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study of projective geometry and rerated spaces in the framework of pasch geometryhas the convenience of 
.deating *iut ;orpr,isms and r,on,oro.pr,isms with theavailability ofhomomorphism theirem, ,irirui ro orr,", urgriJi."r*.,u.", (see [3].).

2. Preliminaries

In this section we-briefly present the basic concepts and preriminary resurts onPasch geometries and probab'ity lroups. ihe detairs iJ il ff;; in rhe references.particularly in [7J. 
v F-' rq" ut ruurr(

Definition 2'l Bya pasch geometry is meant a nipre (A, e, L) where Ais a set, e e l,and 46 : A c A x A x Asubject to tire following axioms:
l .  Va eA,J aunique b e Awith(a, b,  e)e A. Let b = at.
2. t: e and(d\* = aVq e A.
3. (a, b,c) e A + (b, c, o) e A,.
4. (au gz, az),(ar aa, a5) € A + 3au e ,{ with (a6,,ti,a),(au,a5,a!) eA,.

The identity element e and the inverse a# are unique. rn ougr,out this paper,geometry will mean pasch geometry.
A geometry is called abelian if (a, b,c) e A + (b, a,c) e A. A geometry iscatted sharp if (a, b, c), (a, b, d) e L =; = ;.Atso, a g";r.r,yi;i6ea proiective ifa* = aYa eA and(a, a, b)e A :+ b = e or b : o.

foltowinlow 
a structure shonger than the geometry defined above is given in the

Definition 2,2, Aprobability group is a pair (A, p) where Ais a set andp: A x Ax A -+ [0, l] is amap to ttre unii interval, denoted as(a, b, c) _+ p"(a, b),subject to the following axioms:

L Fora, b e A,p,(a,b)=0 forail but finitely manyx eA and

2 P*@,b)=t.

2. For a, b, c, d e A, 
teA

Z p,@, b) pa @,d = 
Enp 

a @,y) pr(b,c)

3. 3e e I such that po(e,a)= | = po(a,e)V a eA
4' For each a e r, there exists a unique b e A with p"(a,b)* 0. we denote D

bv o'.
5 .  p , (a ,b )=  p" r (b t ,dyv  a ,b ,c  e  A .

It shourd b *y thatpda,b) can be read as the probabirity for the erement c tobelong to the murtivarued producia.a. arro, *io,,, (l) describes probability
distribution, (2) gives associativity, the,identity e given by (3) is unique and the uniqueiwersef.gfa given by (a) satisfies (d)o = i! o .r. when dearing with more thanone probabitity group, we write them u (A, pA),(a, pi) ;;.;;;;"" ,*"o ro tet the
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context distinguish. we may simply nrite I is a probability group, the associated p
being understood. A probability group is called abelian if p"(a,b): pdb,a)V a,b,c e A.

The following useful relations are obtained as consequences of the axioms:

Lemma 2.3. For any probability group (A, p),wehave:

(i) pok!,$= po(c,a)Va,c e A.

(ii'1 p,@,a)*lVa e A*-{el

(iii) p p(a,b) p 
"(t, 

c) = p 
"(a,auS 

p 74t,c7. In particular, if b = d,we get

p o(a,b) p 
"(b,bu) 

: n 7od7 p s,1b,tu\ -
(iv) p"(a,b) * 0 if and only if p,*(b,c\ * 0.

For a probabilrty group A,.let Lt= {(a,b,c): p"*(a,b\ * 0}. Then

Proposition 2.4. (A, e, L1) is a Pasch Geometry.

Thus, when I is a probability group, we speak of the geome$ A to mean the
induced Pasch geometry structure as described above. Every probability,group is b
Pasch geometry but the example (4) below shows that the converse is not true.

A probability group is called sharp (projective) ifit is sharp (projective) as a
geometry.

Examples 2.5.

l. Let G be a group. Defnep by p" Q,c) 
= | if a: b.c and 0 otherwise. Then (G, p)

is a sharp probabilify group with d : a t. Note that the probabiliry for an element a to
be in the piroduct b.a is either I or 0. Conversely, every sharp probability group is a
group.

2. Let P be the set of points of a furite projective plane of order m.Let
A= P v {el, e e P.OnA,define the mapp ai follows:

6"(c) if b=2,where dr(c) =l if a=c,0 otherwise

6" (b)  i f c=e

#au@) i f  a=e

#  i f  a = b = c + e

# i f  a,b,ce P anda,b,caredist inctandcol l inear

0 otherwise

Then (1, p) is a probability group, the induced geometry being that of the projective
plane. Note that if n = 2. po @, a) -^ 0 and A is sharp.

3.LetG be a fulite group and G: Uv f2,...4) be the set of ineducible complex

characters of G. For I s 1j< i,let 7,.Ii =Zior'ii Zr. Letpbedefined by

Po(b, c) =
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Then (G,p)

.  . : .

Pro(x;'x) = 'ir!(*' xi0) x jQ)
is a probability group.

4' The murtiplicative group of positive rationars Q+ acts on the additive group ofrationars ewith *..:'":o::,"'n_ll, 
f f 

ij,_f_,', f'i). ;il;-"; ch geometry ororbits) (cf. 2.3). For elelenfl o-: Itl,a =i,t, we have c: [_tJ a unique etement suchthat ([l], [ll, [_l]) e .A. So_ if thir i*,n"rry *"T:]i-gr.il by a probability group, thenwe would havep1l1([r], IrD = r, r"ont uaiJting remma 2.3 (ii).
Now let @, f!!e a probability group and S c A,a finite subset. Set*:r'tes ffy' Note that pdr, r5;c 0 and s is finite, so n" is weil defined. Inparticurar, ry is defined if l is finite. If r is sharp and hence a group, then n,a: v4L the

;'fl;:i? 
sroup; ir^ is projective;;il#; ffi;ff#iJ; o,-, ororder rn.

2'l' subgeom"try ul-,r r:lprobabirity group. LetAbea geomery and B =A.Then,Bis calfed asubgeometry rti.e B ua(i,iior) e A, b1,b2 e B+x e b.LetLa: Le n (B x B x B).They (!, e,Ary i, u g;orn"t y.
Let (A' p)be a 

SlluauiJi' gr*p ia r c r. Then B is cated a subprobabirirygroup of A if e e B ya !a,78) i, i pr"UuCifiry g.oup on ir, o-* ," here po is the res-triction of p on B x R-xa we *iil #;t; rii"i n pE.il;;"t B is a subpro-babitity group of r if and onry iiI;;';geometry of r. so c is a subprobabiritygroup ofr if and onrv if the foirowing hord: eeBan dp,,(b&)+0, bsge B:+ d e B.we call B a normal ruuptouuuiriry grSro #;t;r normar as a subgeom etry of A.
2'2'Factor Geometry and_factor probabirity group. Let B be a subgeometry ofr.For a, b e t, define a - b ifJb1, t, i a iia r'1,112c! tlrat (a, b', /), (x, b*, b2) e a,.This defines an equivarenc" r"rution oi i.'lJ.' erc: {[ar : ae r] be the set of arlequivatence ctasses. Let ([a],[b],[c]l . irriil, e[a], g e[b], ze [c] with(x,9, z) e 47. Then A//B is;;r;;;l,y.

In particurar, tl! = G is a group and B: rl is a subgroup, then the set of doubrecosets G//H is a geometry.
Now suppose B is a finite subprobabirity group of a probabirity group,,{. Then

3"H;r"O**metry 
of A and so we getitre a.io, g.or. W A/lB.For X, y, Z e A//B

p z ( x , Y ) = l t t y ,' '  '= 
n, h L,L*Po@'b)P,(a,g)/ 

p"(b,b#)

where x e X, u ey ue arbirary erements. The.m?pp is independent of the choice ofxand g and makes A//B inro a probabirity gr;f inaucing the factor geome try of A//8. rnparticular, if A = G is a group and a:-H-is finite sub$oup orc, ;;;;" geometry of
[1f;:"::'"' 

G//H is iprobabiritv e,*p. l"',r'i' ;;;, ;h;';il ] simpriRes to trre

icr so
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p - ( x , Y ) - l x H ' U a Z l
l H l

f o r s o m e x e x , g e Y .

2.3. Geometry and probability groups of orbits. Let Abe a geometry. A group F

is said to act on I if there is a homomorphism from f to the geometry automorphisms

of A. Thus for a e I and a e A,weget oa e ,4 satisffing obvious properties. In such

cases, we callAaf-geometry. Fora e A,let(al= laa: a e f) denotethe orbitofl

and A/f= {(a): a e l} be the set of orbits. Let ((a), (b), (c)) e A,rr iff3r e (a),

y e(b)z e (c) with (x,A, z) e A7. This makes lff a geometry called the geometry of

orbits of I by f. In particular, if V is a(left) vector space ovgr a skewfield F, then the
geometry of orbits Vlf is the geometry of the classical projective space P(Iz).

Now, let I be a probability group. Suppose a finite group I acts on the

geometry L Then ,,4 is called a f- probability group if, in addition , p -(ab,ac)
= p,(b,c)Y a, b, c e A,a e f. Suppose I is a f- probability group. Since f acts on the

geometry A, we getthe geometry of orbits l/f as above. Define

pq,yKb),(c)')= ;;;[fl] l r; I I. p,(y,r)
l(b)ll(c)l fta> ".<,)

for some r e (a). The map is well defined and makes Alf into a probability group

inducing the geometry of orbis. Thus, if G is a group and f is a finite group of auto-

morphisrns. then the geometry of orbits Gff is a probability group.

A spccia.l important case is given by the following:

turplc 25. SApcc / is a vector space over a finite filed F containng m elements.
nc nr4fizrni erot+ f rts on tzand the set oforbits l4f isa probability group of

rhc conegonding projccrive sp{€.. If (u) e Ylf ,o + 0, then (Q= f u,so | (u ) | =

I f ol= f l= ^ -1. Hencc thc aboyc formula becomes

oa,)(u),(w)=* t  Z p,(Y,r)=j;  I  LP,@u,Fw)
fr  t ye (u ) z lw l  , aeF .peF .

A case by case consideration will givep-values exactly as defined in example 2.5(2).

2.4. Homomorphism. LetA andB be geometries and f : A -+ B be a map' Then/is

called amorphism itf(e,)= tu?rrd(x,A,z) e Le-U@),f@),f(z)) e Aa' If, in

addition, V@),f @),b) e Ln> b:f (t) for some z e Awith(x, A,z) e A, then the

morphism is called a homomorphism.

Let A, Bbe probability groups and f : A -+ Bbe a map. Then /is called a probability

homorphism if f (e)= es and

pt(f @),f(a))= | pr{or,or)Yo1,o2 e A,be B.

xeI-t@)

ry
s-
)-
ry
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A.homomorphism ofprobability groups is naturally a homomorphism of
coresponding geometies. A bliective homomorphism is an isomorphism. So a bijective
/ isanisomorphismifandonry i f  p,(b,c)=pr<oi@),f(c))ya,b, i  e e.Notethatthe
context distinguishes p for A and B.

. A9 in geometry, the natural map A -+ A//B is a homomorphism if and only if B
is normal inl. There are isomorphism theorems for homomorpniirs orprouability
groups similar to those in geometry. A probability group I is said to be of discrete
probability typeif Ya e r, there is a finite set .Fo rtittrp, (a, b) e F,,y x, b e A.For
such we have:

Proposition2.T.LetAbeaprobabilitygroupofdiscreteprobabiliryrypeand B,cbe
subprobability groups ofl with c normal in A.Let B.C :'{x: 1b. c. r; e a, for some
b e B,c e c). TheB.cisasubprobabilitygroupofr andB.C C = B Bncas
probability groups.

In particular, the proposition is true ifl is fnite.

2.S.Geometry and Probability spaces over Geometric Sker,r fields. Let (A,0A, A)
be an abelian geomeby. Suppose, in addition, (1, .) is a semigroup u ith l such that
0.a: a.0 =0.It is called ageometric ring if (a, b,c) e S., e .f = (ar. bx, cx),
(xa, xb, rc) e a. It is called a geometrics sfield if l' = ..{ - { 0 i is a eroup. Suppose
(v,0w A) is an abelian geometry and the geometric sfield.J ac6 on I.compatibly as
scalars sat isfr ing: a(bu):(ab)a;}1.a= a.0y:0y; l .u =;. .  ( ! .  : . .  c. i )  e 5 =
(au ,ao ,aa)  e  L ; (a ,b ,c )  e  A+ (aa ,ba ,cz t )  e  L ; (ab ,k , .c : . )  €  l .
ay0+(a,b,c) e L;(aa,ht,a) e A+ o: c,u;where a. b.  c e . . {  and rr .  rr ,  u e V.Then
Z is- said-to be a geometric space over geometric sfield l. For such rhere is a basis and
well defined dimension (see[4], [5]). In case v and l hare sharp geomerries, the
geometric space Z is a vector space over the usual skewfield I .

t, , ,) . 
If zis a geometric space over a geometric sfield l, then rhe geomerry of orbits

r tA ts proJecnve and so.represents a projective space (including deeenerate ones).
Now suppose zis.a geometric space over r and in addirion.*1r , p) is a proba-

bility group inducing the given geometry. Then we call v aprobabilir! space over I if
VisA - probabilitygroup. Hence,y u,u, aeV andya eA'.rve have

p*(qa, aw) = pu(a,w)

Ifl is finite, then the projective space y /A' is a probability group.

2.6. semi-isomorphism. Let v and IZ be geometric spaces over geomerric sfields I
and 8 respectively. A pair of maps (o,6 ) : (v, A) --+ (w, B) is called a semi-isomorphism
if o : v -> ll is an isomorphism of geometries , 6 : A + B is an isomorphism of
geometric sfields and dw ) = 6 (a) o (u)Va e V,V a e A.

Suppose, in addition, vandllare probability spaces overl and B respectively.
Then (a <i ) is called a semi-isomorphism of probability spaces if p,(a,w) =

P o61(o (v), o (w)) V u,a,w e V.
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3. Elementary abelian probability groups

Let (A,p) be an abelian probability group. Recall thdt an abelian geometry I is
elementary if va e l, the subgeometry (a) generated by a is simple in the sense that
wheneverS is a subgeometry ofA and {e} +Sg (a), thens:(a) (see [2]). In such a
geometry, @) + (b) + (a) n (b) : le\.Now, since B is a subprobability group of A if
and only if B is a subgeometry ofl, we make the

Definition 3.1 An abelian probability group Ais called elementary if it is elementary as
a geomety.

Also, the length of the probability group I will mean the length of the
corresponding geometry [2].

L,emma 3.2. Let Abe a finite elementary abelian probability group of length greater
than one. Then

(i) p,(a,d)= p"@,t)Ya,b e A*. (ii)p"(b, c)= pt* (c,a#1Va,b,c e A*.

Proof: (i) Let a,6 e l*. Suppose (a) * (bl. Let I e I such that p,(a,b) ra 0, so
(a, b, tn) . A. Since (a) * (b), we have t e (al, t e(b). So (a) n (r) = {e} and
(o.t) = (b, r). By proposition (2.7), we get

(a) = (a) / / (a) n (r) = (4).(r) / / (tl = (b).(t) I | (tl = (b).

lf the composite map is o, then o(a): b, so a (a#) = b#. Hence,
pA* ot1 = pttct @@), o(a') = p,(b, n\.rc <a> = (b), then the length being greater
6.. c. * e A'$ch 6.. (c) * (a). T\en, p"(a,a#): pr(c,"#) = pr(b,b#y, (i) tt
h&rrfru(i)rd l@23 (iii).

Le }l tcrrl bc a fub damnay $clian probabitity group of length greater
h Z $gaAJftrJ * 0, d p{bz,e) * 0, where D1,D2,c 1,c2 € A*, (b1) * (ci),
(h) * (oJ. ltca,p.(fi,c)= pq/ihc).

Prmf: In coresponding geomelry, we have (4,h, q),(4, h, cz) e L- Note that a1 *

e, othenvise it would give (01): (cr). Similrly a2* e.

Case (1): oz: ar. Suppose first, 62 e (bsc).Then, (af,h,q), (a{,4,c) e A, so

3t e A such that (t,bl,b) , (t,c2,c() eA. Note that t c (at b),otherwise 1t,b!,b; en

would givebj and hence b2 e (a1,by)= (br, cr). So being elementary, we get

(t) a (a1,b) : {el = (t) n (a1,b21. So by proposition Q.7), we get

(asb) = (aybfll(t) n (arbrl = @1,byllt) ll (tl = (a1,9).lt) // (t) = (atbzl.

Suppose a is the composite map. Ifx e kybrl,then x e (ar,br).(r)
= (ab b2>.<t>, so 39 e (asbz),l1 e (r) with (x,y', t1) e A. Since (ajlfr r (r) = {e}, the
elements go and tr are unique. Chasing the above isomorphi-sn, it easily verifies that
o(x): g.In particular, we have o(a)= ot= oz,o (b)= bz, o(cr) = c2. So,

Po,(bv cr)= Po@,)(4b), o(c))= po2(bz, cz).



l l4 I H.N. BHATTARAI

, Now suppose 
) 

e (\c1). Then (b1,c1) : (bz,cz). Since.the length of I > 2,1b3
such that h e (b1,c1). Choose ca e I such that p,r(fu,ca) * 0. Then, (h) + ("r),
otherwise (h) =,(ar) G (6r,cr). So from the first part, we get

. po1(b*r) = po1(bt,ct): po1(bz,cz): p,, (h,c).

Case (2): Let a2be arbitrary. Since (01) * (c1), either (a2l * g), or (a2) *(c1). We may
assume (a2) * (b). Now, 3d e ,{ with n4@$,a1 + 0. By temma 3.2 (ii), we get

Po,(h,cr) = p61@t,ai). Now using case (l), we get

o4@r,a() = 
f4@$,d1 :p,2(d,b)= p,r(h,cz).

Thus in every caseprl (Dr,cl) = po2(bz,cz).
Now, suppose (Ap) is a probability group of rengrh greater than two such that

me coresponding geometry is projective.'ihin ne g*riry"l 
"*rrpona, 

to a projec-
tive space. suppose the pro.iective space is of order r so thai each line contains z + I
poinf' The following theorem s!9wg that the probabitity ,*.,u.r on u projective space
is unique. This result was proved in [7] by using dualiry.

Theorem 3.4 Let (A,p) be afinite probability group such that the induced geometry on
A is projective of order m with length (A) > 2. Then,

po(b, c) =

6,(c) i f  b=e

6,(b) i f  c=e

# 4 @ )  i f  a = e

#  i f  a = b = c * e

# if a, b, c e P and a, b, c aredistinct and collinear
0 otherwise

xet*-la,el

a

G

P,
L

.t

I

r.

Tr

i r

I

a,

a

tl
(

J

h
r l
I

fro9fl 
Sincel isprojectivc, it is abelian and(a,a,b) e A + b: eorb: a. This implies

that (a) = {e, al ,Y a e A. So A is elementary abelian.
Now if 6 = e, lhen po(e,c) = 6o(c) and if c : e, then po(b,e) : 6"(c) are clear. So

suppose b,c e A . We consider two cases.

case (1): b + c. Then po(b,c) * 0 if and only if (a,b,c) e A. Since r is elementarv
Abelian, lemma 3.3 gives that p"(b,c) = p,(b,,c)yx e r* such that (x,6,c) e a. nut 1a6,c;
e A if and only ifx e Lu - {D,c}, where 26" is the line determined by the points b and c.
Since the line L6" has zr + I points, thb number of x e L6" - {b,c} wiit Ue {m + \A :
lrl -1. So

l= l  p r (b , c )=
teA

Z p"@,c) = (m -l) po(b,c).

Hence, pr(b,c)= *.
Case (2): b: c.\\enpo(b,c)*0 only if a = b= c or a: e. Suppose first

S.
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a = b = c and po(a, a) * O.Since length (A) > 2, 19 e A' such that A * a. Let z e I such

that (a, y, z) e A. Cleuly z * e, q, A. So po(y,4 = 
;-i.Now consider the equation:

2, P'(v, 4 Po(a,x) = 2 Po(a,x) P'(z,a)

On the left side,po(a, r) = 0 except for r: a or e.But if x = e, then

ply, z) = p"(/,2) = 0, sincey + z. So the only nonzero term in the sum is for x: a. So

Left side = po(A, z) po(a, a)= # pfta, a).

Also on the right a,U , z are distinct and collinear , so po(g, x) = p,(2, a):;! or 0. The

numberof elementsxsuchthatp,(y,r)*0 is m-l and includesz, but if.r=2, then

p,(2, a) = 0. So the number of elements for which both factors are not zero is m -2. So

Rightside =(m-a(*X*)= @-2) (#f

Thus, fr po(a, a) = @ a) (;!f giving p"(a, a) = 
#

Final ly, suppose a = e. Then', w e hav e p u(b,b)+ p t(b, b,) : l, so p 
"(b,b) 

= |

and the proof is complete.

4. Probability spaces over geometric sfields as orbits of vector spaces

The following theorem establishes uniqueness of the probability structure

which induces a given geometric space over a geometric sfield.

Theorem: 4.1 Let V be alinite geometric space over o geometric sfield

A, diml (n > 2. suppose (v, p) and (v, q) are probability spaces over A inducing the

given geometric space over A. Then, p = q'

Proof: Since Z is a geometric space over the geometric sfield l, the orbit space VIA* is

a projective'space of length greater than 2. Since (l/,p) it -ll -probability group, it

gives a probability structure on the orbits VIA* as follows (cf. 2.3):

rqry ((uz),(ur))=* I. I- P^(auz,Fut)'  
l A  l o . A * p . A '

Similarly, the l*-probability group (V,q) gives

qq1 ((u2,(o3))=# t- t. Qu,(roz' 'ot)'  
l A  l y . A * d . A ,

But by (3.4), the two probability structures on the projective space vlA* must

bc the same. So

I y 
Z p^(aor,B4)=* I^ I- Q,r(roz,l4)

lA* l te .p .e  t . t r l - , f i ,  
- '

rc I  t  p,r(dDz,\u)=I-  l_eu,( /ur ,6u.)
aeA'PeAt fs1' ieA|

_ m - 2  =  |
n-l m-l
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Now let Dy,D2,lJJ€ I/ be arbitrary. Thenp,,(r4,u3) * 0 if and only if (ur,ur,uf )
e A if and only if g,, (uz,ui) * 0. So let (ur,4,u() e A. We show

Pq(uz,u:):P,1 (Dz,u:). We consider the following cases.

Case (1). u2,D3 8r€ independent overl. Then for any D e span (uz,ur), 3 unique
a, B e A such that (u, cu2, pug) e A. So, sinceprl(Dz, Dr) re 0, we getp,,(au2, f v):0
except for a - p= 1. So on the left side of the above equation we get only one nonzero
termp,,(u2,u3). Similarly, the right side gives ?,,(uz,ur). So,p,,(u1,u3) = g,1(uz,ur).

Case (2). u2,D3 8r€ dependent. If u2 = 0 or u3 = 0, it is obvious. So let u1 * 0, u3 * 0.

Supposef irst  u1 *0. ThenSuel/suchthatul :D, D2 =crD, u3 = 0u.So we show
p,{,^), fu)= qJ,ao,fu). Since dim (Z) }2,1u,we Vindependent such that
(u,at,aoil) e A. So by case (l), po,Iu,w): qolu,w) * 0. Also, palu.ut) = q6lu,w) = 0
for d * a.ln(V,p), we have:

I rsfu,w)n,(a, 0u) = | n,@,i n,(u,. Pul
AeV teV

Butplg,pu) * 0 implies A: yu for some ye A andplu,u,) * 0 only when 7= cr.
Hence the above equality gives

po,(u,w) p,lau, 0o): 2 p,@,x)p,(u,.\ul
teV

Similarly we get for q:

q o,Iu,w) q Jau, pq : Z q u(u, x) q,(w, pu)
xeV

Since z, u are independent p, lus) + 0 implies u, arc also indepe ndent. So by
case(l),pu(ux): q"(ul)Y x e V. Similarly,p,(zl,9u)= q,(u,.$u) Vr e Z. Sothe
right sides of the above equalities are equal giving the equality of the left sides:

p 
""(u,w) 

p,la u, P u) : q o,!u,w) q lau, p u)

But again,plu;w): q",Iulo) + 0. So we eventually get plau,pu) = q,(au,pu).

Finally, let u1: 0. Then, | =2, pr(oz,vt) =2, qr(az,ot). Since p{ r2,ur) = g(uz,ur)

Vx * 0, we must havepe(u2, u3): qo(u2,u3). Thusp: g.
Now suppose Zis a vector space over a finite field 4 dim (Z) > 3 and f is a

subgroup of F*. Then the orbit spaces Vlf and Fll are probability groups in a natural
way (cf. 2.3).lt can easily be seen that the probability group Ylf so defined is
F lf - probability group. So the theorem gives:

Corollary 4.2, Let l/be a finite dimensional vector space over a finite field F and f be
a subgroup of F*. Then the space Vlf is a probability space over F/f in a unique
(natural) way.
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Definition 4.3. We call a geometric space V over a geometric sfield I to be of finite
order type if the corresponding projective space P(V) is of finite order'

The following theorem gives the representation of a probability space over a
geometric space as orbits of a vector space.

Theorem 4.4. Suppose (V, p) k a probability space offinite dimension over a

geometric sfield A with dimAv> 4. Suppose V is offinite order type. Then there is o

finite dimensional vector space l/' over afinite F, a subgroupl of F and a semi-

is omorphism of probability spaces'.

@,0): (Wlf , F/f) -+ (V, A)

The same is true if dimT V : 3 and the geometry of Z is D-geometry'

Proof : Since I/ is a geometric space over the geometric sfield I with proper dimension,

there is a vector space lfz over a skewfield F, a normal subgroup f of F and a semi-

isomorphism of geometric spaces (1r, ry): (lYlf ,F lf) -+ (Vl) (see [5]). We show that

it is a semi-isomorphism of probability spaces. Since I/ is of finite order type, the

projective space P(II) is of furite order and so F is a finite field. So ll andhence V is

finite. We use the isomorphism r4to make ll4f into a probability space as follows:

pi (6,fi) = pwol(v @\v(fi\ vt,6,fi e w t r.

We have for d e F' lf , pvv(d6dfi)= pO@\y@@(d)V@),0G)Vi))

= p,y@(y (6), ry (fi)) = pv (6, ilt),

as Zis l*-probability group. So this makes WT into F'lf -probability group. But by

corollary 4.2, such probabilitv structure is uniquely the natural probability structure

of IV/T.

Hence the theorem is proved.

5. Elementary abelian probability groups as orbits of groups

The following theorem gives orbit space representation of probability groups,

which are elementary abelian.

Theorem 5.1 Suppose A is o f;nite elementary abelian probability group, length

(A)>4.Then there exists ayector spoce V over afinitefield F and a subgroypt ofF

such that A =Vff as probability groups.

If length (A) = 3, then the same is true if I is a D-geometry'

Proof: Since I is elementary abelian geometry of proper length, there is a vector space

I.'overaskewfieldFand asubgoupf of F-suchthat o: Vlf -+l is an isomorphism

of geometries which induces isomorphism of projective spaces P(V) nd P(l) (see [2D.
\\'e show that ois an isomorphism of probability groups.
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since I is finite, the projective space p (l) and hence p(y)has fmite order. so
F is finite and hence a held. T\en, vff is a geometric space over F lf . we make z/F a
probability group by definingp as follows:

P"(A, z) = Po61(o(g), o (z))Vx, g, z e YI.

The probability group (v/f , p) so defined is isomorphic to (A.o). To show that it is rhe
natural probability group, it is sufficient to show that vlT is F',T'-probability group. So,
let a e F / l, a * 0. We showp * (aU, e) = p, (g, z)V x,g, : € t.T-. Ir is obvious 

- 
if

x:0, or g :0, or z:0. So letx, g, z e (v/l)'. Suppose hrst y, : are independent. This
meansin P(y),@)*(z),so :r l 'P(A),(o(g))*(o(z)) .Simi lar l1.  to(qg))*(o(az)).  So
by lemma 3.3, p aa (o (g), o (4) = p o 61 (o (ag1, o (e)). shou in g rhar p, (g, z) =
p*(sA, az). Nowsuppose A"zarcdependent. They V= b.: = rr. Choose t e Vtl
with x, t independent. Then, as in lemma 3.2, (x) = (t) = (a x . rhe composite isomor-
phism being given by x + d x. So for px, y .r e (x), we get p, (F x. .1 x1 =
p^(aQx, ay x)= p*(ag, m\

. -Tut,(V,p)isthenaturalprobabilitygroup and o.. t'T--+..t isthe required
isomorphism.

Now since a vector space over a finite field of charrrcrisric. sayp, is a vector
space over zo, and hence is a finite elementary abelian pg:orp. sr may restate

Theorem 5'2. Afinite elementary abelian probability group of tength greater than three
is is_omorphic to the probabiltty group af orbits of a finue ele^eita4, abeliqn p-group
with respect to afinite group of automorphisms.
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