New Mexico Bureau of Mines and Mineral Resources Open-File Report No. OF-267

GEOCHEMICAL EVALUATION OF THE JAMES P. DUNIGAN NO. 1 SANTA FE WELL, MCKINLEY COUNTY, NEW MEXICO

By Wallace G. Dow Robertson Research, Inc. Houston, Texas

March 8, 1982

ROBERTSON RESEARCH (U.S.) INC.

REPORT NO. 580

GEOCHEMICAL EVALUATION OF THE JAMES P. DUNIGAN NO. 1 SANTA FE, MCKINLEY COUNTY, NEW MEXICO 3/-/9N-5W

by

Wallace G. Dow

Project No. RRUS/812/II/T/127

Prepared by: Robertson Research (U.S.) Inc. 16730 Hedgecroft, Suite 306 Houston, Texas 77060-3697

· · ·

ι

Prepared for: Champlin Petroleum Company 5800 S. Quebec Englewood, Colorado 80111

March 8, 1982

TABLE OF CONTENTS

	PAGE NO.
SUMMARY	1
INTRODUCTION	1
DISCUSSION	2
Organic Matter Concentration	2
Kerogen Type	2
Kerogen Maturity	3
REFERENCES	5
FIGURES	
1. Organic Carbon and Visual Kerogen Plots	6
2. Rock-Eval Pyrolysis Plots	7
3. Kerogen Type from Pyrolysis Data	8
4. Kerogen Maturation Profile	9
5. Zones of Oil and Gas Generation	10
6. Lithology Symbols	11
APPENDICES	
I. Organic Carbon Data	12
II. Rock-Eval Pyrolysis Data	14
III. Vitrinite Reflectance Data	17
	SUMMARY INTRODUCTION DISCUSSION Organic Matter Concentration Kerogen Type Kerogen Maturity REFERENCES FIGURES 1. Organic Carbon and Visual Kerogen Plots 2. Rock-Eval Pyrolysis Plots 3. Kerogen Type from Pyrolysis Data 4. Kerogen Maturation Profile 5. Zones of Oil and Gas Generation 6. Lithology Symbols APPENDICES I. Organic Carbon Data II. Rock-Eval Pyrolysis Data II. Rock-Eval Pyrolysis Data II. Rock-Eval Pyrolysis Data II. Vitrinite Reflectance Data

 \mathbf{e}_{2}

1

I SUMMARY

Geochemical data on samples from the James P. Dunigan, No. 1 Santa Fe well indicate good to very good source quality throughout the Cretaceous section and very low organic carbon contents in pre-Cretaceous rocks. The kerogen present in all of the samples analyzed is primarily dry gas-generating and terrestrial in origin, but a slightly higher convertability to liquid hydrocarbons occurs in the lowermost Cretaceous section. The organic-rich Cretaceous shales are not mature enough for gas generation at the location of the subject well, but oil could be generated below about 2,400 feet and preserved to about 7,200 About 4,000 feet of erosion has occurred since maximum burial feet. took place and hydrocarbon generation is, therefore, no longer active. Source bed distribution and the timing of hydrocarbon generation are important variables which must be considered in any economic evaluation of the area.

Π

INTRODUCTION

Thirty-three very small bit cuttings samples from the subject well were analyzed according to a program outlined by the client. Because of very low organic carbon contents in most pre-Cretaceous samples, Rock-Eval pyrolysis could not be run and the number of samples analyzed with vitrinite reflectance was considerably reduced.

Analytical data are tabulated in Appendices I-III and selected parameters are plotted on Figures 1-4. Age and lithology designations shown on the figures were taken from a sample log supplied by the client. Lithology symbols used in generating the computer graphics are illustrated on Figure 6.

III DISCUSSION

Organic Matter Concentration

The organic content of rocks is related to the weight percent organic carbon they contain. Total organic carbon is quite high in most of the Cretaceous samples analyzed, due primarily to the presence of coal. Most of the Cretaceous samples are rated as good to very good in source quality (Figure 1). Pre-Cretaceous samples are all very low in organic carbon and are rated as nonsources for producable amounts of oil or gas. If thin, source quality intervals exist in the pre-Cretaceous section, they have been masked by dilution with organic-lean material. Even if this is true, the volume of any possible source quality section which may be present and the amount of petroleum generated would be limited unless more favorable source facies are present in other portions of the basin.

Kerogen Type

The type of kerogen present, and hence its capability to generate oil or gas, was determined by Rock-Eval pyrolysis and by visual examination with reflected light microscopy. Both techniques indicate a predominance of gas-generating, terrestrial organic matter in all of the samples analyzed. Poor source potential (data from pyrolysis S_2 peak, Figure 2), low hydrogen index values (Figure 3), and low visual percentages of oil-generating amorphous and exinite organic matter (Figure 1), all are characteristic of low hydrogen, gas-generating kerogen. Somewhat more favorable convertability to oil defined by the pyrolysis S_2/S_3 ratios (Figure 2) is believed to be due to solid bitumen in the samples (Appendix III) and to unusually low oxygen index values (Figure 3). This ratio, therefore, is probably not a good kerogen type indicator for the subject samples. The best petroleum

-2--

convertability appears to be in lowermost Cretaceous samples between 3,700 and 4,100 feet. Pennsylvanian samples were too low in organic carbon for pyrolysis but contain primarily terrestrial kerogen from visual analysis.

Kerogen Maturity

Kerogen maturity was determined with Rock-Eval pyrolysis (T-max) and vitrinite reflectance (R_0) . Pyrolysis T-max values are nearly all the same throughout the Cretaceous section and are very close to the top of the oil-generation zone (Figure 2). The apparent lack of maturity increase with depth may be due to the presence of caving from the coal-rich interval near the top of the Cretaceous section. This is supported by the presence of low-rank vitrinite of uniform maturity in nearly all of the Cretaceous samples analyzed (Appendix III). Reflectance analysis, however, also revealed the presence of an indigenous vitrinite population in addition to the caving, and these data were used in constructing the maturation profile (Figure 4). In spite of contamination problems and poor quality data from most pre-Cretaceous samples, we believe the maturity profile to be reliable.

Figure 4 indicates that the oil-generation maturity zone $(0.6-1.4 R_0)$ occurs between about 2,356 and 7,164 feet and that dry gas should be generated below about 5,256 feet $(1.0 R_0)$. Crude oil could be preserved to about 7,164 feet and wet gas/condensate could survive to 8,188 feet $(2.0 R_0)$. Projection of the maturity profile to 0.2 R_0 demonstrates that about 3,877 feet of section has been lost to erosion since maximum burial took place. Cooling associated with this loss of overburden has caused hydrocarbon generation to become suspended and any source beds present would not be actively generating oil or gas at the present time. Expulsion, migration, and accumulation of hydrocarbons may have occurred during maximum burial but they would have had to survive the period of uplift and erosion. Recently formed struc-

-3-

tures, therefore, may not contain petroleum unless remigration has taken place. We recommend that a more detailed geological/geochemical study of the basin be undertaken to more accurately define source bed distribution, capacity, and the time of hydrocarbon generation, migration, and accumulation.

REFERENCES

v

- Clementz, D. M., 1979, Effect of oil and bitumen saturation as source rock pyrolysis: Bull., AAPG, vol. 63, pp. 2227-2232.
- Dow, W. G., 1977, Kerogen studies and geological interpretations: Jour. of Geochem. Expl., vol. 7, pp. 79-99.
- Bryant, A. C., 1980, Entrada fields of southerm San Juan Basin, New Mexico: Bull., AAPG, vol. 64, p. 682 (abstract).
- Ross, L. M., 1980, Geochemical correlation of San Juan Basin oils a study: Oil and Gas Journal, Nov. 3, pp. 102-110.
- Silver, C., 1968, Principles of gas occurrence, San Juan Basin: in Natural Gases of North America: AAPG Memoir 9, pp. 946-960.

D		L	TYPE	MATURITY SOURCE RICHNESS
Ē	Å		Z EXINITE	FLUORES- GENERATION (% ORGANIC CARBON)
Т	6		35 65	INTENSITY ZONES 0.5 1.0 2.0
Ϋ́κ	ε	0	DRY VET OIL	LOW MED HIGH OIL VET DRY NON- MAR- & O O D Y E R Y
т н аа		<u> </u>	342 342	
-				
•				
1-				
-			- :	
	K			
4				
3-				
- 4				
	J			I
5-1				
-	Tr			
ô-				
				G D
	ç			I.4 S Y
-				
3-				
	P			
э_	1	,		
• •	P6-	7.5.		
10-1	3			

FIGURE 1: SUMMARY PLOTS SHOWING KEROGEN TYPES, MATURITY, AND SOURCE RICHNESS (SEE APPENDICES I AND III)

FIGURE 2: SUMMARY PLOTS OF ROCK-EVAL PYROLYSIS DATA (APPENDIX II)

-7-

15

51

ጘ

RESEARCH (U.S.) INC.

3

ť

 \mathbb{N}

1

FIGURE 5: CORRELATION OF VARIOUS MATURATION INDICES AND ZONES OF PETROLEUM GENERATION AND DESTRUCTION.

LIST OF LITHOLOGY SYMBOL'S USED IN FIGURES

FIGURE: 6

APPENDIX I

TOTAL ORGANIC CARBON DATA

Total organic carbon is determined by pulverizing the sample, treating a carefully weighed portion with warm hydrochloric acid to remove carbonate minerals, and analysing the residue for carbon content with a Leco carbon analyser. It is generally accepted that samples with less than about 0.5 percent TOC cannot yield sufficient petroleum to form commercial deposits and are therefore considered nonsources; samples with between 0.5 and 1.0 TOC are rated as marginal in source quality; and samples with more than 1.0 TOC are considered to be good in source quality.

TOTAL ORGANIC CARBON DATA

.

JAMES P DUNIGAN #1, SANTA FE

DEPTH	TOC	DEFTH	TOC
(Feet)	(%)	(Feet)	(%)
535	1.19	6 1 1 5	0.03
925	1.27	6 6 5 5	0.10
1375	2.29	7 2 7 5	0.05
1795	2.31	7 5 2 5	0.03
2185	1.03	7 9 4 5	0.13
2655	0.93	8 1 7 5	$\begin{array}{c} 0 & . & 1 & 7 \\ 0 & . & 2 & 1 \\ 0 & . & 2 & 1 \\ 0 & . & 1 & 9 \\ 0 & . & 1 & 0 \end{array}$
2855	0.79	8 2 1 5	
3165	5.83	8 4 0 5	
3435	1.78	8 5 2 5	
3745	1.59	8 5 6 5	
3865	1.79	8 6 1 5	0.11
4065	1.27	8 6 2 5	0.18
4145	1.87	8 6 7 5	0.11
4575	0.14	8 7 9 5	0.22
4925	0.06	8 8 6 5	0.11
5145 5165 5305 5755	0.16 0.16 0.25 0.04	8 9 5 5 9 0 5 5 9 1 9 5	0.18 0.10 0.10

.

.

1

APPENDIX II

ROCK-EVAL PYROLYSIS DATA

Rock-Eval data are expressed as mg/g of rock and include four basic parameters: 1) S_1 represents the quantity of free hydrocarbors present in the rock and is roughly analogous to the solvent extractable portion of the organic matter; 2) S_2 represents the quantity of hydrocarbons released by the kerogen in the sample during pyrolysis; 3) S_3 is related to the amount of oxygen present in the kerogen; and 4) T-max, in °C, is the temperature at which the maximum rate of generation (of the S_2 peak) occurs and can be used as an estimate of thermal maturity.

In addition, the ratio S_2/S_3 provides a general indication of kerogen quality (type) and reveals whether oil or gas are likely to be generated. The ratio $S_1/(S_1+S_2)$, or the productivity index, is an indication of the relative amount of free hydrocarbons (in place or migrated) present in the sample. Hydrogen and oxygen index values are in mg of hydrocarbons (S_2 peak) or carbon dioxide (S_3 peak) per gram of organic carbon. When plotted against each other on a van Krevelen-type diagram, information on kerogen type and maturity can be obtained.

Data are interpreted in the following manner:

Source Potential - values of S2	<2.5 2.5-5.0 >5.0	: poor : marginal : good
Petroleum Type - value of S2/S3	<2.5 2.5-5.0 >5.0	: dry gas : wet gas : oil
Generation Zones - values of T-max	<435 435-470 450 +	: immature : oil : gas

Productivity Index - high values of S1/(S1+S2) indicate rigrated hydrocarbons.

ROCK-EVAL FYROLYSIS RAW DATA

JAMES P DUNIGAN #1. SANTA FE

DEPTH (FEET)	Si	S 2	53	52/53	51/(51+52)	T-MAX
535	0.273	1.425	0.521	2.734	0.161	433
925	0.179	1.698	0.546	3.109	0.095	431
1375	0.332	2.712	0.735	3.699	0.109	433
1795	0.328	3.394	0.484	7.017	0.088	435
2185	0.297	1.445	0.303	4.774	0.170	434
2 6 5 5	0.180	0.820	0.409	2.005	0.180	435
2 8 5 5	0.108	0.947	0.338	2.803	0.103	434
3 1 6 5	1.010	11.283	1.362	8.287	0.082	429
3 4 3 5	0.279	2.737	0.415	6.593	0.093	433
3 7 4 5	0.436	3.285	0.612	5.371	0.117	434
3865	0.572	2.828	0.527	5.367	0.168	433
4065	0.325	2.427	0.432	5.614	0.118	432
4145	0.328	3.586	0.404	8.880	0.084	434

HYDROGEN AND OXYGEN INDICES FROM ROCK-EVAL PYROLYSIS DATA, WITH TOC DATA

JAMES P DUNIGAN #1. SANTA FE

DEPTH	HYDROGEN INDEX	OXYGEN INDEX	ТОС
(FEET)	(mg HC/g TOC)	(mg CO2/g TOC)	(%)
535	120	4 4	$ \begin{array}{r} 1 . 19 \\ 1 . 27 \\ 2 . 29 \\ 2 . 31 \\ 1 . 03 \end{array} $
925	134	4 3	
1375	118	3 2	
1795	147	2 1	
2185	140	2 9	
2655	88	4 4	0.93
2855	120	4 3	0.79
3165	194	2 3	5.83
3435	154	2 3	1.78
3745	207	3 8	1.59
3865	159	30	1.78
4065	191	34	1.27
4145	192	22	1.87

.

,

1

`

.

.

.

APPENDIX III

REFLECTED LIGHT MICROSCOPY DATA

A sample of ground rock is treated successively with hydrochlowic and hydrofluoric acids to concentrate the kerogen, freeze-dried, mounted in an epoxy plug, and polished. Kerogen type is identified with the aid of blue light fluorescence.

The visual kerogen analysis data sheet contains visual percentage estimates of each principle kerogen type, notes on vitrinite description, and kerogen fluorescence data.

The histograms show measured reflectance values of all vitrinite present and on all material with the visual appearance of vitrinite. Shaded values are those used to calculate the interpreted vitrinite reflectance maturities. Unshaded values are interpreted to be oxidized vitrinite, recycled vitrinite, or possibly misidentified material such as solid bitumen, pseudo-vitrinite, or semifusinite. Sometimes the samples analysed contain no vitrinite or have an insufficient number of readings to allow a reliable maturity determination to be made. Alternate maturity calculations are possible on a few samples. The histograms are identified by a sequence number and depth or notation.

ROBERTSON RESEARCH (U.S.) INC.																			
PROJECT NO. RRUS/812/II/T/127 ORGANIC MATTER SAMPLE VITRINITE FLORESCENCE TYPE % DESCRIPTION DESCRIPTION INTENSITY 1 Sance re 1 Sance r																			
SAMPLE	DEPTH (TT.)	7 🕫	/∓	े / ये	/\$	/ \$	10	/₹ <i>₹</i>	\$/ \$	`/` ^{\$}	6	\prime	75	B	T.	ړ ک	Į	73	REMARKS
	\$ 25	0.1	10	15	270		2		-	Y.	+			/1/	ΪÎ	Î/	ίĀ	Ĩ	Virinire or birumen?
	025	0	10	10	75	- 5	2		X	X	-	- 1	-	11	171	7	Z	T	Same .
	1 175	1.13	0	¥-	65	20	-	-+1	X	м	Y	-		111	17	V	14	1	Large coaly fragments.
· · · · · · · · · · · · · · · · · · ·	1 795	1 52	13		50	20	м			-	-	-		11	17	1		T	
}	7 125		10	10	70	10	V.	+	¥.	¥.	¥ I	-		11	1/1	1	171	T	31 current 30 ~ 2. 15
	2 655	0.63	20	5	55	20	21	4	+	м	Y I	-		11	1/	1	1/1		Some higher 30 values day be sent-
							_			_	_	-1		1	П	T	īT		fusinite.
	7 855	3 70	5	10	65	70	?	X	_	¥.	X	Y		11	47	1	17	T	Some Ro values DAY be lowered by
·		<u></u>			¥						<u> </u>			T	11	-Г	11	Т	rough surfaces.
	1 165		19	5	70	10	?	*	м	X	19			71.	17	7	171	T	
	1 435		15	10	60	15	?	+	м	М	X			717	171	-17	17		
		0.32			45	10	. X		<u> </u>	<u>я</u>	N.			717	171	-17	171	71	Bizuman Ro~0.37 to 0.45.
1	3.365	0.34	25	5	60	10	<u> </u>		X	м	T+	-		77	171	7	17	71	
12		2.36	1.5	10	25	20	Y.		+	19	X	- 1		1717	17	Ī	17	11	
1	1.145	10.35	15	10	60	13	7			M	14	<u> </u>		11	17	7	11	11	
1	5.305	1.30	<u> </u>	-					-	1.1	प्र				T	-17	171		
76	3,215	1	1:0	0	80	10			-	13	1:1			1	11	-17	П	1	
	3.325	1.32	25	- Ó	60	15		X	м	1-	-	-			Ti	1	1/	Т	Some chitizous paterial?
	1	1	†	<u> </u>	1		-		1						11			T	Good vitrinite 30 1.30.
11	8.795	1 :72	25	a	50?	25	-	Я	M	1-	-	- 1	2		11	77	1/1	T	}
15	-3.955	1.19	40	0	40?	20	?	X	X	+	-	- 1				1/	1/1	T	Chitinous material ? Caving?
	1	1	<u> </u>		<u> </u>		l			1	1				11	T	Π		
		1	<u> </u>								1				П	Т	\square	T	
		1	<u> </u>				<u> </u>				1						Π	1	
}		· [<u>}</u>		1		1		1	1	1	1		T	11		\square	1	
				· · · · ·	·		·	_			_		_	_				-	

•

1

er di

URDERE	n xeres	UT ANUE	VALUES:	
¥Ø.3Ø	¥Ø.42	0.59		
¥Ø.34	¥Ø.42	2.65	•	
¥Ø.38	¥Ø.43	2.66		
¥Ø.38	¥Ø.44	0.72		
×0.39	¥Ø.44	3.72		
¥Ø.39	¥0.45	2.73		
×0.39	≭0.46	1 15		
¥Ø.40	¥Ø.47			
×0.40	≭0.49			
×0.40	¥0.51		•	

JAMES P DUNIGAN #1, SANTA FE

ORDERED REFLECTANCE VALUES:

¥Ø.33	¥0.43	×0.53
¥Ø.34	¥0.43	¥0.58
¥Ø.35	¥Ø 44	0.68
×0.39	≭Ø 45	0.72
¥Ø.39	¥Ø.46	0.74
*0.39	*0.46	1.23
¥0.39	¥Ø.48	
¥Ø.39	×3 48	
¥0.40	¥Ø:49	
¥Ø 41	¥Ø 53	

1

URBERE	D REFLE	CI ANGL	1110000
¥Ø.34	¥Ø.48	0.75	
¥Ø.42	¥0,48	9.87	
¥Ø.43	¥Ø.50	1.55	
×0.44	¥0.50	•	
¥Ø.44	¥Ø.51		
×0.45	×0.57	-	
¥Ø.45	¥Ø.59		
¥Ø.46	¥0.62		
ר.48	0.72		
≭ Ø.48	0.75		

*0.50

*0.50

×0.52 ×0.54

ר.54

2.37

1.05

1.15

1.20

JAMES P DUNICAN #1, SANTA FE

ROE	3ER	TS	
RESEA	7BC,-1	ແມຣາ	

.

JAMES P DUNIGAN #1, SANTA FE

ORCERE	D REFLE	CTANCE	VALUES	
2.38	0,46	¥Ø.63	¥Ø 78	1.01
3.41	¥Ø.5Ø	¥Ø.65	¥Ø.79	1.05
3.41	¥0.50	.*0.69	¥Ø.82	1.05
2.42	ר.50	*0 70	¥Ø.84	1 29
0.42	¥Ø,5I	¥Ø.70	*0.86 ·	1 13
0.43	¥Ø.53	¥Ø.71	¥Ø.86	1,:4
2 44	≭Ø 54	¥Ø 71	¥Ø.38	1 28
2.45	¥Ø.55	¥Ø.71	3.96	1 30
2 46	¥Ø.58	*0.74	0.99	1.38
2.46	¥Ø.61	*0.78	2.99	1 4 1

1

0.31	Ø.45	¥0.78	
0.36	0.46	¥0.84.	
0.37	0.46	2.94	
0.37	0.46	0.98	
9.37	2.48	1.22	
3.40	×0.53	1.02	
0.41	×0.S1	1.28	
0.41	≭Ø.68	1.25	
0.42	ר.73	1.31	•
0.44	¥0.76		

0.55

0 55

0.55 0.56 0.56

0 58

3.44

8.44

2.45

0.45

0,45

0.45

0.47

0.48

2 48

2.49

0 49

0.50

.

JAMES P DUNIGAN #1, SANTA FE

ORDERED	REFLECTANCE	VALUES:

0.36	¥Ø.64	*1.00
0 39	¥Ø.65	*1.02
0.41	¥Ø.72	
0.43	¥Ø,78	
0.43	¥2.78	
ə 44	¥Q.80	
0.44	¥Ø.82	
0.45	×0 90	
ð. 48	¥Ø.92	
¥Ø.61	×1.00	

۰.

1

ļ

2.43	0.00
2.50	0.58
0.50	¥Ø.72

ORDERED REFLECTANCE VALUES

2.38	*0.77
9.41	¥Ø.83
2.42	*0 87
0,42	¥Ø.90
2.51	×0.90
¥Ø.57	¥1 24
¥Ø.89	¥1,29
*0.75	≭1.[]
≰Ø,78	1.25
x9.77	

1

ł