SCHAUM'S OUTLINE OF

THEORY AND PROBLEMS

OF

FEEDBACK and CONTROL SYSTEMS

Second Edition

CONTINUOUS (ANALOG) AND DISCRETE (DIGITAL)

JOSEPH J. DISTEFANO, III, Ph.D.

Departments of Computer Science and Medicine University of California, Los Angeles

ALLEN R. STUBBERUD, Ph.D.

Department of Electrical and Computer Engineering University of California, Irvine

IVAN J. WILLIAMS, Ph.D.

Space and Technology Group, TRW, Inc.

SCHAUM'S OUTLINE SERIES

McGRAW-HILL

New York San Francisco Washington, D.C. Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto

Contents

Chapter	I	INTRODUCTION 1			
		1.1 Control Systems: What They Are	1		
		1.2 Examples of Control Systems	2		
		1.3 Open-Loop and Closed-Loop Control Systems	3 4 4		
		1.4 Feedback			
		1.5 Characteristics of Feedback			
		1.6 Analog and Digital Control Systems	4		
		1.7 The Control Systems Engineering Problem	6		
		1.8 Control System Models or Representations	6		
Chapter	2	CONTROL SYSTEMS TERMINOLOGY	15		
		2.1 Block Diagrams: Fundamentals	15		
		2.2 Block Diagrams of Continuous (Analog) Feedback Control Systems	16		
		2.3 Terminology of the Closed-Loop Block Diagram	17		
		2.4 Block Diagrams of Discrete-Time (Sampled-Data, Digital) Components,			
		Control Systems, and Computer-Controlled Systems	18		
		2.5 Supplementary Terminology	20		
		2.6 Servomechanisms	22		
		2.7 Regulators	23		
Chapter	3	DIFFERENTIAL EQUATIONS, DIFFERENCE EQUATIONS, AND LINEAR SYSTEMS	39		
		3.1 System Equations	39		
		3.2 Differential Equations and Difference Equations	39		
		3.3 Partial and Ordinary Differential Equations	40		
		3.4 Time Variability and Time Invariance	40		
		3.5 Linear and Nonlinear Differential and Difference Equations	41		
		3.6 The Differential Operator D and the Characteristic Equation	41		
		3.7 Linear Independence and Fundamental Sets	42		
		3.8 Solution of Linear Constant-Coefficient Ordinary Differential Equations	44		
		3.9 The Free Response	44		
		3.10 The Forced Response	45		
		3.11 The Total Response	46		
		3.12 The Steady State and Transient Responses	46		
		3.13 Singularity Functions: Steps, Ramps, and Impulses	47		
		3.14 Second-Order Systems	48		
		3.15 State Variable Representation of Systems Described by Linear			
		Differential Equations	49		
		3.16 Solution of Linear Constant-Coefficient Difference Equations	51		
		3.17 State Variable Representation of Systems Described by Linear			
		Difference Equations	54		
		3.18 Linearity and Superposition	56		
		3.19 Causality and Physically Realizable Systems	57		

Chapter	4	THE LAPLACE TRANSFORM AND THE z-TRANSFORM		
		4.1 Introduction	74	
		4.2 The Laplace Transform	74	
		4.3 The Inverse Laplace Transform	75	
		4.4 Some Properties of the Laplace Transform and Its Inverse	75	
		4.5 Short Table of Laplace Transforms	78	
		4.6 Application of Laplace Transforms to the Solution of Linear		
		Constant-Coefficient Differential Equations	79	
		4.7 Partial Fraction Expansions	83	
		4.8 Inverse Laplace Transforms Using Partial Fraction Expansions	85	
		4.9 The z-Transform	86	
		4.10 Determining Roots of Polynomials	93	
		4.11 Complex Plane: Pole-Zero Maps	95	
		4.12 Graphical Evaluation of Residues	96	
		4.13 Second-Order Systems	98	
Chapter		CTADII ITV	114	
Chapter	,	STABILITY	114	
		5.1 Stability Definitions		
		5.2 Characteristic Root Locations for Continuous Systems	114	
		5.3 Routh Stability Criterion	115	
		5.4 Hurwitz Stability Criterion	116	
		5.5 Continued Fraction Stability Criterion	117	
		5.6 Stability Criteria for Discrete-Time Systems	117	
Chapter	6	TRANSFER FUNCTIONS	128	
Op.v.		6.1 Definition of a Continuous System Transfer Function	128	
		6.2 Properties of a Continuous System Transfer Function	129	
		6.3 Transfer Functions of Continuous Control System Compensators		
		and Controllers	129	
		6.4 Continuous System Time Response	130	
		6.5 Continuous System Frequency Response	130	
		6.6 Discrete-Time System Transfer Functions, Compensators	150	
			132	
		and Time Responses	133	
		6.7 Discrete-Time System Frequency Response	134	
		6.8 Combining Continuous-Time and Discrete-Time Elements	134	
Chapter	7	BLOCK DIAGRAM ALGEBRA AND TRANSFER FUNCTIONS		
pici	•	OF SYSTEMS	154	
		7.1 Introduction	154	
		7.2 Review of Fundamentals	154	
			155	
		7.3 Blocks in Cascade 7.4 Canonical Form of a Feedback Control System	156	
		7.5 Block Diagram Transformation Theorems	156	
		7.6 Unity Feedback Systems	$\frac{158}{159}$	
		7.7 Superposition of Multiple Inputs	160	
	О	CICNAL ELOW CDADUC	170	
Chapter	8	SIGNAL FLOW GRAPHS	179	
		8.1 Introduction	179	
		8.2 Fundamentals of Signal Flow Graphs	179	

			80
			81
			82
		E E	84
			86
		8.8 Block Diagram Reduction Using Signal Flow Graphs and the General	
		Input-Output Gain Formula 1	87
			_
Chapter	9	SYSTEM SENSITIVITY MEASURES AND CLASSIFICATION	
		OF FEEDBACK SYSTEMS 2	80
			80
		9.2 Sensitivity of Transfer Functions and Frequency Response Functions	
			80
		9.3 Output Sensitivity to Parameters for Differential and Difference	
		—4	13
			14
			15
			16
			17
			17
			17
		9.10 Error Constants for More General Systems	18
Chapter	10	ANALYSIS AND DESIGN OF FEEDBACK CONTROL SYSTEMS: OBJECTIVES AND METHODS	30
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	230
			230
			230
		J	231
			235
			236 236
			.50
		10.7 The w-Transform for Discrete-Time Systems Analysis and Design Using Continuous System Methods	236
			238
		10.6 Algebraic Design of Digital Systems, flictuding Deadbeat Systems	.50
Chapter	11	NYQUIST ANALYSIS	46
-		11.1 Introduction	246
			246
			247
		11.4 Properties of the Mapping $P(s)$ or $P(z)$	49
			250
			252
			253
			256
			256
			260
		11.11 Relative Stability	262
			63

Chapter	12	NYQUIST DESIGN	299
		12.1 Design Philosophy	299
		12.2 Gain Factor Compensation	299
		12.3 Gain Factor Compensation Using M-Circles	301
		12.4 Lead Compensation	302
			304
		12.5 Lag Compensation	
		12.6 Lag-Lead Compensation	306
		12.7 Other Compensation Schemes and Combinations of Compensators	308
Chapter	13	ROOT-LOCUS ANALYSIS	319
		13.1 Introduction	319
		13.2 Variation of Closed-Loop System Poles: The Root-Locus	319
		13.3 Angle and Magnitude Criteria	320
		13.4 Number of Loci	321
		13.5 Real Axis Loci	321
		13.6 Asymptotes	322
		13.7 Breakaway Points	322
		13.8 Departure and Arrival Angles	323
		13.9 Construction of the Root-Locus	324
		13.10 The Closed-Loop Transfer Function and the Time-Domain Response	326
		13.11 Gain and Phase Margins from the Root-Locus	328
		13.12 Damping Ratio from the Root-Locus for Continuous Systems	329
	• •		
Chapter	14	ROOT-LOCUS DESIGN	343
		14.1 The Design Problem	343
		14.2 Cancellation Compensation	344
		14.3 Phase Compensation: Lead and Lag Networks	344
		14.4 Magnitude Compensation and Combinations of Compensators	345
		14.5 Dominant Pole-Zero Approximations	348
		14.6 Point Design	352
		14.7 Feedback Compensation	353
	15	BODE ANALYCIC	264
Chapter	13	BODE ANALYSIS	364
		15.1 Introduction	364
		15.2 Logarithmic Scales and Bode Plots	364
		15.3 The Bode Form and the Bode Gain for Continuous-Time Systems	365
		15.4 Bode Plots of Simple Continuous-Time Frequency Response Functions	
		and Their Asymptotic Approximations	365
		15.5 Construction of Bode Plots for Continuous-Time Systems	371
		15.6 Bode Plots of Discrete-Time Frequency Response Functions	373
		15.7 Relative Stability	375
		15.8 Closed-Loop Frequency Response	376
		15.9 Bode Analysis of Discrete-Time Systems Using the w-Transform	377
		13.7 Bode Analysis of Discrete-Time Systems Osing the w-Transform	311
Chapter	16	BODE DESIGN	387
Chapter	LU		
		16.1 Design Philosophy	387
		16.2 Gain Factor Compensation	387
		16.3 Lead Compensation for Continuous-Time Systems	388
		16.4 Lag Compensation for Continuous-Time Systems	392
		16.5 Lag-Lead Compensation for Continuous-Time Systems	393
		16.6 Bode Design of Discrete-Time Systems	395

Chapter	<i>17</i>	NICHOLS CHART ANALYSIS 4			
-		17.1 Introduction	411		
		17.2 db Magnitude-Phase Angle Plots	411		
		17.3 Construction of db Magnitude-Phase Angle Plots	411		
		17.4 Relative Stability	416		
		17.5 The Nichols Chart	417		
		17.6 Closed-Loop Frequency Response Functions	419		
Chapter	18	NICHOLS CHART DESIGN	433		
_		18.1 Design Philosophy	433		
		18.2 Gain Factor Compensation	433		
		18.3 Gain Factor Compensation Using Constant Amplitude Curves	434		
		18.4 Lead Compensation for Continuous-Time Systems	435		
		18.5 Lag Compensation for Continuous-Time Systems	438		
		18.6 Lag-Lead Compensation	440		
		18.7 Nichols Chart Design of Discrete-Time Systems	443		
Chapter	19	INTRODUCTION TO NONLINEAR CONTROL SYSTEMS	453		
		19.1 Introduction	453		
		19.2 Linearized and Piecewise-Linear Approximations of Nonlinear Systems	454		
		19.3 Phase Plane Methods	458		
		19.4 Lyapunov's Stability Criterion	463		
		19.5 Frequency Response Methods	466		
Chapter	20	INTRODUCTION TO ADVANCED TOPICS IN CONTROL SYSTEMS ANALYSIS AND DESIGN	480		
		20.1 Introduction	480		
		20.2 Controllability and Observability	480		
		20.3 Time-Domain Design of Feedback Systems (State Feedback)	481		
		20.4 Control Systems with Random Inputs	483		
		20.5 Optimal Control Systems	484		
		20.6 Adaptive Control Systems	485		
		APPENDIX A	486		
		Some Laplace Transform Pairs Useful for Control Systems Analysis			
		APPENDIX B Some z-Transform Pairs Useful for Control Systems Analysis	488		
		REFERENCES AND BIBLIOGRAPHY.	489		

APPENDIX C	4
 INDEX	5