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A Unified  Approach for Motion  and Force Control 
of Robot  Manipulators: The Operational Space 

Formulation 

Abstract-A framework for the analysis and  control of manipulator 
systems  with  respect to the dynamic  behavior of their end-effectors is 
developed. First, issues related to the  description of end-effector tasks 
that involve constrained motion and  active force control are discussed. 
The  fundamentals of the operational space formulation are then  pre- 
sented, and  the unified approach for motion and force control is 
developed. The extension of this formulation to redundant  manipulator 
systems is also presented,  constructing the end-effector equations of 
motion and  describing  their  behavior  with  respect to joint forces. These 
results  are  used  in  the development of a new  and  systematic  approach for 
dealing  with the problems  arising  at  kinematic  singularities. At a singular 
configuration, the manipulator is treated as a mechanism  that is 
redundant  with  respect to the motion of the end-effector in  the  subspace 
of operational  space orthogonal to the  singular  direction. 

R 
I. INTRODUCTION 

ESEARCH in dynamics of robot mechanisms has largely 
focused on developing the equations of joint motions. 

These joint space dynamic models have been the basis for 
various approaches to dynamic control of .manipulators. 
However, task specification for motion and contact forces, 
dynamics, and force sensing feedback are closely linked to the 
end-effector. The dynamic behavior of the end-effector is one 
of the most significant characteristics in evaluating the 
performance of robot manipulator systems. The problem of 
end-effector motion control has been investigated, and al- 
gorithms resolving end-effector accelerations have been devel- 
oped V I ,  [111, 1221, [3Ol, 1331. 

The issue of end-effector dynamic modeling  and control is 
yet more acute for tasks that involve combined motion  and 
contact forces of the end-effector. Precise control of applied 
end-effector forces is crucial to accomplishing advanced robot 
assembly tasks. This is reflected by the research effort that has 
been devoted to the study of manipulator force control. 
Accommodation [35], joint compliance [26], active stiffness 
[3 11, impedance control [9], and hybrid position/force control 
[28] are among the various methods that have been proposed. 

Force control has been generally based on kinematic and 
static considerations. While in motion, however, a manipula- 
tor end-effector is subject to inertial, centrifugal, and Coriolis 
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forces. The magnitude of these dynamic forces cannot be 
ignored when large accelerations and fast motions are consid- 
ered. Controlling the end-effector contact forces in some 
direction can be strongly affected by the forces of coupling 
created by the end-effector motion that can take place in the 
subspace orthogonal to that direction. The description of the 
dynamic interaction between end-effector motions and the 
effects of these motions on the end-effector’s behavior in the 
direction of force control are basic requirements for the 
analysis and design of high-performance manipulator control 
systems. Obviously, these characteristics cannot be found in 
the manipulator joint space dynamic model, which  only 
provides a description of the interaction between joint mo- 
tions. High-performance control of end-effector motion and 
contact forces requires the description of how motions along 
different axes are interacting, and  how the apparent or 
equivalent inertia or mass of the end-effector varies with 
configurations and directions. 

The description, analysis, and control of manipulator sys- 
tems  with respect to the dynamic characteristics of their end- 
effectors has been the basic motivation in the research and 
development of the operational space formulation. The end- 
effector equations of motion [ 131, [ 141 are a fundamental tool 
for the analysis, control, and dynamic characterization [ 181 of 
manipulator systems. In this paper, we will discuss, from the 
perspective of end-effector control, the issue of task descrip- 
tion, where constrained motions and contact forces are 
involved. The fundamentals of the operational space formula- 
tion are presented, and the unified approach for the control of 
end-effector motion and contact forces is developed. 

Treated within the framework of joint space control 
systems, redundahcy of manipulator mechanisms has been 
generally viewed as a problem of resolving the end-effector 
desired motion into joint motions with respect to some criteria. 
Manipulator redundancy has been aimed at achieving goals 
such as the minimization of a quadratic criterion [29], [34], the 
avoidance of joint limits [5],  [21] the avoidance of obstacles 
[4],  [6], [20], kinematic singularities [23], or the minimization 
of actuator joint forces [8]. The end-effector equations of 
motion for a redundant manipulator are established and its 
behavior with respect to generalized joint forces is described. 
The unified approach for motion and active force control is 
then extended to these systems. 

Kinematic singularities is another area that has been 
considered within the framework of joint space control and 
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Fig, 1. Constrained  end-effector  freedom of motion. (a) Five  degrees of 
freedom. (b) Four  degrees of freedom. (c) Three  degrees of freedom. 

formulated in terms of resolution of the task specifications into 
joint motions. Generalized inverses and pseudo-inverses have 
been used, and  recently an interesting solution based on the 
singularity robust inverse has been proposed [25]. In  this 
paper, a new approach for dealing with the problem of 
kinematic singularities within the operational space framework 
is presented. In the neighborhood of a singular configuration 
the manipulator is treated as a redundant mechanism  with 
respect to the motion  of the end-effector in the subspace of 
operational space orthogonal to its singular direction. Control 
of  the end-effector for motions along the singular direction is 
based  on the use of the kinematic characteristic of the Jacobian 
matrix. 

11. GENERALIZED TASK SPECIFICATION MATRICES 
The end-effector motion  and contact forces are among the 

most important components in the planning, description, and 
control of assembly operations of robot manipulators. The 
end-effector configuration is represented by a set  of m 
parameters, X I ,  xz, * e ,  x,, specifying its position  and 
orientation in some reference frame. In free motion opera- 
tions, the number of end-effector degrees of freedom mo is 
defined [ 131 as the number of independent parameters required 
to specify completely, in a frame of reference (Ro, its position 
and orientation. A set of  such independent configuration 
parameters forms a system of operational coordinates. 

In constrained motion operations, the displacement and 
rotations of the end-effector are subjected to a set of geometric 
constraints. These constraints restrict the freedom of motion 
(displacements and rotations) of the end-effector. Clearly, 
geometric constraints will affect only the freedom of motion of 
the end-effector, since static forces and  moments at these 
constraints can still be applied. The number of degrees of 
freedom of the constrained end-effector is given by the 
difference between mo and the number of independent 
equations specifying the geometric constraints, assumed to be 
holonomic. Examples of five-, four-, and three-degree-of- 
freedom constrained end-effectors are shown in Fig. 1. 

An interesting description of the characteristics of  end- 
effectors and their constraints uses a mechanical linkage 
representation [ 5 ] ,  1241. The end-effector, tool, or manipu- 

lated object forms, with the fixture or constrained object, a 
pair of  two rigid bodies  linked through a joint. A constrained 
motion  task can be described, for instance, by a spherical, 
planar, cylindrical, prismatic, or revolute joint. 

However, when  viewed from the perspective of end- 
effector control, two elements of information are required for 
a complete description of  the task. These are the vectors of 
total force and moment that are to be applied to maintain  the 
imposed constraints, and the specification of the end-effector 
motion degrees of freedom and their directions. 

Let f d  be a unite vector, in the frame of reference (Ro((3, x,,, 
yo, ZO), along the direction of the force that is to be applied by 
the end-effector. The positional freedom, if any, of the 
constrained end-effector will therefore lie in  the subspace 
orthogonal to f d .  

A convenient coordinate frame for the description of tasks 
involving constrained motion operations is a coordinate frame 
6if(0, xf ,  y f ,  z f )  obtained from Gio by a rotation transforma- 
tion described by Sf such that zf is aligned with fd. For tasks 
where the freedom of  motion (displacement) is restricted to a 
single direction orthogonal to f d ,  one of  the axes Oxf or Oyf 
will  be selected in alignment with  that direction, as shown for 
the task in Fig. 2. 

Let us define, in the coordinate @if, the position specifica- 
tion matrix =f=(T 2 ;) 0 0  

(1) 

where ox, o;, and a, are binary numbers assigned the value 1 
when a free motion is specified along the axes Ox,, Oyf, and 
(3zf, respectively, and zero otherwise. A nonzero value of a, 
implies a full freedom of the end-effector position. This case 
of unconstrained end-effector position  is integrated here for 
completeness. The coordinate frame ( R f  in this case is assumed 
to be identical to Bo, and  the matrix Sf is  the  identity matrix. 

The directions of force control are described by the force 
specification matrix zf associated with Cf  and  defined by 

cf=I-cf  (2) 

where I designates the 3 X 3 identity matrix. 
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The task specification matrices Q and a can be constant, 
configuration-varying, or time-varying matrices. Nonconstant 
generalized task specification matrices correspond to specifi- 
cations that involve changes in the direction of the applied 
force vector and/or moment vector, e.g., moving the end- 
effector while maintaining a normal force to a nonplanar 
surface. Cl and have been expressed here with respect to the 
frame of reference OXo. For control systems implemented for 
tasks specified with respect to the end-effector coordinate 
frame, these matrices will be specified with respect to that 
coordinate frame as well. 

111. END-EFFECTOR EQUATIONS OF MOTION 

X I  x0 YO 
Joint space dynamic models, which establish the equations 

of manipulator joint motions, provide means for the analysis 
and control of these motions, and for the description of the Fig. 2. One-degree-of-freedom motion. 

Let us now consider the case where the end-effector task 
involves constrained rotations and applied moments. Let 7 d  be 
the vector, in the frame of reference aO(O, xo, yo, zo), of 
moments  that are  to be applied by the end-effector, and &,(U, 
x,, y,, z,) be a coordinate frame obtained from CRo(O, xo, yo, 
zo) by a rotation S,  that brings z, into alignment with the 
moment vector Td. In a,, the rotation freedom of the end- 
effector lies in the subspace spanned by { x,, y,)  . To a task 
specified in terms of end-effector rotations and applied 
moments  in the coordinate frame a,, we associate the rotation 
and  moment specification matrices C, and X,, defined similarly 
to Cf and gf. 

For general tasks that involve end-effector motion  (both 
position  and orientation) and contact forces (forces and 
moments) described in the frame of reference Boy we define 
the generalized  task specification matrices 

and 

associated with specifications of motion ahd contact forces, 
respectively. 

Q and fi act on vectors described in the reference frame a0. 
A position command vector, for instance, initially expressed 
in a0 is transformed by the rotation matrix Sf to the task 
coordinate frame The motion directions are then selected 
in this frame by the application of Cp Finally, the resulting 
vector is transformed back  in cRo by Sf'. 

The construction of the generalized task specification 
matrices is motivated by the aim  of formulating the selection 
process in the same coordinate frame (reference frame CRo) 
where the manipulator geometric, kinematic, and dynamic 
models are formulated. This allows a more efficient imple- 
mentation of the control system for real-time operations. 
Control systems using specifications based  only  on the 
matrices C, and X, will require costly geometric, kinematic, 
and dynamic transformations between the reference frame and 
the task coordinate frames. 

configuration dependency and interactive nature of these 
mechanisms. However, the control of end-effector motion and 
contact forces, or the analysis and characterization of end- 
effector dynamic performance requires the construction of  the 
model describing the dynamic behavior of this specific part of 
the manipulator system. 

The end-effector motion is the result of those combined joint 
forces that are able to act along or about the axes of 
displacement or rotation of the end-effector. These are, 
indeed, the forces associated with the system of operational 
coordinates selected to describe the position and orientation of 
the end-effector. The construction of the end-effector dynamic 
model is achieved by expressing the relationships between its 
operational positions, velocities , accelerations, and the virtual 
operational forces acting on it. 

First, let us consider the case of nonredundant manipula- 
tors, where a set of operational coordinates can be selected as a 
system of generalized coordinates for the manipulator. The 
manipulator configuration is represented by the column matrix 
q of n joint coordinates, and the end-effector position and 
orientation is described, in a frame of reference OXo, by the mo 
X 1 column matrix x of independent configuration parame- 
ters, i.e., operational coordinates. With the manipulator 
nonredundancy assumption we have the equality n = mo. 

Now let us examine the conditions under which a set of 
independent end-effector configuration parameters can  be  used 
as a generalized coordinate system for a nonredundant 
manipulator. In the reference frame R0, the system of mo 
equations expressing the components of x as functions of joint 
coordinates, i.e., the geometric model, is  given by 

X =  G ( g ) .  ( 5 )  

Let qi and Qi be, respectively, the minimal and maximal 
bounds of the ith joint coordinate q i .  The manipulator 
configuration represented by the point q in joint space is 
confined to the hyperparallelepiped 

Obviously, for arbitrary kinematic linkages, and general joint 
boundaries, the set of functions G defined from Dq to the 
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domain 9, of the operational space given by 

is not one-to-one. 
Different configurations of the manipulator links can, in 

fact, be found for a given configuration of the end-effector. 
The restriction to a domain where G is one-to-one is therefore 
necessary to construct, with the operational coordinates, a 
system of generalized coordinates for the manipulator mecha- 
nism. 

In addition, for some configurations of the manipulator, the 
end-effector motion is restricted by the linkage constraints and 
its freedom of  motion locally decreases. These are the singular 
configurations, which  can be found by considering the 
differentiability characteristics of the geometric model G .  
Singular configurations q E are those where the Jacobian 
matrix J ( q )  involved in the variational or kinematic  model 
associated with G ,  

= J(q)Aq, (8) 

is singular. The end-effector behavior at singular configura- 
tions is treated in Section VIII. 

Let 5, be the domain obtained from 9, by excluding the 
manipulator singular configurations and such  that the vector 
function G of (5) is one-to-one. Let a), designate the domain 

S,= G(Bq).  (9) 

The independent parameters X I ,  x2, * * , xmo form a complete 
set of configuration parameters for a nonredundant manipula- 
tor, in the domain a), of operational space and thus constitute a 
system of generalized coordinates for the manipulator system. 

The kinetic energy of the holonomic articulated mechanism 
is a quadratic form of the generalized operational velocities 

1 
“ ( X ,  X) = - XTA(x)X 

2 (10) 

where A(x)  designates the mo x mo symmetric matrix of the 
quadratic form, i.e., the kinetic energy matrix. Using the 
Lagrangian formalism, the end-effector equations of  motion 
are given  by 

where the Lagrangian L(x,  X) is 

L (x, X) = T ( x ,  X) - U ( x )  (12) 

and U(x)  represents the potential energy due to gravity. F is 
the operational force vector. Let p ( x )  be the vector of gravity 
forces 

p ( x )  = V U ( x ) .  (13) 

The end-effector equations of  motion  in operational space can 
be written [ 131,  [14] in the form 

A ( x ) f + p ( ~ ,   X ) + p ( x ) = F  (14) 

where p ( x ,  x) is the vector of end-effector centrifugal and 
Coriolis forces given by 

pj(x,   X)=X~rIj(x)X,  i =  1, . * .  , mo. (15) 

The components of the mo x mo matrices rIj(x) are the 
Christoffel symbols a i , j k  given as a function of the partial 
derivatives of A(x)  with respect to the generalized coordinates 
x by 

1 ah, ahik axjk a j , j k=-  -+--- 
2 ( axk axj axi 1. (16) 

The equations of  motion (14) establish the relationships 
between positions, velocities, and accelerations of the end- 
effector and the generalized operational forces acting  on it. 
The dynamic parameters in these equations are related to the 
parameters involved in the manipulator joint space dynamic 
model. The manipulator equations of motion  in joint space are 
given by 

m ) g + b ( q ,  q ) + g ( q ) = r  (17) 

where b(q, q) ,  g(q) ,  and r represent, respectively, the 
Coriolis and centrifugal, gravity, and generalized forces in 
joint space. A ( q )  is the n X n joint space kinetic energy 
matrix. The relationship between the kinetic energy matrices 
A ( q )  and A(x)  corresponding, respectively, to the joint space 
and operational space dynamic models can be established [ 131, 
[14]  by exploiting the identity  between the expressions of the 
quadratic forms of  the  mechanism  kinetic energy with  respect 
to the generalized joint. and operational velocities, 

A ( x ) = J - * ( q ) A ( q ) J - ’ ( q ) .  (1 8) 

The relationship between the centrifugal and Coriolis forces 
b(q, q )  and p ( x ,  X)  can be established by the expansion of the 
expression of p(x, X) that results from (1 l) ,  

p ( x ,  X) = h(x)X - V T ( x ,  X ) .  (19) 

Using the expression of A(x)  in (18), the components  of p(x, 
x) in (19) can be written as 

A ( x ) X = J - T ( q ) A  (414- A(q)h(q,  4 )  + j - T ( Q ) A ( q ) 4  

v m ,  X) = J -  =(q>l(q,  4 )  + j- *(S)A  (414 (20) 

where 

h(q, 4 )  = j (qM (21) 

and 

1 
2 

li(Q, 4)=- q=Aqi(q)q, i = l ,  * . - ,  n. (22) 

The subscript q i  indicates the partial derivative with respect to 
the ith joint coordinate. Observing from the definition of b(q, 
q )  that 

b(q1 4>=A(s)4-4s ,  4) (23) 
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yields 

A x ,  4 = J- =(q)b(q, 4 )  - N q ) h ( q ,  4) .  (24) 

The relationship between the expressions of gravity forces can 
be obtained using the identity between the functions expressing 
the gravity potential energy in the two systems of generalized 
coordinates and the relationships between the partial deriva- 
tives with respect to these coordinates. Using the definition of 
the Jacobian matrix (8) yields 

In the foregoing relations, the components involved  in the end- 
effector equations of motion (14), i.e., A, p,  p ,  are expressed 
in terms of joint coordinates. This resolves the ambiguity  in 
defining the configuration of the manipulator corresponding to 
a configuration of the end-effector in the domain DX of -(7). 
With these expressions, the restriction to the domain 6,, 
where G is one-to-one, then becomes unnecessary. Indeed, the 
domain of definition of the end-effector dynamic model  of a 
nonredundant manipulator can be extended to the domain a), 
defined by 

a, = G( a),) (26) 

where $3, is the domain resulting from a), of (6) by excluding 
the kinematic singular configurations. 

Finally, let us establish the relationship between generalized 
forces, i.e., F and r. Using (18), (24), and (25) the end- 
effector equations of  motion (14) can be rewritten as 

J -  T(q)rA ( Q ) q  + M q ,  4 )  +g(q)l= F. (27) 

Substituting (17) yields 

r = J T ( q )  F (2 8) 

which represents the fundamental relationship between opera- 
tional  and joint forces consistent with the end-effector and 
manipulator dynamic equations. This relationship is the basis 
for the actual control of manipulators in operational space. 

IV. END-EFFECTOR MOTION CONTROL 

The control of  a manipulator in operational space is based 
on the selection of the generalized operational forces F as a 
command vector. These forces are produced by submitting the 
manipulator to  the corresponding joint forces I' obtained from 
(28). 

As with joint space control systems, the control in opera- 
tional space can be developed using a variety of control 
techniques. In operational space control systems, however, 
errors, performance, dynamics, simplifications, characteriza- 
tions, and controlled variables are directly related to manipula- 
tor tasks. 

One of the most effective techniques for dealing with these 
highly nonlinear and strongly coupled systems is the nonlin- 
ear  dynamic  decoupling  approach [36],  [37], which fully 
exploits the knowledge of the dynamic model structure and 
parameters. Within this framework of control and at the level 
of the uncoupled system linear, nonlinear, robust [32], and 
adaptive [3] control structures can be implemented. 

Nonlinear dynamic decoupling in operational space is 
obtained by the selection of the following control structure, 

F= Fm + Fccg (29) 

with 

Fm = A(x)P$ 

where A(x), P (x, x), and j (x) represent the estimates of 
A(x), p(x, x), and p (x). FZ is the command vector of the 
decoupled end-effector. With a perfect nonlinear dynamic 
decoupling, the end-effector becomes equivalent to  a. single 
unit  mass Zmo, moving in the mo-dimensional space. To 
simplify the notations, the symbol will be dropped in the 
following development. 

At the level of the decoupled end-effector, I$, various 
control structures can be selected. For tasks where the desired 
motion  of the end-effector is specified, a linear dynamic 
behavior can be obtained by selecting 

P ~ = z , , X d - k P ( X - X d ) - k u ( X - X d )  . (31) 

where x d ,  i d ,  and & are the desired position, velocity, and 
acceleration, respectively, of the end-effector. Zmo is the mo X 
mo identity matrix. kp and k, are the position and  velocity gain 
matrices. 

An interesting approach for tasks that involve large motion 
to a goal position, where a particular path is not required, is 
based on the selection of the decoupled end-effector command 
vector F; as 

FZ = - k , ( i -  K i d )  (32) 

where 

(33) 

This allows a straight line motion of the end-effector at a given 
speed V,=. The velocity vector x is in fact controlled to be 
pointed toward the goal position while its magnitude is 
limited to V,,,. The end-effector will then travel at V,,, in  a 
straight line, except during the acceleration and deceleration 
segments. This command vector is particularly useful when 
used  in conjunction with the gradient of an artificial potential 
field for. collision avoidance [ 151. 

Using the relationship between generalized forces given  in 
(28), the joint forces corresponding to the operational com- 
mand vector F, in (29) and (30), for the end-effector dynamic 
decoupling and control, can be written as 

r = J = ( q ) A ( q ) F :  + 4 )  + d q )  (34) 

where 6(q, 4) is the vector of joint forces under the  mapping 
into joint space of the end-effector Coriolis and centrifugal 
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force vector p(x, i). To simplify the notation, A has also been 
used here to designate the kinetic energy matrix when 
expressed as a function of the joint coordinate vector q. 6(q, 
4 )  is distinct from the vector of centrifugal and Coriolis forces 
b(q, q )  in  (17)  that arises when  viewing  the manipulator 
motion in joint space. These vectors are related by 

6(q, 4 )  = H q ,  4 )  - JT(q)A(q )h(q ,  4 ) .  (35) 

A useful form of 6(q, q )  for real-time control and dynamic 
analysis can be obtained by a separation of its dependency  on 
position and velocity. 

The joint space centrifugal and Coriolis force vector b(q, q, 
of (17) can, in fact, be developed in the form 

b(q7 4 )  =B(q)[441+ c(q)[q21 (36) 

where B ( q )  and C(q) are, respectively, the n X n(n - 1)/2 
and n x n matrices of the joint space Coriolis and centrifugal 
forces associated  with b(q, 4 ) .  [qq] and [q2] are the symbolic 
notations for the n(n - 1)/2 X 1 and n X 1 column matrices 

[441=[4142 4143 ' * *  4 n - 1 @ n I T  

[ 4 2 ]  = [ q :  4; * * * Qi]T.  (37) 

With [4q]  and [g2], the vector h(q,  q )  can be developed in the 
form 

h(q7 4 ) = ~ l ( 4 ) [ 9 Q 1 + ~ 2 ( ~ ) c 4 2 1  (3 8) 

where the matrices .Hl(q) and H2(q) have, respectively, the 
dimensions n x n( - 1)/2 and n x n. Finally, the vector 
g(q, q )  can be written as 

&qY 4 )  =B(q)[(i@l+ a q ) [ 4 2 1  (39) 

where B(q)  and c(q) are the n X n(n - 1)/2 and n X n 
matrices of the joint forces under the mapping into joint space 
of the end-effector Coriolis and centrifugal forces. These 
matrices are 

B ( q ) = B ( q ) - J T ( g ) A ( q ) H 1 ( q )  

ei(41 = C(q) - JT(q>A(q)H2(q) (40) 

With  the relation (39), the dynamic decoupling of the end- 
effector can be obtained using the configuration dependent 
dynamic coefficients A ( q ) ,  B(q) ,  c(q), and g(q). The joint 
force control vector (34) becomes 

~ = J ~ ( ~ ) A ( ~ ) F I T , + B ( ~ ) [ ~ ~ I  + e ( m 2 i  + m .  (41) 

By isolating these coefficients, end-effector dynamic decou- 
pling and control can be achieved in a two-level control system 
architecture [15]. The real-time computation of these coeffi- 
cients can  then  be  paced by the rate of configuration changes, 
which  is  much lower than that of the mechanism dynamics. 
This leads to the following architecture for the control system 

a low rate dynamic  parameter evaluation level: updat- 

a high rate servo control level: computing the command 
ing the end-effector dynamic parameters; 

vector (41)  using the updated dynamic coefficients. 

This approach has also been proposed [lo] for real-time 
dynamic control of manipulators in joint space. 

V. CONSTRAINED MOTION OPERATIONS 

The matrix s2 defined earlier specifies, with respect to the 
frame of reference 030, the directions of  motion  (displacement 
and rotations) of the end-effector. Forces and  moments are to 
be applied in or about directions that are orthogonal to these 
motion directions. These are specified by the matrix 8. 

An important issue related to the specification of  axes of 
rotation  and applied moments is concerned with the compati- 
bility  between these specifications and the type of representa- 
tion  used for the description of  the end-effector orientation. In 
fact, the specification of axes of rotations and applied moments 
in the matrices C, and 2, are only compatible with descriptions 
of the orientation using instantaneous angular rotations. 
However, instantaneous angular rotations are not quantities 
that  can  be  used as a set of configuration parameters for the 
orientation. Representations of the end-effector orientation 
such as Euler angles, direction cosines, or Euler parameters, 
are indeed incompatible with specifications provided by C, and 

Instantaneous angular rotations have  been  used for the 
description of orientation error of the end-effector. An angular 
rotation error vector 64 that corresponds to the error between 
the actual orientation of the end-effector and its desired 
orientation can be formed from the orientation description 
given by the selected representation [ 131, [22]. 

The time derivatives of the parameters corresponding to a 
representation of the orientation are related simply to the 
angular velocity vector. With linear and angular velocities is 
associated the matrix Jo(q), termed the basic Jacobian, 
defined independently of the particular set of parameters used 
to describe the end-effector configuration 

E,. 

The Jacobian matrix J ( q )  associated with a given representa- 
tion of the end-effector orientation x, can  then  be expressed in 
the form [13] 

J ( q )  = ExrJo(4) (43) 

where the matrix Ex, is simply  given as a function of x,. 
For end-effector motions specified in terms of Cartesian 

coordinates and instantaneous angular rotations, the dynamic 
decoupling  and  motion control of the end-effector can be 
achieved [ 131  by 

r = J,T(s>Ao(x)F: + 5o(q, 4 )  + g ( 4 )  (44) 

where &(q) and 60(q, q )  are defined  similarly to A(q)  and 
6(q, 4 )  with J ( q )  being replaced by Jo(q). 

Using the relationship (43) similar control structures can be 
designed to achieve dynamic decoupling and  motion control 
with respect to descriptions using other representations for the 
orientation of the end-effector . 

The unified operational command vector for end-effector 
dynamic decoupling, motion, and active force control can be 
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I 1 

1 l l  

Fig. 3.  Operational  space  control system architecture. 

written as 

F =  Fm + Fa+ Fccg (45) 

where Fm,  Fa, and Fccg are the operational command vectors of 
motion, active force control, and centrifugal, Coriolis, and 
gravity forces given by 

F m  = Ao(Q)Qp: 

Fa=f iFz+Ao(q) f iFz  

Fccg = 60(0(4, 4 )  + g ( q )  (46) 

where F: represents the vector of end-effector velocity 
damping that acts in the direction of force control. The joint 
force vector corresponding to F in  (45) is 

r=J,T(q)[Ao(q)(QF: + OF:) + f iFzI+  60(q1 4 )  +g(q). 

(47) 

The control system architecture is  shown in Fig. 3, where kf 
represents the force error gain  and k,f denotes the velocity 
gain in F,*. An effective strategy for the control of the end- 
effector during the transition from free to constrained motions 
is  based  on a pure dissipation of the energy at the impact. The 
operational command vector Fa during the impact  transition 
control stage is 

Fa=Ao(q)8F:.  (48) 

The duration of the impact transition control is a function of 
the impact velocity  and the limitations on damping gains and 
actuator torques (this duration is typically on the order of  tens 
of milliseconds). Force rate feedback has also been  used  in F;. 
A more detailed description of the components involved in this 
control system, real-time implementation issues, and experi- 
mental results can be found in [19]. 

VI. REDUNDANT MANIPULATORS 
The configuration of a redundant manipulator cannot be 

specified by a set  of parameters that only describes the end- 
effector position and orientation. An independent set of end- 
effector configuration parameters, therefore, does not  consti- 
tute a generalized coordinate system for a redundant 

manipulator, and the dynamic behavior of the entire redundant 
system cannot be represented by a dynamic model  in coordi- 
nates  only of the end-effector configuration. The dynamic 
behavior of the end-effector itself, nevertheless, can still be 
described, and its equations of  motion in operational space can 
still be established. 

The end-effector is affected by forces acting along or about 
the axes of its freedom of motion. These are the operational 
forces associated with the operational coordinates selected to 
describe its position and orientation. Let us consider the end- 
effector dynamic response to the application, on the end- 
effector,  or  an operational force vector F. In this case of 
redundant manipulator systems, the joint forces that can be 
used to produce a given operational force vector are not 
unique. The joint force vector 

I '=JT(q)F  (28) 

represents, in fact, one of these solution. 

(1 7), and the use of the relation 
The application of the joint forces (28) to the manipulator 

a = J ( q ) q + h ( q ,  4 )  (49) 

allow  us to establish [13] the equations of motion of the end- 
effector 

AAq)f+ PA49 4 )  +PA41 = F  (50) 

where 

h, (q)=[J(q)A- ' (q)JT(q) l - '  

Pccr(Q, 4)=JT(q)b(q9  4 ) -&(4)h(q ,  4 )  

PA41 = . f T ( 4 k ( q >  ( 5  1) 

and 

~ i ( 4 ) = A - ' ( s ) J T ( 4 ) A , ( ( I ) .  ( 5 2 )  

J ( q )  i s  actually a generalized inverse of the Jacobian matrix 
corresponding to the solution that minimizes the manipulator's 
instantaneous kinetic energy. 

Equation (50) describes the dynamic behavior of the end- 
effector when the manipulator is submitted to a generalized 
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joint force vector of  the form (28). The m X m matrix &(q) Stability  Analysis 
can  be interpreted as a pseudo-kinetic energy matrix corres- In the command vector (58), and with the assumption of a 
pending to the end-effector motion in Operational  'pace* h ( q 9  "perfect" compensation (or noncompensation) ofthe centrifu- 0) represents the and forces acting On the gal and Coriolis forces, the manipulator can  be  considered as a 
end-effector and pr(q)  the gravity force vector. 

joint forces, can be determined by (50)  which  can  be rewritten 
The effect on the end-effector of the application of arbitrary the velocity damping term ( - kui)  in F.+.. These forces are 

conservative system subjected to the dissipative forces due to 

Substituting (1 7 )  yields 

~ = ~ = ( q ) r .  (54) 

This relationship determines how the joint space dynamic 
forces are reflected at the level of the end-effector. 

Lemma: The unconstrained end-effector (50) is subjected to 
the  operational force F if and  only if the manipulator (17) is 
submitted to the generalized joint force vector 

r = J T ( q ) ~ + [ z , - J T ( q ) J T ( q ) ] r o  (55) 

where I,, is the n X n identity matrix, J ( q )  is the matrix given 
in (52) and r0 is an arbitrary joint force vector. 

When the applied forces r are of the form (55), it is 
straightforward from (54) to verify  that the only forces acting 
on  the end-effector are the operational forces F produced by 
the first term in the expression of r. Joint forces of the form 
[I,, - JT(q)JT(q) ]r0  correspond in fact to a null operational 
force vector. 

The uniqueness of (55) is essentially linked to the  use  of a 
generalized inverse ] ( q )  that is consistent with the dynamic 
equations of the manipulator and end-effector. The form of the 
decomposition (55) itself is general. A joint force vector r can 
always be expressed in the form of (55). 

Let P ( q )  be a generalized inverse of J ( q ) ,  and let us  submit 
the  manipulator to the joint force vector 

If, for any ro, the end-effector is  only subjected to F, (56) 
yields 

. I ( q ) A - ' ( q ) = [ J ( q ) A - ' ( q ) J T ( q ) 1 P T ( q )  (57) 

which implies the equivalence of P ( q )  and J ( q ) .  

VII. CONTROL OF REDUNDANT MANIPULATORS 
As  in the case of nonredundant manipulators, the dynamic 

decoupling  and control of the end-effector can  be  achieved  by 
selecting an operational command vector of the form of (29), 
(30): The corresponding joint forces are 

where &(q, q )  is  defined similarly to 6(q, 4). 
The manipulator joint motions produced by this  command 

vector are those that minimize the instantaneous kinetic energy 
of the mechanism. 

D ( q )  = - k u J T ( q ) ~ r ( q ) J ( q ) .   ( 6 0 )  

Lyapunov stability analysis leads to the condition 

qTD(q)qsO (61) 

which  is satisfied, since D(q)  is an n x n negative 
semidefinite matrix of rank m. However, the redundant 
mechanism can still describe movements  that are solutions of 
the equation 

qTD(q)q=o. (62) 

An example of such behavior is shown in Fig. 4(a). The end- 
effector of a simulated three-degree-of-freedom planar manip- 
ulator is controlled under (58). The end-effector goal  position 
coincides with its current position, while the three joints are 
assumed to have initially nonzero velocities (0.5 rad/s has 
been used). 

Asymptotic stabilization of the system can be  achieved by 
the addition  of dissipative joint forces [ 1 3 ] .  These forces can 
be  selected to act  in the null space of the Jacobian matrix [ 161. 
This precludes any effect of the additional forces on the end- 
effector and  maintains its dynamic decoupling. Using (55) 
these additional stabilizing joint forces are of the form 

rn,=[Z,-JT(q)JT(q)Ir , .   (63)  

By selecting 

rs= -ku,A(q)4,  (64) 

the vector r,, becomes 

rns=rs+JT(q)Ar(q)Frs  (65) 

with 

Fr, = kuqi.  (66) 

Finally, the joint force command vector can be  written as 

r=J'(q)ar(q)(F.+.+Fr,)+r,+b;(q,  q )+g(q ) -   (67 )  

Under  this form, the evaluation of the generalized inverse of 
the  Jacobian matrix is avoided. The matrix D(q)  correspond- 
ing to the new expression for the dissipative joint forces rdis in 
the  command vector (67) becomes 

D ( q ) =  - [ (k , -ku , )JT(q )A , (q )J (q )+ku ,A(q ) l .  (68) 

Now, the matrix D(q)  is  negative definite and the system  is 
asymptotically stable. Fig. 4(b) shows the effects of this 
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(a) (b) 
Fig. 4. Stabilization of redundant manipulator. 
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stabilization on the previous example of a simulated three- 
degree-of-freedom manipulator. 

Constrained Motion Control 
The extension to redundant manipulators of the results 

obtained in the case of nonredundancy is straightforward. The 
generalized joint forces command vector becomes 

r = J~(q)[ii, ,(q)(w; + i j~ ;  +F,J+ i j~;]  
+ r, + gr0(q, q)  + g(q)  (69) 

where &,(a) and b ; o ( q ,  q )  are defined with respect to the 
basic Jacobian matrix Jo(q). 

VII. SINGULAR CONFIGURATIONS 
A singular configuration is a configuration q at which 

some column vectors of the Jacobian matrix become linearly 
dependent. The mobility of the end-effector can be defined as 
the rank of this matrix [ 5 ] .  In the case of nonredundant 
manipulators considered here, the end-effector at a singular 
configuration loses the ability to move along or rotate about 
some direction of the Cartesian space; its mobility  locally 
decreases. Singularity and  mobility  can be characterized, in 
this case, by the determinant of  the Jacobian matrix. 

Singularities can be further specified by the posture.of the 
mechanism at which they occur. Different types of singulari- 
ties can be observed for a given mechanical linkage. These can 
be directly identified from the expression of the determinant of 
the Jacobian matrix. The expression of this determinant can, in 
fact, be developed into a product of terms, each of which 
corresponds to a type of singularity related to the kinematic 
configuration of the mechanism, e.g., alignment of two links 
or alignment of two joint axes. 

To each singular configuration there corresponds a singular 
“direction.” It is in this direction that the end-effector 
presents infinite inertial mass for displacements or infinite 
inertia for rotations. Its movements remain free in the 
subspace orthogonal to this direction. This behavior extends, 
in reality, to a neighborhood of the singular configuration. The 
extent  of this neighborhood can  be characterized by the 
particular expression s(q)  in  the determinant of the Jacobian 
matrix that vanishes at this specific singularity. The neighbor- 

hood  of a given type of singularity 9, can be defined as 

as= ~ ~ 1 1 s ( q ) l ~ ~ o l  (70) 

where so is positive. 
The basic concept in our approach to the problem of 

kinematic singularities can  be formulated as follows. In the 
neighborhood 9, of a singular configuration q ,  the manipula- 
tor is treated as a mechanism that is redundant with respect to 
the motion of the end-effector in the subspace of operational 
space orthogonal to the singular direction. For end-effector 
motion  in  that subspace, the manipulator is controlled as a 
redundant mechanism. Joint forces selected. from the associ- 
ated  null space are used for the control of the end-effector 
motion along the singular direction. When moving  out  of the 
singularity, this is achieved by controlling the rate of change 
of s(q)  according to the value of the desired velocity for this 
motion at the configuration when Is(q)( = SO. Selecting the 
sign of the desired rate of change of s(q) allows the control of 
the manipulator posture among the two configurations that it 
can generally take when  moving  out  of a singularity. A 
position error term on s(q)  is used  in the control vector for 
tasks that involve a motion toward goal positions located at or 
in the neighborhood of the singular configuration. 

Using polar or singular value decomposition, this approach 
can be easily extended to redundant manipulator systems. The 
extension to configurations where more than one singularity is 
involved can be also simply achieved. An example of a 
simulated two-degree-of-freedom manipulator is shown in 
Fig. 5(a). The manipulator has been controlled to move into 
and  out  of the singular configuration while displaying two 
different postures. The time-response of the motion  in the 
singular direction x( t )  is  shown  in Fig. 5@). 

IX. SUMMARY AND DISCUSSION 

A methodology for the description of end-effector con- 
strained motion tasks based on the construction of generalized 
task specification matrices has been proposed. For such tasks 
where both motion and active force control are involved, a 
unified approach for end-effector dynamic control within  the 
operational space framework has  been presented. The use of 
the generalized task specification matrix has provided a more 
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Fig. 5. Control at singular configuration. 

efficient control structure for real-time implementations, 
further enhanced by a two-level control architecture. 

Results  of the implementation of this approach have shown 
the operational space formulation to be an effective means of 
achieving high dynamic performance in real-time motion 
control and active force control of robot manipulator systems. 
This approach has been  implemented  in an experimental 
manipulator programming system COSMOS (Control in Oper- 
ational Space of a Manipulator-with-Obstacles System): Using 
a PUMA 560 and wrist and finger sensing, basic  assembly 
operations have been performed. These include contact, slide, 
insertion, and compliance operations [17]. With the recent 
implementation of  COSMOS  in the multiprocessor computer 
system  NYMPH [2], where four National Semiconductor 
32016 microprocessors have been used, a low-level servo rate 
of 200 Hz  and a high-level dynamics rate of 100 Hz have  been 
achieved. 

The impact transition control strategy was effective in the 
elimination of  bounces at contact with a highly  stiff surface. 
The end-effector normal velocities at impact were up to 4.0 in/ 
s. Experiments with square wave force input have also been 
conducted, and responses with rise times of less than 0.02 s 
and  steady force errors of less than 12 percent have been 
observed. This performance has  been obtained despite the 
limitations in controlling the manipulator joint torques [27]. 
Accurate identification of  the PUMA 560 dynamic parameters 
[ l ]  has contributed to a nearly perfect dynamic decoupling of 
the end-effector. 

For redundant manipulator systems, the end-effector equa- 
tions of motion have been established, and an operational 
space control system for end-effector dynamic decoupling and 
control has been designed. The expression of joint forces of 
the null space of the Jacobian matrix consistent with the end- 
effector dynamic behavior has been identified and  used for the 
asymptotic stabilization of the redundant mechanism. The 
resulting control system avoids the explicit evaluation of any 
generalized inverse or pseudo-inverse of the Jacobian matrix. 
Joint constraints, collision avoidance [ 121, [ 151, and control of 
manipulators’ postures can be naturally integrated in this 
framework of operational space control systems. Also, a new 
systematic solution to the problem of kinematic singularities 
has been presented. This solution constitutes an effective 

alternative to resolving end-effector motions  into joint motions 
generally used  in joint space based control systems. 
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