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1. INTRODUCTION 

Let AI" be an immersed submanifold of Nll+m(c), the spa~e form of const.ant 
sectional curvature c. The scalar curvature of the induced metric is defined as 

2 n 

p = n(n _ 1) L. R(ei,ej,ej,ei), 
1='<J 

where R is the curvature tensor of M and {ei} is the orthonormal ba.sis of the tangent. 
bundle of M. Using the Gauss equation, in [3, 16], it was proved t.hat 

P::::: IHI2 + c, 

where H is the mean curvature vector. In [7], the following so-called normal scalar 
curvature was defined: 

2 
p.L = n(11. _ 1) (t. f (R.L(ei,ej)~,.,~s)2) ~ , 

l=t<J 1=1'<s 

where R.L is the curvature tensor of the normal bundle; {ei} is the orthonormal basis 
of the tangent bundle; and {~j} is the orthonormal basis of the normal bundle. 

The Author is p!U'tiaJly supported by NSF Career award DMS-O:J4703:J and the Alfred P. Sloan 
Research Fellowship. 
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134 Zhiquill Lu 

In the study of submanifold theory, De Smet, Dillen. Verstraelen, and Vrancken [7] 
made the following DDVV Conjecture: 1 

Conjecture 1. Let h be the second fundamental form, and let H = *trace h be Ihe 
mean curvature tensor. Then 

We observe that. the above inequality is pointwise. Thus it is possible to rewrite 
the conjecture into a purely linear algebraic inequality: let x E M be a fixed point 
and let (hij) (i, j = 1,··· , n and r = 1,··· , m) be the coefficients of the second 
fundamental form under some orthonormal basis. Then by Suceavii [17], or Dillen
Fastenakels-Veken [8], Conjecture 1 can be formulated as an inequality with respect 
to the coefficients hij as follows: 

Tn n m n

L L (hi; - hjj )2 + 2n L L (hiY 
r=1 I=i<j r=1 I=;.<j 

(1.1) 

One can further formulate the inequality in terms of matrix notations [8, Theorem 
2]: 

Conjecture 2 (DDVV). Let All' .. , Am be symmetric n x n matrices. Then 'We 
have 

(1.2) 

Since the above inequality depends on n, m, we call it P(n, m). The following 
special cases were known: P(2, m) and P( n, 2) were proved in [7]; P(3, m) was 
proved in [6J; and P(n,3) was proved in [13]. In [8], a weaker version of P(n. m) 
was proved by using an algebraic inequality in [12J. In the same paper, P(n, m) was 
proved under the addition assumption that the submanifold is either Lagrangian 
H -umbilical, or ultra-minimal in 1(:4. 

Finally, §29 of the book [2] is a useful reference of the subject. 
In this paper, we give a survey of the recent developments of the conjecture. as 

well as its relation to calibrated geometry, theory of random matrices, and pinching 
theorems of minimal submanifolds of the unit sphere. In the last part of this paper, 
we sketch the proofs of two important special cases: P(3, m) and P(n,3). 

Acknowledgment. We thank n. Suceava for bring the work 17] to t he author's 
attention, for the invitation t.o the conference Riemannian Geometry and Applica
tions in Bra§ov, Romania, June 2007, and for many stimulating discussions. We also 
thank Jason Waller for the numerical confirmation of the conjecture. 

1It is abo called normal scalar cnrvatnre conjed.1tre.. 
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2. RELATION TO THE COMASS PROBLEM IN CALIBRATED GEOl\IETRY 

Before making further analysis of Conjecture 2, we recall the concept of the comass 
of a p form in Calibrated Geometry (cf. [11 J). 

Consider Euclidean space JR." with orthogonal basis el,'" ,ell and dUfll basis 
dx; = ei. Let I = (iI, ... ,ip ) denote a multi-index with il < ... < ip . Let 

til = '"L...,.; ale~11 /\ ... /\ e'f_p.,.., 

be a p-covector (constant-coefficient p-form). The comass 11<p11' of <p is given by 

11<p11' = max{<p(O I ~ is ap-plane}. 

For a differential form on a Riemannian manifold AI, its comass 11<p11" is given by 

11<p11" = sup {11<Pxll" I x E AI}. 
x 

In [9], Gluck, Mackenzie, and Morgan initiated the study of the comass of the first 
Pontryagin form on Grassmann manifolds. Later Gu [10] generalized the results. 
Their results are listed as follows: 

Theorem 2.1. The comass of the first Pontryagin form <p on the Grassmann man
ifold 0(11, m) is as follows: 

(1)	 Ilyll' is j312 for 11 = 3,m = 6,4/3 for 11 = 3,m ~ 7, and 3/2 for n = 
4,m ~ 8 [9]; 

(2)	 11<p11" is 3/2 for 11 ~ 4 or m ~ 8 [10]. 

The definition of the comass, in the context of the comass of the first Pontryagin 
form, can be formulated as the following linear algebraic problem: 

Let A, B be two m x 11 matrices. Define 

{AB} = ABT - BAT. 

Let 
<p(A l /\ A2 /\ A3 /\ A4) 

(2.1)	 1 
= -2tr ({A1A2}{A3A4} + {A3Ad{A2A4} + {A2 A3}{A1A4 }) 

for mx 11 matrices AI, A2,A3, and A4. The comass of <p is defined to be the maximum 
of the right-hand side of the above under the condition that A J , A2,A3 , and A:q are 
orthonormal. 

Conjecture 2 is similar to the above comass problem in that both problems are 
related to the commutator of matrices. In fact, P(11,3) can be reformulat.ed a.c; 

follows: let A, B, C be 11 x 71. symmetric matrices such that 

IIAI12 + IIBI12 + IICI12 = 1. 

Then 

IIIA,B]112+ IIIB,C]/I2 + IIIC,AJI12 ~~. 
Thf' major difference between these two problems is that they have different in

variant groups. The comass problem is invariant under 0(71.) x 0(4m) (see [9J or [10] 
for details). On the other hand the invariant group of the DDVV conjecture is much 
smaller (Sef' § 6 for details). 
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3. RELATION TO A CONJECTURE OF BOTTCHER AND WEl':ZEL 

In [1], Bottcher and Wenzel studied the size of the commutator of two mat.rice!; 
X, Y. They showed that, if X, Yare random matrices, then II[X, Yll1 2 is abollt the 
size ~IIXW . IIYW, which is quite small if n is large. However, for fixed matrices 
X, Y, it seems that following inequality is optimal: 

Conjecture 3 (Bottcher and Wenzel). Let X, Y be two n x n matrices. Then we 
have 

We call the above inequality Q(n). A weaker version of the conjecture was 
proved [1, §3]: 

IIIX, Yll1 2 ~ 311XI1 2 ·11Y112
. 

Besides the above result, the conjecture was proved if X is of rank 1, or if X is a 
normal matrix in the same paper. 

In this section, we give a relationship of the above BW conjecture to the DDVV 
conjecture. 'We first make the following: 

Conjecture 4. Let AI, ... , Ami be symmetric n x n matrices and let Am'-1-I' •••. 

Am! +"'2 be skew-symmetric matrices. Then we have 

We name the above inequality to be P(n, ml, m2)' Apparently, we have P(n, m,G) => 
P(n, m). Moreover, we have the following: 

Theorem 3.1. Using the above notations, we have 

P(n,2,2) => Q(n). 

Proof. Let. 
X = Al + A3, Y = A2+ A4 , 

where AI, A2 are symmetric and A3, A4 are skew-symmetric matrices. Note that 
t.hese decomposition are orthogonal. 

Using t.he above notations, we have the decomposition of 

[X, Y] = ([AI, A4 ] + [A3. A2]) + ([AI, A2] + [A 3,A4 ]). 

Consequently, we have 

II[X, Y]11 2 = II[A I ,A4J+ [A3 ,A2 ]W + II[A I ,A2J+ [A3 ,A4JI1 2 . 

Expanding the above expression, we get 

II[X, YJI1 2 = II[A I , A2 ]11 2 + II[A3 , A4 ]11 2 + II[A I , A4 ]11 2 + II[A2 ,A3111 2 

(3.1 ) 
+ 2([A" A2], [A3, A4]) + 2([AI ,A4 ], [A3, A2])' 

A straightforward computation gives that 



nffcnt (kvclopmcnt< of I·he DDVV eonjcc! lire 

Substituting the expression into (3.1) and using the Cauchy ineqnalit.y. we have 

II[X, YJI1 2 'S L II[Ai,Aj]W· 
i<j 

If P(2. 2, n) is true, then we have
 

4
 

II/X, Y]H2 'S ~(L IIA;112)2 = ~(IIXI12 + 11Y112)2. 
i=1 

Replacing X by tX and Y by YIt, we have 

II[X, Yll12'S ~(t21IXI12 + ?11Y112)2. 

r-linimizing the right hand side of the above with respect to t, we get. the desired 
inequality: 

o 
In summary, the relations of the conjectures are as follows: 

P(n,m) ¢= P(n,m,O) ¢= P(n,m,m') => P(n,2,2) => Q(n). 

4. RELATION TO THE PINCHING THEOREMS 

Let. AI be an n-dimensional compact minimal submanifold in a unit sphere sn+m 
of dimension n +m. Let 110'112be the square of the length of the second fundamental 
form. Through the works of Chern-do Carmo-Kobayashi [5], Yan [20], Shen [15], 
and Wu-Song [18], Li-Li [12] and Chen-Xu [4] got the following optimal pinching 
theorem: 

Theorem 4.1. Let.M be an n-dimensional compact minimal submanifold in SI/. t- m , 

p ~ 2. If 110'112 'S ~n everywhere on M, then AI is either a totally geodesic subman
ifold or a Veronese surface in S4. 

The proof is based on the following type of Bochner formula 

~b.11(7112 = L (h?jk)2 + 71,11(7112- L II[Aa , AI3]1I2- L I(Aa , A,3)1 2 , 

i,j,k,fr. nJ3 Ct.,/3 

where Aa is the matrix (hij); and hij is the second fundamental form with respect to 
t.he orthonormal basis of the tangent and the normal bundles; hijk is the covariant 
derivative of the second fundamental form. 

In [12] 2, the following result was proved (cL [12, pp 585, equation (5)]): 

Theorem 4.2. Using the same notations as above, we have 

2 ~ IIIA"Ajlll' $ ~ (~IIA,II')' - ~ IIA,II' 

2The proof of [4] is lOore geometric. 
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o 
We denote the above inequality to be P'(n, m). In this section, we prove the 

following 

Theorem 4.3. The DDVV conjecture implies Theorem 4.2. That is, 

P(n, m) =} P'(n, m). 

Thus inequality P(n, m) is sharper than that in Theorem 4.2.
 
Proof. We assume that
 

IIAIII 2: ... :::: IIAmll· 
We prove P'(n,m) by induction: suppose P'(n,m - 1) is true. Then we have the 
following 

Lemma 4.1. If P'(n, m) 'is trILe for 

IIAI I1 
2~ L 

m 

IIA;if, 
;=2 

t.hen P'(n, m) is true for any AI,' .. ,Am' 

Proof. We let Al = tA; and assume that IIA/llI = 1. Then inequality P'(n,1II.) 
can be written as 

~t4 - t
2 (2 ~ II[A'I' A;]112- 3~ IlAdi2) 

(4.1) 

+ ~ (t, IIAdl)' - t, IIA,II' - 2,~ IliA" A;J1I' ~ o. 

By the inductive assumption, the total of the last three terms of the above is non
negative. Let 

(4.2) a = 2L 
m 

II[A'I' Adl!2 - 3L 
m 

IIA;112. 
;=2 ;=2 

If a ~ 0, then then (4.1) is trivially true. On the other hand, if a > 0, then the 
minimum value is obtained at 

/2 = a. 

Using the fa.ct that II[A'I,Ai]112~ 211A;112(see § 5), we obtain: 

IIAI I1 
2~ L 

m 

IIAdI2. 
;=2 

o 
Proof of Theorem 4.3. If 

IIAdl2 ~ L 
m 

IIA;11 2, 

1=2 
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then 

Thus 
P(n. m) => P'(n, m). 

o 
Remark 4.1. Since P(3, m), P(n,3) are true by the results in [6, 13], can we get new 
pinching theorems using these new shaper inequalities? 

We conjecture the following to be true: 

Conjecture 5. There is a constant c(n), depending only on n, such that if 110"11 2 :::: 

~n + c:( n), then M has to be totally geodesic or Veronese surface in S4. 

This conjecture is a more general conjecture of Chern type. See Peng-Terng [14], 
Cheng-Yang [19] and the references there for details. 

5. A WARMING UP EXERCISE 

The following result was proved in [7]. The proof is quite easy. However, we go 
through it because one can see the difficulties of the DDVV conjecture from the 
proof. 

Theorem 5.1. P(n,2) is true. That is, if A, B are symmetric matrices. Then 

II[A, B]11 2 :::: 211AI1 2 . IIBI1 2. 

Remark 5.1. As pointed out in [1, Theorem 4.1], the above inequality is true if one 
of the matrix is normal. 

Proof. We let 

Let 

Then 
[A, B] = QT[J, BdQ. 

Thus 
II[A, B]11 2 

= II[J, Bdl12 :::: L(Ai - Aj)2(bdrj' 
i,j 

where (bdij is the entries of the matrix B!. Since 

(A' - A.)2 < 2"" A2.1 J - L ,. 

we have 
II[A,B]112 

:::: 2LArL(bdrj = 211A11 2 11BW· 
i 

o 
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We make t.wo remarks on the proof. 

(1)	 The above proof is the ONLY proof we have. It makes use of a non-t.rivial 
linear algebraic fact: symmetric matrices are diagnolizable. 

(2)	 In the proof, we make use of the fact that the F'robienius norm is independent 
under the change of orthogonal matrices. 

The conclusion: in order to prove P(n, m), first try to find the invariaut group of 
the inequality. The larger the group, the more reductions (of the inequality) we can 
obtain. 

6. INVARIANCE 

Let AI, ... ,Am be n x n symmetric matrices. Let G = O(n) x O(m). Then G 
acts on matrices (.04 1,'" ,Am) in the following natmal way: let (p, q) E G, where 
p, q are n x nand m x m orthogonal matrices, respectively. Let q = {qij}. Then 

(p,O)· (.04 1 ,'" ,Am) = (pAIP-I, ... ,pAn,p-I). 

and 
m 

(0, q) . (AI,'" , Am) = (L qljAj ,·" ,L qrnjAj ). 
j=l j=l 

It is easy to verify the following 

Proposition 6.1. Conjecture 2 is G invariant. That is, in order to prove in
equality (1.2) for (AI,' .. ,Am) I we just need to prove the inequality for any ~f . 

(.04 1,' .. ,Am) where "I E G. 

o 
As a consequence of the above proposition, we have the following interesting 

Theorem 6.1. Let n ~ 2 be an integer. If P(n, ~n( n -1) + 1) is true, then P(n, m) 
is true for any Tn. 

Proof. See [6]. 
o 

Corollary 6.1. If P(3, 4) is true, then P(3, m) is true for m ~ 2. 

o 
Remark 6.1. G is not nearly as big as we expect in the following sense: if we wanted 
to reduce the problem to the same level as that in [9, 10], G should have been 
O(n) x O(mn). Usually the smaller the invariant group, the more difficulty the 
proof of the inequality will be. 

7. SKETCH OF THE PROOFS 

In this section, we sketch of the proof of P(3, m) and P(n,3). 
Proof of P(3,m). Using Corollary 6.1, we only need to prove P(3,4). However, 

the methods of proving P(3, 4) and P(3, 3) are the same so we only discuss the proof 
of P(3, 3). 

We begin with [6, §4]: 
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Theorem 7.1. Let A. B. C be 3 x 3 symmetric tmceless matrices. Then 

2(11A11 2 + IlBI1 2 + IIC11 )2 ~ 211[A,B]112 + 211[B, CJI1 2 + 211lC, AJlI 2. 

Sketch of the Proof. The inequality we need to prove contains 15 independent 
variables. Our strategy is to reduce the number of independent variables st.ep by 
step. 

Without loss of generality, we assume that A is diagnolized. Let 

where 
2 2 2 1Th + TI2 + TI3 = . 

Then we have 

((2 + IIBI1 2 + IIC112)2 ~ 2t22)'1i - TJj)2(bfj + cfj) + 211[B, CJlI 2. 
i,l 

The first reduction: finding the condition such that the above is true for any t. 
This is doable because the expression is quadratic in t2 . 

The second reduction: Maximize the expression 

2)TJ; - TJj)2(btj + cfj) 
i.j 

for all TJf +T/? + TJ~ = 1. Luckily, for 3 x 3 matrices, one can get the explicit maximum 
value. 

Aft.er t.he reductions, we get the following inequality: we let 

r2 b2 + f'~ r2 b2 + 2 7.2 b2 + (.2 .1 = 23 ~~3' 2 = 13 c13' 3 = 12 '12' 

(7.1)	 ItLI 2 = bil + Cfl + b~2 + C~2 + b~3 + cL 
?no = (r; + 7'~ + r~)2 - 3(rrr~ + r~r5 + r~rr), 

Then t.he inequality is reduced to 

2(7.2) (11B11 2 + IIClI2)2 - 211[B,CJI1 2 ~ 2(.jmO -1J.t1 )2 

if 2ymo - 1J.t1 2 ~ O. 
Note that using the above two steps, the number of independent variables is 

reduced to 10. Of course, the inequality is more nonlinear now. 
In § 5, we proved that 

(11B112 + IIClI2f - 211[B, Cjl12 ~ O. 

The inequality (7.2) is sharper. The difficulty to prove (7.2) is that 

(1)	 The only way to prove the non-negativeness of the left-hand side of (7.2) is 
to diagnolize one of the matrices Band C, but 

(2)	 2y'm(l - IIL!2 is not orthogonal group invariant. 
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The property comes to help, only in the 3-dimensional case, is the following: if 

-q)o p ,w~ ~H; ~ m(~, -p

r 

0 
then 

(;) m(~)x 

For the rest of the proof, we first assume that the diagonal part of B, Care ",ero. 
Thus we get an inequality of 6 independent variables. We are able to prove the 
inequality directly, using the properties of the cross product. Finally, we observe 
that if the diagonal .parts of B, C are not <lero, we will get at most a quadratic 
expression in terms of the diagnol entries of B, C. The analysis of the quadratic 
expression is quite technical and we refer the original paper to the readers. 

:More recently, in [13], we remove the assumption in Theorem 7.1 that the lllatrice~ 

a.re 3 x 3. We have 

Theorem 7.2. Let A, B. C be n x n symmetric traceless matrices. Then 

(11Ai12 + !IBII 2 + IICII2
) 

2 2 211[A, BJI1 2 + 211[B, CJII2 + 211[C, AJ11 2 . 

Sketch of the Proof. We need the following two technical lemmas. For the 
proofs, ~ee [13]. 

Lemma 7.1. Let x 2 y 2 O. Let (7}1,'" ,7}n) be a unit vector. Then if {i,j} # 
{k, l}, we have 

o 
Lemma 7.2. Suppose that IIAI1 2 + IIBI12 + IICI12 = 1 and IIAII 211BII 2 IICII. Let 

A= Max(II[A,B]112 + II[B,ClI12 + II[C,A]W), 
and let A, B, C be the maximum point. Then we have 

2AIIAI1 2 = lilA, B]11 2 + II[A,C]W· 
o 

Continuation of the proof of Theorem 7.2. We assume that 

IIAI1 2 + IIBI1 2 + IIClI2 = 1. 

Using t.he above two lemmas, we can get 

2AIIAI12 ~ IIA112 (211B11 2 + IICW) ~ IIAW· 
That. is, 2A ~ 1, as desired. 

o 
Remark 7.1. The same method can be used in the case m > 3. The details will be 
ill t.he next version of the paper [13]. 



flerent developments of the DDVV C'onjC<'turc	 1,13 

REFERENCES 

[I]	 A. Bottcher and D. Wenzel. How big can the commutator of two matrices be and how big is it 
typically? Linear Algebra Appl., 403:216-228, 2005. 

[2]	 B. Chen. 6-invariants. inequalities of submanifolds and their applications. Romanian AeaclelllY. 
2007. 

[:lJ B.-Y. Chell, Mean curvature and shape operator of isometric immersions in reaJ-spltCe-forms. 
Glasgow Math . ./., 38( 1):87-97, 1996. 

[41	 Q. Chen and S. L. Xu. Rigidity of compact minimal submanifolds in a unit sphere. Geom. 
Dedicata, 45(1):83-88, 1993. 

[5]	 S. S. Chern. M. do Carmo, and S. Kobayashi. Minimal submanifolds of a sphere with second 
fundamental form of constant length. [n Functional Analysis and Related Fields {Proc. Conf. 
for M. Stone, Univ. Chicago, Chicago, ill., 1968}, pages 5!}-75. Springer, New York, UJ70. 

[6J	 T. Choi and Z. Lu. On the DDVV Conjecture and the Comass in Calibrated Geometry (I). 
DG/O(i!0709, 2006. 

[7]	 P..J. De Smet, F. Dillen, L. Verstraelen, and L. Vrancken. A pointwise inequality in submanifold 
theory. Arch. Math. (Bmo). 35(2): 115-128. 1999. 

[8]	 F. Dillen, .J. Fastenakels. and J. Veken. Remarks on an inequality involving the normal scalar 
curvature. DG /0610721. 2006. 

19] H. Gluck, D. Mackenzie, and F. Morgan. Volume-minimizing cycles in Grassmann manifolds. 
Duke Math. J .. 79(2)::135-404. 1995. 

[10)	 W. Gu. The stable .I-dimensional geometry of the real Grassmann manifolds. Duke Math . ./.. 
!J3( I ):1.~5- 178. 1998. 

[II]	 R Harvey and H. B. Lawson, .Jr. Calibrated g~ometries. Acta Math .. 148:·H-157. 1982. 
[12)	 /\-l\.1. Li and J. Li. An intrinsic rigidity theorem for minimal submanifolds in a sphere. A'·ch. 

Ma/h. (Basel), 58(6):582-594,1992. 
[13]	 Z. Lu. all the DDVV Conjecture and the Comass in Calibrated Geometry (1I). arXiv:0708.2921. 

2007. 
[I-l]	 C.-K. Peng and C.-L. Terng. Minimal hypersurfaces of spheres with constant scalar curvaturE'. 

In Seminar 01/. minimal submanifolds. volume 103 of Ann. of Math. St·ud.. pages 177-WH. 
Princeton Univ. Press, Princeton, N.J, 198:1. 

[151 Y. B. Shen. On intrinsic rigidity for minimal submanifolds in a sphere. Sci. Chilla Ser. A. 
32(7):769-781, 1989. 

[IG] 13. Suc0avii. Somc rcmarks on 13. Y. Chcn's inequalit.y involving classical invariants. A.n. $Iiint. 
Umt·. AI 1. Cuza Ia§i. Mat. (N.S.), 45(2):405--412 (2000), l!l99. 

[17]	 B. D. SuceavlL DDVV conjecture. preprint. 
[18]	 B. Q. Wu and H. Z. Song. Three-dimensional compact minimal submanifolds in a sphere. Ac/.a 

Math. Sillica (Chin. Ser.), 41(1):185-HJO, 1998. 
[19]	 H. Yang and Q.-M. Cheng. Chern's conjecture on minimal hypersurfaces. Math. Z.. 227(3)::177-

:~90, 1998. 
[20]	 S. T. Yau. Submanifolds with Constant ~llean Curvature II. Amer. J. Math, 97(1):76-100, 

1975. 

Aut.hor's address: 
Department of Mathematics, 
University of California, 
Irvine. Irvine, CA 92697. 
e-mail: :du@math.ucLedu 

mailto:du@math.ucLedu

