current table in
order to be usable.
It is common practice to define database views that collect all the data
you need and define a model on top of this view in order to have all the
necessary fields available.
Depending on the complexity of your view and the grouping, building the
graph can be quite an expensive exercise. Consider setting the attribute
auto_search to False in those cases, so that the user can first adjust
all the parameters and only afterwards trigger a search.

QWeb reports
The last part of the presentation layer is printing out reports. In case you haven't till
now, install wkhtmltopdf as described in Chapter 1, Installing the Odoo Development
Environment otherwise you won't get shiny PDFs as result of your efforts.

Getting ready
The conversion mechanism to PDFs is implemented in the addon report, so you should
add it as dependency of your addon. Also double check that the configuration parameter
web.base.url (or alternatively, report.url) is a URL accessible from your Odoo instance,
otherwise report generation takes ages and the result looks funny.

Backend Views

216

How to do it...
1. Define a view for your report:

<template id="qweb_res_partner_birthdays">
 <t t-call="report.html_container">
 <t t-call="report.internal_layout">
 <div class="page">
 <h2>Partner's birthdays</h2>
 <div t-foreach="docs" t-as="o" class="row mt4 mb4">
 <div class="col-md-6"><t t-esc="o.name" /></div>
 <div class="col-md-6">
 <t t-if="o.birthdate" t-esc="o.birthdate" />
 <t t-if="not o.birthdate">-</t>
 </div>
 </div>
 </div>
 </t>
 </t>
</template>

2. Use this view in a report tag:
<report id="report_res_partner_birthdays"
 name="ch08.qweb_res_partner_birthdays"
 model="res.partner"
 string="Birthdays"
 report_type="qweb-pdf" />

Now when opening a partner form or selecting partners in the list view, you should be offered
to print the birthday list.

How it works...
Instead of using the record syntax as we did earlier, we use the template element here.
This is entirely for convenience; QWeb views are just views as all the others. The reason to
use this element is that the arch field of QWeb views has to follow quite strict rules and the
template element takes care to generate an arch content which fulfills these rules.

Don't worry about the syntax within the template element now. This topic will be addressed
extensively in the recipe QWeb in Chapter 14, CMS Website Development.

Chapter 8

217

The report element is another shortcut for an action of type ir.actions.report.xml
and a glue record of type ir.value. The crucial part here is that you set the name field to the
complete XML ID of the view you defined, otherwise the report generation will fail. The model
attribute determines on which type of record the report operates, and the string attribute is
the name shown to the user in the print menu.

By setting report_type to qweb-pdf, we request that the HTML generated by our view is
run through wkhtmltopdf in order to deliver a PDF to the user. There are a couple of other
(mostly deprecated) choices, but in some cases, qweb-html can be convenient to just render
the HTML within the browser.

There's more...
There are some marker classes in a report's HTML that are crucial for the layout. Be sure
to wrap all your content in an element with the class page set. If you forget that, you'll see
nothing at all. To add a header or footer to your record, use the class header or footer.

Also remember that this is HTML, so make use of CSS attributes such as page-break-
before, page-break-after, and page-break-inside.

You'll have noticed that all of our template body is wrapped in two elements with the t-call
attribute set. We'll examine the mechanics of this attribute later, but it is crucial that you
do the same in your reports. These elements take care that the HTML generated links to
all the necessary CSS files and contains some other data needed for the report generation.
While html_container doesn't really have an alternative, the second t-call could also
be report.external_layout. The difference is that the external layout already comes
with a header and footer displaying the company logo, the company's name, and some other
information you expect from a company's external communication, while the internal layout
just gives you a header with pagination, the print date, and the company's name. For the sake
of consistency, always use one of the two.

Note that report.internal_layout, report.external_layout,
report.external_layout_header, and report.external_
layout_footer (the last two are called by the external layout) are
just views by themselves, and you already know how to change them
by inheritance. To inherit with the template element, use the attribute
inherit_id.

219

9
Module Data

In this chapter, we will cover the following topics:

 f Using external IDs and namespaces

 f Loading data using XML files

 f Using the noupdate and forcecreate flags

 f Loading data using CSV files

 f Loading data using YAML files

 f Addon updates and data migration

In order not to have to repeat a lot of code, we'll make use of the models defined in Chapter 4,
Application Models. So in order to follow the examples, grab this chapter's code.

Introduction
In this chapter, we'll look at how addons can provide data at installation time. This is useful for
providing default values and adding metadata such as view descriptions, menus, or actions.
Another important usage is providing demonstration data, which is loaded when the database
is created with the Load demonstration data checkbox activated.

Using external IDs and namespaces
There was a lot of talk about XML IDs already, without specifying what an XML ID is. This
recipe will give a deeper understanding of this.

Module Data

220

How to do it...
We write into already existing records to demonstrate how to use cross module references:

1. Add a data file to your module manifest:
 'data': [
 'data/res_partner.xml',
],

2. Change the name of our main company:
<record id="base.main_company" model="res.company">
 <field name="name">Packt publishing</field>
</record>

3. Set our main company's partner as publisher:
<record id="book_cookbook" model="library.book">
 <field name="publisher_id" ref="base.main_partner" />
</record>

On installation of this module, the company will be renamed and the book from the next
recipe will be assigned to our partner. On subsequent updates of our module, only the
publisher will be assigned, but the company's name will be left untouched.

How it works...
An XML ID is a string referring to a record in the database. The IDs themselves are records
of model ir.model.data. This table's rows contain the module-declaring ID, the identifier
string, the referred model, and the referred ID. Every time an ID has to be looked up, Odoo
checks whether the string is namespaced already (that is, it contains exactly one dot), and if
not adds the current module name as namespace. Then it looks up if there is already a record
in ir.model.data with the specified name. If so, an UPDATE statement for the listed fields
is executed; if not, a CREATE statement is executed. This is why you can give partial data
when a record already exists, as we did above.

A widespread application for partial data, apart from changing records
defined by other modules, is using a shortcut element to create a record in a
convenient way and writing a field on this record which is not supported by
the shortcut element:

<act_window id="my_action" name="My action"
 model="res.partner" />
<record id="my_action" model="ir.actions.act_window">
 <field name="auto_search" eval="False" />
</record>

Chapter 9

221

The ref function, as used below in the recipe Loading data using XML files, also adds the
current module as namespace if appropriate, but raises an error if the resulting XML ID does
not exist already. This also applies to the id attribute if it is not namespaced already.

There's more...
You probably need to access records with an XML ID from your code sooner or later. Use the
function self.env.ref() in those cases, which returns a browse record of the referenced
record. Note that here, you always have to pass the full XML ID.

See also
Consult the recipe Using the noupdate and forcecreate flags to find out why the company's
name is changed only on installation of the module.

Loading data using XML files
Using Chapter 4, Application Models data model, we'll add a book and an author as
demonstration data, while we add a well known publisher as normal data in our module.

How to do it...
Create two XML files and link them in your __openerp__.py manifest file:

1. Add in a file called data/demo.xml to your manifest, in the demo section:
 'demo': [
 'data/demo.xml',
],

2. Add content to this file:
<odoo>
 <record id="author_af" model="res.partner">
 <field name="name">Alexandre Fayolle</field>
 </record>
 <record id="author_dr" model="res.partner">
 <field name="name">Daniel Reis</field>
 </record>
 <record id="author_hb" model="res.partner">
 <field name="name">Holger Brunn</field>
 </record>
 <record id="book_cookbook" model="library.book">
 <field name="name">Odoo Cookbook</field>
 <field name="short_name">cookbook</field>

Module Data

222

 <field name="date_release">2016-03-01</field>
 <field name="author_ids" eval="[(6, 0, [ref('author_af'),
 ref('author_dr'), ref('author_hb')])]" />
 <field name="publisher_id" ref="res_partner_packt" />
 </record>
</odoo>

3. Add a file called data/res_partner.xml to your manifest, in the data section:
 'data': [
 'data/res_partner.xml',
],

4. Add content to this file:
<odoo>
 <record id="res_partner_packt" model="res.partner">
 <field name="name">Packt Publishing</field>
 <field name="city">Birmingham</field>
 <field name="country_id" ref="base.uk" />
 </record>
</odoo>

When you update your module now, you'll see in any case the publisher we created, and, if
your database has demo data enabled, as pointed out in Chapter 1, Installing the the Odoo
Development Environment, you'll also find this book and its authors.

How it works...
As you've seen above, demo data is technically just the same as normal data. The only
difference is that the first is pulled by the demo key in the manifest, the latter by the data key.

To create a record, use the record element, which has the mandatory attributes id and
model. For the id attribute, consult the recipe Using external IDs and namespaces; the
model attribute refers to a model's _name property.

Then you use the field element to fill columns in the database as defined by the model
you named. The model also decides which are the mandatory fields to fill and also possibly
defines default values, in which case you don't need to give those fields a value explicitly.

As shown above, the field element can contain its value as simple text in case of scalar values.

For setting up references, there are two possibilities. The simplest is using the ref attribute,
which works for many2one fields and just contains the XML ID of the record to be referenced.

Chapter 9

223

For one2many and many2many fields, we need to resort to the eval attribute. This is a
general purpose attribute that can be used to evaluate Python code to use as the field's
value - think of strftime('%Y-01-01') as an example - to populate a date field. X2many
fields expect to be populated by a list of 3-tuples, where the first value of the tuple determines
the operation to be carried out. Within an eval attribute, we have access to a function called
ref, which returns the database ID of an XML ID given as a string. This allows us to refer to a
record without knowing its concrete ID, which is probably different per database, as explained
in the following:

 f (2, id, False) deletes the linked record with id from the database, the third
element of the tuple is ignored.

 f (3, id, False) only cuts the link to a record with id, but leaves the existing
record as it is. Here also, the last element of the tuple is ignored.

 f (4, id, False) adds a link to the existing record id, the last element of the tuple
is ignored too. This should be what you use most of the time, usually accompanied by
using the ref function to get the database ID of a record known by its XML ID.

 f (5, False, False) only works for many2many fields and cuts all links, but keeps
the linked records intact.

 f (6, False, [id, …]) only works for many2many fields and first clears out
currently referenced records to replace them with the ones mentioned in the list of
IDs. The second element of the tuple is ignored.

Note that order matters in data files and that records within data files
can only refer to records defined in data files earlier in the list. This
is why you should always check if your module installs in an empty
database, because during development, it often happens that you add
records all over the place, which works because the records defined
afterwards are already in the database from a previous update.
Demo data is always loaded after the files from the data key, which is
why the reference in the example works.

There's more...
While you can do basically anything with the record element, there are shortcut elements
defined that make it more convenient for the developer to create certain kinds of records.
Examples are menuitem, template or act window. Refer to Chapter 8, Backend Views and
Chapter 14, CMS Website Development for information about those.

A field element can also contain the function element, which calls a function defined on
a model to provide a field's value. See the recipe Using the noupdate and forcecreate flags for
an application where we simply call a function to directly write to the database, circumventing
the loading mechanism.

Module Data

224

The above list misses out entries for 0 and 1, because they are not very useful when loading
data. They are entered as follows for the sake of completeness:

 f (0, False, {'key': value}) creates a new record of the referenced model,
with its fields filled from the dictionary at position three. The second element of the
tuple is ignored. As those records don't have an XML ID and are evaluated every time
the module is updated, leading to double entries, it's better in general to avoid this,
create the record in its own record element, and link it as will be explained later.

 f (1, id, {'key': value}) can be used to write on an existing linked record.
For the same reasons as above, you should avoid this syntax.

You will use both of them extensively in Chapter 5, Basic Server Side Business Logic.

Using the noupdate and forcecreate flags
Most addons have different types of data. Some data simply needs to exist for the module to
work properly, other data shouldn't even be changed by the user, while most data is meant
to be changed per the user's pleasure and is only provided as a convenience. This recipe will
detail how to address the different types. First, we'll write a field in an already existing record,
then, we'll create a record that is supposed to be recreated during a module update.

How to do it...
We can enforce different behaviors from Odoo when loading data by setting certain attributes
on the enclosing odoo element or the record element itself.

1. Add a publisher only created at installation time, but not updated on subsequent
updates. However, if the user deletes it, it will be recreated:
<odoo noupdate="1">
 <record id="res_partner_packt" model="res.partner">
 <field name="name">Packt publishing</field>
 </record>
</odoo>

2. Add a book category that is not changed during addon updates and not recreated if
the user deletes it:
<odoo noupdate="1">
 <record id="book_category_all" model="library.book.category"
 forcecreate="false">
 <field name="name">All books</field>
 </record>
</odoo>

Chapter 9

225

How it works...
The odoo element can have a noupdate attribute, which is propagated to the ir.model.data
records created when reading the enclosed data records for the first time, ending up as a
column in this table.

When Odoo installs an addon (called init mode), all noupdate records are written. When you
update an addon (called update mode), existing XML IDs are checked to see if they have
the noupdate flag set, and if so, elements trying to write to this XML ID are ignored. This
is not the case if the record in question was deleted by the user, which is why you can force
not recreating noupdate records also in update mode by setting the flag forcecreate on the
record to false.

In legacy addons (<= 8.0), you'll often find an openerp element enclosing a
data element and only there record and other elements. This is still possible,
but deprecated. By now, odoo, openerp, and data have exactly the same
semantics, they are meant as a bracket to enclose XML data.

There's more...
You can force init mode by starting your Odoo server with the parameter --init=your_addon,
this way overwriting all existing noupdate records. This will also cause deleted records to be
recreated. Note that this can cause double records and related installation errors if a module
circumvents the XML ID mechanism, for example, by creating records in Python code called by
YAML files.

For modules you write from scratch, you don't need to worry too much about noupdate records
in either your own addon or other ones, as long as you only install it after all development
is done. But imagine you add a new feature to an existing module that is already out in the
wild. Then you might need to set a specific value on, for example, the main partner, which is
a noupdate record. For users with a previous version already installed, this data update will
never be executed! You can work around this by using the function element to temporarily
unset the record to noupdate, as follows:

<function name="write" model="ir.model.data">
 <function name="search" model="ir.model.data">
 <value eval="[('module', '=', 'base'), ('name', '=', 'main_
partner')]" />
 </function>
 <value eval="{'noupdate': False}" />
</function>
<record id="base.main_partner" model="res.partner">
 <field name="book_ids" eval="[(4, ref('book_cookbook'))]"
</record>

Module Data

226

<function name="write" model="ir.model.data">
 <function name="search" model="ir.model.data">
 <value eval="[('module', '=', 'base'), ('name', '=', 'main_
partner')]" />
 </function>
 <value eval="{'noupdate': True}" />
</function>

With this code, you can circumvent any noupdate flag, but be sure this is really what you want.
Another option for solving the scenario sketched here is to write a migration script, as outlined
in the following recipe.

See also
Odoo also uses XML IDs to keep track of which data is to be deleted after an addon update.
If a record had an XML ID from the module's namespace before the update, but the XML ID is
not reinstated during the update, the record and its XML ID will be deleted from the database
because they're considered obsolete. For a deeper discussion of this mechanism, see the
following recipe: Addon updates and data migration.

Loading data using CSV files
While you can do everything you need with XML files, this format is not the most convenient
when you need to provide larger amounts of data, especially given that many people are
more comfortable preprocessing data in Calc, or some other spreadsheet software. Another
advantage of this format is that it is what you get when you use the standard export function.
In this recipe, we'll have a look at importing table-like data.

How to do it...
Traditionally, access control lists (ACLs), (refer to Chapter 10, Access Security) are a type of
data that is loaded via CSV files:

1. Add security/ir.model.access.csv to your data files:
'data': [
 …
 'security/ir.model.access.csv',
],

2. Add an ACL for our books in this file:
"id","name","model_id:id","group_id:id","perm_read",
 "perm_write","perm_create","perm_unlink"
"access_library_book_user","ACL for books",
 "model_library_book","base.group_user",1,0,0,0

Chapter 9

227

Now we have an ACL that permits normal users to read book records, but does not allow them
to edit, create or delete them.

How it works...
You simply drop all your data files in your manifest's data list. Odoo will use the file extension
to decide which type of file it is. A specialty of CSV files is that their file name must match the
name of the model to be imported, in our case, ir.model.access. The first line needs to be a
header with column names that match the model's field names exactly.

For scalar values, you can use a quoted (if necessary because the string contains quotes or
commas itself) or an unquoted string.

When writing many2one fields with a CSV file, Odoo first tries to interpret the column value as
an XML ID: If there's no dot, add the current module name as a namespace, lookup the result
in ir.model.data. In case this fails, the model's name_search function is called with the
column's value as a parameter and the first result returned wins. When this also fails, the line
is considered invalid and Odoo raises an error.

Note that data read from CSV files is always noupdate=False and
there's no convenient way around this. This means subsequent updates
of your addon will always overwrite possible changes made by the user.

There's more...
Importing one2many and many2many fields with CSV files is possible, but a bit tricky. In
general, you're better off creating the records separately and setting up the relation with an
XML file afterwards, or working with a second CSV file that sets up the relationship.

If you really need to create related records within the same file, order your columns so that all
scalar fields are to the left and fields of the linked model are to the right, with a column header
consisting of the linking field's name and the linked model's field, separated by a colon:

"id","name","model_id:id","perm_read","perm_read", "group_id:name",
"access_library_book_user","ACL for books","model_library_book",1,"my
group"

This would create a group called my group, you could write more fields in the group record
by adding columns to the right. If you need to link multiple records, repeat the line and only
change the right hand columns as appropriate. Given that Odoo fills empty columns with the
previous line's value, you don't need to copy all data, but simply add a line with empty values
saved for the fields of the linked model you want to fill.

Module Data

228

Loading data using YAML files
A third format for data import is YAML, which gives you less overhead than XML, but still more
control than CSV. Traditionally, it was used for tests rather than for data import, which is why
you have more possibilities to call code here.

How to do it...
Take the following steps to translate the first recipe in this chapter to YAML:

1. Add in a file called data/demo.yml to your manifest, in the demo section:
 'demo': [
 'data/demo.yml',
],

2. Add content to this file:
-
 !record {id: author_af, model: res.partner}
 name: Alexandre Fayolle
-
 !record {id: author_dr, model: res.partner}
 name: Daniel Reis
-
 !record {id: author_hb, model: res.partner}
 name: Holger Brunn
-
 !record {id: book_cookbook, model: library.book}
 name: Odoo cookbook
 short_name: cookbook
 date_release: 2016-03-01
 author_ids: [(6, 0, [ref('author_af'), ref('author_dr'),
 ref('author_hb')])]
 publisher_id: res_partner_packt

3. Add a file called data/res_partner.yml to your manifest, in the data section:
 'data': [
 'data/res_partner.yml',
],

4. Add content to this file:
-
 !record {id: res_partner_packt, model: res.partner}
 name: Packt publishing
 city: Birmingham
 country_id: base.uk

Chapter 9

229

We did the same as in the first recipe, but in YAML syntax. Note that YAML files need the
extension .yml to be recognized correctly.

How it works...
Odoo introduces a YAML datatype record, which is where most of the Odoo-specific
behavior is implemented. As with XML, a record needs an ID and a model set in order
to do something useful.

For field values, you use YAML's standard notation, which means you don't need quoting for
strings. When filling many2one fields, Odoo will simply presuppose that what you give here is a
XML ID, so there is no need for extra marking here either.

There's more...
We've seen that linking one2many and many2many fields is a bit awkward with XML and CSV,
and in the example above, we used the same syntax to do the linking. In YAML, you could have
done it more elegantly by simply writing the following:

-
 !record {id: book_cookbook, model: library.book}
 name: Odoo cookbook
 short_name: cookbook
 date_release: 2016-03-01
 author_ids:
 - name: Alexandre Fayolle
 - name: Daniel Reis
 - name: Holger Brunn

This way, you created three records of type res.partner, linked in the field author_ids. Note
that here also, creating records inline means they have no XML ID, which makes it difficult to
refer to them from other places.

See also
This recipe focused on using YAML files to load data. If you're interested in testing using YAML
files, refer to Chapter 7, Debugging and Automated Testing.

Addon updates and data migration
The data model you choose when writing an addon might turn out to have some weaknesses,
so you may need to adjust it during the life cycle of your addon. In order to allow that without a
lot of hacks, Odoo supports versioning in addons and running migrations if necessary.

Module Data

230

How to do it...
We assume that in an earlier version of our module, the date_release field was a character
field, where people wrote whatever they saw fit as the date. Now we realize we need this field
for comparisons and aggregations, which is why we want to change its type to Date. Odoo
does a great job at type conversions, but, in this case, we're on our own, which is why we
need to provide instructions on how to transform a database with the previous version of our
module installed to a database where the current version can run:

1. Bump the version in your __openerp__.py manifest:
 'version': '9.0.1.0.1',

2. Provide pre-migration code in migrations/9.0.1.0.1/pre-migrate.py:
def migrate(cr, version):
 cr.execute('ALTER TABLE library_book RENAME COLUMN
 date_release TO date_release_char')

3. Provide post migration code in migrations/9.0.1.0.1/post-migrate.py:
from openerp import fields
from datetime import date

def migrate(cr, version):
 cr.execute('SELECT id, date_release_char FROM library_book')
 for record_id, old_date in cr.fetchall():
 # check if the field happens to be set in Odoo's internal
 # format
 new_date = None
 try:
 new_date = fields.Date.from_string(old_date)
 except:
 if len(old_date) == 4 and old_date.isdigit():
 # probably a year
 new_date = date(int(old_date), 1, 1)
 else:
 # try some separators, play with day/month/year
 # order
 # ...
 if new_date:
 cr.execute('UPDATE library_book SET date_release=%s',
 (new_date,))

Without this code, Odoo would have renamed the old date_release column to date_release_
moved and created a new one, because there's no automatic conversion from character
fields to date fields. From the point of view of the user, the data in date_release would
simply be gone.

Chapter 9

231

How it works...
The first crucial point is that you increase the version number of your addon, as migrations
run only between different versions. During every update, Odoo writes the version number
from the manifest at the time of the update into the table ir_module_module. The version
number is prefixed with Odoo's major and minor version, if the version number has three
or fewer components. In the example above, we explicitly also named Odoo's major and
minor version, which is good practice, but a value of 1.0.1 would have had the same effect,
because, internally, Odoo prefixes short version numbers for addons with its own major and
minor version number. Generally, using the long notation is a good thing because you can see
with just a glance at the manifest file for which version of Odoo an addon is meant.

The two migration files are just code files that don't need to be registered anywhere. When
updating an addon, Odoo compares the addon's version as noted in ir_module_module
with the version in the addon's manifest. If the manifest's version is higher (after possibly
adding Odoo's major and minor version), this addon's migrations folder will be searched
if it contains folders with the version(s) in between, up to, and including the version that is
currently updated.

Then, within the folders found, it searches for Python files whose names start with pre-,
loads them, and expects them to define a function called migrate, which has two
parameters. This function is called with a database cursor as the first argument and the
currently installed version as the second argument. This happens before Odoo even looks at
the rest of the code the addon defines, so you can assume nothing changed in your database
layout compared to the previous version.

After all pre-migrate functions run successfully, Odoo loads the models and data
declared in the addon, which can cause changes in the database layout. Given we renamed
date_release in pre-migrate.py, Odoo will just create a new column with that name, but
with the correct data type.

After that, with the same search algorithm, post-migrate files will be searched and
executed if found. In our case, we need to look at every value and see if we can make
something usable out of it, otherwise, we keep NULL as data. Don't write scripts iterating over
a whole table yourself if not absolutely necessary; in this case, we should have written a very
big unreadable SQL switch that does what we want.

If you simply want to rename a column, you don't need a migration
script. In this case, you can set the oldname parameter of the
field in question to the field's old column name, Odoo then takes
care of the renaming itself.

Module Data

232

There's more...
In both the pre- and post-migration steps, you only have access to a cursor, which is not very
convenient if you're used to Odoo environments. It can lead to unexpected results to use
models at this stage, because in the pre- step, the addon's models are not yet loaded and
also, in the post- step, models defined by addons depending on the current addon are not yet
loaded too. But if this is not a problem for you, either because you want to use a model your
addon doesn't touch or a model for which you know the aforementioned is not a problem, you
can create the environment you're used to by writing the following:

from openerp import SUPERUSER_ID
from openerp.api import Environment

def migrate(cr, version):
 env = Environment(cr, SUPERUSER_ID, {})
 # env holds all currently loaded models

See also
When writing migration scripts, you'll often be confronted with repetitive tasks like checking
if a column or table exists, renaming things, or mapping some old values to new values. It's
frustrating and error-prone to reinvent the wheel here; consider using https://github.
com/OCA/openupgradelib if you can afford the extra dependency.

https://github.com/OCA/openupgradelib
https://github.com/OCA/openupgradelib

233

10
Access Security

In this chapter, we will see how to:

 f Create security groups and assign them to users

 f Add security access to models

 f Limit access to fields in models

 f Limit record access using record rules

 f Use security group to activate features

In order to concisely get the point across, the recipes in this chapter make small additions to
an existing module. We chose to use the module created by the recipes in Chapter 3, Creating
Odoo Modules. To better follow the examples here, you should have that module created and
ready to use.

Create security groups and assign them to
users

Security access in Odoo is configured through security groups: permissions are given to
groups and then groups are assigned to users. Each functional area has base security
groups provided by a central application.

When the addon modules extend an existing application, they should add permissions to the
corresponding groups, as shown in the Add security access to models recipe later.

When the addon modules add a new functional area, not yet covered by an existing central
application, they should add the corresponding security groups. Usually, we should have at
least the user and manager roles.

Taking the Library example we introduced in Chapter 3, Creating Odoo Modules, it doesn't fit
neatly in any of the Odoo core apps, so we add the security groups for it.

Access Security

234

Getting ready
This recipe assumes you have an instance ready, with the my_module available, as described
in Chapter 3, Creating Odoo Modules.

How to do it...
To add new access security groups to a module, perform the following steps:

1. Make sure that the addon module manifest __openerp__.py has the category
key defined:
 'category': 'Library',

2. Add the new security/library_security.xml file to the manifest data key:
 'data': [
 'security/library_security.xml',
 'views/library_book.xml',
],

3. Add the new XML file for the data records at security/library_security.xml,
starting with an empty structure:
<?xml version="1.0" encoding="utf-8"?>
<odoo>
 <data noupdate="0">
 <!-- Data records go here -->
 </data>
</odoo>

4. Add inside the data XML element the record tags for the two new groups:
<record id="group_library_user" model="res.groups">
 <field name="name">User</field>
 <field name="category_id"
 ref="base.module_category_library"/>
 <field name="implied_ids"
 eval="[(4, ref('base.group_user'))]"/>
</record>

 <record id="group_library_manager" model="res.groups">
 <field name="name">Manager</field>
 <field name="category_id" ref="base.module_category_
library"/>
 <field name="implied_ids" eval="[(4, ref('group_library_
user'))]"/>
 <field name="users" eval="[(4, ref('base.user_root'))]"/>
 </record>

Chapter 10

235

If we upgrade the addon module, these two records will be loaded and we will be able to see
them at the menu option Settings | Users | Groups:

How it works...
Addon modules are organized in functional areas, or major applications, such as Accounting
& Finance, Sales, or Human Resources. These are defined by the category key in the
manifest file.

If a category name does not exist yet, it will be automatically created. For convenience, a
base.module_category_<category> XML ID will also be generated for the new category
name in lowercase letters, replacing spaces with underscores. This is useful to relate security
groups with application categories.

In our example, we used the Library category name, and it generated a base.module_
category_library XML identifier.

Avoid using non-ASCII characters in the category name, but if you do,
make sure to use a unicode string. For example: u'Library'.

By convention, the data files adding security related elements should be placed inside a
security subdirectory.

The order in which the files are declared in the data attribute is important, since you can't
use an identifier before it has been defined. We may want to use references in views for the
security groups we had defined, so it's best to place the security data file at the top of the list
before the ACL definition files and the other user interface data files.

Access Security

236

Security groups should be added using an XML file. It can add records that we want to be
customizable by the end users. To prevent those possible changes being lost on a module
upgrade, we should add those records inside a <data noupdate="1"> element. This is
usually the case for security record rules, discussed in the Limit record access using record
rules recipe later.

But for security groups, the practice used in Odoo core addon modules is to have them
defined inside a <data noupdate="0"> element. This means that they will be rewritten on
a module upgrade, and so should not be directly customized. Customization should instead
be done by creating new groups that inherit from the default ones.

Groups are stored in the res.groups model, and its most important columns are as follows:

 f name: This is the group's display name.

 f category_id: This is a reference to the application category, and is used to
organize the groups in the users form.

 f implied_ids: These are the other groups to inherit permissions from.

 f users: This is the list of users belonging to this group. In the new addon modules,
usually we want the admin user to conveniently belong to the application's manager
group.

The first security group uses as implied_ids the base.group_user. This is the employee
user, and is the basic security group all the backend users are expected to share.

The second security group sets a value on the users field to assign it to the administrator
user, that has the base.user_root XML ID.

Users belonging to a security group will automatically belong to its implied groups. If Library
Manager has implied the Library User group, assigning it to a user will also include him in the
Library User group.

Also, the access permissions granted by security groups are cumulative. A user has some
permission in any of the groups he belongs to (directly or implied) grants that permission.

Some security groups are shown in the user form as a selection box instead of individual
checkboxes. This happens when the involved groups are in the same application category and
are linearly interrelated through implied_ids. For example, Group A has implied Group B,
and Group B has implied Group C.

Note that the relations defined in the preceding fields also have reverse relations that can be
edited in the related models, such as security groups and users.

Setting values on reference fields, such as category_id and implied_ids, is done using
the related records XML IDs and some special syntax.

Chapter 10

237

For Many2one relations, the ref attribute is used to link with the record with the
corresponding XML ID. For One2many fields, such as implied_ids, the eval attribute is
used with a list of tuple commands. For example, the tuple 4 as the first element adds the
references in the next element or elements. This syntax is explained in detail in Chapter 9,
Module Data.

There's more...
Also noteworthy is the special base.group_no_one security group. In the previous Odoo
versions, it was used for advanced features hidden by default, and only made visible when
the Technical Features flag was activated. Since version 9.0 this has changed, and those
features are made visible as long as the Developer Mode is activated.

The access permissions granted by security groups are cumulative only. There is no way to
deny an access given by some group. This means a manually created group to customize
permissions should inherit from the closest group with fewer permissions than those intended
(if any), and then add all the remaining permissions needed.

Groups also have available these additional fields:

 f Menus (the menu_access field): These are the menu items the group has access to

 f Views (the view_access field): These are the UI views the group has access to

 f Access rights (the model_access field): These are the access it has on models,
detailed in the Add security access to models recipe

 f Rules (the rule_groups field): These are the record level access rules that apply to
the group, detailed in the Limit record access using record rules recipe

 f Notes (the comment field): This is a description or comment text for the group

Access Security

238

Add security access to models
It's common for the addon modules to add new models. For example, in the previous chapter
we had examples adding a new Library Books model.

It is easy to miss the creation of security access for the new models defined in an addon
module if you test it using the convenient admin user, because admin bypasses all the
security checks.

However, models with no ACLs will trigger a warning log message on loading, informing about
the missing ACL definitions: The model library.book has no access rules, consider adding
one. To avoid that, you should watch for such messages during tests, and before publishing
your code make sure you run the tests with the demo user rather than admin.

So, for new models to be usable by non-admin users, we need to define their security access
control lists, so that Odoo knows how it should access them and what operations each user
group should be allowed.

Getting ready
We will take the module created in Chapter 3, Creating Odoo Modules and add to it the
missing ACLs.

How to do it...
my_module should already contain the models/library_book.py Python file creating the
library.book model. We will now add a data file describing this model's security access
control by performing the following steps:

1. Edit the __openerp__.py manifest file to declare a new data file:
 data: [
 # …Security Groups
 'security/ir.model.access.csv',
 # …Other data files
]

2. Add to the module a new file security/ir.model.access.csv, with the
following lines:
id,name,model_id:id,group_id:id,perm_read,perm_write,perm_
create,perm_unlink
access_library_book_user,library.book.user,model_library_
book,base.group_user,1,0,0,0
access_library_book_admin,library.book.admin,model_library_
book,base.group_system,1,1,1,1

Chapter 10

239

We should then upgrade the module to have these ACL records added to our Odoo database.
More importantly, if we sign in to a demonstration database using the demo user, we should
be able to access the Library menu option without any security errors.

How it works...
The security access control lists are stored in the core ir.model.access model. We just
need to add to it the records describing the intended access rights for each user group.

Any type of data file would do, but the common practice is to use a CSV file. The file can be
placed anywhere inside the addon module directory, but the convention is to have all the
security related files inside a security subdirectory.

The first step in our recipe declares this new data file to the manifest and the second adds the
file describing the security access control rules. The CSV file must be named after the model
where the records will be loaded, so the name used is not just a convention and is mandatory.

If the module also creates new security groups, its data file should be declared before the
ACLs' data file, since you may want to use them for the ACLs and so they must already be
created when the ACL file is processed.

The columns in the CSV file are as follows:

 f id: This is the XML ID internal identifier for this rule. Any unique name inside the
module would do, but the convention is to use access_<model>_<group>.

 f name: This is a title for the access rule and, by convention, the common practice is to
use a access.<model>.<group> name.

 f model_id:id: This is the XML ID for the model. Odoo automatically assigns such
an ID to models with a format model_<name>, using the model's _name with
underscores instead of dots. If the model was created in a different addon module, a
fully qualified XML ID is needed, including the module name.

 f group_id:id: This is the XML ID for the user group. If left empty, it applies to all the
users. The base module provides some basic groups, such as base.group_user,
for all the employees and base.group_system for the administration user. Other
apps can add their own user groups.

 f perm_read: This can read the model records (0 or 1).

 f perm_write: This can update the model records (0 or 1).

 f perm_create: This can add new model records (0 or 1).

 f perm_unlink: This can delete model records (0 or 1).

The CSV file we used adds read only access to the Human Resources | Employee standard
security group, and full write access to the Administration | Settings group.

Access Security

240

The Employee user group, base.group_user, is particularly important because the user
groups added by the Odoo standard apps inherit from it. This means that if we need a new
model to be accessible by all the backend users, regardless of the specific apps they work
with, we should add that permission to the Employee group.

The resulting ACLs can be viewed from the GUI in Settings | Technical | Security | Access
Controls List, as shown in the following screenshot:

Some people find it easier to use this user interface to define ACLs and then use the export
feature to produce a CSV file.

There's more...
It would make sense for us to give this permission to the Library user and Library manager
groups defined in the Create security Groups and assign them to Users recipe. If you followed
that recipe, it's a good exercise to then follow this one, adapting the group identifiers to the
Library ones.

It's important to note that the access lists provided by the addon modules should not be
directly customized, since they will be reloaded at the next module upgrade, destroying any
customization that could have been done from the GUI.

Chapter 10

241

To customize ACLs, two approaches can be used. One is to create new security groups that
inherit from the one provided by the module and add additional permissions on it, but this
allows only to add, not to remove. A more flexible approach can be to uncheck the Active flag
to false on the particular ACL lines, to disable them. It is not visible by default, so we need to
edit the tree view to add the <field name="active" /> column. We can also add new
ACL lines for additional or replacement permissions. On a module upgrade, the deactivated
ACLs won't be reactivated and the added ACL lines won't be affected.

It's also worth noting that ACLs only apply to regular models and don't need to be defined for
Abstract or Transient models. If defined, these will be disregarded and a warning message will
be triggered into the server log.

Limit access to fields in models
In some cases we may need more fine grained access control and to limit the access to
specific fields in a model.

It is possible for a field to be accessible only by specific security groups, using the groups
attribute. We will show how to add to the Library Books model a field with limited access.

How to do it...
To add a field with access limited to specific security groups, perform the following steps:

1. Edit the model file to add the field:
private_notes = fields.Text(groups='base.group_system')

2. Edit the view in the XML file to add the field:
<field name="private_notes" />

That's it. Now upgrade the addon module for the changes in the model to take place. If you
sign in with a user with no system configuration access, such as demo in a database with
demonstration data, the Library books form won't display the field.

How it works...
Fields with the groups attribute are specially handled to check if the user belongs to any of
the security groups indicated in the attribute, and if not removes it from UI views and ORM
operations for the user.

Note that this security is not superficial. The field is not only hidden in the user interface, but
is also made unavailable to the user in the other ORM operations, such as read and write.
This is also true for the XML-RPC or JSON-RPC calls.

Access Security

242

Be careful when using these fields in business logic, or on change UI events (@api.
onchange methods); they can raise errors for users with no access to the field. One
workaround for this is to use privilege elevation, such as the sudo() model method or the
compute_sudo field attribute for computed fields.

The groups value is a string containing a comma separated list of valid XML IDs for security
groups. The simplest way to find the XML ID for a particular group is to navigate to its form,
at Settings | Users | Groups, and then access the View Metadata option from the debug
menu, as shown in the following screenshot:

There's more...
In some cases, we need a field to be available or not depending on particular conditions,
such as the values in a particular field, like stage_id or state. This is usually handled
at the view level using attributes such as states or attrs, to dynamically display or hide
the field according to certain conditions. You may refer to Chapter 8, Backend Views for a
detailed description.

Note that these techniques work at the user interface level only and don't provide actual
access security. For that you should add checks in the business logic layer. Either add model
methods decorated with @constrains, implementing the specific validations intended, or
extend the create, write, or unlink methods to add them validation logic. You can get
more insight on how to do this in Chapter 5, Basic Server Side Business Logic.

Chapter 10

243

Limit record access using record rules
A common need for an application is to be able to limit what records are available to each
user on a specific model.

This is achieved using record rules. A record rule is a domain filter expression defined on a
model that will then be added on every data query made by the affected users.

As an example, we will add a record rule on the Library books model so that the users in the
employee group will only have access to books they created in the database.

Getting ready
This recipe assumes you have an instance ready, with my_module available, as described in
Chapter 3, Creating Odoo Modules.

How to do it...
Record rules are added using a data XML file. To do so, perform the following steps:

1. Ensure that the security/library_security.xml file is referenced by manifest
data key:
 'data': [
 'security/library_security.xml',
 # ...
],

2. We should have a security/library_security.xml data file, with a <data>
section creating the security group. After it, add this second <data> section for the
record rules:
 <data noupdate="1">
 <record model="ir.rule" id="library_book_user_rule">
 <field name="name">Library: see only own books</field>
 <field name="model_id" ref="model_library_book"/>
 <field name="groups" eval="[(4, ref('base.group_
user'))]"/>
 <field name="domain_force">
 [('create_uid', '=', user.id)]</field>
 </record>
 <record model="ir.rule" id="library_book_all_rule">
 <field name="name">Library: see all books</field>
 <field name="model_id" ref="model_library_book"/>

Access Security

244

 <field name="groups" eval="[(4, ref('base.group_
system'))]"/>
 <field name="domain_force">[(1, '=', 1)]</field>
 </record>
 </data>

Upgrading the addon module will load the record rules into the Odoo instance.

To keep the recipe simple, we used the core employee and settings security groups. We could
instead have used the Library user and manager groups as defined in the Add security access
to models recipe. It's a good exercise to follow it and modify this module so that it uses those
security groups instead.

How it works...
Record rules are just data records loaded into the ir.rule core model. While the file adding
them could be anywhere in the module, the convention is for it to be in the security
subdirectory. It is common to have a single XML file with both security groups and record rules.

Unlike groups, in the standard modules, the record rules are loaded in a data section with the
noupdate="1" attribute. With this, those records will not be reloaded on a module upgrade,
meaning that manual customizations on them are safe and will survive later upgrades.

To stay consistent with the official modules, we should also have our record rules inside a
<data noupdate="1"> section.

Record rules can be seen from the GUI at the menu option Settings | Technical | Security |
Record Rules, as shown in the following screenshot:

Chapter 10

245

Following are the most important record rule fields used in the example:

 f Name (name) is a descriptive title for the rule.

 f Object (model_id) is a reference to the model the rule applied to.

 f Groups (groups) are the security groups that the rule applies to. If none, the rule is
considered global and is applied in a different way (more details follow later).

 f Rule definition (domain) is a domain expression with the record filter to apply.

The first record rule we created was for the Employee security group. It uses the domain
expression [('create_uid', '=', user.id)] to select only those books where the
creation user is the current user. Thus, they will only be able to see the books created by
themselves.

The domain expressions used in the record rules run on the server side using ORM objects.
Because of this, dot notation can be used on the fields on the left-hand side (the first tuple
element). The right side (third tuple element) is a Python expression, evaluated in a context
having available the user record object, for the current user, and the time Python library.

For the settings security group, we want it to be able to see all the books, independent of who
created them in the database. Since it inherits the Employee group, unless we do something
about it, it too will be able to see only the books created by itself.

The several (non global) record rules are joined together using the OR logical operator: each
rule adds access and never removes the access. For the Library Manager to have access to all
the books, we can add to it a record rule to add access to books created by other users, like
this: [('create_uid', '!=', user.id)].

We chose to do differently and use the special rule [(1, '=', 1)] to unconditionally give
access to all the book records. While this may seem redundant, remember that otherwise the
Library user rule can be customized in a way that would keep some books out of reach to the
Settings user. It is special because the first element of a domain tuple must be a field name;
this exact case is the only case where that is not true.

Record rules are ignored for the built-in admin user. When testing
your record rules, make sure you use some other user for that.

There's more...
When a record rule is not assigned to any security group, it is marked as Global and is
handled differently from the other rules.

Access Security

246

Global record rules have a stronger effect than group level record rules, and set access
restriction that those can't override. Technically, they are joined with an AND operator. In the
standard modules, they are used to implement multi-company security access, so that each
user can see only his company's data.

In summary, regular non global record rules are joined together with an OR operator: they are
added together and a record is accessible if any of the rule grants that access. Global record
rules then add restrictions to the access given by the regular record rules, using an AND
operator. Restrictions added by global record rules can't be overridden by regular record rules.

Using security group to activate features
Security groups can restrict some features so that they are accessible only to users
belonging to these groups. Security groups can also inherit other groups, so they also
grant their permissions.

These two features combined are used to implement a usability feature in Odoo: feature
toggling. Security groups can also be used as a way to enable or disable features for some
or all of the users in an Odoo instance.

This recipe shows how to add options to configuration settings and showcases the two
methods to enable the additional features, making them visible using security groups or
adding them by installing an additional module.

For the first case, we will make the book release dates an optional additional feature and for
the second, as an example, we will provide an option to install the Notes module.

Getting ready
This recipe uses my_module described in Chapter 3, Creating Odoo Modules. We will need
security groups to work with, so you also need to have followed the Add security access to
models recipe.

In this recipe, some identifiers need to refer to the addon module's technical name. We will
assume that it is my_module. In case you are using a different name, replace my_module
with the actual technical name of your addon module.

How to do it...
To add the configuration options, follow the given steps:

1. To add the needed dependency and the new XML data files, edit the
__openerp__.py manifest like this:
-*- coding: utf-8 -*-
{ 'name': 'Cookbook code',

Chapter 10

247

 'category': 'Library',
 'depends': ['base_setup'],
 'data': [
 'security/ir.model.access.csv',
 'security/library_security.xml',
 'views/library_book.xml',
 'views/res_config_settings.xml',
],
}

2. To add the new security group used for feature activation, edit the security/
library_book.xml file and add the following record to it:
 <record id="group_release_dates" model="res.groups">
 <field name="name">Library: release date feature</field>
 <field name="category_id"
 ref="base.module_category_hidden" />
 </record>

3. To make the book release date visible only when this option is enabled, we edit the
field definition in the models/library_book.py file:
class LibraryBook(models.Model):
 # ...
 date_release = fields.Date(
 'Release Date',
 groups='my_module.group_release_dates')

4. Edit the models/__init__.py file to add a new Python file for the configuration
settings model:
from . import library_book
from . import res_config_settings

5. To extend the core configuration wizard adding new options to it, add the models/
res_config_settings.py file with this code:
-*- coding: utf-8 -*-
from openerp import models, fields

class ConfigSettings(models.TransientModel):
 _inherit = 'base.config.settings'
 group_release_dates = fields.Boolean(
 "Manage book release dates",
 group='base.group_user',
 implied_group='my_module.group_release_dates')
 module_note = fields.Boolean("Install Notes app")

Access Security

248

6. To make the options available in the UI, add views/res_config_settings.xml
extending the form view:
<?xml version="1.0" encoding="utf-8"?>
<odoo>
 <record id="view_general_config_library" model="ir.ui.view">
 <field name="name">
 Configuration: add Library options</field>
 <field name="model">base.config.settings</field>
 <field name="inherit_id"
 ref="base_setup.view_general_configuration" />
 <field name="arch" type="xml">
 <group name="google" position="before">
 <group name="library_release_date" string="Library">
 <!-- Release Dates option -->
 <label for="id" string="Releases" />
 <div>
 <field name="group_release_dates"
 class="oe_inline"/>
 <label for="group_release_dates" />
 </div>
 <!-- Notes option -->
 <label for="id" string="Notes" />
 <div>
 <field name="module_note" class="oe_inline"/>
 <label for="module_note" />
 </div>
 </group>
 </group>
 </field>
 </record>
</odoo>

Chapter 10

249

After upgrading the addon module, the two new configuration options should be available at
Settings | General Settings. The screen should look like this:

How it works...
The core base module provides a res.config.settings model providing the business
logic behind option activation. The base_setup addon module uses it to provide the several
basic configuration options to make available in a new database. It also makes available the
Settings | General Settings menu.

The base_setup derived configuration model is base.config.settings, so we need to
extend it to add our own configuration settings.

If we were to decide to create a specific settings form for the Library app, we could inherit
directly from the res.config.settings model instead, and then provide the menu option
and form view for those settings.

We used two different ways to activate the features: one by enabling a security group,
making the feature visible to the user, and the other by installing a module addon providing
the feature. The logic to handle both these cases is provided by the base res.config.
settings model.

Access Security

250

The first recipe step adds the base_setup addon module to the dependencies, since it
provides the base.config.settings model we want to use. It also adds an additional
XML data file we will need to add the new options to the General Settings form.

In the second step, we create a new security group Library: release date feature.
The feature to activate should be visible only for that group, so that it will be hidden
until the group is enabled.

In our example, we want the book release date to be available only when the corresponding
configuration option is enabled. To achieve this, we use the groups attribute on the field
so that it is made available only for this security group. We did it at model level, so that it is
automatically applied to all the UI views where the field is used.

Finally, we extend the base.config.settings model to add the new options. Each option
is a Boolean field, and its name must begin either by group_ or module_, according to what
we want it to do.

The group_ option field should have an implied_group attribute and be a string containing
a comma separated list of XML IDs for the security groups to activate when it is enabled. The
XML IDs must be in the complete form with module name dot identifier name.

We can also provide a group attribute to specify for which security groups the feature will be
enabled. It will be for all the employee based groups, if no groups are defined. Thus they won't
apply to portal security groups, since these don't inherit on the employee base security group,
like the other regular security groups.

The mechanism behind the activation is quite simple: it adds the security group in the
group attribute to the implied_group, thus making the related feature visible to the
corresponding users.

The module_ option field does not require any additional attributes. The remaining part of the
field name identifies the module to be installed when activating the option. In our example,
module_note will install the note module.

Caution:
Unchecking the box will uninstall the module without warning,
which can cause data loss (models or fields removed and module
data removed as a consequence). To avoid unchecking the box
by accident, the secure_uninstall community module (from
https://github.com/OCA/server-tools) prompts for a
password before uninstalling the addon module.

The last step of the recipe adds the options to the General Settings form view, just before the
Google Integration group, having name="google".

https://github.com/OCA/server-tools

Chapter 10

251

There's more...
Configuration setting can also have fields named with the default_ prefix. These when
having a value will set it as a global default. The settings field should have a default_model
attribute to identify the model affected, and the field name after the default_ prefix
identifies the model's field that will have set the default value.

Additionally, fields with none of the three prefixes mentioned can be used for other settings,
but you will need to implement the logic to populate their values, using get_default_ name
prefixed methods, and to act when their values are edited, using set_ name prefixed methods.

For those who would like to go deeper into configuration settings details, the best
documentation available is in Odoo's ./openerp/addons/base/res/res_config.py file.

253

11
Internationalization

In this chapter, we will cover the following topics:

 f Installing a language and configure user preferences

 f Configuring language-related settings

 f Translating texts through the web client user interface

 f Exporting translation strings to a file

 f Using gettext tools to ease translations

 f Importing translation files into Odoo

Many of these actions can be done either from the web client user interface or from the
command line. Whenever possible, we will show how to use either option.

Installing a language and configure user
preferences

Odoo is localization ready, meaning that it supports several languages and locale settings,
such as date and number formats.

When first installed, only the default English language is available. To have other languages
and locales available to the users, we need to install them.

Getting ready
We will need to have the Developer Mode activated. If it's not, activate it in the Odoo
About dialog.

Internationalization

254

How to do it...
To install a new language in an Odoo instance, follow these steps:

1. Select the menu option Settings | Translations | Load a Translation. On the
resulting dialog, select the language to install from the list of available languages. If
the website is installed, you will also be given the option to pick the websites where
the language will be available.

2. Now click on the Load button and the language will be installed.

3. New languages can also be installed from the command line. The equivalent
command for the preceding steps is:
$./odoo.py -d mydb --load-language=es_ES

Chapter 11

255

4. To set the language used by a user, go to Settings | Users | Users and, in the
Preferences tab of the user form, set the Language field value. While you are at it,
you can use the opportunity to set the user's Timezone.

The users can also set these configurations themselves through the Preferences menu
option, available when they click on the user name at the top right of the web client window.

How it works...
The users can have their own language and timezone preferences. The former is used to
translate the user interface text into the chosen language and apply local conventions for
the float and monetary fields. The latter is used to display the datetime fields in the correct
timezone.

Before a language is made available for the users to select, it must be installed with the
Load a Translation feature. The list of installed languages can be seen with the Settings |
Translations | Languages menu option.

Each Odoo addon module is responsible for providing its own translation resources that
should be placed inside an i18n subdirectory. Each language's data should be in a .po file.
Following our example, for the Spanish language, the translation data is loaded from the
es_ES.po data file.

Internationalization

256

Odoo also supports the notion of base language. For example, if we have an es.po file for
Spanish and an es_MX.po file for Mexican Spanish, then es.po is detected as the base
language for es_MX.po. When the Mexican Spanish language is installed, both data files are
loaded; first the one for the base language and then the specific language is installed. Thus,
the specific language translation file only needs to contain the strings that are specific to the
language variant, Mexican Spanish in our example.

The i18n subdirectory is also expected to have a <module_name>.pot file, providing a
template for translations and containing all the translatable strings. The Export translation
strings to a file recipe explains how to export the translatable strings to generate this file.

When an additional language is installed, the corresponding resources are loaded from all
installed addon modules and stored in the Translated Terms model. Its data can be viewed
(and edited) with the Settings | Translations | Application Terms | Translated Terms
menu option.

Translation files for the installed languages are also loaded when a new addon module is
installed or an existing addon module is upgraded.

There's more...
Translation files can be reloaded without upgrading the addon modules by repeating the Load
a Translation action. This can be used in case you have updated translation files and don't
want to go through the trouble of upgrading the modules (and all their dependencies).

If the Overwrite Existing Terms checkbox is left empty, only new translated string is loaded.
Thus, the changed translated string won't be loaded. Check the box if you want the already
existing translations to also be loaded and overwrite the currently loaded translations.

The previous checkbox exists because we can do our specific translations editing Settings
| Translations | Application Terms | Translated Terms, or using the Technical Translation
shortcut option in the Debug menu. Translations added or modified this way won't be overwritten
unless the language is reloaded with the Overwrite Existing Terms checkbox enabled.

It can be useful to know that the addon modules can also have an i18n_extra subdirectory
with extra translations. The loading sequence for the translation files is: the .po files in the
i18n subdirectory, first for the base language and then for the language; then the .po files in
the i18n_extra subdirectory, first for the base language and then for the language. The last
string translation loaded is the one that prevails.

See also
The list of language codes can be seen in the source code; in the odoo/openerp/tools/
misc.py file, look for the ALL_LANGUAGES variable. The GitHub link for the file is
https://github.com/odoo/odoo/blob/9.0/openerp/tools/misc.py.

https://github.com/odoo/odoo/blob/9.0/openerp/tools/misc.py

Chapter 11

257

Configure language-related settings
Languages and their variations (such as es_MX for Mexican Spanish) also provide locale
settings such as date and number formats.

They come with appropriate defaults, so as long as the user is using the correct language, the
locale settings should be the appropriate ones.

But you still might want to modify a language's settings. For example, you might prefer to have
the user interface in the default English, but want to change the American default date and
number formats to your needs.

Getting ready
We will need to have the Developer Mode activated. If it's not, activate it in the Odoo
About dialog.

How to do it...
To modify a language's locale settings, follow these steps:

1. To check the installed languages and their configurations, select the Settings |
Translations | Languages menu option. Clicking on one of the installed languages
will open a form with the corresponding settings:

2. Edit the language settings. To change the date to the ISO format, change Date Format
to %Y-%m-%d, and to change the number format to use a comma as a decimal
separator, modify the Decimal Separator and Thousands Separator fields accordingly.

Internationalization

258

How it works...
When signing in and creating a new Odoo user session, the user language is checked in the
user preferences and set in the lang context key. This is then used to format the outputs
appropriately: the source texts are translated to the user language, and the dates and
numbers are formatted according to the language's current locale settings.

There's more...
Server side processes are able to modify the context in which actions are run. For example, to
get a record set where the dates are formatted according to the English format independent of
the current user's language preference, you could do the following:

en_records = self.with_context(lang='en_EN').search([])

For more details, refer to Chapter 6, Advanced Server Side Development Techniques recipe
Calling a method with a modified context.

Translate texts through the web client user
interface

The simplest way to translate is to use the translation feature provided by the web client.
These translation strings are stored in the database and can later be exported to a .po file,
either to be included in an addon module or just to later be imported back manually.

Text fields can have translatable content, meaning that their value will depend on the current
user's language. We will also see how to set the language-dependent values on these fields.

Getting ready
We need to have the Developer Mode activated. If it's not, activate it in the Odoo About dialog.

How to do it...
We will demonstrate how to use translate terms through the web client using the User Groups
feature as an example:

1. Navigate to the screen to translate. Select the Settings top menu and then open
Users | Groups to open the corresponding view.

Chapter 11

259

2. On the top menu bar, click on the Debug menu icon and select the Technical
Translation option:

3. A list of the available translation terms for that view will be shown. Edit Translation
Value in a line to change (or add) its translation text. If looking for a particular source
string, use the list filters to narrow down the displayed texts:

The Group name is a translatable field. Let's translate a record's value to the several
languages installed:

Internationalization

260

4. Navigate again to the User Groups menu option, open one of the group records in the
form view, and click on Edit:

5. Note that the Name field has a special icon at the far right. This indicates that it
is a translatable field. Clicking on the icon opens a Translate list with the different
installed languages, allowing us to set the translation for each of those languages.

How it works...
Translated terms are stored in the database table for the model ir.translation. The
Technical Translation option in the Debug menu provides a quick access to those terms, in
context with the currently selected view.

Similarly, the model fields with translatable content feature an icon to access the list of the
installed languages and to set the appropriate value for each language.

Alternatively, the translation terms can be accessed from the Settings top menu, using the
Translations | Application Terms | Translated Terms menu option. Here we can see all the
terms available for our instance, but should need to use data filters to locate the terms we
might be interested in.

There's more...
Alongside the Translated Terms menu option, we also find the Synchronize Terms option.
Selecting it will display a dialog window to provide the desired language, and will then launch
the process to extract translatable strings from the installed addon modules and add any
new ones to the Translated Terms table. It is equivalent to performing the Export Translation
followed by the Import Translation steps described earlier.

This can be useful after changing some models or views, to have the new strings added so
that we can translate them.

It can also be used to populate the strings from the en_US default language. We can then
make use of the translation terms to replace the original English texts with new ones, better
for the end user's specific business vocabulary.

Chapter 11

261

Exporting translation strings to a file
Translation strings can be exported with or without the translated texts for a selected
language. This can be either to include in a module i18n data, or to later perform the
translations with a text editor or perhaps with a specialized tool.

We will demonstrate how to do it using the standard mail module, so feel free to replace
mail with your own module.

Getting ready
We need to have the Developer Mode activated. If it's not, activate it in the Odoo About dialog.

How to do it...
To export the translation terms for the mail addon module, follow these steps:

1. In the web client user interface, from the Settings top menu select the Translations |
Import/Export | Export Translation menu option.

2. At the Export Translations dialog, choose the language translation to export, the
file format, and the modules to export. To export a translation template file, select
New Language (Empty translation template) from the Language selection list. It's
recommended to use the .po format and to export only one addon module at a
time—the Discuss (mail technical name) module in our example:

Internationalization

262

3. Once the export process is complete, a new window will be displayed, with a link to
download the file and some additional advice:

4. To export from the Odoo command line interface a translation template file for the
mail addon module:
$./odoo.py -d mydb --i18n-export=mail.po --modules=mail

$ mv mail.po ./addons/mail/i18n/mail.pot

5. To export from the Odoo command line interface the translation template file for a
language, es_ES for Spanish, for example:
$./odoo.py -d mydb --i18n-export=es_ES.po --modules=mail
--language=es_ES

$ mv es_ES.po ./addons/mail/i18n

How it works...
The Export Translation feature does two things: it first extracts the translatable strings from
the target modules, adding the new ones in the ir.translation model, and then creates
a file with the translation terms. This can be done both from the web client and the command
line interface.

When exporting from the web client, we can choose to either export an empty translation
template – a file with the strings to translate along with empty translations, or export a
language, resulting in a file with the strings to translate along with translation already done for
the selected language.

The file formats available are CSV, PO, and TGZ. The TGZ file format exports a compressed file
containing a directory structure <name>/i18n/ with the PO or POT file.

Chapter 11

263

The CSV format can be useful to perform translations using a spreadsheet, but the format to
use in the addon modules is the PO files. These are expected to be placed inside the i18n
subdirectory, and if so are automatically loaded once the corresponding language is installed.
When exporting these PO files, we should export only one module at a time. The PO file is also
a popular format supported by translation tools, such as Poedit.

Translations can also be exported directly from the command line, using the --i18n-export
option. The recipe shows how to extract both the template files and the translated language
files.

In Step 4 of the previous section, we exported a template file. The --i18n-export option
expects the path and the file name to export. Mind that the file extension is required to be
either CSV, PO, or TGZ. This option requires the -d option, specifying the database to use.
The --modules option is also needed to indicate the addon modules to export. Note that the
--stop-after-init option is not needed, since the export command automatically returns
to the command line when finished.

This exports a template file, that in a module is expected to have the POT extension. When
working on a module, after the export operation we usually want to move the exported PO file
to the module's i18n directory with a <module>.pot name.

In Step 5, the --language option was also used. With it, instead of an empty translation
file, the translated terms for the selected language were also exported. One use case for this
is to perform some translations through the web client user interface using the Technical
Translation feature, and then exporting and including them in the module.

There's more...
Text strings in view and model definitions are automatically extracted for translation. For
models, the _description attribute, the field names (the string attribute), help text,
and selection field options are extracted, as well as the user texts for model constraints (_
constraints and _sql_constraints).

Text strings to translate inside Python or JavaScript code can't be automatically detected, so
the code should identify those strings, wrapping them inside the underscore function.

In a module Python file, we should make sure it is imported with the following:

from openerp import _

It can then be used wherever a translatable text is used with something like this:

_('Hello World')

For strings that use additional context information, we should use Python string interpolation,
like this:

_('Hello %s') % 'World'

Internationalization

264

Note that the interpolation should go outside the translation function. For example,
_("Hello %s" % 'World') is wrong. String interpolations should also be preferred
to string concatenation, so that each interface text is just one translation string.

Caution with the Selection fields! If you pass an explicit list of values to
the field definition, then the displayed strings are automatically flagged for
translation. On the other hand, if you pass a method returning the list of
values, then the display strings must be explicitly marked for translation.

Regarding the manual translation work, any text file editor can do, but using a file supporting
the PO file syntax makes the work easier by reducing the risk of formatting errors. Such
editors include:

 f poedit (https://poedit.net/)

 f emacs (po-mode) (https://www.gnu.org/software/gettext/manual/html_
node/PO-Mode.html)

 f Lokalize (http://i18n.kde.org/tools)

 f Gtranslator (https://wiki.gnome.org/Apps/Gtranslator)

Use gettext tools to ease translations
The PO file format is part of the gettext internationalization and localization system
commonly used in Unix-like systems. This system includes tools to ease the translation work.

This recipe demonstrates how to use these tools to help translate our addon modules. We
want to use it on a custom module, so my_module created in Chapter 3, Creating Odoo
Modules is a good candidate. But feel free to replace it with some other custom module you
have at hand, replacing the recipe's my_module references as appropriate.

How to do it...
To manage the translation from the command line, assuming that your Odoo installation is at
~/odoo-work/odoo, follow these steps:

1. Create a compendium of translation terms for the target language, for example,
Spanish. If we name our compendium file odoo_es.po we should write the
following code:
$ cd ~/odoo-work/odoo # Use the path to your Odoo installation

$ find ./ -name es_ES.po | xargs msgcat --use-first | msgattrib \
--translated --no-fuzzy -o ./odoo_es.po

https://poedit.net/
https://www.gnu.org/software/gettext/manual/html_node/PO-Mode.html
https://www.gnu.org/software/gettext/manual/html_node/PO-Mode.html
http://i18n.kde.org/tools
https://wiki.gnome.org/Apps/Gtranslator

Chapter 11

265

2. Export from the Odoo command line interface the translation template file for the
addon module and place it in the module's expected location:
$./odoo.py -d mydb --i18n-export=my_module.po --modules=my_module

$ mv my_module.po ./addons/my_module/i18n/my_module.pot

3. If no translation file is available yet for the target language, create the PO translation
file, reusing the terms already found translated in the compendium:
$ msgmerge --compendium ./odoo_es.po \

 -o ./addons/my_module/i18n/es_ES.po \

 /dev/null ./addons/my_module/i18n/my_module.pot

4. If a translation file exists, add the translations that can be found in the compendium:
$ mv ./addons/my_module/i18n/es_ES.po /tmp/my_module_es_old.po

$ msgmerge --compendium ./odoo_es.po \

-o./addons/my_module/i18n/es_ES.po \

/tmp/my_module_es_old.po ./addons/my_module/i18n/my_module.pot

$ rm /tmp/my_module_es_old.po

5. To have a peek at the untranslated terms in a PO file:
$ msgattrib --untranslated ./addons/my_module/i18n/es_ES.po

6. Use your favorite editor to complete the translation.

How it works...
Step 1 of the preceding section calls odoo.py with the --i18n-export option. You need to
specify a database on the command line, even if one is specified in the configuration file and
the --modules option, with a comma separated list of modules to export the translation for.

Step 2 uses commands from the gettext toolbox to create a translation compendium for the
chosen language, Spanish in our case. It works by finding all the es_ES.po files in the Odoo
code base, and passing them to the msgcat command. We use the --use-first flag to
avoid conflicting translations (there are a few in the Odoo code base). The result is passed to
the msgattrib filter. We use the --translated option to filter out the untranslated entries
and the --no-fuzzy option to remove the fuzzy translations. We then save the result in
odoo_es.po.

In the gettext world, fuzzy translations are those created automatically by
the msgmerge command (or other tools) by using a proximity match on
the source string. We want to avoid these in the compendium.

Internationalization

266

Step 3 creates a translation file using the translated values for texts already found in the
compendium. The msgmerge command is used with the --compendium option to find in the
compendium files the msgid lines matching those in the translation template file generated in
Step 1. The result is saved in the es_ES.po file.

If you have a pre-existing .po file for your addon with translations you would like to preserve,
then you should rename it and replace the /dev/null argument with this file. The rename is
required to avoid using the same file both for input and output.

There's more...
This recipe only skims the rich tools of the GNU gettext toolbox. Full coverage is well beyond
the scope of this book. If you are interested, the GNU gettext documentation contains a wealth
of precious information about PO file manipulation, and is available at http://www.gnu.
org/software/gettext/manual/gettext.html.

Import translation files
The usual practice to load translations is by placing the PO files inside the module's i18n
subdirectory. Whenever the addon module is installed or upgraded, the translation files are
loaded and the new translated strings are added.

But there may be cases where we want to directly import a translation file. In this recipe, we
will see how to load a translation file, either from the web client or from the command line.

Getting ready
We need to have the Developer Mode activated. If it's not, activate it in the Odoo About dialog.
We are also expected to have a translation file to be imported; myfile.po, for example.

How to do it...
To import the translation terms, follow these steps:

1. In the web client user interface, from the Settings top menu select the Translations |
Import/Export | Import Translation menu option.

2. On the Import Translations dialog, fill out the language name and the language code,
and select the file to import. Finally, click on the Import button to perform the action.

http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html

Chapter 11

267

3. To import from the Odoo command line interface a translation file, we must place it
inside the server addons path and then perform the import:
$ mv myfile.po ./addons/

$./odoo.py -d mydb --i18n-import="myfile.po" --lang=es_ES

How it works...
Import Translation takes a PO or CSV file and loads the translation strings into the
ir.translation table.

The web client feature asks for the language name, but this is not used in the import process.
It also has an overwrite option. If selected, it forces all the translations strings to be imported,
even the ones that already exist, overwriting them in the process.

On the command line, the import can be done using the --i18n-import option. It must be
provided with the path to the file, relative to an addon's path directory. -d and --language
(or -l) are mandatory. Overwriting can also be achieved by adding the --i18n-overwrite
option to the command. Note that we didn't use the --stop-after-init option. It is not
needed, since the import action stops the server when it finishes.

269

12
Automation and

Workflows

In this chapter, we will show cover the following topics:

 f Using Kanban stages and features

 f Creating server actions

 f Adding messaging and tracking features

 f Using Python code server actions

 f Using automated actions on time conditions

 f Using automated actions on event conditions

 f Inspecting built-in workflows

Introduction
Business applications are expected not only to store records, but also to manage business
workflows. Odoo includes a workflow engine, but it is increasingly used less in later versions
of the product. Instead, automation rules and Kanban boards are used whenever possible.

The automation rules are most relevant for customization than for new addon modules
development, but developers should still be familiar with them. Doing so can avoid
over-engineered business rules that could be implemented through functional customizations.
Some of these techniques can also be used by power users or functional consultants to add
some simpler process automation without the need to create custom addons.

Automation and Workflows

270

Using Kanban stages and features
The Kanban board is a simple method to manage workflows. It is organized in columns, each
corresponding to stages, and the work items progress from left to right until they are finished.

There are a few features used across several Kanban boards, providing a common pattern
that can also be used in our own custom modules. Let's visit those features.

Getting ready
To follow this recipe, you will need to have the Project Management app already installed.

How to do it...
To get started with a Project Tasks Kanban board:

1. Select the Project top menu option and then Create a new Project.

2. Give a name to the new Project and hit the Save button. Next, press on the Tasks
smart button at the top right of the form. This will open the Kanban view for the
Project Tasks.

3. Click on the Add New Column vertical bar at the right, type Now in the small dialog
box, and click on Add. Repeat to also add the Later and Done stages.

4. Hover the mouse pointer over the Done stage and a cog wheel icon will be shown.
Click on it and pick Edit from the option menu.

5. In the Edit Columns window, check the Folded in Tasks Pipeline box and save, as
shown in the following screenshot:

Chapter 12

271

How it works...
Kanban is one of the available view types, and it is able to organize items grouped in columns.
If we use stages to group the work items, we get a Kanban board. The stage list can be
configured to fit the user's specific needs.

Stages should have a folded attribute, meaning that the corresponding column in the Kanban
view should be shown folded. Work in progress items are expected to be in an unfolded stage,
and terminated items, usually Done and Cancelled, should be in Folded stages.

Each work item has a reference for the stage it is in. It may also have a Kanban State,
represented by a traffic signal-like light, and a Priority, represented by a star. The Kanban
cards can also have a color attribute, used for their background color.

Automation and Workflows

272

While the stage represents the current status in the process for the work item, Kanban State
provides information about its readiness to advance to the next stage. It is a Selection field,
usually named kanban_state, in the form, and Kanban views is used with the kanban_
state_selection widget and expects three possible options:

 f A grey neutral value, the default (the normal database value)

 f A red "Blocked" value (the blocked database value), meaning that there is some
reason to retain the work item in the current stage

 f A green "Ready for the next stage" value (the done database value), meaning that the
work item is ready to be pulled for the next stage

The Priority is also a Selection field, and is displayed with the special priority widget in
the form and Kanban views. The selection options are expected to be either a string with a
number, starting at 0, for normal value (not starred), and other values for starred options.

There's more...
Stages are added to models through a Many2one field referencing a stage model defining
the possible stages. On form views, they can be represented with the help of the statusbar
pipeline widget. For more details on views, widgets, and designing Kanban views, you can
refer to Chapter 8, Backend Views.

The complementary Kanban state is supported by a Selection field and its typical definition is:

kanban_state = fields.Selection(
 [('normal', 'Normal'),('blocked', 'Blocked'),('done', 'Ready for
next stage')],
 'Kanban State',
 default='normal')

On form views, it should use the specific kanban_state_selection widget:

 <field name="kanban_state" widget="kanban_state_selection" />

Regarding the Priority field, it is also a Selection field, and the number of options usually
ranges between 2 and 4 selection items:

priority = fields.selection(
 [('0', 'Normal'), ('1', 'Low'), ('2', 'High'),
 ('3', 'Very High')],
 'Priority', default='0')

In form views, it can make use of the specific priority widget:

<field name="priority" widget="priority"/>

Chapter 12

273

Creating server actions
Server actions underpin the Odoo automation tools. They allow us to describe the actions to
perform. These actions are then available to be called by event triggers, or to be triggered
automatically when certain time conditions are met.

The simplest case is to let the end user perform some action on a document by selecting it
from the More button menu. We will create such an action for project tasks, to Set as Priority
by starring the currently selected task and setting a deadline on it to three days from now.

Getting ready
We will need an Odoo instance with the Project app installed. We will also need the Developer
Mode activated. If it's not, activate it in the Odoo About dialog.

How to do it...
To create a server action and use it from the More menu, follow these steps:

1. On the Settings top menu, select the Technical | Actions | Server Actions menu
item, and click on the Create button at the top of the record list.

Automation and Workflows

274

2. Fill out the server action form with these values:

 � Action Name: Set as Priority

 � Base Model: Task

 � Action To Do: Write On a Record

 � Update Policy: Update the Current Record

3. In the server action, under the Value Mapping field, add the following lines:

 � As the first value, we will enter the following parameters:

 � Field: Deadline

 � Evaluation Type: Python expression

 � Value: datetime.date.today() + datetime.
timedelta(days=3)

 � As the second value, we will enter the following parameters:

 � Field: Priority

 � Evaluation Type: Value

 � Value: 1

The following screenshot shows the entered values:

Chapter 12

275

4. Save the server action and click on the Add in the 'More' Button at the top right, to
make it available in the Project task's More button.

5. To try it out, go to the Project top menu, select the Search | Tasks menu item,
and open a random task. By clicking on the More button, we should see the Set as
Priority option. Selecting it will star the task and change the deadline date to three
days from now.

How it works...
Server actions work on a Model, so one of the first things to do is to pick the Base Model we
want to work with. In our example, we used Project Tasks.

Next, we should select the type of action to perform. There are a few options available:

 f Send Email allows choosing an e-mail template, and will use it to send out an e-mail
when the action is triggered.

 f Trigger a Workflow Signal does just that. In Odoo Workflows, Signals can be
triggered and used to fire workflow transitions.

 f Run a Client Action triggers a client or window action, just like when a menu item
is clicked.

 f Create or Copy a new Record allows you to create a new record, on the current or on
another Model.

 f Write on a Record allows you to set values on the current or on another record.

 f Execute Python Code allows you to write arbitrary code to execute, when none of the
other options is flexible enough for what we need.

For our example, we used Write on a Record to set some values on the current record. We
set Priority to 1, to star the task, and set a value on the Deadline field. This one is more
interesting, since the value to use is evaluated from a Python expression. Our example makes
use of the datetime Python module (see https://docs.python.org/2/library/
datetime.html) to compute the date three days from today.

Arbitrary Python expression can be used there, as well as in several of the other action types
available. For security reasons, the code is checked by the safe_eval function, implemented
in odoo/openerp/tools/safe_eval.py. This means that some Python operations may
not be allowed, but this rarely proves to be a problem.

https://docs.python.org/2/library/datetime.html
https://docs.python.org/2/library/datetime.html

Automation and Workflows

276

There's more...
The Python code is evaluated in a restricted context, where the following objects are available
to use:

 f env: This is a reference for the Environment object, just like self.env in a
class method.

 f model: This is a reference to the model class the server action acts upon. In our
example, it is equivalent to self.env['project.task].

 f workflow: This is a reference to the Odoo workflow engine server object.

 f Warning: This is a reference to openerp.exceptions.Warning, allowing
for validations that block unintended actions. It can be used as: raise
Warning('Message!').

 f object or obj: This provides references to the current record, allowing you to access
its field values and methods.

 f log: This is a function to log messages in the ir.logging model, allowing for
database side logging on actions.

 f datetime, dateutil, and time: These provide access to the Python libraries.

Adding messaging and tracking features
Odoo social features are used in many of the standard apps. They provide an easy way for the
user to be updated and to collaborate around business documents. It is, therefore, important
for the custom addon modules to also support them.

These features are provided by the Discuss app (the mail technical name) and their most
visible aspect is the message wall at the bottom of the form for a business document, along
with the follower box on its right-hand side.

Chapter 12

277

Getting ready
We will use my_module introduced in Chapter 3, Creating Odoo Modules, defining the
Library Book model. You can get that code or quickly create an addon around this model:

-*- coding: utf-8 -*-
from openerp import models, fields
class LibraryBook(models.Model):
 _name = 'library.book'
 name = fields.Char('Title', required=True)
 date_release = fields.Date('Release Date')
 author_ids = fields.Many2many('res.partner', string='Authors')

We will also need an XML file with the corresponding form view:

<form>
 <group>
 <field name="name"/>
 <field name="author_ids" widget="many2many_tags"/>
 </group>
 <group>
 <field name="date_release"/>
 </group>
</form>

Automation and Workflows

278

How to do it...
To enable the social network and tracking features on the Library Book model, follow
these steps:

1. Add the mail dependency to the addon module's __openerp__.py manifest file:
'depends': ['mail'],

2. Edit the library.book model to add the code highlighted next:
class LibraryBook(models.Model):
 _name = 'library.book'
 _description = 'Library Book'
 _inherit = ['mail.thread']
 name = fields.Char('Title', required=True,
 track_visibility=True)
 date_release = fields.Date('Release Date',
 track_visibility=True)
 author_ids = fields.Many2many('res.partner', string='Authors')

3. Add to the library.book model the following method:
 def _track_subtype(self, init_values):
 if 'date_release' in init_values:
 return 'mail.mt_comment'
 return False

4. Add the message wall widgets into the form view, just before the </form> closing tag:
 <div class="oe_chatter">
 <field name="message_follower_ids"
 widget="mail_followers" groups="base.
group_user" />
 <field name="message_ids"
 widget="mail_thread" />
 </div>

After installing these changes, we should see the message wall at the bottom of the Library
Book form, and changes to the Title and Release Date fields should be logged on it.

How it works...
The Discuss addon (the mail technical name) provides the mail.thread model to use on
other business models as a mixin class. Our first steps are to add the module dependency
and to have the library.book module to inherit features from it.

Among other things, the message_follower_ids and message_ids fields are added to
store the follower list and related messages. These should be added to the form view, using
the mail_followers and mail_thread special widgets.

Chapter 12

279

We also added the optional _description attribute to the model's class. It is used by some
of the tracking messages, such as Library Book created, and will inappropriately display
messages such as Email Thread is created if not explicitly defined. After addon installation,
the display name that'll be used can also be set at Settings | Technical | Database
Structure | Models, in the Model Description field.

The mail.thread model can keep track of changes made to a document, posting them as
messages on the message wall. For this, we just need to add track_visibility=True (or
any true value) on the fields to track. By default, these are posted as internal notes, meaning
that no e-mail messages are triggered.

Unlike version 8.0, in version 9.0 the changed values are stored in the
database, in the mail.tracking.value model. This is accessible
in the web client at Settings | Technical | Email | Tracking Values.
This can be useful for reporting or auditing.

The message types are called Subtypes. The mail module comes with two subtypes:
discussion messages and internal notes. The first can trigger e-mail notifications and is
visible to all the followers. The second one does not trigger notifications and can only be seen
by users in the Employee security group. We can set the subtype when posting messages
using their XML IDs. For these two, the corresponding XML IDs are mail.mt_comment and
mail.mt_note.

The subtype for the tracking messages can be changed by the _track_subtype() method.
It receives a dictionary with the tracked field names with changes, and their values before
the changes were made. It is expected to return a string with the XML ID of the subtype to
use. Subtypes provided by the mail addon do not need the module suffix, so we can use just
mt_comment for discussion messages. If no specific subtype is returned, messages will use
the default mt_note subtype.

Followers can subscribe to different subtypes, so they are able to choose when to be notified.
For example, the Project addon adds subtypes such as Task change stage or Task is
blocked. With _track_subtype(), we can detect such events and report them through
messages with the proper subtype. Inside that method, self makes available the recordsets
involved in the write operation, so that distinct message subtypes can be selected based on
arbitrary record values.

There's more...
Posting messages can be done using the following method:

obj.message_post(body="Body text", subject="Subject", subtype="mt_
note")

The subject and subtype are optional.

Automation and Workflows

280

Followers can be either partners or message channels. To add followers, use the following:

obj.message_subscribe(partner_ids=..., channel_ids=..., subtype_
ids=[])

The subtype_ids argument is optional, and allows you to subscribe specific subtypes. If not
provided, the defaults defined in the subtypes will be used.

Sometimes we want to add a user as a follower. A user is also a partner, so user.partner_
id should be used for this. However, the following specific method is also provided for this:

obj.message_subscribe_users(user_ids, subtype_ids=[])

It is reasonable to expect to be able to post messages or follow documents even if the
connected user has no write access to them. Special security logic is implemented to allow
this, and these particular operations are performed with the Administrator user, through the
sudo() ORM method.

Message subtypes can be managed in the Settings top menu, by navigating to the Technical
| Email | Subtypes menu item. There we can inspect the existing subtypes and customize
them. Description is the text displayed in the message, and the Default field indicates if the
subtype is subscribed by default for the new followers.

Subtypes support an inheritance mechanism. It is, for example, used by projects to allow the
followers to automatically subscribe events on tasks and issues, such as Task Opened. This is
done using the fields in the Auto Subscription area of the subtype:

 f Parent is the related subtype to be automatically subscribed. For the project.
project Task Opened, this would be the project.task Task Opened.

 f Relation Field is the field in the related model to use. For a project.task subtype,
this is project_id, for the Project to inherit subscription from.

Odoo also supports a Need Action indicator, shown on the menu item, to signal that action
is required on a number of items. For example, it is used by the mail addon to display the
number of unread messages.

To use it, our model should also inherit ir.needaction_mixin, and the _needaction_
domain_get() method should be extended. It is an @api.model static method, meaning
that it does not act upon a recordset. It is expected to return a domain expression to be used
to identify the items needing action.

As an example, to signal that items with a Blocked Kanban state need action, we would use
the following:

def _needaction_domain_get(self):
 return [('kanban_state', '=', 'blocked')]

Chapter 12

281

Using Python code server actions
Server actions have several types available, but executing arbitrary Python code is surely the
most flexible one. Used wisely, it can provide power users with the capability to implement
advanced business rules from the user interface, without the need to create specific addon
modules to install that code.

We will demonstrate using this type of server actions by implementing one that sends
reminder notifications to the followers of a Project task.

Getting ready
We will need an Odoo instance with the Project app installed.

How to do it...
To create and try a Python code server action, follow these steps:

1. Create a new server action: On the Settings top menu, select the Technical |
Actions | Server Actions menu item, and click on the Create button at the top
of the record list.

2. Fill out the Server Action form with the following values:

 � Action Name: Send Reminder

 � Base Model: Task

 � Action To Do: Execute Python Code

3. In the Python code text area, remove the default text and replace it with the following:
if not obj.date_deadline:
 raise Warning('Task has no deadline!')
deadline_dt = datetime.datetime.strptime(
 obj.date_deadline, '%Y-%m-%d')
delta = deadline_dt.date() - datetime.date.today()
days = delta.days
if days==0:
 msg = 'Task is due today.'
elif days < 0:
 msg = 'Task is %d day(s) late.' % abs(days)
else:
 msg = 'Task will be due in %d day(s).' % days
obj.message_post(msg, subject='Reminder', subtype='mt_comment')

Automation and Workflows

282

4. Save the Server Action and click on Add in the 'More' Button, at the top right, to
make it available in the Project task's More button.

5. Now click on the Project top menu and select the Search | Tasks menu item. Pick a
random task, set a deadline date on it, and then try the Send Reminder option in the
More button.

How it works...
The Create server actions recipe provides a detailed explanation on how to create a server
action in general. For this particular type of action, we need to pick the Execute Python Code
option and then write the code to run the text area.

The code can have multiple lines, as is the case in our recipe, and it runs in a context that
has available references to objects such as the current record object or the session user.
The references available are described in the Create server actions recipe.

The used code computes the number of days from the current date until the deadline date,
and uses that to prepare an appropriate notification message. The last line does the actual
posting of the message in the task's message wall. The subtype='mt_comment' argument
is needed for e-mail notifications to be sent to the followers, just like when we use the New
Message button. If no subtype is given, mt_note is used as a default, posting an internal
note without notification, as if we used the Log an internal note button.

There's more...
Python code server actions are a powerful and flexible resource, but do have some limitations
compared to the custom addon modules.

Since the Python code is evaluated at run time, in case of an error the stack trace is not so
informative and it can be harder to debug. It is also not possible to insert a breakpoint in the
code of a server action using the techniques shown in Chapter 7, Debugging and Automated
Testing, so debugging needs to be done by using logging statements. Another concern is,
when trying to track down the cause from a behavior in module code, you may miss that; it's
probably caused by a server sction.

When carrying out a more intensive use of server actions, we can get complex interactions, so
it is advised to plan properly and keep them organized.

Chapter 12

283

Using automated actions on time conditions
Automated actions can be used to automatically trigger actions based on time conditions. We
can use them to automatically perform some operation on records that meet certain criteria
and reach time condition.

As an example, we can trigger a reminder notification for Project tasks one day before their
deadline, if they have any. Let's see how this can be done.

Getting ready
To follow this recipe, we will need to have both the Project Management app and the
Automated Action Rules addon already installed, and have the Developer Mode activated.
We will also need the server action created in the Using Python code server actions recipe.

How to do it...
To create an automated action with a timed condition on tasks, follow these steps:

1. In the Settings top menu, select the Technical | Automation | Automated Actions
menu item, and press on the Create button.

2. Fill out the basic information on the Automated Actions form:

 � Rule Name: Deadline Near Notification

 � Related Document Model: Task

 � Under the Conditions tab, for When to Run, select Based on Time Condition

3. To set the record criteria, on the Filter field text box, just after the Select Records
link, set a valid domain expression: [('date_deadline', '!=', False),
('stage_id.fold', '=', False)]. When changing to another field, information
on the number of records meeting the criteria is updated, and the Select Records
link changes to Change Selection. By clicking on it we can check the records list of
the records meeting the domain expression.

Automation and Workflows

284

4. To set the time condition, on Trigger Date select the field to use, Deadline, and set
the Delay After Trigger Date to -1 Days.

Chapter 12

285

5. On the Actions tab, under Server actions to run, click on Add an item and pick Send
Reminder from the list that should have been created previously. If not, we could now
also create the server action to run using the Create button.

6. Click on Save to save the automated action. Perform the following steps to try it out:

1. Go to the Project top menu, Search | Tasks, and set a deadline on some
task with a date in the past.

Automation and Workflows

286

2. Go to the Settings top menu, to the Technical | Automation | Scheduled
Actions menu item, find the Check Action Rules action in the list, open its
form view, and press on the Run Manually button, at the top left. This forces
timed automated actions to be checked now. Note that this should work on
a newly created demo database, but might not work like this in an existing
database.

3. Again go to the Project top menu and open the same task you previously
set a deadline date to. Check the message board below; you should see the
notification generated by the server action triggered by our automated action.

How it works...
Automated actions act on a Model, and can be triggered either by events or by time
conditions. The first steps are to set the Model and When to Run values.

Both methods can use a filter to narrow down the records eligible to perform the action on.
We can use a domain expression for this. You can find details on writing domain expressions
in Chapter 8, Backend Views. Alternatively, you can create and save a filter on project tasks,
using the user interface features, and then copy here the automatically generated domain
expression, selecting it from the Set selection based on a search filter list.

The domain expression we used selects all the records with a non-empty Deadline date, in a
stage where the Fold flag is not checked. Stages without the Fold flag are considered to be
working in progress. This way, we avoid triggering notifications on tasks that are in the Done,
Canceled, or Closed stages.

Chapter 12

287

Then we should define the time condition: the date field to use and when in time the action
should be triggered. The time period can be in minutes, hours, days, or months, and number
of periods can be positive, for time after the date, or negative, for time before the date. When
using a time period in days, we can provide a Resource Calendar defining the working days,
and the day count will use it.

These actions are checked by the Check Action Rules scheduled job. Note that by default it
is run every four hours. This is appropriate for actions that work on the days or months scale,
but if you need actions that work in the hour or minute timescales, you need to change the
running interval to a smaller value.

Actions will be triggered for records that meet all the criteria and whose triggering date
condition (field date plus the interval) is after the last action execution. This is so as to avoid
repeatedly triggering the same action. And this is why manually running the preceding action
will work in a database where the scheduled action was not yet triggered, but might not work
immediately in a database where it was already run by the scheduler.

Once an automated action is triggered, the Actions tab tells you what should happen. This
can be a list of server actions, doing things such as changing values on the record, posting
notifications, sending out e-mails, and so on.

Additionally, two special operations are available. Set Responsible expects the target Model
to have a user_id field and sets its value when the action is triggered. Add Followers gives a
list of partners to be added to the record followers.

There's more...
These types of automated actions are triggered once a certain time condition is reached.
This is not the same as regularly repeating some action while some condition is still true. For
example, an automated action would not be capable of posting a reminder every day after the
deadline has exceeded.

This type of action can instead be performed by Scheduled Actions, stored in the ir.cron
model. However, scheduled actions do not support server actions; they can only call an
existing method of a model object. So, to implement a custom action, we need to write an
addon module adding the underlying Python method.

For reference, the technical name for the Automated Actions Model is base.action.rule.

Automation and Workflows

288

Using automated actions on event
conditions

Business applications provide systems with records for business operations, but are also
expected to support dynamic business rules that are specific to the organization use cases.

Carving these rules into custom addon modules can be inflexible and out of the reach of
functional users. Automated actions triggered by event conditions can bridge this gap and
provide a powerful tool to automate or enforce the organization procedures.

As an example, we will enforce a validation on Project tasks such that only the Project
Manager can change Tasks to the Done stage.

Getting ready
To follow this recipe, you will need to have the Project Management app already installed.
We also need to have the Developer Mode activated. If it's not, activate it in the Odoo
About dialog.

How to do it...
To create an automated action with an event condition on tasks, follow these steps:

1. In the Settings top menu, select the Technical | Automation | Automated Actions
menu item, and press on the Create button.

2. Fill out the basic information on the Automated Actions form:

 � Rule Name: Validate Closing Tasks

 � Related Document Model: Task

 � Conditions tab |When to Run: On Update

Chapter 12

289

3. The on update rules allow you to set two record filters, before and after the update
operation. On the Before Update Filter field text box, after the Select Records link,
set a valid domain expression: [('stage_id.name', '!=', 'Done')]. On
the Filter field text box, set the following domain: [('stage_id.name', '=',
'Done')], as shown in the following screenshot.

4. On the Actions tab, under Server Actions to Run, click on Add an item, and on the
list dialog, press on the Create button to create a new server action.

5. Fill out the server action form with the following values and afterwards press on the
Save button:

 � Action Name: Validate Closing Tasks

 � Base Model: Task

 � Action To Do: Execute Python Code

 � Python Code: Enter the following:
if user != obj.project_id.user_id:
 raise Warning('Only the Project Manager can close
Tasks')

Automation and Workflows

290

The following screenshot shows the entered values:

6. Click on Save, to save the automated action and try it out:

1. On a database with demo data and logged in as Administrator, go to the
Project top menu and click on the E-Learning Integration project to open
its task Kanban.

2. Then try dragging one of the tasks into the Done stage column. Since
this Project's Manager is user Demo and we are working with the user
Administrator, our automated action should be triggered, and our
warning message is blocking the change.

How it works...
We start by giving a name to our automated actions and setting the Model it works with. For
the type of action, we choose On Update, but the On Creation, On Creation & Update, On
Deletion, and Based On Form Modification options are also possible.

Next, we should define the filters to determine when our action should be triggered. The On
Update actions allow us to define two filters: one to check before and the other after the
changes are made to the record. This can be used to express transitions: detect when a
record changes from state A to state B. In our example, we want to trigger the action when a
not-done task changes to the Done stage. The On Update action is the only one that allows
for these two filters; the other actions types only allow for one filter.

Chapter 12

291

It is important to note that our example condition will only work correctly for English language
users. This is so because the Stage Name is a translatable field that can have different
values for different languages. So, filters on the translatable fields should be avoided or
used with care.

Finally, we create and add one (or more) server actions with whatever we want to be done
when the automated action is triggered. In this case, we chose to demonstrate how to
implement custom validation, making use of a Python code server action that uses the
Warning exception to block the user changes.

There's more...
In Chapter 5, Basic Server Side Development, we saw how to redefine the write() methods
of a model to perform actions on record update. Automated actions on record update provide
another way to achieve the same, with some benefits and drawbacks.

Among the benefits, it is easy to define an action which is triggered by the update of a stored
computed field, which is tricky to do in pure code. It is also possible to define filters on records
and have different rules for different records, or for records matching different conditions
which can be expressed with search domains.

But automated actions can have disadvantages when compared to Python business logic
code inside modules. As a concern, with poor planning this flexibility can rapidly grow into
complex interactions, hard to maintain and debug. Also, the before and after write filter
operations bring some overhead, so for performing sensitive actions this could be an issue.

Inspecting built-in workflows
Odoo includes a built in workflow engine used to manage business document flows and
interaction. However, this engine has been gradually replaced by Python business logic and
automated actions. As an example of this, one of the most important workflows used to be the
one linking sales orders, invoices, and deliveries, but since version 9.0, it has been removed.

But, there are a few workflows still used by some apps, so there may be cases where a
developer will need to work with them. So it's still relevant to have some basic understanding
of how they work.

The Marketing Campaigns app still uses a simple workflow, and we will use it to provide this
brief overview on them.

Getting ready
We will need an Odoo instance with demo data and the Marketing Campaign's addon module
installed (not that it's not an app). We also need to have the Developer Mode activated. If it's
not, activate it in the Odoo About dialog.

Automation and Workflows

292

How to do it...
To inspect the workflow defined on a model, follow these steps:

1. Open the Lead Automation top menu. Depending on the apps you have installed, it
could instead be named Marketing. Click on a record on the Campaigns list to open
its form view.

2. Open the Debug menu (the Bug icon at the right-hand side of the top bar) and choose
the Print Workflow option. This will generate a PDF document with a graph of the
campaign's workflow, displaying on a red background the workflow node the current
document is at.

Chapter 12

293

3. Again in the Debug menu, select the Edit Workflow option. This will navigate to the
Workflow list view filtered by the current workflow. Click on the workflow line in the list
to open and inspect its definition.

4. Workflows have a Third View mode, the diagram. Clicking on the Third View type icon,
at the top right after the form view, we can see the workflow definition in a diagram.
The diagram also allows editing: double click on the nodes to edit Activities and on
the lines to edit Transitions.

Automation and Workflows

294

How it works...
The workflow definitions are stored in the workflow model, and are also reachable through
the Settings top menu, and navigate to Technical | Workflows menu item.

Their definition has Activities. The nodes or workflow states, and Transitions, defining when a
workflow's current state should move to another node.

Transitions often depend on a workflow Signal to be triggered. A common way to trigger a
workflow signal is through form buttons. Buttons support a type="workflow" attribute
for this.

Existing workflows are customizable: we can edit or add activities, and we can change the
Transitions connecting them. Simple customizations usually involve editing a transition. In the
workflow diagram, double clicking a transition arrow brings up its form view. There we rewire
the workflow by modifying Destination Activity, adding Condition with a Python expression
to evaluate, or using Group Required to limit the transition to be triggered only by users in a
certain security group.

See also
 f The official documentation provides more details about workflow definitions:

https://www.odoo.com/documentation/9.0/reference/workflows.
html.

https://www.odoo.com/documentation/9.0/reference/workflows.html
https://www.odoo.com/documentation/9.0/reference/workflows.html

295

13
Web Server

Development

In this chapter, we'll cover the following topics:

 f Making a path accessible from the network

 f Restricting access to web accessible paths

 f Consuming parameters passed to your handlers

 f Modifying an existing handler

 f Using the RPC API

Introduction
We'll introduce the basics of the web server part of Odoo in this chapter. Note that this
covers the fundamental pieces. For high-level functionality, you should refer to Chapter 14,
CMS Website Development.

All of Odoo's web request handling is driven by the Python library werkzeug (http://
werkzeug.pocoo.org). While the complexity of werkzeug is mostly hidden by Odoo's
convenient wrappers, it is an interesting read to see how things work under the hood.

Make a path accessible from the network
In this recipe, we'll see how to make a URL of the form http://yourserver/path1/path2
accessible to users. This can either be a web page or a path returning arbitrary data to be
consumed by other programs. In the latter case, you would usually use the JSON format to
consume parameters and to offer your data.

http://werkzeug.pocoo.org
http://werkzeug.pocoo.org

Web Server Development

296

Getting ready
We'll make use of the library.book model of Chapter 4, Application Models, so in case you
haven't done so yet, grab its code to be able to follow the examples.

We want to allow any user to query the full list of books. Furthermore, we want to provide the
same information to programs via a JSON request.

How to do it…
We'll need to add controllers, which go into a folder called controllers by convention:

1. Add a controllers/main.py file with the HTML version of our page:
from openerp import http
from openerp.http import request

class Main(http.Controller):
 @http.route('/my_module/books', type='http', auth='none')
 def books(self):
 records = request.env['library.book'].sudo().search([])
 result = '<html><body><table><tr><td>'
 result += '</td></tr><tr><td>'.join(
 records.mapped('name'))
 result += '</td></tr></table></body></html>'
 return result

2. Add a function to serve the same information in the JSON format:
 @http.route('/my_module/books/json', type='json',
 auth='none')
 def books_json(self):
 records = request.env['library.book']\
 .sudo().search([])
 return records.read(['name'])

3. Add the file controllers/__init__.py:
from . import main

4. Add controllers to your __init__.py addon:
from . import controllers

Chapter 13

297

After restarting your server, you can visit /my_module/books in your browser and get
presented with a flat list of book names. To test the JSON-RPC part, you'll have to craft a JSON
request. A simple way to do that would be using the following command line to receive the
output on the command line:

curl -i -X POST -H "Content-Type: application/json" -d "{}" \
localhost:8069/my_module/books/json

If you get 404 errors at this point, you probably have more than one database available on
your instance. In this case, it's impossible for Odoo to determine which database is meant
to serve the request. Use the --db-filter='^yourdatabasename$' parameter to force
using the exact database you installed the module in. Now the path should be accessible.

How it works…
The two crucial parts here are that our controller is derived from openerp.http.
Controller and that the methods we use to serve content are decorated with openerp.
http.route. Inheriting from openerp.http.Controller registers the controller with
Odoo's routing system in a similar way as models are registered, by inheriting from openerp.
models.Model; also, Controller has a meta class that takes care of this.

In general, paths handled by your addon should start with your addon's name to avoid name
clashes. Of course, if you extend some addon's functionality, you'll use this addon's name.

openerp.http.route
The route decorator allows us to tell Odoo that a method is to be web accessible in the first
place, and the first parameter determines on which path it is accessible. Instead of a string,
you can also pass a list of strings in case you use the same function to serve multiple paths.

The type argument defaults to http and determines what type of request is to be served.
While strictly speaking JSON is HTTP, declaring the second function as type='json' makes
life a lot easier, because Odoo then handles type conversions itself.

Don't worry about the auth parameter for now, it will be addressed in the recipe Restrict
access to web accessible paths in this chapter.

Return values
Odoo's treatment of the functions' return values is determined by the type argument of
the route decorator. For type='http', we usually want to deliver some HTML, so the
first function simply returns a string containing it. An alternative is to use request.make_
response(), which gives you control over the headers to send in the response. So, to indicate
when our page was updated last, we might change the last line in books() to:

return request.make_response(
 result, [

Web Server Development

298

 ('Last-modified', email.utils.formatdate(
 (
 fields.Datetime.from_string(
 request.env['library.book'].sudo()
 .search([], order='write_date desc', limit=1)
 .write_date) -
 datetime.datetime(1970, 1, 1)
).total_seconds(),
 usegmt=True)),
])

This code sends a Last-modified header along with the HTML we generated, telling the
browser when the list was modified for the last time. We extract this information from the
write_date field of the library.book model.

In order for the preceding snippet to work, you'll have to add some imports on the top of
the file:

import email
import datetime
from openerp import fields

You can also create a Response object of werkzeug manually and return that, but there's
little gain for the effort.

Generating HTML manually is nice for demonstration purposes, but
you should never do this in production code. Always use templates, as
demonstrated in Chapter 14, CMS Web Site Development, recipe QWeb,
and return them by calling request.render().
This will give you localization for free and makes your code better by
separating business logic from the presentation layer. Also, templates
provide you with functions to escape data before outputting HTML. The
preceding code is vulnerable to cross-site-scripting attacks if a user
manages to slip a script tag into the book name, for example.

For a JSON request, simply return the data structure you want to hand over to the client; Odoo
takes care of serialization. For this to work, you should restrict yourself to data types that are
JSON serializable, which are roughly dictionaries, lists, strings, floats and integers.

Chapter 13

299

openerp.http.request
The request object is a static object referring to the currently handled request, which
contains everything you need to take useful action. Most important is the property request.
env, which contains an Environment object which is just the same as in self.env for
models. This environment is bound to the current user, which is none in the preceding
example because we used auth='none'. Lack of a user is also why we have to sudo() all
our calls to model methods in the example code.

If you're used to web development, you'll expect session handling, which is perfectly correct.
Use request.session for an OpenERPSession object (which is quite a thin wrapper
around the Session object of werkzeug), and request.session.sid to access the
session ID. To store session values, just treat request.session as a dictionary:

request.session['hello'] = 'world'
request.session.get('hello')

Note that storing data in the session is no different from using global
variables. Use it only if you must — that is usually the case for multi
request actions like a checkout in the website_sale module. And
also in this case, handle all functionality concerning sessions in your
controllers, never in your modules.

There's more…
The route decorator can have some extra parameters to customize its behavior further. By
default, all HTTP methods are allowed, and Odoo intermingles the parameters passed. Using
the parameter methods, you can pass a list of methods to accept, which would usually be
one of either ['GET'] or ['POST'].

To allow cross origin requests (browsers block AJAX and some other types of requests to
domains other than where the script was loaded from for security and privacy reasons), set
the cors parameter to * to allow requests from all origins, or some URI to restrict requests to
ones originating from this URI. If this parameter is unset, which is the default, the Access-
Control-Allow-Origin header is not set, leaving you with the browser's standard
behavior. In our example, we might want to set it on /my_module/books/json in order to
allow scripts pulled from other websites accessing the list of books.

By default, Odoo protects certain types of requests from an attack known as cross-site
request forgery by passing a token along on every request. If you want to turn that off,
set the parameter csrf to False, but note that this is a bad idea in general.

Web Server Development

300

See also
If you host multiple Odoo databases on the same instance and each database has different
web accessible paths on possibly multiple domain names per database, the standard regular
expressions in the --db-filter parameter might not be enough to force the right database
for every domain. In that case, use the community module dbfilter_from_header from
https://github.com/OCA/server-tools in order to configure the database filters on
the proxy level.

To see how using templates makes modularity possible, see the recipe Modify an existing
handler later in the chapter.

Restrict access to web accessible paths
We'll explore the three authentication mechanisms Odoo provides for routes in this recipe. We'll
define routes with different authentication mechanisms in order to show their differences.

Getting ready
As we extend code from the previous recipe, we'll also depend on the library.book model
of Chapter 4, Application Models, so you should get its code in order to proceed.

How to do it…
Define handlers in controllers/main.py:

1. Add a path that shows all books:
 @http.route('/my_module/all-books', type='http', auth='none')
 def all_books(self):
 records = request.env['library.book'].sudo().search([])
 result = '<html><body><table><tr><td>'
 result += '</td></tr><tr><td>'.join(
 records.mapped('name'))
 result += '</td></tr></table></body></html>'
 return result

2. Add a path that shows all books and indicates which was written by the current user,
if any:
@http.route('/my_module/all-books/mark-mine',
 type='http', auth='public')
def all_books_mark_mine(self):
 records = request.env['library.book'].sudo().search([])

https://github.com/OCA/server-tools

Chapter 13

301

 result = '<html><body><table>'
 for record in records:
 result += '<tr>'
 if record.author_ids & request.env.user.partner_id:
 result += '<th>'
 else:
 result += '<td>'
 result += record.name
 if record.author_ids & request.env.user.partner_id:
 result += '</th>'
 else:
 result += '</td>'
 result += '</tr>'
 result += '</table></body></html>'
 return result

3. Add a path that shows the current user's books:
 @http.route('/my_module/all-books/mine', type='http',
 auth='user')
 def all_books_mine(self):
 records = request.env['library.book'].search([
 ('author_ids', 'in',
 request.env.user.partner_id.ids),
])
 result = '<html><body><table><tr><td>'
 result += '</td></tr><tr><td>'.join(
 records.mapped('name'))
 result += '</td></tr></table></body></html>'
 return result

With this code, the paths /my_module/all_books and /my_module/all_books/
mark_mine look the same for unauthenticated users, while a logged in user sees her books
in a bold font on the latter path. The path /my_module/all-books/mine is not accessible
at all for unauthenticated users. If you try to access it without being authenticated, you'll be
redirected to the login screen in order to do so.

How it works…
The difference between authentication methods is basically what you can expect from the
content of request.env.user.

For auth='none', the user record is always empty, even if an authenticated user is
accessing the path. Use this if you want to serve content that has no dependencies on
users, or if you want to provide database agnostic functionality in a server wide module.

Web Server Development

302

The value auth='public' sets the user record to a special user with XML ID
base.public_user, for unauthenticated users, and to the user's record for authenticated
ones. This is the right choice if you want to offer functionality to both unauthenticated and
authenticated users, while the authenticated ones get some extras, as demonstrated in the
preceding code.

Use auth='user' to be sure that only authenticated users have access to what you've got to
offer. With this method, you can be sure request.env.user points to some existing user.

There's more…
The magic for authentication methods happens in the ir.http model from the base addon.
For whatever value you pass to the auth parameter in your route, Odoo searches for a
function called _auth_method_<yourvalue> on this model, so you can easily customize
this by inheriting this model and declaring a method that takes care of your authentication
method of choice.

As an example, we provide an authentication method base_group_user which enforces a
currently logged in user who is a member of the group with XML ID base.group_user:

from openerp import exceptions, http, models
from openerp.http import request

class IrHttp(models.Model):
 _inherit = 'ir.http'

 def _auth_method_base_group_user(self):
 self._auth_method_user()
 if not request.env.user.has_group('base.group_user'):
 raise exceptions.AccessDenied()

Now you can say auth='base_group_user' in your decorator and be sure that users
running this route's handler are members of this group. With a little trickery you can extend
this to auth='groups(xmlid1,…)', the implementation of this is left as an exercise to the
reader, but is included in the example code.

Consume parameters passed to your
handlers

It's nice to be able to show content, but it's better to show content as a result of some user
input. This recipe will demonstrate the different ways to receive this input and react to it.
As in the previous recipes, we'll make use of the library.book model.

Chapter 13

303

How to do it…
First, we'll add a route that expects a traditional parameter with a book's ID to show some
details about it. Then, we'll do the same, but we'll incorporate our parameter into the path itself:

1. Add a path that expects a book's ID as parameter:
 @http.route('/my_module/book_details', type='http',
 auth='none')
 def book_details(self, book_id):
 record = request.env['library.book']
 .sudo().browse(int(book_id))
 return u'<html><body><h1>%s</h1>Authors: %s' % (
 record.name, u', '.join(
 record.author_ids.mapped('name')) or 'none',
)

2. Add a path where we can pass the book's ID in the path:
 @http.route("/my_module/book_details/<model(\
 'library.book'):book>",
 type='http', auth='none')
 def book_details_in_path(self, book):
 return self.book_details(book.id)

If you point your browser to /my_module/book_details?book_id=1, you should see a
detail page of the book with ID 1. If this doesn't exist, you'll receive an error page.

The second handler allows you to go to /my_module/book_details/1 and view the
same page.

How it works…
By default, Odoo (actually werkzeug) intermingles with GET and POST parameters and
passes them as keyword argument to your handler. So by simply declaring your function
as expecting a parameter called book_id, you introduce this parameter as either GET
(the parameter in the URL) or POST (usually passed by forms with your handler as action)
parameter. Given that we didn't add a default value for this parameter, the runtime will raise
an error if you try to access this path without setting the parameter.

The second example makes use of the fact that in a werkzeug environment, most paths are
virtual anyway. So we can simply define our path as containing some input. In this case, we
say we expect the ID of a library.book as the last component of the path. The name after
the colon is the name of a keyword argument. Our function will be called, with this parameter
passed as keyword argument. Here, Odoo takes care of looking up this ID and delivering a
browse record, which of course only works if the user accessing this path has appropriate
permissions. Given that book is a browse record, we can simply recycle the first example's
function by passing book.id as parameter book_id to give out the same content.

Web Server Development

304

There's more…
Defining parameters within the path is a functionality delivered by werkzeug, which is called
converters. The model converter is added by Odoo, which also defines the converter models,
that accepts a comma separated list of IDs and passes a record set containing those IDs to
your handler.

The beauty of converters is that the runtime coerces the parameters to the expected type,
while you're on your own with normal keyword parameters. These are delivered as strings, and
you have to take care of the necessary type conversions yourself, as seen in the first example.

Built-in werkzeug converters include int, float, and string, but also more intricate
ones such as path, any, or uuid. You can look up their semantics at http://werkzeug.
pocoo.org/docs/0.11/routing/#builtin-converters.

See also
Odoo's custom converters are defined in ir_http.py in the base module and registered
in the _get_converters method of ir.http. As an exercise, you can create your own
converter that allows you to visit the /my_module/book_details/Odoo+cookbook page
to receive the details of this book (if you added it to your library before). This converter's
implementation is included in the example code for this recipe.

Modify an existing handler
When you install the website module, the path /website/info displays some information
about your Odoo instance. In this recipe, we override this in order to change this information
page's layout, but also to change what is displayed.

Getting ready
Install the website module and inspect the path /website/info. Now craft a new module
that depends on website and uses the following code.

How to do it…
We'll have to adapt the existing template and override the existing handler:

1. Override the qweb template in a file called views/templates.xml:
<?xml version="1.0" encoding="UTF-8"?>
<odoo>
 <template id="show_website_info"
 inherit_id="website.show_website_info">

http://werkzeug.pocoo.org/docs/0.11/routing/#builtin-converters
http://werkzeug.pocoo.org/docs/0.11/routing/#builtin-converters

Chapter 13

305

 <xpath expr="//dl[@t-foreach='apps']"
 position="replace">
 <table class="table">
 <tr t-foreach="apps" t-as="app">
 <th>
 <a t-att-href="app.website">
 <t t-esc="app.name" />
 </th>
 <td><t t-esc="app.summary" /></td>
 </tr>
 </table>
 </xpath>
 </template>
</odoo>

2. Override the handler in a file called controllers/main.py:
from openerp import http
from openerp.addons.website.controllers.main import Website

class Website(Website):
 @http.route()
 def website_info(self):
 result = super(Website, self).website_info()
 result.qcontext['apps'] = \
 result.qcontext['apps'].filtered(
 lambda x: x.name != 'website')
 return result

Now, when visiting the info page, we'll only see a filtered list of installed applications, and in a
table as opposed to the original definition list.

How it works
In the first step, we override an existing QWeb template. In order to find out which that is,
you'll have to consult the code of the original handler. Usually, it will end with the following
command line, which tells you that you need to override template.name:

return request.render('template.name', values)

In our case, the handler uses a template called website.info, but this one is
immediately extended by another template called website.show_website_info, so it's
more convenient to override this one. Here, we replace the definition list showing installed
apps with a table. For details about how QWeb inheritance works, consult Chapter 14, CMS
Website Development.

Web Server Development

306

In order to override the handler method, we must identify the class that defines the handler,
which is openerp.addons.website.controllers.main.Website, in this case. We
import the class to be able to inherit from it. Now we override the method and change the
data passed to the response. Note that what the overridden handler returns is a Response
object and not a string of HTML, as the previous recipes did for the sake of brevity. This object
contains a reference to the template to be used and the values accessible to the template,
but is only evaluated at the very end of the request.

In general, there are three ways to change an existing handler:

 f If it uses a QWeb template, the simplest way to change it is to override the template.
This is the right choice for layout changes and small logic changes.

 f QWeb templates get a context passed, which is available in the response as the field
qcontext. This is usually a dictionary where you can add or remove values to suit
your needs. In the preceding example, we filter the list of apps to only contain apps
which have a website set.

 f If the handler receives parameters, you could also preprocess those in order to have
the overridden handler behave the way you want.

There's more…
As seen in the preceding section, inheritance with controllers works slightly differently
than model inheritance: you actually need a reference to the base class and to use Python
inheritance on it.

Don't forget to decorate your new handler with the @http.route decorator; Odoo uses it as
a marker for which methods are exposed to the network layer. If you omit the decorator, you
actually make the handler's path inaccessible.

The @http.route decorator itself behaves similarly to field declarations: every value you
don't set will be derived from the decorator of the function you're overriding, so we don't have
to repeat values we don't want to change.

After receiving a response object from the function you override, you can do a lot more than
just changing the QWeb context:

 f You can add or remove HTTP headers by manipulating response.headers.

 f If you want to render an entirely different template, you can set response.template.

 f To detect if a response is based on QWeb in the first place, query response.is_qweb.

 f The resulting HTML code is available by calling response.render().

Chapter 13

307

See also
 f Details of QWeb templates will be explained in Chapter 14, CMS Website development.

Using the RPC API
One of Odoo's strengths is its interoperability, which is helped by the fact that basically any
functionality is available via JSON-RPC 2.0 and XMLRPC. In this recipe, we'll explore how to
use both of them from client code. This interface also enables you to integrate Odoo with any
other application. Making functionality available via any of the two protocols on the server side
is explained in the There's more section of this recipe.

We'll query a list of installed modules from the Odoo instance, so that we could show a list like
the one displayed in the previous recipe in our own application or website.

How to do it…
The following code is not meant to run within Odoo, but as simple scripts:

1. First, we query the list of installed modules via XMLRPC:
#!/usr/bin/env python2
import xmlrpclib

db = 'odoo9'
user = 'admin'
password = 'admin'
uid = xmlrpclib.ServerProxy(
 'http://localhost:8069/xmlrpc/2/common')\
 .authenticate(db, user, password, {})
odoo = xmlrpclib.ServerProxy(
 'http://localhost:8069/xmlrpc/2/object')
installed_modules = odoo.execute_kw(
 db, uid, password, 'ir.module.module', 'search_read',
 [[('state', '=', 'installed')], ['name']], {'context':
 {'lang': 'fr_FR'}})
for module in installed_modules:
 print module['name']

2. Then we do the same with JSONRPC:
import json
import urllib2

db = 'odoo9'
user = 'admin'

Web Server Development

308

password = 'admin'

request = urllib2.Request(
 'http://localhost:8069/web/session/authenticate',
 json.dumps({
 'jsonrpc': '2.0',
 'params': {
 'db': db,
 'login': user,
 'password': password,
 },
 }),
 {'Content-type': 'application/json'})
result = urllib2.urlopen(request).read()
result = json.loads(result)
session_id = result['result']['session_id']
request = urllib2.Request(
 'http://localhost:8069/web/dataset/call_kw',
 json.dumps({
 'jsonrpc': '2.0',
 'params': {
 'model': 'ir.module.module',
 'method': 'search_read',
 'args': [
 [('state', '=', 'installed')],
 ['name'],
],
 'kwargs': {'context': {'lang': 'fr_FR'}},
 },
 }),
 {
 'X-Openerp-Session-Id': session_id,
 'Content-type': 'application/json',
 })
 result = urllib2.urlopen(request).read()
 result = json.loads(result)
 for module in result['result']:
 print module['name']

Both code snippets will print a list of installed modules, and because they pass a context that
sets the language to French, the list will be in French if there are translations available.

Chapter 13

309

How it works…
Both snippets call the function search_read, which is very convenient because you can
specify a search domain on the model you call, pass a list of fields you want to be returned,
and receive the result in one request. In older versions of Odoo, you had to call search first
to receive a list of IDs and then call read to actually read the data.

search_read returns a list of dictionaries, with the keys being the names of the fields
requested and the values the record's data. The ID field will always be transmitted,
no matter if you requested it or not.

Now we need to look at the specifics of the two protocols.

XMLRPC
The XMLRPC API expects a user ID and a password for every call, which is why we need to
fetch this ID via the method authenticate on the path /xmlrpc/2/common. If you already
know the user's ID, you can skip this step.

As soon as you know the user's ID, you can call any model's method by calling execute_kw
on the path /xmlrpc/2/object. This method expects the database you want to execute the
function on, the user's ID and password for authentication, then the model you want to call
your function on, and then the function's name. The next two mandatory parameters are a list
of positional arguments to your function, and a dictionary of keyword arguments.

JSONRPC
Don't be distracted by the size of the code example; that's because Python doesn't have
built in support for JSONRPC. As soon as you've wrapped the urllib calls in some helper
functions, the example will be as concise as the XMLRPC one.

As JSONRPC is stateful, the first thing we have to do is to request a session at /web/
session/authenticate. This function takes the database, the user's name, and
their password.

The crucial part here is that we record the session ID Odoo created, which we pass in the
header X-Openerp-Session-Id to /web/dataset/call_kw. Then the function behaves
the same as execute_kw from; we need to pass a model name and a function to call on it,
then positional and keyword arguments.

There's more…
Both protocols allow you to call basically any function of your models. In case you don't want
a function to be available via either interface, prepend its name with an underscore – Odoo
won't expose those functions as RPC calls.

Web Server Development

310

Furthermore, you need to take care that your parameters, as well as the return values, are
serializable for the protocol. To be sure, restrict yourself to scalar values, dictionaries, and lists.

As you can do roughly the same with both protocols, it's up to you which one to use. This
decision should be mainly driven by what your platform supports best. In a web context, you're
generally better off with JSON, because Odoo allows JSON handlers to pass a CORS header
conveniently (see the Make a path accessible from the network recipe of this chapter for
details). This is rather difficult with XMLRPC.

See also
The most interesting business methods to call on models are explained in Chapter 5,
Basic Server Side Business Logic.

311

14
CMS Website
Development

In this chapter, we will cover the following topics:

 f Extending CSS and JavaScript for the website

 f Creating or modifying templates: QWeb

 f Offering snippets to the user

Introduction
Odoo comes with a fully featured CMS system implemented by the website addon. Some low
level functionality is provided by the web addon, so if you need to look up code, keep both
modules in mind.

Extending CSS and JavaScript for the
website

In this recipe, we'll see how to add custom style sheets and JavaScript to the website.

Getting ready
Create an empty module named ch13_r01 and install it in your test database. Make sure this
module depends on the website module, as we use some of its functionality.

CMS Website Development

312

How to do it...
Override the main website template to inject your code:

1. Add a file called views/templates.xml and add an empty view override:
<odoo>
 <template id="assets_frontend"
 inherit_id="website.assets_frontend">
 <xpath expr="." position="inside">
 <!-- points 2 & 3 go here /-->
 </xpath>
 </template>
</odoo>

2. Add a reference to your CSS file:
<link href="/ch13_r01/static/src/css/ch13_r01.css"
 rel="stylesheet" type="text/css"/>

3. Add a reference to your JavaScript file:
<script src="/ch13_r01/static/src/js/ch13_r01.js"
 type="text/javascript" />

4. Add some CSS code to static/src/css/ch13_r01.css.
body
{
 background: yellow;
}

5. Add some JavaScript code to static/src/js/ch13_r01.js.
odoo.define('ch13_r01', function(require)
{
 var core = require('web.core');
 alert(core._t('Hello world'));
 return {
 // if you created functionality to export, add it here
 }
});

After updating your module, you should see that Odoo websites have a yellow background and
a somewhat annoying Hello world popup on each page load.

Chapter 14

313

How it works...
At the base of Odoo's CMS lies an XML templating engine called QWeb, which is discussed in
detail in the following recipe. For now, it's enough to know that we can use it to inject nodes
into existing documents. In the example, we change the view website.assets_frontend
to link to our CSS and JavaScript files. This view will be pulled to construct all the HTML for the
website, so you can be sure your code is available on all pages.

As we can be sure the view website.assets_frontend is pulled within a HTML head
node, we can simply add the files we need and possibly adjust or add other nodes in the
head element too.

For CSS files, order matters. So if you need to override a style defined in another addon, you'll
have to take care that your file is loaded after the original file you want to modify. This can
be done by either adjusting your view's priority field or directly inheriting from the addon's
view that injects the reference to the CSS. For details, consult the Chapter 8, Backend Views,
recipe Changing existing views: View inheritance.

To avoid ordering issues with JavaScript, Odoo uses a mechanism very similar to RequireJS
(http://requirejs.org): In your JavaScript file, you call odoo.define(), which
receives the namespace you want to define as the first argument, and a function that contains
the actual implementation as the second argument.

The name to be defined should be your addon's name. In case you export a lot of logically
different parts of functionality, define them in different functions, with your addon's name
prepended and separated by dots to avoid naming conflicts in the future. This is what the
web module does, which defines, among others, web.core and web.data. The definition
function receives only one parameter, require, which is a function you can use to obtain
references to JavaScript namespaces defined in other modules or in the core. Use this for all
interactions with Odoo and never rely on the global odoo object.

Your own function can then return an object pointing to the references you want to make
available for other addons, or nothing if there are no such references. Be lavish with exporting
your own objects; few things are more frustrating than having to jump through hoops in order
to use some existing functionality just because its developer didn't bother to export it properly.
The object you return here is what other code gets when it calls require('yourmodule').

Per convention, your files should be called as your module with the appropriate extension
added and live in static/src/css or static/src/js respectively. Only if your files
become large enough to be a maintenance issue should you split them up into smaller chunks.

The require mechanism discussed here is new for Odoo 9.0. In older versions, addons
dealing with JavaScript need to define a function with the same name as the addon in the
openerp namespace. This function receives a reference to the currently-loaded instance as a
parameter, from which API functions are to be accessed. So, in order to upgrade existing code,
change this to a odoo.define clause and import the necessary objects via require.

http://requirejs.org

CMS Website Development

314

There's more...
Instead of passing plain CSS to Odoo, you can also make use of less (http://lesscss.org),
which is a higher level notation for CSS that helps you write more efficient CSS code. Certainly
for big code bases, it will improve maintainability a lot. Given Odoo uses this internally anyway,
you can rely on it being available. So, to use less instead of plain CSS, just point to the less file
in your link element and use type="text/less" – this will make Odoo run lessc on your
file in order to generate CSS on the fly without you having to do anything for it.

Creating or modifying templates - QWeb
We'll add website capabilities to the library addon developed in Chapter 4, Application models,
and following. What we're interested in is allowing users to browse through the library and, if
they are logged in with the appropriate permissions, enable them to edit book content right
from the website interface.

Getting ready
As we make use of the library.book model, get chapter 4's code for my_module. For
convenience, this recipe's code contains a copy of it.

How to do it...
We'll need to define a couple of controllers and views:

1. Add a template that displays a list of books in views/library_book_templates.
xml.
<odoo>
 <template id="books">
 <t t-call="website.layout">
 <section>
 This is an editable text before the list of books.
 </section>
 <t t-foreach="books" t-as="book">
 <article itemscope="itemscope"
 itemtype="http://schema.org/Book"
 t-attf-class="row book-#{book_parity}">
 <h2 t-field="book.name" class="col-md-12" />
 <t t-if="book.date_release">
 <div class="col-md-2"
 t-att-dateCreated="book.date_release"
 t-field="book.date_release" />
 </t>

http://lesscss.org

Chapter 14

315

 <ul class="col-md-10">
 <li t-foreach="book.author_ids" t-as="author"
 itemprop="author">
 <t t-esc="author.name" />

 </article>
 </t>
 <section contenteditable="False">
 This is a non-editable text after the list of books.
 </section>
 </t>
 </template>
</odoo>

2. Add a controller that serves the list of books in controllers/main.py.:
@http.route('/books', type='http', auth="user", website=True)
def route(self):
 return request.render(
 'ch13_r02.books',
 {
 'books': request.env['library.book'].search([]),
 })

With this code in place, users can query existing books and see their details. Given
appropriate permissions, users will also be offered to change book details and a
couple of other texts.

How it works...
First, we create a template called books that is used to generate the HTML necessary to
display a list of books. All of the code is wrapped in a t element with the t-call attribute set,
which makes Odoo render the website.layout template and insert our content at the place the
called template has designated for it. This way, we get a full Odoo web page with the menu,
footer, and so on, without having to repeat any code. If you leave out this call, you'll have to
generate this or similar code yourself.

CMS Website Development

316

Loops
For working on record sets, you need a construct to loop through lists. Have a look at the
inside of the t-call element, where the actual content generation happens. The template
expects to be rendered with a context that has a variable called books set and iterates
through it in the t-foreach element. Iteration can happen in a t element, in which case its
contents are repeated for every member of the iterable that was passed in the t-foreach
attribute. You can also place a t-foreach and t-as attribute in some arbitrary element;
then this element and its contents will be repeated for every item in the iterable. The t-as
attribute is mandatory and will be used as the name of the iterator variable to use for
accessing the iterated data. While the most common use for this construction is to iterate over
record sets, you can use it on any Python object that is iterable.

Attributes
We use as many of the semantic HTML5 elements as possible, which is why the actual data is
wrapped in an article tag. For machine readability, some item* properties are attached.
You can read more about this in this recipe's See also section.

Now focus on the t-attf-class attribute here. This will be evaluated by QWeb to be the attribute
class with the contents evaluated as a format string. That is, the string row book- is
passed as it is and the contents of the #{...} snippet is evaluated as Python code. This is
different from t-att-dateCreated (note the missing 'f', the first is an attribute format string, the
latter an evaluation) used below, where the whole content is evaluated as Python code. Both
forms just pass the part of their name after the second dash as the name of the attribute to
be constructed.

It is pretty much up to you when to choose a t-attf-* construction and when to use t-att-*, the
rule of thumb is to use a format string if the result contains a lot of string literals anyway and
an evaluation otherwise.

Fields
The h2 and div tags that follow use the t-field attribute. This attribute needs to be passed
a field within a record set with length one and transparently allows the user to change the
content displayed when the website's edit mode is activated. Of course, this is subject to a
permission check and only allowed if the current user has write permissions on the displayed
record. With an optional t-field-options attribute, you can give a dictionary of options to be
passed to the field renderer, including the widget to be used. Currently, there's no vast amount
of widgets for the backend, so the choices are a bit limited here.

Conditionals
Note that the division showing the publication date is wrapped by a t element with the t-if
attribute set. This attribute is evaluated as Python code and the element only rendered if the
result is truthy . In the example, we only show the div class if there is actually a publication
date set.

Chapter 14

317

Note that t-if doesn't coexist well with other templating attributes
like t-esc or t-field on the same element. Put each of them in its
own element, because, otherwise, the t-if usually wins and the other
attributes are not evaluated any more.

Inline editing
Changes made by a user will either be propagated to the connected database record if the
change happened within a t-field node, or to the view in question if it is some other node
marked as editable. Content nodes like section elements don't need to be marked as
editable, they are editable by default. To turn an editable element read-only, use the attribute
contenteditable=False.

Note that editing a view via the website editor sets the noupdate flag
on this view. This means that subsequent code changes will never
make it into your customer's database. In order to also get the ease of
use of inline editing and the possibility of updating your HTML code in
subsequent releases, create one view that contains the semantic HTML
elements and a second one that injects editable elements. Then only the
latter view will be noupdate and you can still change the former.

For the CSS classes used here, consult bootstrap's documentation, as linked in this recipe's
See also section.

The controller in step 2 just renders the template, please refer to the Chapter 13, Web Server
Development, recipe Modify an existing handler for details.

There's more...
Given the way t-call elements are evaluated, you can use t-set elements to pass
information to the template you call. This can be very useful if you have some generalized
templates like website.layout or report.external_layout, which display data you want to see
almost always. Adapt them not to print certain elements if some variable is set and set it via
a t-set element on the page or report where you want to suppress the element in question.
This helps to avoid a lot of code duplication.

CMS Website Development

318

Within t-foreach loops, you've got access to a couple of variables whose names are derived
from the accompanying t-as attribute. As it is book in the example above, we have access
to the variable book_parity which contains the value even for even indices while iterating
and odd for odd ones. In this example, we use this to be able to have alternating background
colors in our list. Other interesting variables in this case would be book_index, which returns
the current (zero-based) index in the iteration, book_first and book_last, which are
True if this is the first or last iteration respectively, and book_value, which would contain
the item's value if the book variable we iterate over were a dictionary; in this case, book would
iterate through the dictionary's keys.

The template element is a shorthand for a record element that sets some properties on
the record for you. While there's never a reason not to use the convenience of the template
element, you should know what happens under the hood: the element creates a record of
the model ir.ui.view with type qweb. Then, depending on the template element's name and
inherit_id attributes, the inherit_id field on the view record will be set. In case the
template has the attribute primary set to True, the view record's mode field will be set to
primary. Finally, an arch field is crafted with the correct root element (t for non-inheriting
views, data for inheriting views) and a t-name attribute is set for primary views.

Keep in mind that QWeb is a perfectly generic templating engine, so whenever you
need to generate content in an Odoo context, use a Qweb view that you render by calling
env['ir.ui.view'].render('xmlid', parameters). Especially for generating XML
documents, this is convenient, but you can generate every other kind of text too.

See also
For a more in-depth discussion of controllers, see the Chapter 13, Web Server Development,
recipes Make a path accessible from the network and Restrict access to web accessible paths.

For details on view inheritance, see the Chapter 8, Backend Views, recipe Changing existing
views: View inheritance.

The code generated here makes use of microdata (https://html.spec.whatwg.org/
multipage/microdata.html) using definitions from http://schema.org – it is advised
you do the same for your publicly accessible websites in order to simplify reading your pages
for machines. This also makes your content more accessible for search engines.

Odoo as a whole makes extensive use of bootstrap (http://getbootstrap.com), which
you should use to get adaptive designs without much effort.

Offering snippets to the user
The website designer offers building blocks in website edit mode which can be dragged on the
page. This recipe discusses how to offer your own blocks, called snippets, internally.

https://html.spec.whatwg.org/multipage/microdata.html
https://html.spec.whatwg.org/multipage/microdata.html
http://schema.org
http://getbootstrap.com

Chapter 14

319

Getting ready
As we make use of the library.book model, get chapter 4's code for my_module. For
convenience, this recipe's code contains a copy of it.

How to do it...
A snippet is actually just a QWeb view that gets injected in the Insert blocks bar, which is
defined by a QWeb view itself:

1. Add a file called views/snippets.xml:
<?xml version="1.0" encoding="UTF-8"?>
<odoo>
 <template id="book_snippet" inherit_id="website.snippets">
 <!-- points 2, 3 go here /-->
 </template>
</odoo>

2. Add a view for your snippet:
<xpath expr="//div[@id='snippet_feature']/div[@class='o_panel_
body']" position="inside">
 <div>
 <div class="oe_snippet_thumbnail">
 <div style="background: white;box-shadow:none"
 class="oe_snippet_thumbnail_img" >
 <i class="fa fa-book fa-5x text-muted" />
 </div>
 Latest
books
 </div>
 <div class="oe_snippet_body book_snippet">
 <section class="container">
 <h2>Latest books</h2>
 <table class="table">
 <tr>
 <th>Name</th>
 <th>Release date</th>
 </tr>
 </table>
 </section>
 </div>
 </div>
</xpath>

CMS Website Development

320

3. Add options:
<xpath expr="//div[@id='snippet_options']" position="inside">
 <div data-selector=".book_snippet"
 data-drop-near="p, h1, h2, h3, blockquote, .well, .panel"
 data-drop-in=".content">
 <li class="dropdown-submenu">
 Show books
 <ul class="dropdown-menu">
 <li data-select_class="book_snippet-show3">
 <a>3

 <li data-select_class="book_snippet-show5">
 <a>5

 <li data-select_class="book_snippetshow10">
 <a>10

 <li data-select_class="book_snippetshow15">
 <a>15

 </div>
 <div data-selector=".book_snippet table">
 <li class="dropdown-submenu">
 Table style
 <ul class="dropdown-menu">
 <li data-toggle_class="table-striped">
 <a>Striped
 <li data-toggle_class="tablebordered">
 <a>Bordered
 <li data-toggle_class="tablecondensed">
 <a>Condensed

 </div>
</xpath>

Chapter 14

321

4. Add JavaScript code to populate our snippet:
odoo.define('ch13_r03.snippets_animation', function(require)
{
 "use strict";
 var animation = require('web_editor.snippets.animation'),
 Model = require('web.Model');

 animation.registry.book_snippet = animation.Class.extend({
 selector: ".book_snippet",
 start: function()
 {
 var self = this,
 number = 3;
 _.each(this.$el.attr('class').split(/\s+/),
 function(cls)
 {
 if(cls.indexOf('book_snippet-show') == 0)
 {
 number = parseInt(
 cls.substring('book_snippet-show'.length));
 }
 });
 this.$el.find('td').parents('tr').remove();
 new Model('library.book')
 .call(
 'search_read', [],
 {
 domain: [],
 fields: ['name', 'date_release'],
 order: 'date_release desc',
 limit: number,
 })
 .then(function(data)
 {
 var $table = self.$el.find('table');
 _.each(data, function(book)
 {
 $table.append(
 jQuery('<tr />')
 .append(
 jQuery('<td />').text(book.name),
 jQuery('<td />').text(
 book.date_release)
)

CMS Website Development

322

);
 })
 });
 },
 });
});

After updating your module, you're offered a snippet called Latest books, which shows a
configurable amount of books in a list, ordered by their publication date.

How it works...
You inject your snippet directly into the snippet bar's view. What is crucial is that you attach
the right classes and insert your code at the right place.

A snippet needs to have one root element (in our case, the outermost div) that contains an
element with the class oe_snippet_thumbnail and another with class oe_snippet_body.
The first is used to display the snippet in the bar, the second contains the actual definition of
the snippet. For the thumbnail, it makes sense to use a fontawesome icon and add some
classes for the layout. For the snippet body, you can add whatever HTML you need for your
goals. In general, it's a good idea to use section elements and the bootstrap classes, because,
for them, Odoo's editor offers edit and resize controls out of the box.

The position to insert the snippet determines in which section of the bar it shows up. Our
choice was //div[@id='snippet_feature']/div[@class='o_panel_body'],
which places it in the features section. With the IDs snippet_structure, snippet_content, and
snippet_effect, you can place your snippet in the respective other sections.

The div we injected in //div[@id='snippet_options'] offers the user choices in the
customize menu. Note the attribute data-selector that contains a JQuery selector determining
for which element the option is to be shown. In the example, the first option list is shown when
the whole container is selected, while the second one, about the table style, is shown when
the table is selected.

The attributes data-drop-near and data-drop-in determine where the snippet can be placed
when dragging it out of the snippet bar. Those are also JQuery selectors and, in the example,
we allow putting the snippet basically anywhere that content can go.

For the options themselves, the attributes data-select_class and data-toggle_class allow
the user to set either one (select) or multiple (toggle) classes on the element selected by
the data-selector attribute. Our first set of options sets classes later used by the JavaScript
code. The second set of options sets classes directly in the table, which will change its layout
accordingly.

The JavaScript code uses the snippet animation framework to execute some code every time
the snippet is loaded. We use it to query the current list of books to be presented to the user.

Chapter 14

323

There's more...
After completing this recipe, you know enough to create Odoo themes. An addon is considered
a theme if it contains only data files, CSS and JavaScript code. Use QWeb views and snippets
to adapt the website's HTML code as necessary and CSS for styling. For the addon to be
recognized as such in the app store, the addon's manifest must set the application key to True
and use a subcategory of theme, as found on https://www.odoo.com/apps/themes.

https://www.odoo.com/apps/themes

325

15
Web Client

Development

In this chapter, we will cover the following topics:

 f Creating custom widgets

 f Using client side QWeb templates

 f Making RPC calls to the server

 f Writing tests for client side code

 f Debugging your client side code

Introduction
Odoo's web client, or backend, is the place where employees spend most of their time. In
Chapter 8, Backend Views, you have seen how to use the existing possibilities the backend
offers. Here, we'll have a look at how to extend and customize those possibilities. All of the
following code will depend on the web module. Note that at the time of writing, there exist two
versions of the web module for Odoo 9.0: the community version and the enterprise version,
which are quite different from each other, even though they share the same name. We'll only
talk about the community version here.

Creating custom widgets
As you've seen in Chapter 8, Backend Views, there's a plethora of widgets that display your
data in a certain way. To demonstrate how to create your own widget, we'll write one that lets
the user choose a many2one reference from a predefined selection of values in the form of
a list of buttons. The result looks somewhat similar to the many2many_checkboxes widget,
but with buttons instead of checkboxes.

Web Client Development

326

Getting ready
You'll need to create an empty addon that depends on the web module; we call it ch15_r01
here.

How to do it...
We'll add a JavaScript file that contains our widget's logic, and a CSS file to do some styling.
Then, we also choose one field on the partner form to use our new widget. Follow the given
steps:

1. Add a static/src/js/ch15_r01.js file. For the syntax used here, refer to
Chapter 14, CMS Website Development, recipe Extending CSS and JavaScript
for the website:
odoo.define('ch15_r01', function(require)
{
 var core = require('web.core'),
 form_common = require('web.form_common');

2. Create your widget by subclassing AbstractField:
 var FieldMany2OneButtons = form_common.AbstractField.extend({

3. Set the CSS class for the widget's root div element:
 className: 'oe_form_field_many2one_buttons',

4. Override init to do some initialization:
 init: function()
 {
 var result = this._super.apply(this, arguments);
 this.user_list = {
 1: {
 name: 'Administrator',
 },
 4: {
 name: 'Demo user',
 },
 };
 this.on(
 'change:effective_readonly', this,
 this.effective_readonly_changed)
 return result;
 },

Chapter 15

327

5. Capture some JavaScript events:
 events: {
 'click .btn': 'button_clicked',
 },

6. Override start to set up DOM elements:
 start: function()
 {
 var self = this;
 _.each(this.user_list, function(description, id)
 {
 self.$el.append(
 jQuery('<button>').attr({
 'data-id': id,
 'class': 'btn btn-default btn-sm',
 })
 .text(description.name)
);
 });
 this.effective_readonly_changed();
 return this._super.apply(this, arguments);
 },

7. Override set_value to actually display the value of the field:
 set_value: function(_value)
 {
 this.$el.find('button').removeClass('btn-primary');
 this.$el.find(
 _.str.sprintf('button[data-id="%s"]',
 _.isArray(_value) ? _value[0] : _value)
).addClass('btn-primary');
 return this._super.apply(this, arguments);
 },

8. Define the handlers we referred to above:
 button_clicked: function(e)
 {
 this.set_value(
 parseInt(jQuqery(arguments[0].target)
 .attr('data-id'))
);
 },
 effective_readonly_changed()
 {

Web Client Development

328

 this.$el.find('button').
 prop('disabled', this.get('effective_readonly'));
 },
 });

9. Don't forget to register your widget:
 core.form_widget_registry.add(
 'many2one_buttons', FieldMany2OneButtons);

10. Make it available for other addons:
 return {
 FieldMany2OneButtons: FieldMany2OneButtons,
 }
});

11. Add some CSS in static/src/css/ch15_r01.css:
.oe_form_field_many2one_buttons button
{
 margin: 0em .2em .2em 0em;
}

12. Register both files in the backend assets in views/templates.xml:
<?xml version="1.0" encoding="UTF-8"?>
<odoo>
 <template id="assets_backend" inherit_id="web.assets_backend">
 <xpath expr="." position="inside">
 <link href="/ch15_r01/static/src/css/ch15_r01.css"
 rel="stylesheet" type="text/css"/>
 <script src="/ch15_r01/static/src/js/ch15_r01.js"
 type="text/javascript" />
 </xpath>
 </template>
</odoo>

13. Finally, make the partner form use our widget for choosing the sales person:
<?xml version="1.0" encoding="UTF-8"?>
<openerp>
 <data>
 <record id="view_partner_form" model="ir.ui.view">
 <field name="model">res.partner</field>
 <field name="inherit_id" ref="base.view_partner_form"
/>
 <field name="arch" type="xml">
 <field name="user_id" position="attributes">

Chapter 15

329

 <attribute name="widget">
 many2one_buttons</attribute>
 </field>
 </field>
 </record>
 </data>
</openerp>

When you open a partner form after installing the module, you'll see two buttons on the sales
person field that allow you to select a user. The currently selected user's button is highlighted.

How it works...
The first choice when developing a widget is to choose the correct base class. The
fundamental base class for widgets is Widget (defined by web.widget), but we didn't
choose it because it's too basic. It only takes care of handling events and rendering, but we
want more functionality for free. Still, this is an interesting class to study if you want to dig into
Odoo's JavaScript internals.

We chose AbstractField (defined by web.form_common) because it brings all the
functionality we need for our widget to behave as a form field. It does this by inheriting
from FormWidget and implementing FieldInterface, which includes things like
communicating with the parent form, saving the current field's value, and so on. You should
study both classes, but the most important functions are overridden in the code example to
make this widget do anything in the first place.

The init function should be used to do synchronous initialization tasks. Then, for
asynchronous initialization, either use willStart (runs before rendering) or start (runs
after rendering). Both those functions are supposed to return a deferred object, which we
simply obtain from super. Then set_value needs to deal with the field's value that the
widget is supposed to display. As the parent class handles the storage aspects, we only have
to take care that it's displayed properly.

We use init to set up a list of users (this is only to keep it simple for now, generally, hard-coded
data is a horrible idea of course. We'll fix this in the recipe Making RPC calls to the server) and
to bind an event. Another possibility for binding events is using the mapping events, where you
map an event name, possibly followed by a jQuery selector, to a function name. We use this to
have the click events for the buttons we create later set up automatically.

The actual UI is created in start, where we simply create one button per user, and have
set_value mark the appropriate button with the btn_primary class. The two event
handlers button_clicked and effective_readonly_changed then are then necessary
to implement our widget's behavior, that is, select the user a button displays, but don't allow
selections in read only mode.

Web Client Development

330

Note that there is also a property readonly and one called effective_readonly.
The first is set when the field is marked as read only, either in the field
definition or the form's. The latter is the conjunction of the first and eventual
restrictions by permissions on model or record level, so be sure to use
effective_readonly when you have to deal with widgets.

After we've defined our new widget, it's crucial to register it with the form widget registry,
which lives in web.core. If you want to create widgets for other view types, you'll have to
register them in an appropriate registry, like web.core.list_widget_registry or
web.core.search_widget_registry.

Finally, we export our widget class so that other addons can extend it or inherit from it.

The rest of the code is some quite unspectacular styling for our buttons, registering our
JavaScript and CSS files with the system, and using our widget on the partner form.

There's more...
The namespace web.form_common defines a couple of very helpful mixin classes you should
not miss out on when developing form widgets. ReinitializeFieldMixin offers a simple
interface for widgets that have to remove all DOM elements and rebuild them when switching
between display (read only) mode and edit mode. CompletionFieldMixin is the base for
fields that offer completion, like the many2one or many2many_tags widgets.

When doing your overrides, always study the base class to see what
the function is supposed to return. A very common cause of bugs is
forgetting to return super's Deferred object, which causes trouble
with asynchronous operations.

As field widgets are responsible for managing values, they are also responsible for validation.
Use the functions is_valid and is_syntax_valid to implement your customizations
of this aspect. The latter is meant to be a very basic check, like the fact that a number field
should only contain digits, while the former should also look at the broader picture, like the
fact that a ratio should be less than or equal to 1 and greater than or equal to 0.

See also
In case you want to use something very similar to this in real life, have a look at the radio
widget provided by the web addon, it supports selection and many2one fields.

A very good source for more widgets is the community repository https://github.com/
OCA/web, where developers share their general purpose widgets (and other addons related
to the web client).

https://github.com/OCA/web
https://github.com/OCA/web

Chapter 15

331

Using client-side QWeb templates
Just as it's a bad pattern to programmatically create HTML code in controllers, you should
create only the minimum amount of DOM elements in your client side JavaScript code.
Fortunately, there's a templating engine available for the client side too and, even more
fortunately, it's just the same as for server side code.

We'll use Qweb to make the module from the previous recipe, Create custom widgets, more
modular by moving the DOM element creation to QWeb.

Getting ready
This recipe is just a modified version of the previous recipe, Create custom widgets, code, so
grab a copy of it and use it to create the module ch15_r02.

How to do it...
We add the QWeb definition in the manifest and change the JavaScript code to use it:

1. Remove the entire function start from your JavaScript code in static/src/js/
ch15_r02.js, but add a member called template:
 var FieldMany2OneButtons = form_common.AbstractField.extend({
 template: 'FieldMany2OneButtons',

2. Add the template file in static/src/xml/ch15_r02.xml:
<templates>
 <t t-name="FieldMany2OneButtons">
 <div class="oe_form_field_many2one_buttons">
 <t t-foreach="widget.user_list" t-as="user_id">
 <button
 t-att-disabled="widget.get
 ('effective_readonly') ? 'disabled' : False"
 t-att-data-id="user_id"
 class="btn btn-default btn-sm"
 >
 <t t-esc="widget.user_list[user_id].name" />
 </button>
 </t>
 </div>
 </t>
</templates>

Web Client Development

332

3. Register the QWeb file in your manifest:
 "qweb": [
 'static/src/xml/ch15_r02.xml',
],

Now other addons have a much easier time changing the HTML code our widget uses,
because they can simply override it with the usual QWeb patterns.

How it works...
As there is already a comprehensive discussion of the basics of QWeb in the Chapter 14,
CMS Website Development, recipe Creating or modifying templates: QWeb, we'll focus on
what is different here. First of all, you need to realize that we're dealing with the JavaScript
QWeb implementation here as opposed to the Python implementation on the server side. This
means that you don't have access to browse records or the environment; you only have access
to the current widget via variable widget and some helper objects like datetime with a
subset of Python as described in the Chapter 8, Backend Views, recipe Passing parameters to
forms and actions: Context.

This means that you should have all the intelligence in the widget's JavaScript code and
have your template only access properties, or possibly functions, on the widget. Fortunately,
the original version of our widget does this already, so the only thing we have to do is to
iterate through the object we prepared in init and create buttons accordingly. Given
that we can also call all functions available on the widget, we can simply ask it if it should
behave as read-only by calling the get function, which returns properties saved before via
PropertiesMixin's (defined in web.mixins) set function.

As client side QWeb has nothing to do with QWeb views, there's a different mechanism to
make those templates known to the web client; add them via the key qweb to your addon's
manifest in a list of file names relative to the addon's root.

There's more...
The reason for making the effort to use QWeb here was extensibility and this is the second big
difference between client side and server side Qweb. On the client side, you can't use Xpath
expressions, but you need to use jQuery selectors and operations. If we, for example, want
to change our widget in yet another module, we'd use the following code to have each of our
buttons show a user icon before the user's name:

<t t-extend="FieldMany2OneButtons">
 <t t-jquery="button" t-operation="prepend">
 <i class="fa fa-user" />
 </t>
</t>

Chapter 15

333

If we also gave a t-name attribute here, we'd have made a copy of the original template and left
that one untouched. Other possible values for the t-operation attribute are append, before,
after, inner and replace, which cause the content of the t element to be either appended to
the content of the matched element, put before or after the matched element, replace the
content of the matched element (inner), or replace the complete element (replace). There's
also t-operation='attributes', which allows you to set an attribute on the matches element,
following the same rules as server-side QWeb.

Another tacit difference is that names in client side QWeb are not namespaced by the module
name, so you have to choose names for your templates which are probably unique over all
addons you install, which is why developers tend to choose rather long names.

See also
The client side QWeb engine has less convenient error messages and handling than other parts
of Odoo. A small error often means that simply nothing happens and it's hard for beginners
to continue from there. Fortunately, there are some debug statements for client side QWeb
templates described later in the chapter, in the recipe Debugging your client side code.

Making RPC calls to the server
Sooner or later, your widget will need to look up some data from the server. This recipe shows
you how to do that. We'll replace the hard coded list of users in the many2one_buttons
widget with a list queried from the server, depending on the field's domain.

Getting ready
This recipe is just a modified version of the previous recipe, Using client side templates: QWeb
code, so grab a copy of it and use it to create addon ch15_r03.

How to do it...
We just have to adapt some JavaScript code at the right places:

1. Require the data and model packages in static/src/js/ch15_r03.js:
odoo.define('ch15_r01', function(require)
{
 var core = require('web.core'),
 data = require('web.data'),
 model = require('web.Model'),
 form_common = require('web.form_common');

Web Client Development

334

2. Delete the hard-coded list in init to have it only set up the event listener:
 init: function()
 {
 var result = this._super.apply(this, arguments);
 this.on(
 'change:effective_readonly', this,
 this.effective_readonly_changed)
 return result;
 },

3. Query the server for the list we want in willStart:
 willStart: function()
 {
 var deferred = new jQuery.Deferred(),
 self = this;
 self.user_list = {};
 new data.Query(new model(this.field.relation),
 ['display_name'])
 .filter(this.field.domain)
 .all()
 .then(function(records)
 {
 _.each(records, function(record)
 {
 self.user_list[record.id] = record;
 self.user_list[record.id].name = record.
 display_name;
 });
 deferred.resolve();
 });
 return jQuery.when(
 this._super.apply(this, arguments),
 deferred
);
 },

Now you should see all users of your system, not just the two hard-coded ones as you did
before. Also, the widget can be used for any many2one fields now, because it just queries
what is available and doesn't need any knowledge about this beforehand. If you set a domain
on the field, the buttons will be restricted to records matching this domain. In this specific
case, you might want to restrict the selection to users of the group Sale | User.

Chapter 15

335

How it works...
The willStart function is called before rendering, and, more importantly, returns a deferred
object that must be resolved before rendering starts. So in a case like ours, where we need to
run an asynchronous action before rending can occur, this is the right function to do it.

The data and model packages we required in the new code provide access to classes
dealing with data access. The model class provides low-level access to model functions like
search or read, or in this case, search_read. We could have just used them, but they are
less convenient than the Query class, which behaves more like you'd expect from JavaScript
objects: you can chain calls and set things like the domain in a persistent way on the object
as opposed to passing it as a parameter, as you'd have to do with the model class. In the end,
you'll be executing basically the same RPC functions, so this is up to your personal preference.

In any case, we'll have to collect the results asynchronously in our success handler. This will
set up the internal data structure user_list the same way we did before in the hard-coded
version, which is great, because this way, we don't have to change anything else.

Note that we request the field display_name here instead of name, because we can be sure
that every model has a field display_name, whereas that's not guaranteed with the field
name. Then we just assign the name property the same value as display_name, this, again,
is in order not to have to change existing code more than necessary. Do this too instead of
a lot of overrides if you just need to divert display to another field or something similar. For
details about the display_name field, refer to the Chapter 4, Application Models, recipe
Define the Model representation and order.

The end of the handler contains the crucial part, resolving the deferred object we created
before. This, in combination with returning the deferred object wrapped together with super's
result in a new deferred object created by the jQuery.when call, causes rendering to only
happen after the values are fetched and whatever asynchronous action super was busy with
finished too. This way, you can be sure in the template code that widget.user_list is
accessible and contains the values we need.

There's more...
The AbstractField class comes with a couple of interesting properties, one of which we
used above. The field property contains the output of the model's fields_get function for
the field the widget is displaying. Apart from the relation key that gives you the comodel for
x2x fields or the domain, you can also use it to query the field's string, size or whatever other
property you can set on the field during model definition.

Another helpful property is options, which contains data passed via the options attribute in
the form definition. This is already JSON parsed, so you can access it like any object.

Web Client Development

336

See also
Odoo's RPC heavily relies on jQuery's deferred objects, so it can't be repeated often enough
that you should dive into jQuery's documentation about this: https://api.jquery.com/
jQuery.Deferred

Writing tests for client side code
The more code you have on the client side, the more it becomes a liability. For server
side code, there's the well-entrenched unit tests, and for JavaScript, we have QUnit
(https://qunitjs.com), which Odoo uses.

Getting ready
We'll add our tests to the addon developed in the previous recipes, so grab the code from the
recipe Making RPC calls to the server and put it in a new module called ch15_r04.

How to do it...
We have to add our test file and make it known to the test mechanism in the appropriate
template.

1. Add the static/test/ch15_r04.js file:
odoo.define_section('ch15_r04', ['ch15_r04'], function (test,
mock) {
 test('FieldMany2OneButtons', function(assert, ch15_r04)
 {

2. Create a minimal implementation of FieldManager:
 var fake_field_manager = {
 get_field_desc: function()
 {
 return {
 'relation': 'res.users',
 'domain': [],
 };
 },
 on: function() {},
 off: function() {},
 get: function() {},
 $el: jQuery(),
 },

https://api.jquery.com/jQuery.Deferred
https://api.jquery.com/jQuery.Deferred
https://qunitjs.com

Chapter 15

337

3. Instantiate our widget:
 widget = new ch15_r04.FieldMany2OneButtons(
 fake_field_manager,
 {
 attrs: {
 modifiers: '{}',
 name: 'field_name',
 widget: 'many2one_buttons',
 },
 }
),

4. Create a container to add our widget to:
 $container = jQuery('<div/>'),

5. Tell the test framework we're testing an asynchronous action:
 async_result = assert.async();

6. Add data to simulate our RPC call:
 mock.add(
 '/web/dataset/search_read', function()
 {
 return {
 records: [
 {
 id: 1,
 display_name: 'Administrator',
 },
 {
 id: 4,
 display_name: 'Demo user',
 },
],
 length: 2,
 }
 }
);

7. Do the actual testing:
 widget.attachTo($container)
 .then(function()
 {
 widget.renderElement();
 assert.deepEqual(

Web Client Development

338

 widget.$el.find('button').map(function()
 {
 return jQuery.trim(jQuery(this).text())
 }).get(),
 ['Administrator', 'Demo user'],
 'Check if the widget shows the users we expect'
);
 async_result();
 });
 })
});

8. Make the test file known to the test mechanism in views/templates.xml:
 <template id="qunit_suite" inherit_id="web.qunit_suite">
 <xpath expr="//head" position="inside">
 <script src="/ch15_r04/static/test/ch15_r04.js"
 type="text/javascript" />
 </xpath>
 </template>

When you navigate to /web/tests now, the web client will run all tests available. You should
find our test in this list too, hopefully with a positive result. Given a lot of tests will run there,
it can be simpler to also pass the module you want to test. In our case, the path would be
/web/tests?module=ch15_r04.

Note that what you pass as the module parameter in the test URL is
not necessarily the name of your addon, but whatever section name
you define in your define_section call above.

How it works...
You define your JavaScript tests in a very similar manner to how you would make normal
JavaScript code known to Odoo: You call a function that gets your code as a parameter.
In the case of tests, this function is called define_section and expects a logical name
for the tests to be run, the JavaScript packages the test requires (in our case, we just need
the code our module provides, so we pass ['ch15_r04'] here), and a function that sets up
the tests themselves.

This function is provided with a function called test and an object called mock. The test
function is what we call to actually declare tests; it receives a name for the single test and the
function that contains the test code. This function will be provided with an assert object and
all the packages we required in the call to define_section as parameters.

Chapter 15

339

Within this last function, the actual testing happens. We need to set up a couple of helper
objects because a widget expects to live on a form, which in turn implements an interface
called FieldManager. For simplicity, we provide a minimal implementation of that in order
not to have to pull a whole form as dependency for our test. With this, we can instantiate our
widget and also pass it an idealized version of a parsed XML node that would be the field's
definition in the form view.

At the end of the function, we can attach our widget to the container element we created, call
the renderElement function, and check if rendering caused the DOM elements to show up
as we expected.

For doing those checks, the assert object has a few functions like equal, deepEqual,
notEqual and notDeepEqual, which all deal with equality, but the deep* variants recurse
into compound types like arrays and objects. Then there's ok and notOk which can be used
to assert true or false value and throws, to assert a function, throws a certain exception or
error message.

There's more...
The example code contains two peculiarities which makes this test more complicated
than others; it needs to request data from the server, and as a consequence of that, run
asynchronously. Both pose challenges to the test framework.

For fetching data, Odoo offers an object called mock, which we can fill with data that will be
returned when code requests data from the server. So what we do here is assign a JavaScript
function per server URL our test code is expected to query and have the function return what
we consider the expected result. Then the test is if the client side code reacts to this data
appropriately. If your test code makes calls to different models or functions, or to the same
but with different parameters, this function would have to react to those parameters. But
as we only read data once, it suffices to add a handler for /web/dataset/search_read,
and we can just can return a fixed result. If your own code involves more interactions with
the server, you'll probably need a smarter handler that actually looks at its parameters and
returns different results for different requests.

Then, because of the asynchronous call, we need to tell the test framework that our function
exiting is not yet the end of the test by calling assert.async(). This returns a function we
are supposed to call exactly once within our asynchronous handler in order to notify the test
framework that this specific test is done.

See also
Unfortunately, at the time of writing, many of the more complex JavaScript community
modules are not yet migrated to Odoo 9.0, so there are not many examples of client side tests
in the wild. Consult the web module's tests for some examples: https://github.com/
OCA/OCB/tree/9.0/addons/web/static/test.

https://github.com/OCA/OCB/tree/9.0/addons/web/static/test
https://github.com/OCA/OCB/tree/9.0/addons/web/static/test

Web Client Development

340

Debugging your client side code
For debugging server side code, this book contains a whole chapter, that is, Chapter 7,
Debugging and Automated Testing. For the client side part, you'll get a kick start in this recipe.

Getting ready
This recipe doesn't really rely on specific code, but if you want to be able to reproduce exactly
what's going on, grab the previous recipe's code.

How to do it...
What makes debugging client side script hard is that the web client heavily relies on jQuery's
asynchronous events. Given that breakpoints halt execution, the chance is high that a bug
caused by timing issues will not occur when debugging. We'll discuss some strategies for
this later:

1. Turn on debug mode by selecting About in the top right user menu, and clicking
Activate developer mode. For details, consult the Chapter 1, Installing the Odoo
Development Environment, recipe Activate developer tools.

2. In a JavaScript function you're interested in, call the debugger:
debugger;

3. If you have timing problems, log to the console in some JavaScript function:
console.log("I'm in function X currently");

4. If you want to debug during template rendering, call the debugger from QWeb:
<t t-debug="" />

5. You can also have QWeb log to the console by saying the following:
<t t-log="myvalue" />

Chapter 15

341

All of this relies on your browser offering appropriate functionality for debugging. While all the
major browsers do that, we'll only look at Chromium here for demonstration purposes. To be
able to use the debug tools, open them by clicking the top-right menu button and selecting
More tools | Developer tools:

Web Client Development

342

How it works...
When the debugger is opened, you should see something similar to the following screenshot:

Here, you have access to a lot of different tools in the separate tabs. The currently active tab
in the screenshot is the JavaScript debugger, where we set a breakpoint in line 31 by clicking
on the line number. Every time our widget fetches the list of users, execution should stop at
this line and the debugger allows you to inspect variables or change their value. Within the
watch list to the right, you can also call functions to try out their effects without having to
continuously save your script file and reload the page.

The debugger statements described above will behave the same as soon as you have the
developer tools open: execution will stop and the browser will switch to the Sources tab, with
the file in question opened and the line with the debugger statement highlighted.

The two logging possibilities from above will end up in the tab Console. This is the first tab you
should inspect in case of problems anyways, because if some JavaScript code doesn't load
at all because of syntax errors or similar fundamental problems, you'll see an error message
there explaining what's going on.

Chapter 15

343

There's more...
Use the Elements tab to inspect the DOM representation of the page the browser currently
displays. This will prove helpful to make yourself familiar with the HTML code existing widgets
produce, but also allows you to play with classes and CSS attributes in general. This is a great
resource for testing layout changes.

The Network tab gives you an overview which requests the current page made and how long
it took. This is helpful to debug slow page loads, as you'll usually see the culprit in one glance
here, represented by a long bar. Then you can check on the server side why this call takes as
long as it does. Also, this view helps you to determine if it makes sense to parallelize calls;
this would look like several long bars, one after another. If you select a request, you can
inspect the payload passed to the server and the result returned, which helps you to figure
out the reason for unexpected behavior on the client side. You'll also see the status codes of
requests made, for example 404, in case a resource can't be found, for example because you
misspelled a file name.

For other browsers, you'll have to look up similar functionality in the documentation.
Firefox for example has the very powerful firebug addon, which lets you perform most
of the mentioned actions.

As stated above, debugging becomes complicated as soon as asynchronous operations are
involved. Breakpoints are of limited use here because they interrupt code execution and the call
stack won't contain the place where an event handler was attached, but mostly internal jQuery
functions and the browser's implementation of the event system. The Profiling tab helps you
here by showing call graphs, including timings. This can hint at event handlers being called in
the wrong order. Another strategy is to spread out console.log statements throughout your
handlers in order to plot a sort of call graph in the JavaScript console. Before diving into this,
have a critical look at all your custom code in order to check if you forgot to return super's result
in case it is a deferred object. This is a very common cause of timing problems.

345

16
Server Deployment

In this chapter, we will learn about the following tasks:

 f Installing Odoo for production use

 f Adapting the configuration file for production

 f Setting up Odoo as a system service

 f Configuring a reverse proxy and SSL

 f Using buildout for repeatable builds

Introduction
We have seen in Chapter 1, Installing the Odoo Development Environment, in the recipe Easy
installation from source, and in Chapter 2, Managing Odoo Server Instances, in the recipe
Standardizing your instance directory layout, how to set up a development environment. The
requirements for a production environment are slightly different. This chapter covers the
specificities of the deployment of Odoo.

Installing Odoo for production
Installing Odoo in the production phase is not very different from installing Odoo for
development. While there are several possible approaches, this recipe proposes a set up
that is close to the development installation explained in Chapter 1, Installing the Odoo
Development Environment, in the recipe Easy installation from source, and in Chapter 2,
Managing Odoo Server Instances, in the recipe Standardize your instance directory layout.

Server Deployment

346

Getting ready
We expect that you have a development instance ready. In this recipe, we assume the following:

 f The project of your instance is managed in the same way as suggested in Chapter 2,
Managing Odoo Server Instances, in the Standardize your instance directory layout
recipe. We will use https://github.com/login/project.git. This repository
should contain the configuration file of the instance used during development, the
specific addons of the instance, and any helper script that you may have created in
the context of the project.

Caution:
If the configuration files of your project include security information such
as passwords, you should not push the project on a public service such as
GitHub. Use an internal Git repository or a private GitHub project.

 f The deployment server is running Debian Jessie (but it should work with little
change on derived distributions such as Ubuntu; see Chapter 1, Installing the Odoo
Development Environment, for more on this).

 f You have root access to the final server using ssh or sudo. If you don't, you will
have to find a system administrator to assist you in the configuration.

 f You know the final fully qualified domain name under which the server will be accessed.

How to do it…
To install Odoo for production, you need to carry out the following steps:

1. As root, install the dependencies and build dependencies:
apt-get install git python2.7 postgresql nano python-virtualenv \

 gcc python2.7-dev libxml2-dev libxslt1-dev \

 libevent-dev libsasl2-dev libldap2-dev libpq-dev \

 libpng12-dev libjpeg-dev node-less node-clean-css \
 xfonts-75dpi xfonts-base

wget http://nightly.odoo.com/extra/wkhtmltox-0.12.1.2_linux-
jessie-amd64.deb

dpkg -i wkhtmltox-0.12.1.2_linux-jessie-amd64.deb

2. As root, create a user called odoo:
adduser odoo

https://github.com/login/project.git

Chapter 16

347

3. Configure the PostgreSQL database:
sudo -u postgres createuser odoo

sudo -u postgres createdb -O odoo odoo_project

4. As odoo, clone the project repository:
su odoo

$ mkdir ~/odoo-prod

$ cd ~/odoo-prod

$ git clone https://github.com/login/project.git project

$ mkdir -p project/src

5. As the odoo user, clone the Odoo source code:
$ cd project/src

$ git clone -b 9.0 --single-branch https://github.com/odoo/odoo.
git odoo

6. Create virtualenv and install the dependencies:
$ virtualenv ~/env-odoo-9.0

$ source ~/env-odoo-9.0/bin/activate

$ pip install -r odoo/requirements.txt

7. Clone all third-party addon repositories in the project/src subdirectory:
$ git clone -b 9.0 https://github.com/OCA/partner-contact.git

8. Create the ~/odoo-prod/project/bin directory:
$ mkdir ~/odoo-prod/project/bin

9. Create a script to easily start Odoo in the production environment in ~/odoo-prod/
project/bin/start-odoo:
#! /bin/sh

PYTHON=~odoo/env-odoo-9.0/bin/python

ODOO=~odoo/odoo-prod/project/src/odoo/odoo.py

CONF=~odoo/odoo-prod/project/production.conf

${PYTHON} ${ODOO} -c ${CONF} "$*"

10. Make the script executable:
$ chmod +x ~/odoo-prod/project/bin/start-odoo

11. As root, uninstall gcc:
apt-get remove gcc

Server Deployment

348

How it works…
Most of the recipe is identical to what is described in Chapter 1, Installing the Odoo
Development Environment, but there are a few key differences.

We are using a dedicated system user with login odoo. This enables us to control who
has access to the account, for example, by configuring the sudo or ssh authorized keys.
It also allows us to give this user as few permissions as possible, in case the instance is
compromised.

The database user linked to this account does not have any privilege, not even database
creation. We create the database externally, just once. In case the instance is compromised,
an attacker won't be able to create additional databases on the server.

The Odoo script we are creating will be used in the recipe Set up Odoo as a system service
later in this chapter. It uses the production.conf configuration file, which is explained in
the next recipe, Adapting the configuration file for production.

We uninstall gcc at the end of the process so that if an attacker gains access, he will not be
able to use this to recompile executables locally.

At the end of this recipe, your server is not ready yet. You will need to refer to the recipes
Adapting the configuration file for production, Set up Odoo as a system service, and
Configure a reverse proxy and SSL, which are described in this chapter.

There's more…
Here are a few more important points to consider when preparing the deployment of
your instance.

Server dimensioning
What should you use for a server? Pretty much any physical server these days is more than
enough to handle an average sized Odoo instance with about 10 simultaneous users. Since
virtual machines typically have fewer resources provisioned, you will need to pay a little more
attention to this if you are planning to run on a VM. Here are a few key figures to get you
started. Obviously, they will need fine tuning to match your use of Odoo.

A small Odoo instance needs at least 1 GB of RAM. Don't be shy on this; the last thing you
want to happen is your server swapping. 2 to 4 GB is a good starting point. Give your server,
at the very least, two CPU/cores. If you are running the PostgreSQL server on the same host,
provision at least four CPU/cores, and add 1 GB of RAM for the database. The additional
CPU/cores will be used by the Odoo workers that are covered in the next recipe, Adapting the
configuration file for production.

Chapter 16

349

The source code of your instance will eat up 1 to 2 GB of hard disk if you are keeping the Git
history, which we recommend in this recipe. The file store (data_dir in the configuration file)
will grow as the instance is used, and the growth heavily depends on what you are doing in the
instance. Start with 5 GB, which should give you plenty of time before getting full, and monitor
the disk usage. If you are running the database on the same host, give plenty of disk space to
the partition that will contain the database working files, starting at 50 GB.

You will also need space for the on-site backups, both of the database and the file store. A lot
can depend on your backup plan; 200 GB is a good starting point.

PostgreSQL tuning
Discussing PostgreSQL tuning is beyond the scope of this book. You may want to check out
the books PostgreSQL 9 Admin Cookbook or PostgreSQL 9.0 High Performance, both from
Packt Publishing, for an in-depth coverage of these topics.

The default configuration of PostgreSQL is generally very conservative and meant to prevent
the database server from hogging all the system resources. On production servers, you can
safely increase some parameters in the postgresql.conf file to get better performance.
Here are some settings you can use to get started:

max_connections = 100
shared_buffers = 256MB
effective_cache_size = 768MB
work_mem = 10MB
maintenance_work_mem = 64MB
checkpoint_segments = 16
wal_buffers = 8MB
checkpoint_completion_target = 0.9

You will need to restart PostgreSQL after modifying these settings.

The pgtune utility can help in finding a suitable configuration. You can install it by running
the following:

sudo apt-get install pgtune

To get a suitable configuration, you can run the following:

$ pgtune -T OLTP -i /etc/postgresql/9.4/main/postgresql.conf \

-M 1073741824 -c 100

The options we use are as follows:

 f -T OLTP to get a configuration for an on line translation processing database

 f -i to get the original configuration file

 f -M to specify the amount of memory for PostgreSQL (in kB); our example uses 1 GB

 f -c to specify the maximum number of connections

Server Deployment

350

If your instance is heavily loaded, you will benefit from separating the database server and
the Odoo server onto two different hosts. Don't use two virtual machines running on the same
physical server if you are getting down to this; use two physical servers with a high speed
network connection between both. In that case, you will need to ensure that the pg_hba.
conf file on the database server host allows password authenticated connections on the
database from the Odoo server, and that the postgresql.conf file lets the PostgreSQL
server listen in on the network interface connecting both servers.

Source code version
When cloning Odoo and the third-party dependencies, you may want to ensure that you are
using the exact same revision as the one you had in developments. There are several ways to
do this:

 f You can manually mark down the version SHA1 of the local revision in a file, record
this in the project repository, and make sure you are using the same revision on the
production server

 f You can use tags or branches on forks of these repositories in your GitHub account

 f You can use git submodule to tie these revisions to the repository of your project

 f You can use buildout to manage the various dependencies and freeze the revisions
(see the following recipe Use buildout for repeatable builds for more information
on this)

Why not use the Linux distribution packages provided by Odoo?
You can do that and you will get started much faster because a lot of things
are handled for you by the packages. However, there are a few issues with
using the packaged source; most importantly, you cannot easily patch the
source code of Odoo, which is easier if you run from the source. Granted, this
is not something you have to do every day, but being able to use the standard
development tools to achieve this, rather than manually applying and tracking
patches on production servers, is a precious help and a gain of time. You may
also be using the Odoo Community Association branch of Odoo, (https://
github.com/OCA/OCB) for which no packages are provided.

Backups
The recipe does not cover backups. At the very least, you should have the cron task on the
server running a daily backup. A simple and basic solution is to edit the crontab file as root
by running crontab -e and to add the following lines:

@daily su postgres -c pg_dumpall | gzip > /backups/postgresql-$(date
+%u).dump.gz
@daily tar czf /backups/odoo-data-$(date +%u).tgz /home/odoo/odoo-
prod/project/data

https://github.com/OCA/OCB
https://github.com/OCA/OCB

Chapter 16

351

Don't forget to create the /backups directory. The backup files should not be stored on
the same hard disk, and ideally, they would be mirrored on a server in a different physical
location. Check these backups on a regular basis; having backups that you can't restore when
you need them is useless.

The proposed solution is to keeps daily backups of the last 7 days, which means you will
lose one day of work in case of a problem. There are more advanced solutions available for
PostgreSQL that allow point-in-time recovery. You will find more information about this in the
book PostgreSQL 9 Admin Cookbook, Packt Publishing. Similarly, there are many Linux tools,
such as duplicity (http://duplicity.nongnu.org/), which you can use for file backups
allowing easy management.

See also
For more information on the Odoo Community Association branch of Odoo, see the recipe
Easy installation from source in Chapter 1, Installing the Odoo Development Environment.

Adapting the configuration file for
production

In Chapter 1, Installing the Odoo Development Environment we have seen how to save the
configuration of the instance in a file. We used the default values for lots of parameters, and if
you've followed the Standardize your instance directory layout recipe in Chapter 2, Managing
Odoo Server Instances, as well as the previous recipe for the production installation, you
should now have that same configuration file in the production environment. This recipe
shows how to derive a configuration file that is suitable for use in production.

Getting ready
We assume that you have installed Odoo on the production server with the previous recipe,
Install Odoo for production. We assume that you will be running PostgreSQL on the same
server as Odoo.

You may want to install the pwgen utility to generate random passwords.

We are describing the steps here as if you were running them on the production server, but
they can also be executed on your development server, since the new configuration file is
added to the Git repository of the project that we use to deploy on the production server.

http://duplicity.nongnu.org/

Server Deployment

352

How to do it…
To adapt the configuration file for production, you need to follow these steps:

1. Create a new configuration file for production based on the development file:
$ cd ~/odoo-prod/project

$ cp development.conf production.conf

2. Edit the production configuration file.

3. Change the addons path to match the production base directory:
addons_path = /home/odoo/odoo-prod/project/src/odoo/addons,/home/
odoo/odoo-prod/project/src/odoo/openerp/addons,/home/odoo/odoo-
prod/project/src/partner-contact

4. Change the data directory:
data_dir = /home/odoo/odoo-prod/project/data

5. Change the server log path to match the production base directory:
logfile = /home/odoo/odoo-prod/project/logs/odoo.log

6. Configure log rotation:
logrotate = True

7. Configure the logging handlers:
log_level = warn

log_handler = :WARNING,werkzeug:CRITICAL,openerp.service.
server:INFO

8. Adapt the database connection parameters:
db_host = False

db_maxconn = 64

db_name = odoo-project

db_password = False

db_port = False

db_template = template1

db_user = False

9. Configure the database filter, and disable database listing:
dbfilter = odoo-project$

list_db = False

Chapter 16

353

10. Change the master password:
admin_password = use a random password generated with e.g. pwgen

11. Configure Odoo to run with workers:
workers = 4

limit_memory_hard = 4294967296 # 4 GB

limit_memory_soft = 671088640 # 640MB

limit_request = 8192

limit_time_cpu = 120

limit_time_real = 300

12. Only listen on the local network interface:
xmlrpc_interface = 127.0.0.1

netrpc_interface = 127.0.0.1

13. Save the file, and add it to the Git repository:
$ git add production.conf

$ git commit -m "add production configuration file"

How it works…
Most of the parameters shown in this recipe are explained in the Manage Odoo server
instances recipe in Chapter 1, Installing the Odoo Development Environment.

In steps 3, 4, and 5, we change the addons path and the log file. In case you are developing in
an environment with the same layout as the production environment, this is required because
Odoo expects absolute paths in the configuration file.

Step 6 enables log rotation. This will cause Odoo to configure the logging module to archive
the server logs on a daily basis, and to keep the old logs for 30 days. This is useful on
production servers to avoid logs eventually consuming all the available disk space.

Step 7 configures the logging level. The proposed setting is very conservative and will only log
messages with at least the WARNING level, except for werkzeug (CRITICAL) and openerp.
service.server (INFO). For more information on the log filtering, refer to Chapter 7,
Debugging and Automated Testing, where you will find the recipe, Producing server logs to
help debug methods. Feel free to tune this to your taste.

Step 8 configures the database settings. This will work if you are running the PostgreSQL
database server locally and have set it up as explained in the previous recipe. If you're
running PostgreSQL on a different server, you will need to replace the False values
with the appropriate connection settings for your database instance.

Server Deployment

354

Step 9 restricts the database available to the instance by configuring a database filter.
We also disable the database listing, which is not strictly necessary given that the regular
expression we set in dbfilter can only match one single database. It is still a good thing
to do though, in order to avoid displaying the list of databases to anyone, and to avoid users
connecting to the wrong database.

Step 10 sets a nontrivial master password for the instance. The master password is used for
database management through the user interface, and a few community addons also use it
for extra security before performing actions that can lead to data loss. You really need to set
this to a nontrivial value. We propose using the pwgen utility to generate a random password,
but any other method is also valid.

Step 11 configures Odoo to work with workers. In this mode, Odoo will create a number of
worker processes (in this example, 4) to handle HTTP requests. This has several advantages
over the default configuration in which the request handling is performed in separate threads,
which are given as follows:

 f Requests can be handled in parallel, making better use of multiple cores or CPUs on
the server (Python threads are penalized by the existence of the Global Interpreter
Locks (GIL) in the Python interpreter).

 f It is possible to terminate one of the workers depending on resource consumption.
The following table gives the various resource limits that can be configured:

Parameter Suggested
value

Description

limit_memory_hard 4294967296 This is the maximum amount of RAM a worker will
be able to allocate. We recommend using 4 GB as
some processes launched by Odoo can allocate
some large amounts of RAM.

limit_memory_soft 671088640 If a worker ends up consuming more than this limit
(640 MB in our setting), it will be terminated after
it finishes processing the current request.

limit_request 8192 A worker will be terminated after having processed
this many requests.

limit_time_cpu 120 This is the maximum amount of CPU time allowed
to process a request.

limit_time_real 300 This is the maximum amount of wall clock time
allowed to process a request.

Step 12 configures the internal Odoo web server to only listen on the local interface. This
means the instance will not be reachable from other servers. This enables us to configure a
reverse proxy on the same server to access the server and to force encrypted connections.
Take a look at the Configure a reverse proxy and SSL recipe later in this chapter.

Chapter 16

355

There's more…
When running with workers, you may encounter some issues specific to this mode:

 f If you get strange errors when running with workers, with lessc or wkhtmltopdf
not working as intended (for example, prematurely exiting with a -11 or -6 status),
then you likely have limit_memory_hard set to a value that is too low. Try raising it
a bit, as the default value is notoriously too low.

 f If you get timeout errors when performing long operations (this includes CSV imports
and exports and addon module installations), try increasing the limit_time_cpu
and limit_time_real parameters, as there too the default value is quite low. If
you have a reverse proxy, you may want to check its timeout limit too (although this
will not prevent the transactions from completing).

 f If your instance gets completely stuck when printing reports, try raising the number
of workers. This can be a deadlock caused by wkhtmltopdf blocking up all the
available workers while printing.

In any case, always validate the setup before going to production,
and remember to test printing reports when enabling workers.

Set up Odoo as a system service
For a production instance, it is very important that the Odoo server gets started when the
computer reboots. On current Linux systems, there are different ways of achieving this,
depending on the distribution and the server setup; either it is an init script, or a systemd
configuration. This recipe shows how to do both.

Getting ready
We assume that you followed the first two recipes to install and configure your Odoo instance.
Especially the deployed source of Odoo, which is at /home/odoo/odoo-prod/project/
src/odoo/, and the configuration file of the instance, which is at /home/odoo/odoo-
prod/project/production.conf. The scripts also makes use of the start-odoo script
created in step 9 of the Install Odoo for production recipe.

You will first need to find out which initialization system is running on your system. For this, run
the following:

$ dpkg -l systemd

If the last line of output starts with ii systemd, then systemd is available on your system.
Otherwise, you are probably running sysvinit (on a system running an old Debian variant)
or upstart (on an Ubuntu-based system).

Server Deployment

356

How to do it…
Now that you know which version of the initialization system you are running, you can choose
how to configure Odoo.

Configuring systemd to start Odoo
To configure systemd to start Odoo, you need to perform the following steps:

1. As root, create a file called /lib/systemd/system/odoo.service, with the
following contents:
[Unit]

Description=Odoo 9.0

After=postgresql.service

[Service]

Type=simple

User=odoo

Group=odoo

ExecStart=/home/odoo/odoo-prod/project/bin/start-odoo

[Install]

WantedBy=multi-user.target

2. As root, register the service:
systemctl enable odoo.service

3. As root, start the service:
service odoo start

4. To stop the service, you can run the following:
service odoo stop

Configuring sysvinit or upstart to start Odoo
To configure sysvinit or upstart to start Odoo, you need to perform the following steps:

1. As root, copy the init file provided by Odoo to /etc/init.d:
cp src/odoo/debian/init /etc/init.d/odoo

chmod +x /etc/init.d/odoo

Chapter 16

357

2. As root, edit that file to change the environment variables defined at the top of the
script (we only list the ones which need changing as follows, with the appropriate
values):
DAEMON=/home/odoo/odoo-prod/project/bin/start-odoo

3. In the same file, also modify the _start function as follows:
function _start() {

 start-stop-daemon --start --quiet --pidfile $PIDFILE
--chuid $USER:$USER --background --make-pidfile --exec $DAEMON

}

4. As root, register the daemon with sysvinit or upstart:
update-rc.d odoo defaults

5. As root, start the service:
/etc/init.d/odoo start

6. If you want to stop the service, you run the following:
/etc/init.d/odoo stop

How it works…
The three configurations, systemd, sysvinit, and upstart, use some configuration files or
scripts to know which programs must run when the server boots. The configurations provided
in the recipe will need small adaptations to match the paths of your instance.

Don't forget to reboot your server and check that Odoo is
properly started!

There's more…
If you are using the buildout method described in the Use buildout for repeatable builds
recipe, you will need to adapt the paths to use the start_odoo script created by the recipe.

Configure a reverse proxy and SSL
In order to avoid all the information between the users' browsers and the Odoo server, that is
to be sent in clear over the network, it is necessary to use the HTTPS protocol that encrypts
the exchanges. Odoo cannot do this natively, and it is necessary to configure a reverse proxy
that will handle the encryption and decryption on behalf of the Odoo server. This recipe shows
how to use nginx (http://nginx.net) for this.

http://nginx.net

Server Deployment

358

Getting ready
You should know the public name of the server and configure your DNS accordingly. In this
recipe, we will use odoo.example.com as the name of your server.

If you want your Odoo instance to be visible by all browsers, you will need to get an SSL
certificate signed by a recognized Certification Authority (CA). Using a self-signed certificate
can also be made to work, but modern browsers tend to refuse these.

To generate an SSL key, you can use the following process:

1. Install openssl:
$ sudo apt-get install openssl

2. Generate the key for your server:
$ mkdir ~/sslkey

$ openssl genrsa -out ~/sslkey/server.key 2048

3. Generate a signing request:
$ openssl req -new -key ~/sslkey/server.key -out ~/sslkey/server.
csr

4. The preceding command will ask you a series of questions about your company and
your Odoo server's URL. Don't get these wrong or your certificate will be unusable.

5. You will be able to send the file, ~/sslkey/server.csr, to a Certification Authority
(CA) of your choice. The CA will send you back a file called server.crt, which we
will use in the recipe.

How to do it…
In order to access your instance using HTTPS via nginx, you need to follow these steps:

1. As root, install nginx:
apt-get install nginx

2. As root, create a configuration file in /etc/nginx/sites-available/odoo-80:
server {

 listen [::]:80 ipv6only=off;

 server_name odoo.example.com;

 access_log /var/log/nginx/odoo80.access.log combined;

 error_log /var/log/nginx/odoo80.error.log;

Chapter 16

359

 location / {

 rewrite ^/(.*) https://odoo.example.com:443/$1 permanent;

 }

}

3. Create a configuration file in /etc/nginx/sites-available/odoo-443:
server {

 listen [::]:443 ipv6only=off;

 server_name odoo.example.com;

 ssl on;

 ssl_certificate /etc/nginx/ssl/server.crt;

 ssl_certificate_key /etc/nginx/ssl/server.key;

 access_log /var/log/nginx/odoo443.access.log combined;

 error_log /var/log/nginx/odoo443.error.log;

 client_max_body_size 128M;

 gzip on;

 proxy_read_timeout 600s;

 index index.html index.htm index.php;

 add_header Strict-Transport-Security "max-age=31536000";

 proxy_set_header Host $http_host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forward-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto https;

 proxy_set_header X-Forwarded-Host $http_host;

 location / {

 proxy_pass http://localhost:8069;

 proxy_read_timeout 6h;

 proxy_connect_timeout 5s;

 proxy_redirect http://$http_host/ https://$host:$server_port/;

 add_header X-Static no;

 proxy_buffer_size 64k;

 proxy_buffering off;

 proxy_buffers 4 64k;

 proxy_busy_buffers_size 64k;

Server Deployment

360

 proxy_intercept_errors on;

 }

 location /longpolling/ {

 proxy_pass http://localhost:8072;

 }

 location ~ /[a-zA-Z0-9_-]*/static/ {

 proxy_pass http://localhost:8069;

 proxy_cache_valid 200 60m;

 proxy_buffering on;

 expires 864000;

 }

}

4. As root, link the configuration file in /etc/nginx/sites-enabled/:
ln -s /etc/nginx/sites-available/odoo80 /etc/nginx/sites-
enabled/odoo80

ln -s /etc/nginx/sites-available/odoo443 /etc/nginx/sites-
enabled/odoo443

5. As root, remove /etc/nginx/sites-enabled/default:
rm /etc/nginx/sites-enabled/default

6. As root, copy the ssl certificate and server key to the appropriate directories
mkdir -p /etc/nginx/ssl

chown www-data /etc/nginx/ssl

mv server.key server.crt /etc/nginx/ssl

chmod 710 /etc/nginx/ssl

chown root:www-data /etc/nginx/ssl/*

chmod 640 /etc/nginx/ssl/*

7. As Odoo, edit the production configuration file of the instance to enable proxy_mode:
proxy_mode = True

8. As root, restart your odoo instance and nginx:
service odoo restart

service nginx restart

Chapter 16

361

How it works…
We are using nginx as a reverse HTTP proxy. Incoming HTTP and HTTPS connections are
handled by nginx, which delegates the processing of the requests to the Odoo server. The
Odoo server is configured to only listen on the local loopback interface (127.0.0.1) on
port 8069 for normal requests (xmlrpc_port) and port 8072 for the long polling requests
(longpolling_port). You may need to adapt the port numbers to your configuration.

The recipe sets up two files. The first one is the configuration for incoming connections on port
80 using the HTTP protocol. We don't want these because they are in clear text, meaning that
the passwords can be sniffed. Therefore, we set up nginx to redirect the URLs permanently to
port 443 using the encrypted HTTPS protocol.

The second file is a bit more complex and configures the way nginx should handle connections
using the HTTPS protocol:

 f The first configuration block configures the SSL protocol, the encryption key, and
certificate, as well as the log file's location.

 f The second block sets some headers on the requests to handle the proper reverse
proxying over HTTPS.

 f The location / block defines the default processing of incoming requests; they will
be proxied to the Odoo server listening on port 8069.

 f The location /longpolling block handles queries made on URLs starting with
/longpolling, which are then forwarded to Odoo on port 8072. These connections
are used by the bus addon module to send notifications to the web client.

 f The location ~ /[a-zA-Z0-9_-]*/static/ block uses a regular expression
to match the URLs of the static files of Odoo modules. These files are rarely updated,
and so we ask nginx to cache them in order to lighten the load on the Odoo server.

Server Deployment

362

There's more…
This recipe focuses on the nginx configuration. You may be more familiar with other tools
such as the Apache web server and mod_proxy. In this case, you can of course use these
to achieve a similar setup.

See also
 f For more information about the various nginx configuration options, see

http://nginx.org/en/docs/.

 f For a tutorial on the configuration of Apache2 as a reverse proxy and the use of a
personal certification authority, take a look at http://antiun.github.io/odoo-
reverse-proxy-howto/.

Use buildout for repeatable builds
So far, we have been manually setting up our instances. This cries for automation, and maybe
you have already written a shell script to download the proper version of the addons your
instance needs and streamlined the process. It turns out that there is a tool meant to help with
doing this called buildout. Buildout is a Python-based build system for creating, assembling,
and deploying applications from multiple parts, some of which may be non-Python-based. It lets
you create a buildout configuration and reproduce the same software later.

This recipe shows how you can start using buildout to ensure you have the same setup in the
development and production servers.

Getting ready
We assume that your instance only has a dependency on the server-tools project of the
Odoo Community Association, and that your user-specific addon modules are living in
the local/addons subdirectory of the project.

We also expect you to have installed the build dependencies of Odoo. Refer to steps 1 to 3
of the Install Odoo for production recipe in this chapter. This recipe is better used first on a
development machine and later deployed on a production server.

http://nginx.org/en/docs/
http://antiun.github.io/odoo-reverse-proxy-howto/
http://antiun.github.io/odoo-reverse-proxy-howto/

Chapter 16

363

How to do it…
In order to use buildout to build your project, you need to follow these steps:

1. On your development server, create a new work directory:
$ mkdir ~/odoo-dev/project-buildout

$ cd ~/odoo-dev/project-buildout

2. Create a file called buildout.cfg:
[buildout]
parts = odoo
find-links = http://download.gna.org/pychart/

[odoo]
recipe = anybox.recipe.odoo:server
OCA = https://github.com/OCA
version = git https://github.com/odoo/odoo.git odoo 9.0 depth=1
addons = git ${odoo:OCA}/server-tools.git parts/server-tools 9.0
 git ${odoo:OCA}/partner-contact.git parts/partner-contact 9.0
 local local/addons

options.limit_memory_hard = 4294967296
options.limit_memory_soft = 671088640
options.limit_request = 8192
options.limit_time_cpu = 120
options.limit_time_real = 300
options.xmlrpc_port = 8069
options.longpolling_port = 8072
options.workers = 0

[versions]
zc.buildout = 2.5.0
anybox.buildout.odoo = 1.9.1
setuptools = 19.7

Babel = 1.3
Jinja2 = 2.7.3
Mako = 1.0.1
MarkupSafe = 0.23
Pillow = 2.7.0

Server Deployment

364

Python-Chart = 1.39
PyYAML = 3.11
Werkzeug = 0.9.6
argparse = 1.2.1
decorator = 3.4.0
docutils = 0.12
feedparser = 5.1.3
gdata = 2.0.18
gevent = 1.0.2
greenlet = 0.4.7
jcconv = 0.2.3
lxml = 3.4.1
mock = 1.0.1
ofxparse = 0.14
passlib = 1.6.2
psutil = 2.2.0
psycogreen = 1.0
psycopg2 = 2.5.4
pyPdf = 1.13
pydot = 1.0.2
pyparsing = 2.0.3
pyserial = 2.7
python-dateutil = 2.4.0
python-ldap = 2.4.19
python-openid = 2.2.5
pytz = 2014.10
pyusb = 1.0.0b2
qrcode = 5.1
reportlab = 3.1.44
requests = 2.6.0
six = 1.9.0
suds-jurko = 0.6
vatnumber = 1.2
vobject = 0.6.6
wsgiref = 0.1.2
xlwt = 0.7.5

Chapter 16

365

3. Create a configuration file for the production environment:
[buildout]
extends = buildout.cfg

[odoo]
options.limit_memory_hard = 4294967296
options.limit_memory_soft = 671088640
options.limit_request = 8192
options.limit_time_cpu = 120
options.limit_time_real = 300
options.workers = 4

options.data_dir = project/data

options.xmlrpc_interface = 127.0.0.1
options.netrpc_interface = 127.0.0.1
options.xmlrpc_port = 8069
options.longpolling_port = 8072

options.log_level = warn
options.log_handler = :WARNING,werkzeug:CRITICAL,openerp.service.
server:INFO

options.admin_password = generate with pwgen

options.listdb = False
options.db_host = False
options.db_port = False
options.db_user = False
options.db_name = odoo_project
options.dbfilter = ^odoo_project$
options.proxy_mode = True

Server Deployment

366

4. Create a configuration file for the development environment:
[buildout]
extends = buildout.cfg

[odoo]
options.db_name = odoo_dev
options.dbfilter = ^odoo_dev$
options.log_level = info

5. Create a virtualenv without setuptools:
$ virtualenv sandbox --no-setuptools

6. Download the current version of the bootstrap.py file:
$ wget https://raw.github.com/buildout/buildout/master/bootstrap/
bootstrap.py

7. Run the bootstrap.py script:
$ sandbox/bin/python bootstrap.py

8. On your development machine, you can create a development environment by
running the following:
$ bin/buildout -c dev.cfg

9. On the production server, you would create a production environment by running
the following:
$ bin/buildout -c prod.cfg

10. To start the instance, run the following:
$ bin/start_odoo

11. Commit the files to Git:
$ git init

$ git add buildout.cfg prod.cfg dev.cfg bootstrap.py local/addons

$ git commit -m "initialize project with buildout"

Chapter 16

367

How it works…
Buildout works by processing a configuration file, which is called buildout.cfg by default.
This file uses a syntax close to ConfigParser (with a few extensions) to describe the desired
target environment. There is one mandatory section, [buildout], which contains a parts
entry listing the sections to process. Most sections have a recipe entry that gives the name
of a buildout recipe to use to build the section. There are lots of recipes available (take a
look at http://www.buildout.org/en/latest/docs/recipelist.html for a partial
listing), and different recipes can be combined in a single configuration file. Each recipe
supports its own configuration settings. Recipes are Python modules, usually made available
from PyPI.

Buildout configuration files are extensible and support parameterization:

 f A configuration file can extend another one; configuration settings are added or
overwritten by the extending file.

 f Configuration settings can refer to the value of other settings using the
${section:name} syntax.

 f In step 1, we prepare our base buildout.cfg configuration file. We define a section
called [odoo] and set the anybox.recipe.odoo parameter as the buildout recipe
in charge for this section. Here are the settings we use:

 � version: This defines the Odoo version we want. Here, we are using the
latest version from the 9.0 branch on GitHub. The depth options limit the Git
clone depth to speed up the installation.

 � OCA: This is a custom setting used to simplify the URLs of the OCA addons
we are listing in the following settings, using the ${odoo:OCA} variable.

 � addons: This lists the addons directories to install, one by one. The syntax is
protocol URL destination revision options. The Git protocol will
use Git to clone a repository. The local protocol will use a local directory (and
revision must not be provided in this case). Other available protocols are hg
(for mercurial repositories), svn (subversion), bzr (bazaar). The revision can
be a tag, a branch, or a commit identifier.

The [versions] section is a standardized buildout section used to specify the versions
of the Python dependencies that will be installed in the environment. It is important to fix
the version of zc.buildout, anybox.buildout.odoo, and setuptools in this section
to ensure the repeatability of the build, which is what we do in the first two lines of the
section. The anybox.buildout.odoo recipe is able to find the names of the dependencies
from the Odoo server version, but not the versions. To generate this list, we copied the
requirements.txt file for the Odoo codebase and replaced the == operator with =.

http://www.buildout.org/en/latest/docs/recipelist.html

Server Deployment

368

The prod.cfg and dev.cfg files extend the base configuration defined in buildout.cfg.
In the [odoo] section, they both define settings with names starting with options. (Mind
the dot): buildout will use these when generating a configuration file for the instance with
the options set as specified in the configuration file. If you've read the recipe Adapting the
configuration file for production in this chapter, the prod.cfg file should be familiar.

In order to ensure that the buildout environment is insulated from the system Python, we use
a virtualenv (called sandbox in this recipe) configured to not have setuptools available.
We use this virtualenv to run the bootstrap.py script that we downloaded from the buildout
source code repository. The role of bootstrap.py is to prepare things for buildout to work,
including installing buildout itself. A script, bin/buildout, is created in the directory of the
build to run buildout.

You can then manage your buildout configuration in a version management system such
as Git. It is recommended that you store the bootstrap.py file together with the buildout
configuration file; this file evolves with buildout, and since we are freezing the version of
buildout in the configuration file, we need to keep the bootstrap.py file that we know will
work with this version.

To run buildout, just execute the bin/buildout script with the -c option to specify a
configuration file. This will do several things:

 f Odoo gets installed in the parts/ subdirectory

 f The specified addons are installed in the specified subdirectory (we recommend that
you use parts/ for this too)

 f The dependencies of Odoo and any additional dependencies are installed in the
eggs/ subdirectory

 f A configuration file is created in etc/odoo.cfg with the appropriate value for
addons_path and all the options specified in the buildout configurations

 f A helper script bin/start_odoo is created; it uses the generated configuration file
and the installed Python dependencies

There's more…
If one addon module that you need requires an external Python dependency, you can add it to
the [odoo] section using the eggs setting. For instance, to add unicodecsv to the buildout,
use the following:

[odoo]
eggs += unicodecsv

[versions]
unicodecsv = 0.14.1

Chapter 16

369

Temporary merges
During development, it can be useful to merge pending pull requests in the various projects
used by the project. The buildout recipe supports this through the merges option. Suppose
your project uses OCA/partner-contact and OCA/product-attribute, and you need to merge the
PR 237 and 249 on partner-contact and the PR 132 on product attribute, then you can write
the following in your buildout configuration file:

[odoo]
OCA = https://github.com/OCA
version = git https://github.com/odoo/odoo.git odoo 9.0 depth=1
addons = git ${odoo:OCA}/partner-contact.git parts/partner-contact 9.0
 git ${odoo:OCA}/product-attribute.git parts/product-attribute
9.0
merges = git origin parts/partner-contact pull/237/head
 git origin parts/partner-contact pull/249/head
 git origin parts/product-attribute pull/132/head

The syntax for the merge option using the git protocol is <remote> <local repository>
<refspec>. We use here the reference for pull requests provided by GitHub.

A word of caution
This feature is very useful during development but should be avoided
for deployment in production. The merged branches can evolve and be
rebased or overwritten without notice. It is better that your deployment
depends on non-merged PR so as to use a personal fork of the project on
which you will do the merges yourself to ensure that you get repeatable
builds. Also, note that the buildout freeze-to option, which is
explained next, does not work with merges.

Freezing a buildout
To ease deployment, it is possible to use some advanced commands. The freeze-to option
can be used to generate a buildout configuration file that freezes the revisions of Odoo and all
the addons:

$ bin/buildout -c prod.cfg -o odoo:freeze-to=frozen-prod.cfg

You can then run buildout with the frozen-prod.cfg file to get the exact same versions of
the files.

You can also extract the source code to a separate directory, with the extract-downloads-
to option:

$ bin/buildout -c frozen-prod.cfg \

-o odoo:extract-downloads-to=../production

Server Deployment

370

The directory production now contains a release.cfg file, and a parts/ directory with
the source code (but not the git history). If the target server is running the same version of
Linux as the server you are working on, you can deploy the production environment without
compiling any dependency by performing the following steps:

1. Copy the required file to the production/ directory:
$ cp -r develop-eggs eggs buildout.cfg prod.cfg bootstrap.py \

../production

2. Make an archive of that directory:
$ cd ..

$ tar cjf production-1.0.tar.bz2

3. Copy that archive on the production server using a suitable procedure (USB key or
rsync, for instance).

4. On the production server, unpack the archive and install the version with the following:
$ tar xf production-1.0.tar.bz2

$ cd production

$ virtualenv sandbox --no-setuptools

$ sandbox/bin/python bootstrap.py

$ bin/buildout -c release.cfg

See also
 f The full documentation for the buildout recipe is available at http://docs.

anybox.fr/anybox.recipe.odoo/current/index.html.

http://docs.anybox.fr/anybox.recipe.odoo/current/index.html
http://docs.anybox.fr/anybox.recipe.odoo/current/index.html

371

Index
Symbols
@api.one decorator 98, 99

A
abstract models

using, for reusable model features 89-91
access control lists 127
actions

ir.actions.act_window.view 185
parameters, passing 190-193
specific view, opening 184, 185

addon module
changes, applying 42, 43
creating 48, 49
data files 54
file structure, organizing 52-55
installing 48, 49
installing, from GitHub 40, 41
list, updating 31-33
manifest, finishing 49-52
Python code 54
versus addon 29
web assets 54

addons path
configuring 30, 31

addon updates 229-231
API code

old API code, porting to new API 143-151
API decorators

defining 96-98
attrs attribute

used, for dynamic form elements 207
automated actions

using, on event conditions 288-291
using, on time conditions 283-287

B
backups 351
base_suspend_security

URL 127
bootstrap

URL 318
buildout

about 362
freezing 369, 370
temporary mergess 369
URL 367, 370
using, for repeatable builds 362-368

built-in workflows
inspecting 291-294

business logic
in model, extending 114-117

buttons
adding, to forms 189, 190

C
calendar views 212, 213
category

URL 51
Certification Authority (CA)

about 358
personal 362

client-side code
debugging 340-343
tests, writing for 336-339

client-side QWeb templates
using 331-333

command line interface 157
community repository

URL 330

372

computed fields
adding, to model 82-84

configurable precision
float field, using with 71, 72

configuration
adapting, for production 351-355

constraint validations
adding, to model 80, 81

content
adding, to form view 186

context
used, for computing default values 136

context node 203
create()

extending 117-120
CSS

extending, for website 311-313
CSV files

used, for loading data 226, 227
custom widgets

creating 325-330

D
data

loading, CSV files used 226, 227
loading, XML files used 221-224
loading, YAML files used 228, 229

data fields
adding, to model 66-70

data files 54
data migration 229-232
datetime Python module

URL 275
dbfilter_from_header

URL 300
Debian Jessie

URL 3
decorators 97
Deferred object 330
Delegation inheritance

using, to copy features to another model 91
dependencies 4
developer tools

activating 22-24
document-style forms 205, 206

duplicity
URL 351

dynamic form elements
attrs used 207

dynamic relations
adding, reference fields used 86, 87

E
effective_readonly property 330
emacs (po-mode)

URL 264
embedded views 207, 208
errors

reporting, to user 99, 100
external IDs

using 219-221

F
features

activating, security group used 246-251
adding to model, inheritance used 87-89
copying to another model, delegation

interface used 91-93
tracking 276-280

fields
in models, limit accessing 241, 242

file
instance configuration, storing 19-22
structure for addon module, organizing 52-55

filters
defining, on record lists 193-195
pitfalls 196

float field
using, with configurable precision 71, 72

forcecreate flags
using 224-226

forms
buttons, adding 189, 190
parameters, passing 190-193

form view
button 187
content, adding 186
field 188
forms 187
general attributes 188

373

groups 187
header 187
other tags 188, 189
widgets, adding 186

freeze-to option 369

G
gettext tools

using, to ease translations 264
Git

about 4
configuration 7

GitHub
addon modules, installing 40, 41
URL 2, 256

Graph views 213-215
Gtranslator

URL 264

H
handler

existing handler, modifying 304-306
head element 313
head node 313
hierarchy

adding, to model 78, 79
HTTP status 500 100

I
inheritance

used, for adding features to model 87-89
instance configuration

storing, in file 19-21
instance directory layout

standarizing 33-35
ipdb

URL 164

J
JavaScript

extending, for website 311-313
jQuery

URL 336
JSONRPC 309

K
Kanban

board 271
cards, displaying in columns according to

state 211
features 270-272
stages 270-272
state 272
views 209, 210

L
language

installing 253-256
language related settings

configuring 257, 258
less

URL 314
Linux distribution packages

URL 350
list views 196-198
local addon modules

command line used 38
installing 36-39
updating 39, 40
upgrading 36
web interface used 36, 37

logging level 156
log handler 156
Lokalize

URL 264

M
manifest

addon module manifest, finishing 49-52
menu items

adding 57-61, 180-183
messaging

adding 276-280
method

execution tracing, Python debugger
used 159-164

debugging, by producing server logs 153-156
with modified context, calling 128-130

microdata
URL 318

374

model
adding 55-57
business logic, extending 114-117
computed fields, adding 82-84
constraint validations, adding 80, 81
data fields, adding 66-70
features adding, inheritance used 87-89
features copying to another model, delegation

interface used 91-93
fields, limit accessing 241, 242
hierarchy, adding 78, 79
methods, defining 96-98
monetary field, adding 73
order, defining 64-66
related fields stored, exposing 85
relational fields, adding 74-77
representation, defining 64-66
security access, adding 238-241

module
creating, scaffold used 61, 62

module tests
writing, Python unit tests used 168-171
writing, YAML used 164-167

monetary field
adding, to model 73

N
namespaces

using 219-221
nginx

configuration options, URL 362
URL 357

noupdate
about 317
using 224-226

O
Odoo

backups 350, 351
Git, configuration 7
installing, for production 345-348
installing, from source 2-5
instance, starting 7, 8
PostgreSQL configuration 6, 7
PostgreSQL tuning 349, 350

server, dimensioning 348, 349
setting up, as system service 355
source code, downloading 7
source code version 350
starting, systemd configuring for 356
starting, sysvinit or upstart configuring for

356, 357
updating, from source 25, 26
URL 323
virtual environments (virtualenv) 5, 6

Odoo Community Association (OCA)
about 8, 29, 173
maintainer quality tools, using 173-178

Odoo developer tools
activating 22-24

Odoo environments
managing, start command used 9, 10

Odoo maintainers
URL 5

Odoo server databases
managing 10, 11

Odoo shell
used, for interactively calling methods 157,

158
Odoo superuser 127
onchange methods

about 104
calling, on server side 141, 142
defining 138, 139

operators 195

P
parameters

passed to handlers, consuming 302-304
passing, to actions 190-193
passing, to forms 190-193

path
accesibility, from network 295-297
openerp.http.request 299
openerp.http.route 297
return values 297, 298

pdb
URL 164

Pivot views 213-215
poedit

URL 264

375

PO file manipulation
URL 266

PostgreSQL configuration 6, 7
PostgreSQL tuning 349, 350
priority field 313
production

configuration, adapting 351-355
Odoo, installing 345-348

pudb
URL 164

pull requests
about 43, 44
applying 43, 44

Python code 54
Python code Server Actions

using 281, 282
Python debugger

used, for tracing method execution 159-163
Python unit tests

used, for writing module tests 168-171

Q
QUnit

URL 336
QWeb

about 314, 315
attributes 316
conditionals 316
fields 316
inline editing 317
loops 316
reports 215-217

R
readonly property 330
record access

limiting, record rules used 243-245
record lists

filters, recording 193-195
record rules

about 127
used, for limiting record access 243-246

records
new records, creating 102-104
search, customizing 120-123
searching for 107, 108

recordsets
combing 109, 110
empty recordset, getting for different model

101, 102
filtering 110-112
records values, updating 104-107
relations, traversing 112-114

reference fields
used, for adding dynamic relations 86, 87

relational fields
adding, to model 74-77

report.external_layout 317
RequireJS

URL 313
Resource Calendar 287
ReStructuredText (RST) format

URL 50
reusable model features

abstract models using 89-91
reverse proxy

about 354
configuring 357-362

RPC API
using 307-309

RPC calls
making, to server 333-336

RPC interface
methods, hiding from 98

S
scaffold

used, for creating module 61, 62
search views 198
secure_uninstall community module

URL 250
security groups

assigning, to users 233-237
creating 233-237
used, for activating features 246-251

server
actions, creating 273-276
RPC calls, making 333-336

server databases
backup, restoring 16
database, backing up 15
database, duplicating 13, 14

376

database management interface,
accessing 10

database, removing 14
managing 10
master password, changing 11, 12
master password, setting 11
new database, creating 12, 13
working 17-19

server logs
producing, to help debug methods 153-156

server side
onchange methods, calling 141-143

server tests
running 172, 173

snippets
offering, to user 318-322

source
Odoo, installing from 2-5
Odoo, updating from 25-27

specific view
opening, by action 184, 185

SQL queries
executing 130-132

SSL
configuring 357-362

SSL certificate 358
start command

used, for managing Odoo environments 9, 10
subtypes 279
systemd

configuring, to start Odoo 356
sysvinit

configuring, to start Odoo 356, 357

T
t-as attribute 316
t-att-dateCreated 316
t-attf-class attribute 316
t-attf-* construction 316
t-call attribute 315
template element 318
templates

attributes 316
conditionals 316
creating 314, 315
fields 316

inline editing 317, 318
modifying 314, 315

tests
writing, for client-side code 336-339
writing for module, Python unit tests used

168-171
writing for module, YAML used 164-166

t-field options attribute 316
t-foreach element 316
time conditions

automated actions, using 283-287
transient models 133
translation files

importing 266, 267
translations

easing, gettext tools used 264-266
translation strings

exporting 261-264

U
UI

translating 258-260
upstart

configuring, to start Odoo 356, 357
user

errors, reporting 99, 100
performing action, changing 126, 127
preferences, configuring 253-256
redirecting 137
snippets, offering 319-323

V
views

adding 57-61
evaluation order 204, 205
inheritance 201-203

virtual environments (virtualenv) 5, 6, 368

W
web accessible paths

access, restricting 300-302
web assets 54
web module

URL 339
website.layout template 315-317

377

werkzeug
URL 295

widgets
adding, to form view 186

window action
adding 180-183

wizard
about 91, 133
and code reuse 136
writing, to guide user 133-136

Wkhtmltopdf
about 5
URL 5

workflow definitions
URL 294

write()
extending 117-120

X
XML files

used, for loading data 221-224
XMLRPC 309

Y
YAML

files, used for loading data 228, 229
used, for writing module tests 164-167

