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Representation of certain probability
groups as orbit Spaces of groups

HN. BHATTARA[

Abstract: The set of double cosets of a ST0Up with respect to 3 subgroup and the set of orbits of g
group with respect to a group of automorphisms haye structures which can be studied as
munigroups,_ hypcrgroups or Pasch geometries, When the subgroup or the group of auto.
morphisms are finite, the multivalued prodycts can be provided with some Wweightages forming
so-called Probability Groups. It is shown in this Paper that certain abstract probability £roups can

be realized ag orbit spaces of groups,

I.Introduction

The set of double cosets of a group with respect to subgroup and the set of
orbits of a group with respect to a group of automorphisms inherit certain structyres
from the group which have been studied a5 multigroups ([6], 9D, hypergroups [ 10], or
Pasch geometries. In particular, the points of the projective Space P(V) of a vector Space
Vovera (skew)-field 7 can be taken ag the set of orbits V/F" and the inherited structure
provides the geometry of the Projective space. In addition, some of these structyres

is i
probability space of Proper dimension over 3 geometric sfield is shown to be isomorphic
to the probability Space of a vector Space. In particular, it gives that Probability group
structure on a Projective space of finite order js unique. We wish to point out that the
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study of projective geometry and related spaces in the framework of Pasch geometry
has the convenience of dealing with morphisms and homomorphisms with the
availability of homomorphism theorems similar to other algebraic structures (see [3].).

2. Preliminaries

In this section we briefly present the basic concepts and preliminary results on

Pasch geometries and probability groups. The details can be found in the references,
particularly in [7].

Definition 2.1 By a Pasch geometry is meant a triple (4, ¢, A) where A is a set, e € A,
and Ay =AcAxAxA subject to the following axioms:
1. Va €A, 3 aunique b € A with (a, b, ¢) = A. Let b= a.
2. '=cand (™' =aVae 4
3. (a,b,¢c)e A= (b, ¢, a)e A.
4. (@, @y, @), (ay, ay, a5) € A= Ja; € A with (ag.uj.a; ) (ag,a5,af) €A,
The identity element e and the inverse &* are unique. Throughout this paper,
geometry will mean Pasch geometry.
A geometry is called abelian if (a, b, A= (bac)eA A geometry is
called sharp if (a, b, ¢), (a, b, ) e A = c = d Also, a geometry is called projective if
d'=avaed and (a,a,b)e A= b=corb=a.

Now a structure stronger than the geometry defined above is given in the
following.

Definition 2.2, A probability group is a pair (4, p) where A4 is a set and
piAxAxA—[0,1]isamap to the unit interval, denoted as (a, 5, ¢) = p.(a,b),
subject to the following axioms:

I. Fora, b € A, p, (a,b) =0 for all but finitely many x €4 and
> pe(ab)=1.

xeA

2. Fora, b,c,de A,

2 P:(@b)p(x.c)= Y Pa(a.y)py (b,c)
xed yeAd

3. 3e e Asuchthat p,(e;a)=1= Psae) ¥ aecd

4. For each a € A, there exists a unique b € A with p, (a,6) # 0. We denote b
by &".

5. p.(a,b) = P (8 a') VabceA

It should be noted that p(a,b) can be read as the probability for the element ¢ to
belong to the multivalued product a.5. Also, axiom (1) describes probability
distribution, (2) gives associativity, the identity e given by (3) is unique and the un ique
inverse " of @ given by (4) satisfies (@=aV ae A When dealing with more than
one probability group, we write them as A, 7, p?) etc. or use the same pto let the
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context distinguish. We may simply write A is a probability group, the associated p
being understood. A probability group is called abelian if p.(a,b) = pAb,a)Va.b.c € A.

The following useful relations are obtained as consequences of the axioms:

Lemma 2.3. For any probability group (4, p), we have:

(i) pa(c“,a) =plca)Vac e A.

(i) plaa) #1¥a € A*-{e}

(iii) pu(@b) p(c’, &) = p(aa") p u(b,0). In particular, if b= c*, we get
2y(ab)p(bb") = p(ad) pybb").

(iv) pAa,b)# 0 ifand only if pub.c") # 0.

For a probability group 4, let A, = {(a,b,c) : p_4(a,b) # 0}. Then

Proposition 2.4. (4, ¢, A,) is a Pasch Geometry.

Thus, when A4 is a probability group, we speak of the geometry A to mean the
induced Pasch geometry structure as described above. Every probability group is a
Pasch geometry but the example (4) below shows that the converse is not true.

A probability group is called sharp (projective) if it is sharp (projective) as a
geometry.

Examples 2.5.

1. Let G be a group. Define p by p, (b,c) =1 if a = b.c and 0 otherwise. Then (G, p)
is a sharp probability group with @’ = ™. Note that the probability for an element a to
be in the product b.c is either 1 or 0. Conversely, every sharp probability group is a
group.

2. Let P be the set of points of a finite projective plane of order m. Let
A=Pu {e}, e ¢ P. On 4, define the map p as follows:

[ 8,(c) if b =e, where §,(c) =1if a= ¢, 0 otherwise
8,(b) ifc=e
—L-&y(c) ifa=e
Pab:)=1 o2 ifa=b=c#e

m=1

n+—| if a,b,ce Pand a, b, ¢ are distinct and collinear

0 otherwise

.

Then (4, p) is a probability group, the induced geometry being that of the projective
plane. Note that if m = 2, p, (a, @) =0 and A is sharp.

3. Let G be a finite group and Ge= {Xs % - Z,} be the set of irreducible complex
characters of G. For 1 <1, j<, let Z:-ZJ=Z§,0 nf;j'zk. Let p be defined by
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e e (1)

ka (Iin(}) = x,(l)xj(l)

Then (G, P) is a probability group.

4. The multiplicative group of positive rationals Q" acts on the additive group of
rationals Q with three orbit elements: {11, [-11, [0]}. It forms a Pasch geometry of
orbits) (cf. 2.3). For elements g = [1], 5=[1], we have ¢ = [~1] a unique element such
that ([11, [1], [-1]) € A. So if this geometry were induced by a probability group, then
we would have py,, ([1], [ =1, contradicting lemma 2.3 (ii).

Now let (4, p) be a probability group and § C A4, a finite subset. Set
ns =3 ies m. Note that p(x, x") # 0 and § is finite, so n, is well defined. In

particular, n, is defined if 4 is finite. If 4 is sharp and hence a group, then n, = |4, the

order of the3 group; if A is projective representing a finite projective plane of order m,
then n; = n’,

2.1. Subgeometry and subprobability group. Let 4 be a geometry and B < A. Then
B is called a subgeometry if ¢ € B and (b, by x) € A, by, by e B— x € b. Let
Ap=A4n (B x B x B). Then (B,e,Ap)isa geometry.

bability group of 4 if and only if B is a subgeometry of 4. So B is a subprobability
group of 4 if and only if the following hold: e€Band p, (b,b,) + 0, bbyeB=>d' e B
We call B a normal subprobability group if B is normal as a subgeometry of 4.

2.2. Factor Geometry and factor probability group. Let B be a subgeometry of A.
Fora, b e A, define a~bif3b,, b, € Band x € 4 such that (a, by, x"), (x, ", b,) € A.
This defines an equivalence relation on A. Let A//B = {[a] : @ € A} be the set of all
equivalence classes. Let ([al,[bL[c]) € Agyif 3x €lal, y €[b], z €[c] with
(xY,2) € Ay. Then A//Bis a geometry.

In particular, if A=G is a groupand B=His a subgroup, then the set of double
cosets G//H is a geometry.

Now suppose B is a finite subprobability group of a probability group A. Then

B is a subgeometry of 4 and so we get the factor geometry A4//B. ForX,Y,Ze Al/B
define

P2XN) =15 33 b bp. (a9 pu b
"B beB 267 acd

where x € X, y e ¥ are arbitrary elements. The map p is independent of the choice of x
and y and makes A/8 into a probability group inducing the factor geometry of A//B. In
particular, if 4 =G is a group and B = H is finite subgroup of G, then the geometry of
double cosets G//H is a probability group. In this case, the map p simplifies to the
following:
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_ |xHynZ|
X, Y)=—"—
p.(X.Y) H]

forsomex € x, y €Y.

2.3. Geometry and probability groups of orbits. Let A be a geometry. A group I’
is said to act on A if there is a homomorphism from I’ to the geometry automorphisms
of A. Thus for & € " and @ € A4, we get aa € A satisfying obvious properties. In such
cases, we call 4 a I'-geometry. For a € 4, let (a) = {aa : a € I'} denote the orbit of 4
and A/I'= {(a) : a € A} be the set of orbits. Let ((@), (b), (¢)) € Ayr iff 3x € (a),

y e(b),z € {¢) with (x,, z) € A,. This makes A/I" a geometry called the geometry of
orbits of 4 by T'. In particular, if ¥ is a (left) vector space over a skewfield 7, then the
seometry of orbits V/F" is the geometry of the classical projective space P(V).

Now, let A be a probability group. Suppose a finite group I" acts on the
geometry A. Then 4 is called a I'- probability group if, in addition, p,(ab,ac)
=pdb.c)V¥a, b, c € A, a € . Suppose 4 is a '~ probability group. Since I" acts on the
geometry A, we get the geometry of orbits A/T as above. Define

Ka)|
b g RS A
P @< 3 3 5,0:0

for some x € {a). The map is well defined and makes A/T" into a probability group
inducing the geometry of orbits. Thus, if G is a group and I is a finite group of auto-
morphisms, then the geometry of orbits G/T is a probability group.

A special important case is given by the following:
Example 2.6. Suppose ¥ is 2 vector space over a finite filed F containing m elements.
The multiplicative group £~ acts on ¥ and the set of orbits ¥/F" is a probability group of

lhcmupond'ngpojecﬁwwenlf(v)eV/F'.v*O.then(v)=F'v.sol(v)|=
| F'o|=|F"|=m -1. Hence the above formula becomes

P @=te T T pwd=—= T % plavi o)
[ F*) ye(v) ze{w) m=1 acF" peF"

A case by case consideration will give p-values exactly as defined in example 2.5(2).

2.4. Homomorphism. Let 4 and B be geometries and f: 4 — B be a map. Then fis
called a morphism if ' (e4) = eg and (x, ¥, 2) € Ay = (f (%), f(1), f(2)) € Ap. If, in
addition, (f(x), f(y), b) € Ap = b =1(z) for some z € A with (x, y, 2) € A, then the
morphism is called a homomorphism.

Let A, B be probability groups and f: A — B be amap. Then fis called a probability
homorphism if f(e,) = eg and

po(f@) f(@m)= Y pulayaz)Vay,a, € A beB.
xef1(b)
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A homomorphism of probability groups is naturally a homomorphism of
corresponding geometries. A bijective homomorphism is an isomorphism. So a bijective
Jf is an isomorphism if and only if p,(b,c) = Praw(f(b), f(c)) Va, b, c € A. Note that the
context distinguishes p for 4 and B.

As in geometry, the natural map A — A//B is a homomorphism if and only if B
is normal in A. There are isomorphism theorems for homomorphisms of probability
groups similar to those in geometry. A probability group 4 is said to be of discrete
probability type if Va € 4, there is a finite set Fawith py (a,b) € F, ¥ x, b € A. For
such we have:

Proposition 2.7, Let 4 be a probability group of discrete probability type and B,C be
subprobability groups of 4 with C normal in A. Let B.C = {x:(b, ¢, x) € A, for some
beB,ceC}.TheBCisa subprobability group of A and B.C//C = B//B ~ C as
probability groups.

In particular, the proposition is true if 4 is finite.

2.5.Geometry and Probability Spaces over Geometric Skewfields. Lot (4,04, A)
be an abelian geometry. Suppose, in addition, (4, .) is a semigroup with 1 such that
0.a=a.0=0.1t is called a geometric ring if (a, b, ¢) € A, x € 4 = (ax, bx, x),
(xa, xb, xc) € A. It is called a geometrics sfield if 4” = A4 - {0} is a group. Suppose
(¥, 05 4) is an abelian geometry and the geometric sfield 4 acts on ¥/ compatibly as
scalars satisfying: a(bv) = (ab)v; 0. v=a.0y=0y; 1. v = o (v, @) eA>
(au, av, aw) € A; (a, b, ¢) € A= (av, b, cv) € A; (ab, bv, cv) € A,
v#0=>(a, b, ¢) € A; (av,bv,0) € A= 0= cv; where a, b, ¢ = A and u,v,w e V. Then
V is said to be a geometric space over geometric sfield 4. For such there is a basis and
well defined dimension (see[4], [S]). In case ¥ and 4 have sharp geometries, the
geometric space V is a vector space over the usual skewfield 4.

. If Vis a geometric space over a geometric sfield A4, then the geometry of orbits
V/A is projective and so represents a projective space (including degenerate ones).

Now suppose ¥ is a geometric space over A and in addition, (¥, p) is a proba-

bility group inducing the given geometry. Then we call ¥ a probability space over 4 if
Vis A - probability group. Hence, ¥V u,v, @ ¥ and Ya €4, we have

Pulav, cw) = p,(vw)

If A is finite, then the projective space V 4" isa probability group.
2.6. Semi-isomorphism. Let ¥ and W be geometric spaces over geometric sfields 4
and B respectively. A pair of maps (0,6 ) : (V, 4) - (W, B) is called a semi-isomorphism
if ¢: V= W is an isomorphism of geometries, & : 4 — B is an isomorphism of
geometric sfields and o(av ) = 6 (@) 0 (V)Vv € V, Va e A.

Suppose, in addition, ¥and W are probability spaces over A and B respectively.
Then (o, ¢ ) is called a semi-isomorphism of probability spaces if p, (v,w) =

pq(g) (U(V), O'(w» Vu,‘o,w eV,

|
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3. Elementary abelian probability groups

Let (4,p) be an abelian probability group. Recall that an abelian geometry 4 is
elementary if Va € 4, the subgeometry (a) generated by a is simple in the sense that
whenever S is a subgeometry of 4 and {e} # S c (a), then S = (a) (see [2]). In such a
geometry, (@) # (b) = {a) N (b) = {e}. Now, since B is a subprobability group of 4 if
and only if B is a subgeometry of 4, we make the

Definition 3.1 An abelian probability group 4 is called elementary if it is elementary as
a geometry.

Also, the length of the probability group 4 will mean the length of the
corresponding geometry [2].

Lemma 3.2. Let 4 be a finite elementary abelian probability group of length greater
than one. Then

() pla, a") = pbb"Wa, b € A*. (ii) pb, ¢) = ps: (c, d"Wa, b, ¢ € A*.
Proof: (i) Let a,b € A*. Suppose (a) # (b). Let t € A such that p,(a,b) # 0, so
(a, b, 1") € A. Since (a) # (b), we have t ¢ (a), t & (b). So (@)~ (t)= {e} and
(a.0) = (b, 1). By proposition (2.7), we get
(a) = {a) /] (ay O (o) = (@)L 1 {0y = (BY.L0) 11 {t) = (b).
If the composite map is o, then o{a) = b, 50 ¢ (a") = b". Hence,
pda. &)= p. (0(a), o(d”) = pb, b*). If (a) = (b), then the length being greater
than one, 3c € A" such that (c) = (@). Then, pe(a,a") = p.(c,c*) = p(b,bY). (i) 1t
follows from (1) and lemma 2.3 (iii).
Lemma 3.3 Let 4 be o finite clementary abelian probability group of length greater
hz- ww ’o.“ Pq(bb Q) # 0' Whm bltbhcltcz € A" (bl) # (C|>,
(By) = (c2). Then, p, (br.61) = pa(br.02).

Proof: In corresponding geometry, we have (af .5, 01),(a},b2,c2) € A. Note that a; #
e, otherwise it would give (b;) = {¢;). Similarly a; # e.

Case (1): @, = a;. Suppose first, &, & (by,cy). Then, (af ,b1,¢1), (af ,B.¢,) € A, s0
3t € A such that (£,65,5,), (t,c3,¢]) €A. Note that 1 ¢ (ay, by), otherwise (b3, b)) €A
would give b5 and hence b; € (a,b:) = (by, ). So being elementary, we get .
(0 Ov(a,by) = {e} = () ™ (a),b). So by proposition (2.7), we get
(anb) = (anb)IKD N {aiby = (anb) () 1 (8 = {anba) ey I () = (ay,by).
Suppose ¢ is the composite map. If x € (a;,6;), then x € (a;,b)).{7)

= (@, )1}, s0 3y € (apby), 1y € (t)ywith (x,)", ;) € A. Since (ay, b7 (t) = {e}, the
elements y* and ¢, are unique. Chasing the above isomorphisin, it easily verifies that
a(x) = y. In particular, we have o (a;) = a, = a3, a (b)) = by, o (¢;) = ¢3. So,

Pa, (b1, €1) = Potay (9(b1), o(cr)) = pa, (b2, ¢2).
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Now suppose b, € (by,c;). Then (by,¢1) = (bs,c2). Since the length of 4> 2, 355
such that b; & (b;,¢,). Choose ¢; € 4 such that Pay(b3,c3) # 0. Then, (bs) # (c3),

otherwise (bs) = (a;) < (by,c;). So from the first part, we get
Pay (by,e1) =Day (b3,03) = Pa; (b3,05) = Pay (b2,02).

Case (2): Let a; be arbitrary. Since (b;) = {er), either (@) = (b)), or (@) # (¢;). We may
assume (@) = (b;). Now, 3d € A with Pit (a3,d) # 0. By lemma 3 2 (ii), we get

Pa(bye)) = Py (c1,a'). Now using case (1), we get

Pyt (C],ﬂ]#) T P[,; (ag-d) = Pay (d,by) = Pay (b2.07).

Thus in every wsepd] (bhcl) =Pa; (bbcl)'

Now, suppose (4,p) is a probability group of length greater than two such that
e corresponding geometry is projective. Then the geometry A corresponds to a projec-
tive space. Suppose the projective space is of order m so that each line contains m + |
points. The following theorem shows that the probability structure on a projective space
is unique. This result was proved in [7] by using duality.

Theorem 3.4 Let (4,p) be a finite probability group such that the induced geometry on
A is projective of order m with length (4) > 2. Then,

[ 8a(c) ifb=e
,(b) ifc=e
L&) ifa=e
Pa(b,) =1 n2 ifa=b=cze
o if @, b,c e Pand a, b, ¢ are distinct and collinear
| 0 otherwise

Proof: Since 4 is projective, it is abelian and (a,a,5) € A = b = e or b= a. This implies
that(a) = {e,a},Vaec 4. So A4 is elementary abelian.

Now if b= e, then p,(e,c) = 6,(c) and if c = e, then Palb.e) = d,(c) are clear. So
suppose b,c € A'. We consider two cases.

Case (1): b+ c. Then p,(b,c) # 0 if and only if (ab,c) € A. Since 4 is elementary
Abelian, lemma 3.3 gives that p,(b,c) = p(b,c)Vx € A* such that (x,b,c) € A. But (x,b,c)
€ Aifand only if x € L,. - {b,c}, where L, is the line determined by the points b and c.
Since the line Ly, has m + 1 points, the number of x € Ly~ {b,c} will be {m+ 1}-2=
m-1.So

1= pelbie)= 3 pilbic)=(m~1) p(bc).

xeAd xel.b,—(b,c}

Hence, py(bic) = -L;.

Case (2): b=c. Then p,(b,c) #0only ifa=b=cora=e. Suppose first

8 M =5 W VYE »r"9
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a=b=cand pa, a) #0. Since length (4) > 2,3y € A’ such that y+#a, Letz e 4 such
that (a, y, z) € A. Clearly z # e, a, y. So p,(», 2) = —;. Now consider the equation:

Y pW.2)palax)= Y, pa(y:x)ps(z,a)

xed xed
On the left side, p.(a, x) = 0 except for x = a or e. But if x = ¢, then
pdy. 2)=pJy, 2) =0, since y # z So the only nonzero term in the sum is for x = a. So

Left side = pAy, 2) pa, a) = m_l pda, a).
Also on the right a, y, z are distinct and collinear, so p(y, x) = pdz, a) =;1_—, or 0. The

number of elements x such that p,(y, x) # 0 is m — 1 and includes z, but if x =z, then
pz, a)=0. So the number of elements for which both factors are not zero is m —2. So

Right side = (m — 2)( ,,,_, =(m-2) (m-!)z
n-2

Thus, 7,;‘_-,- pa, @)= (m-2) (m_l)2 giving pu(a, a) = 4.
Finally, suppose a = e. Then, we have p(b.b)+ ps(b, b,) = 1, s0 pu(b,b) = _% e

m~1
and the proof is complete.

4. Probability spaces over geometric sfields as orbits of vector spaces

The following theorem establishes uniqueness of the probability structure
which induces a given geometric space over a geometric sfield.

Theorem: 4.1 Let V be a finite geometric space over a geometric sfield
A, dimy (V) > 2. Suppose (V, p) and (V, q) are probability spaces over A inducing the
given geometric space over A. Then,p = q.

Proof: Since V is a geometric space over the geometric sfield A, the orbit space VIA* is

a projective space of length greater than 2. Since (¥, p) is an 4* —probability group, it
gives a probability structure on the orblts ViA* as follows (cf. 2.3):

p(ul) «Uz)’o):)) Z Z p"l (auznavz)
‘A laeA ﬁeA

Similarly, the A*~probability group (V,q) gives

— 2. X v (rvz,003)
|" 41,50 i

But by (3.4), the two probability structures on the projective space V/4* must
be the same. So

op) ({vy,(03)) =

t Z qu(aOZ’pv:i) lA*‘ Z z qpl(702’503)

IA aed' Ped yed' sed’

ie L 2 Py lav,f)= 2 X (o005

aed’ Ped® yed' oeA®
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Now let v1,02,03€ ¥ be arbitrary. Then p,, (13,03) # 0 if and only if (us,v5,0f)
€ Aif and only if gy, (02,03) # 0. So let (v5,05,0f) € A. We show
Puy(V2,03) = Py, (V2,03). We consider the following cases.

Case (1). vp,v; are independent over A. Then for any v € span (V5,05), 3 unique

@, B € A such that (v, @y, Pu;) € A. So, since p, (03, L3) # 0, we get p,, (s, fus) =0
except for a = = 1. So on the left side of the above equation we get only one nonzero
term pul(uz,og). Similarly, the right side gives qu'(U;;_,U3). S0, Py, (02,03) = g, (V2,09).

Case (2). vy,05 are dependent. If v, =00r vy =0, it is obvious. So let v, = 0, vy # 0.

Suppose first vy # 0. Then v € such that vy = v, V; = @, s = fu. So we show
phav, )= gfav,Av). Since dim (V) > 2, 3u, we V independent such that
(u,@,a0") € A. So by case (1), padt, W) = gufuw) # 0. Also, psfu.w) = gsfuw) =0
for 0 # a. In (¥, p), we have:

z Py(“,w)Pu(y:ﬂU)= Z pu(u,x)p.(w, fv)
ye¥ xeV

But p(y,Bv) # 0 implies y = yv for some y € A and p,.[u, w) = 0 only when 7= a.
Hence the above equality gives

Paluw) pfav, fv) = Z P, x)p, (w, fv)
Similarly we get for g: i
Jakusw) ghav, fv) =3 q,(u,x)q.(w, fv)
Since »,v are independent p,, (1.x) :(;’implics ux are also independent. So by

case (1), po(1.%) = q,(ux) V x € V. Similarly, p, (w,fv)= g . (1w fuv) ¥ x € V. So the
right sides of the above equalities are equal giving the equality of the left sides:

Paft,w) pLav,fv) = qafuw) g Leav,fu)

But again, p fuw) = g.fuw) # 0. So we eventually get p {av, fv) = g Lav,fv).
Finally, letv;=0. Then, 1=%_ pi(02,03) =%, g:(v2,03). Since p.(15.05) = g(v2,03)
Vx # 0, we must have pg(0s, V1) = go(V2,03). Thus p = g.

Now suppose ¥ is a vector space over a finite field F, dim ()23 andisa
subgroup of 7*, Then the orbit spaces ¥/T and F/T are probability groups in a natural
way (cf. 2.3). It can easily be seen that the probability group V/T so defined is
F'IT- probability group. So the theorem gives:

Corollary 4.2. Let ¥ be a finite dimensional vector space over a finite field 7 and I' be
a subgroup of F*. Then the space ¥/ is a probability space over F/T" in a unique
(natural) way.
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Definition 4.3. We call a geometric space ¥ over a geometric sfield 4 to be of finite
order type if the corresponding projective space P(F) is of finite order.

The following theorem gives the representation of a probability space over a
geometric space as orbits of a vector space.

Theorem 4.4. Suppose (V, p) is a probability space of finite dimension over a
geometric sfield A with dim, V 2 4. Suppose V is of finite order type. Then there is a
finite dimensional vector space W over a finite F, a subgroup I of F" and a semi-
isomorphism of probability spaces:

(yagp ) = (WIT, FIT) - (V, 4)
The same is true if dimy V= 3 and the geometry of ¥ is D-geometry.

Proof : Since ¥ is a geometric space over the geometric sfield 4 with proper dimension,
there is a vector space W over a skewfield F, a normal subgroup I of F " and a semi-
isomorphism of geometric spaces (y; ) ; (W/T,F /T') — (V. A) (see [5]). We show that
it is a semi-isomorphism of probability spaces. Since ¥ is of finite order type, the
projective space P(W) is of finite order and so F is a finite field. So ¥ and hence V'is
finite. We use the isomorphism y/to make W/I" into a probability space as follows:
pi([0,%)= pw(g)(qf(i)')w(ib), Viu,0,weW /T.
We have for @ € F* IT, pg (@0,30)= pj(ay (@)@ (©0),y(@)y ©))
= py(i) W (©) (@)= p; (D, ),
- -
as V is A -probability group. So this makes W/I" into F* /I" - probability group. But by

corollary 4.2, such probability structure is uniquely the natural probability structure
of W/A.

Hence the theorem is proved.

5. Elementary abelian probability groups as orbits of groups

The following theorem gives orbit space representation of probability groups,
which are elementary abelian.

Theorem 5.1 Suppose A is a finite elementary abelian probability group, length
(A) 2 4. Then there exists a vector space V over a finite field F and a subgroup T" of F
such that A = VIT as probability groups.

If length (4) = 3, then the same is true if 4 is a D-geometry.

Proof: Since A is elementary abelian geometry of proper length, there is a vector space
¥ over a skewfield F and a subgroup I of F *such that o': ¥/T" — A is an isomorphism
of geometries which induces isomorphism of projective spaces P(¥) and P(A) (see [2]).
We show that o is an isomorphism of probability groups.
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Since A is finite, the projective space P (4) and hence P(¥) has finite order. So
Fis finite and hence a held. Then, VT isa geometric space over F/I'". We make VT a
probability group by defining p as follows:

P{¥,2) = popfo(y), o(2))¥x, y.z € VIT.

The probability group (V/T, p) so defined is isomorphic to (4,5). To show that it is the
natural probability group, it is sufficient to show that /T is F °/T-probability group. So,
letae F/T, a0. We show p,. (ay, oz) =p: (U, 2)V x,u,z € VIT_ It is obvious if
x=0,ory=0,0rz=0.So0letx, y,z € (viry'. Suppose first y, = are independent. This
means in P(V), (y) # (), so in P(4), (o (y)) = (o'(2)). Similarly, (o{ay)) # (o (az)). So
by lemma 3.3, poyy (0°(Y), 0(2)) = poiary (o (@), o(az)), showing that p, (y, z) =
Pal @y, oz). Now suppose y, z are dependent. They y = fi, z = y x. Choose € VT
with x, ¢ independent. Then, as in lemma 3.2, (x) = (1) = (@ x), the composite isomor-
phism being given by x — ax. So for fx, yx € (x), we get p, (fx, y ) =
Pal0fx, @y x) = play, ).

Thus, (¥,p) is the natural probability group and o VT — A is the required
isomorphism.

Now since a vector space over a finite field of characteristic, say p, is a vector
space over Z,, and hence is a finite elementary abelian p-group, we may restate

Theorem 5.2. A finite elementary abelian probability group of length greater than three
is isomorphic to the probability group of orbits of a finite elementary abelian p-group
with respect to a finite group of automorphisms.
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