Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References

Off-line Nepali Handwritten Character Recognition Using MLP & RBF Neural Networks

Authors: Ashok Kumar Pant Dr. Sanjeeb Prasad Panday Prof. Dr. Shashidhar Ram Joshi

November 24, 2012

Third Asian Himalayas International Conference on Internet AH-ICI2012

Speaker: Ashok Kumar Pant

Handwritten Character Recognition

Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References

Presentation Outline

Introduction

- Handwriting Recognition
- Types of Handwriting Recognition
- Applications
- Challenges
- Problem Definition
- Literature Review

2 Research Methodology

- Proposed System Architecture
- Preprocessing
- Feature Extraction
- Recognition

3 Datasets

- Dataset I
- Dataset II
- Dataset III

4 Experimentation

- Experimentation Results
- Numeral Dataset Experimentation Results
- Vowel Dataset Experimentation Results
- Consonant Dataset Experimentation Results

5 Conclusion

- Conclusion
- Future Work

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Introduction ●○○○○○	Research Methodology	Datasets	Experimentation	Conclusion	References
Handwriting Rec	ognition				
Handw	riting Recogni	tion			
Handwri	ting				

Handwriting is a person's individual style of writing.

Handwriting is a person's individual style of writing.

Handwriting Recognition

System's ability to understand intelligible handwritten input from various sources such as paper documents, photographs, touch-screens and other devices.

Handwriting is a person's individual style of writing.

Handwriting Recognition

System's ability to understand intelligible handwritten input from various sources such as paper documents, photographs, touch-screens and other devices.

Nepali Handwriting

- Handwriting corresponds to Nepali language.
- Belongs to Devanagari Script.

Introduction ••••••	Research Methodology	Datasets	Experimentation	Conclusion	References
Types of Handwrit	ting Recognition				

On-line & Off-line Handwriting Recognition

On-line Handwriting Recognition

- Task of determining what character is being written in some writing device with some digital pen or plotter.
- Availability of trajectory data during writing.

Introduction ○●○○○○	Research Methodology	Datasets	Experimentation	Conclusion	References
Types of Handwri	ting Recognition				

On-line & Off-line Handwriting Recognition

On-line Handwriting Recognition

- Task of determining what character is being written in some writing device with some digital pen or plotter.
- Availability of trajectory data during writing.

Off-line Handwriting Recognition

- Task of determining what characters or words are present in a digital image of handwritten text.
- No temporal information available.

Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References
Applications					

Applications

Applications of the Handwriting Recognition

- Postal address reading.
- Bank cheque verification.
- Number plate recognition.
- Ancient document digitalization and indexing.
- Assessment writing for school work.
- Forensic and medical analysis, and so on.

Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References
Challenges					

Challenges of Off-line Handwriting Recognition

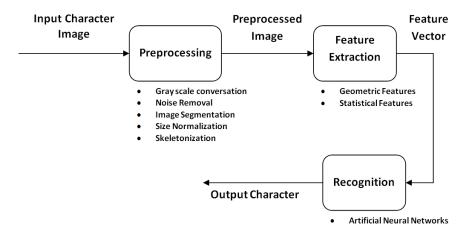
- Varying writing styles and shapes.
- Unconstrained writings.
- Cursive handwritings.
- Noise and unnecessary markings.
- Segmentation of characters from documents.

Introduction ○○○○●○	Research Methodology	Datasets	Experimentation	Conclusion	References
Problem Definition	n				

Problem Statements (off-line handwriting recognition)

- The high-level task is to classify the ordered sequence of images of off-line characters to their corresponding classes.
- Comparative study of MLP and RBF neural network recognition tools on Nepal handwriting recognition problem.
- Creation of benchmark datasets of Nepali handwritten characters.

Introduction ○○○○●	Research Methodology	Datasets	Experimentation	Conclusion	References
Literature Review					


State of the Art of Handwriting Recognition

- Historic review of OCR research and development after the digital age and until 1990s is described in [1] by Suen et.el. It describes the Template Matching and Shape Analysis techniques on OCR.
- State of the art on on-line handwriting recognition till 1990s is described in [2].
- After 1990, ANN, HMM, fuzzy set reasoning and other statistical learning tools take the steering of OCR research.
- Handwriting recognition until 2010 is given in [3],[4],[5].
- Handwriting Recognition for Devanagari Script can be found in [6],[7],[8],[9],[10],[5].
- Nepali handwriting research is given in [11],[12].

Proposed System Architecture

Proposed Handwriting Recongition System

Figure: Off-line Handwriting Recognition System Architecture

Speaker: Ashok Kumar Pant

Handwritten Character Recognition

<ロ> <同> <同> < 同> < 同>

Introduction	Research Methodology ●●○○○○○	Datasets	Experimentation	Conclusion	References
Preprocessing					
Preproc	cessing Steps				

1 Gray Scale Conversion.

3

7

Figure: RGB to Grayscale Conversion.

< ロ > < 同 > < 回 > < 回 >

э

Introduction	Research Methodology ●●○○○○○	Datasets	Experimentation	Conclusion	References
Preprocessing					
Preproc	cessing Steps				

- **1** Gray Scale Conversion.
- 2 Noise Removal.

Figure: Noise Removal.

э

Introduction	Research Methodology ○●○○○○○	Datasets	Experimentation	Conclusion	References
Preprocessing					
Preproc	essing Steps				

- **1** Gray Scale Conversion.
- 2 Noise Removal.

3 Image Binarization.

Figure: Image Binarization.

< ロ > < 同 > < 回 > < 回 >

Introduction	Research Methodology ○●○○○○○	Datasets	Experimentation	Conclusion	References
Preprocessing					
Preproc	essing Steps				

- 1 Gray Scale Conversion.
- Noise Removal.
- Image Binarization.
- 4 Image Inversion.

Binarized Image

Figure: Image Inversion.

< ロ > < 同 > < 回 > < 回 >

Introduction	Research Methodology ○●○○○○○	Datasets	Experimentation	Conclusion	References
Preprocessing					
Preproc	essing Steps				

- **1** Gray Scale Conversion.
- Noise Removal.
- Image Binarization.
- 4 Image Inversion.
- 5 Universe of Discourse Determination.

7

Figure: Universe of Discourse.

< ロ > < 同 > < 三 > < 三 >

Introduction	Research Methodology ○●○○○○○	Datasets	Experimentation	Conclusion	References
Preprocessing					
Preproc	cessing Steps				

- **1** Gray Scale Conversion.
- Noise Removal.
- Image Binarization.
- 4 Image Inversion.
- 5 Universe of Discourse Determination.
- 6 Size Normalization.

Size Normalized Image (36x36)

Figure: Size Normalization.

< A >

7

< E

Introduction	Research Methodology ●●○○○○○	Datasets	Experimentation	Conclusion	References
Preprocessing					
Preproc	cessing Steps				

- **1** Gray Scale Conversion.
- Noise Removal.
- Image Binarization.
- 4 Image Inversion.
- 5 Universe of Discourse Determination.
- 6 Size Normalization.
- 7 Image Skeletonization.

Skeletonized Image

Figure: Image Skeletonization.

< A >

B b

Introduction	Research Methodology ○○●○○○○○	Datasets	Experimentation	Conclusion	References
Feature Extraction	n				

1. Directional Features

Image is zoned into 3x3 sub-images and directional vectors are extracted [13]. Features extracted from each zone are:

- The number of horizontal lines.
- The number of vertical lines.
- Number of Right diagonal lines.
- Number of Left diagonal lines.
- Normalized Length of all horizontal lines.
- Normalized Length of all vertical lines.
- Normalized Length of all right diagonal lines.
- Normalized Length of all left diagonal lines.
- Number of intersection points

Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References
Feature Extraction	1				

2. Euler Number

Difference between number of objects and number of holes in an character image.

< A >

→ Ξ →

Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References
Feature Extraction	h				

2. Euler Number

Difference between number of objects and number of holes in an character image.

3. Eccentricity

Ratio of the distance between the foci of the ellipse to the length of major axis of the smallest ellipse that encloses the character image.

< ロ > < 同 > < 回 > < 回 >

Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References
Feature Extraction	n statistica de la companya de la co				

4. Moment Invariant Features [14],[15]

The 2-D moment of order (p + q) for a digital image f(x, y) of size MxN is given by,

$$m_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} x^{p} y^{q} f(x, y) \ p, q = 0, 1, 2, \dots$$

A set of seven normalized central moments can be derived from the second and third moments [14] which are invariant to translation, scale change, mirroring, and rotation.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References
Feature Extraction	1				

4. Moment Invariant Features [14],[15]

The 2-D moment of order (p + q) for a digital image f(x, y) of size MxN is given by,

$$m_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} x^p y^q f(x, y) \ p, q = 0, 1, 2, \dots$$

A set of seven normalized central moments can be derived from the second and third moments [14] which are invariant to translation, scale change, mirroring, and rotation.

5. Area of Character Skeleton

Number of pixels in character skeleton.

Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References
Feature Extraction	1				

4. Moment Invariant Features [14],[15]

The 2-D moment of order (p + q) for a digital image f(x, y) of size MxN is given by,

$$m_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} x^{p} y^{q} f(x, y) \ p, q = 0, 1, 2, \dots$$

A set of seven normalized central moments can be derived from the second and third moments [14] which are invariant to translation, scale change, mirroring, and rotation.

5. Area of Character Skeleton

Number of pixels in character skeleton.

6. Centroid

Centre of mass for character image.

Speaker: Ashok Kumar Pant

э

《口》《聞》《臣》《臣》

Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References
Recognition					
Artificia	l Neural Netw	ork (AN	IN)		

Non-linear, parallel, distributed, highly connected network having capability of adaptivity, self-organization, fault tolerance and evidential response which closely resembles with physical nervous system.

Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References
Recognition					
Artificia	I Neural Netw	ork (AN	IN)		

Non-linear, parallel, distributed, highly connected network having capability of adaptivity, self-organization, fault tolerance and evidential response which closely resembles with physical nervous system.

ANN Recognition Algorithms

1 Multilayer Perceptron (MLP)

2 Radial Basis Function (RBF)

Introduction	Research Methodology ○○○○○●○	Datasets	Experimentation	Conclusion	References
Recognition					
1. Mult	ilayer Percepti	ron			

- Feedforward neural network.
- Uses a supervised learning strategy called back-propagation for training.

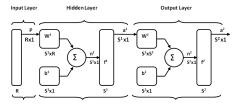
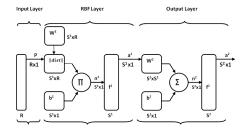


Figure: Multilayer Perceptron.


Image: A math

Introduction Research Methodology Datasets Experimentation Conclusion References

Recognition

2. Radial Basis Function Network

- Uses radial basis function as activation function.
- Linear combination of radial basis functions.
- Uses stepwise regression procedure for selecting basis function.

< ロ > < 同 > < 三 > < 三

Figure: Radial Basis Function Network.

Introduction	Research Methodology	Datasets ●○○	Experimentation	Conclusion	References
Datacot I					

Nepali Handwritten Consonant Dataset

- **36** classes
- 205 samples each class (total 7380 images)
- Samples are taken from 45 different writers

Introduction	Research Methodology	Datasets ○●○	Experimentation	Conclusion	References
Dataset II					
Nepali	Handwritten V	owel Da	ataset		

- 12 classes
- **221** samples each class (total **2652** images)
- Samples are taken from 44 different writers

Introduction	Research Methodology	Datasets ○○●	Experimentation	Conclusion	References
Dataset III					

Nepali Handwritten Numeral Dataset

- 10 classes
- 288 samples each class (total 2880 images)
- Samples are taken from 45 different writers

3 T

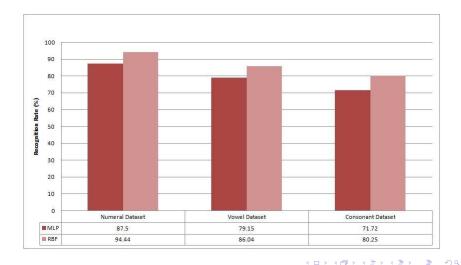
Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References

Experimentation Results

Neural Network Configuration

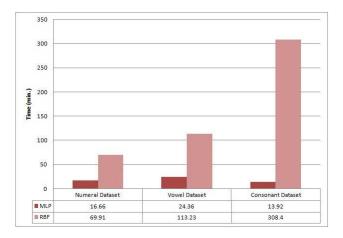
Dataset Name	Dataset Size	Recognition Algorithm	Train/Test Samples	Hidden Layer Neurons	No. of Epochs
Numeral	10 * 288	MLP (LM)	2016/432	30	9
Dataset	= 2880	RBF	2304/576	580	580
Vowel	12 * 221	MLP (LM)	1857/397	30	12
Dataset	= 2652	RBF	2122/530	840	840
Consonant	36 * 205	MLP (GDMA)	5411/891	100	1000
Dataset	= 7380	RBF	5166/891	1025	1025

Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References
Experimentation	n Results				
Recogr	nition Results				


Dataset Name	Recognition Algorithm	Training Time (min.)	Recognition Accuracy (%)	Miss-classification Rate (%)
	J			• •
Numeral	MLP	16.66	87.50	12.50
Dataset	RBF	69.91	94.44	5.55
Vowel	MLP	24.36	79.15	20.85
Dataset	RBF	113.23	86.04	13.96
Consonant	MLP	13.92	71.72	28.28
Dataset	RBF	308.4	80.25	19.75

æ

・ロト ・回 ト ・ヨト ・ヨ


Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References
000000	0000000	000	000000000000000000000000000000000000000	00	
Experimentation	Results				

Recognition Accuracy Graph

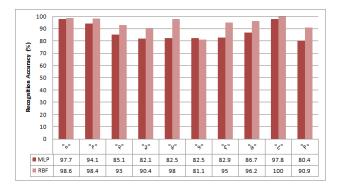
Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References
Experimentation F	Results				

Network Training Time Graph

э

Numeral Dataset Experimentation Results

Individual Recognition Result for Numeral Dataset


Class	Recognition Algorithms	Recognition Accuracy (%)	Class	Recognition Algorithms	Recognition Accuracy (%)
0	MLP	97.7	9	MLP	94.1
	RBF	98.6	'	RBF	98.4
2	MLP	85.1	2	MLP	82.1
~	RBF	93.0	A	RBF	90.4
	MLP	82.5	7	MLP	82.5
6	RBF	98.0		RBF	81.1
Eφ	MLP	82.9	10	MLP	86.7
4	RBF	95.0		RBF	96.2
T	MLP	97.8	8	MLP	80.4
	RBF	100	د	RBF	90.9

→ Ξ →

< A >

 Introduction
 Research Methodology
 Datasets
 Experimentation
 Conclusion
 References

 Numeral Dataset Experimentation Results
 Individual Recognition Result for Numeral Dataset Graph
 Graph

<ロ> <同> <同> < 同> < 同> < 同

 Introduction
 Research Methodology
 Datasets
 Experimentation
 Conclusion
 References

 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

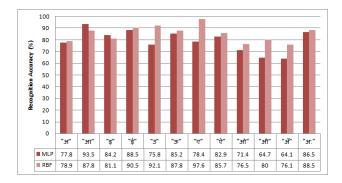
Numeral Dataset Experimentation Results

Confusion Matrix for Numeral Dataset Testing

Class	0	9	2	2	K	X	Ee	6	τ	5
0	69	0	0	0	0	0	0	0	0	1
9	0	61	0	0	0	0	1	0	0	0
2	0	0	53	4	0	0	0	0	0	0
2	0	0	3	47	0	0	2	0	0	0
8	0	0	0	0	49	1	0	0	0	0
X	0	0	5	3	1	43	0	0	0	1
٤	0	1	0	0	0	0	57	1	0	0
6	0	0	0	0	1	0	1	51	0	0
τ	0	0	0	0	0	0	0	0	64	0
5	0	1	1	1	0	1	1	0	0	50

< ロ > < 同 > < 三 > < 三

Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References
			0000000000000000		


Vowel Dataset Experimentation Results

Individual Recognition Results for Vowel Dataset

Class	Recognition Algorithms	Recognition Accuracy (%)	Class	Recognition Algorithms	Recognition Accuracy (%)
37	MLP	77.8	भग	MLP	93.5
	RBF	78.9	"	RBF	87.8
5	MLP	84.2	- fa	MLP	88.5
4	RBF	91.1		RBF	90.5
3	MLP	75.8	3,	MLP	85.2
3	RBF	92.1		RBF	87.8
Þ	MLP	78.4	25	MLP	82.9
`	RBF	97.6		RBF	85.7
377	MLP	71.4	. औ	MLP	64.7
311	RBF	76.5	341)	RBF	80.0
3 7	MLP	64.1	अः	MLP	86.5
34	RBF	76.1	0	RBF	88.5

 Introduction
 Research Methodology
 Datasets
 Experimentation
 Conclusion
 References

 Vowel Dataset Experimentation Results
 Individual Recognition Result for Vowel Dataset Graph

(a)

 Introduction
 Research Methodology
 Datasets
 Experimentation

 000000
 00000000
 000
 00000000
 000000000

Conclusion

References

Vowel Dataset Experimentation Results

Confusion Matrix for Vowel Dataset Testing

Class	37	आ	۶	<u>F</u>	3	3,	₽	\$	37	औ	37	3Te
35	45	6	0	0	0	4	0	0	1	0	1	0
आ	3	36	0	0	0	0	0	0	0	1	0	1
S	0	0	51	0	1	0	0	0	1	1	2	0
ch4	0	0	2	38	0	0	0	1	0	0	1	0
3	1	0	2	0	35	0	0	0	0	0	0	0
3,	2	0	0	0	1	36	0	0	0	0	0	2
\$	1	0	0	0	0	0	40	0	0	0	0	0
¢¢•	1	0	0	0	0	0	2	36	2	0	1	0
377	0	0	0	0	0	0	0	1	26	5	2	0
औ	0	0	0	0	0	0	0	0	6	32	2	0
37	1	0	0	2	0	0	0	1	5	2	35	0
अं	1	3	0	0	0	0	0	0	0	2	0	46

< ロ > < 同 > < 三 > < 三

29 / 38

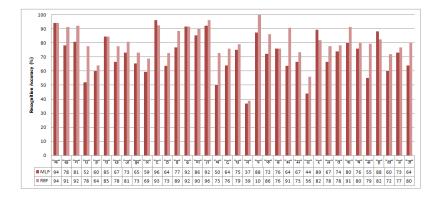
Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References
			000000000000000000000000000000000000000		

Consonant Dataset Experimentation Results

Individual Recognition Results for Consonant Dataset

Class	Recognition Algorithms	Recognition Accuracy (%)	Class	Recognition Algorithms	Recognition Accuracy (%)
み	MLP	94.1	7ুব	MLP	78.3
5	RBF	94.1	~~	RBF	91.3
T	MLP	80.8	च	MLP	51.9
01	RBF	92.3	1 4	RBF	77.8
35	MLP	60.0	귄	MLP	84.6
00	RBF	64.0		RBF	84.6
5	MLP	66.7	Æ	MLP	73.1
φ	RBF	77.8		RBF	80.8
म	MLP	65.4	म	MLP	59.4
<i>e</i> ŋ	RBF	73.1	1 5	RBF	68.8
ਹ	MLP	96.3	5	MLP	63.6
e	RBF	92.6	0	RBF	72.7
3	MLP	76.9	5	MLP	91.7
3	RBF	88.5	9	RBF	91.7
চ	MLP	85.0	ਰ	MLP	92.3
01	RBF	90.0		RBF	96.2
र्व	MLP	50.0	र्ष	MLP	64.0
પ	RBF	72.7		RBF	76.0

Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References
			000000000000000000000000000000000000000		


Consonant Dataset Experimentation Results

Individual Recognition Results for Consonant Dataset

Class	Recognition Algorithms	Recognition Accuracy (%)	Class	Recognition Algorithms	Recognition Accuracy (%)
ET	MLP	75.0	ਜ	MLP	36.8
2	RBF	79.2		RBF	38.8
प	MLP	87.5	দ	MLP	72.4
~	RBF	100		RBF	86.2
đ	MLP	75.9	म	MLP	63.6
9	RBF	75.9	1 01	RBF	90.9
म	MLP	66.7	21	MLP	44.0
61	RBF	73.3	2	RBF	56.0
X	MLP	89.3	ल	MLP	66.7
~	RBF	82.1	61	RBF	77.8
a	MLP	73.9	21	MLP	80.0
4	RBF	78.3		RBF	91.4
দ্ব	MLP	76.0	ম	MLP	55.2
G	RBF	80.0		RBF	79.3
ε	MLP	88.2	85	MLP	60.0
L C	RBF	82.4	91	RBF	72.0
ĸ	MLP	73.1	A	MLP	64.0
	RBF	76.9	1 241	RBF	80.0

 Introduction
 Research Methodology
 Datasets
 Experimentation
 Conclusion
 References

 Consonant Dataset Experimentation Results
 Individual Recognition Result for Consonant Dataset - Graph
 Graph<

< ロ > < 同 > < 三 > < 三

Introduction

Research Methodology

Datasets

Experimentation

Conclusion

References

Consonant Dataset Experimentation Results

confusion Matrix for Consonant Dataset Testing

Class	đ	Ā	T	π	35	J	6	ज	R	म	ਣ	ਤ	3	6	ল	ਰ	Q	Ģ	eľ	Æ	ाप	फ	đ	भ	æ	य	T	eT	a	য়া	म	ম	ε	81	31	άĨ
đ	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
29	0	21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
J	0	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0
Ũ	0	0	0	21	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0	2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
30	1	0	0	0	16	0	0	1	0	0	0	0	2	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	2	0	0	0	0	0	0
ゼ	0	0	0	1	0	22	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
÷	0	0	0	0	0	0	14	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
F	0	0	0	0	0	0	0	21	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
R	1	1	0	0	0	0	0	0	19	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	1	0	1
म	0	0	1	0	0	0	0	1	0	22	0	0	0	0	0	0	0	0	0	0	0	0	2	1	2	0	0	0	0	0	0	0	0	0	3	0
ਣ	0	0	0	0	0	0	1	0	0	0	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	16	1	1	0	0	0	2	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	0	0	0	0	0	0	23	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0
6	0	1	0	0	0	0	0	0	0	0	0	0	1	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	18	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ਨ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	25	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ব্	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	16	0	2	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0
é	1	0	0	0	0	0	2	0	0	0	0	1	0	1	0	0	0	19	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
et	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	19	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0
ज	0	0	1	0	0	0	0	1	0	2	0	0	0	0	0	2	0	0	0	7	0	0	0	0	2	0	1	1	1	0	0	0	0	0	0	1
प	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
দ্দ	0	0	0	0	0	0	0	0	2	0	0	0	0	0	1	0	0	0	0	0	1	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0
a	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	2	0	0	0	0	22	0	1	0	0	0	1	0	0	0	0	0	0	0
भ	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0
a.	0	0	0	0	0	0	0	2	0	1	0	0	0	1	0	0	0	0	0	0	2	0	0	0	22	0	0	0	0	0	0	0	0	0	2	0
য	0	0	1	0	0	1	0	1	0	0	0	0	0	0	2	1	0	0	0	0	3	0	0	1	0	14	0	1	0	0	0	0	0	0	0	0
X	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	23	0	0	0	0	0	0	0	1	0
ল	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	14	0	0	0	0	0	0	0	1
a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	18	0	0	0	1	1	0	0
হা	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	32	0	0	0	0	0	0
8	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	20	0	0	0	0	0
ম	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	0	0	0	0	2	0	23	0	1	0	0
ξ	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	14	0	0	0
8	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0	0	0	0	1	0	18	0	0
x	1	0	2	0	0	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		20	0
ń	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	2	0	0	0	0	0	0	1	20

Speaker: Ashok Kumar Pant

November 24, 2012 33 / 38

Introduction	Research Methodology	Datasets	Experimentation	Conclusion References ●○					
Conclusion									
Conclu	sion								

- RBF based recognition system have better recognition accuracy than MLP based recognition system, evaluated on three handwritten datasets.
- RBF based recognition system takes little more time for training the network than MLP based recognition system.
- Handwriting recognition is a difficult problem due to high variations in human handwritings, overlapped and joined characters, shape, size and styles of written characters.

Introduction	Research Methodology	Datasets	Experimentation	Conclusion ○●	References
Future Work					
Future	Work				

- Proposed system will be tested with known handwritten datasets like Germana database, IAM database, MNIST database, etc.
- Purposed system will be extended for the recognition of words, sentences and documents.
- Purposed system will be extended for multilingual character recognition.

Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References
Referen	nces I				

- S. Mori, C. Y. Suen, and K. Yamamoto. Historical review of OCR research and development. *Proceedings of IEEE*, 80(7):1029–1058, July 1992.
- [2] Charles C. Tappert, Ching Y. Suen, and Toru Wakahara. The state of the art in on-line handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-12(8):787–808, August 1990.
- [3] Alessandro Vinciarelli. A survey on off-line cursive word recognition. Pattern Recognition, 35(7):1433-1446, July 2002.
- [4] D. Ghosh, T. Dube, and A. P. Shivaprasad. Script recognition A review. IEEE Trans. Pattern Anal. Mach. Intell, 32(12), 2010.
- [5] Vikas J. Dongre and Vijay H. Mankar. A review of research on devnagari character recognition. CoRR, abs/1101.2491, 2011.
- [6] P. S. Deshpande, Latesh Malik, and Sandhya Arora. Fine classification & recognition of hand written devnagari characters with regular expressions & minimum edit distance method. JCP, 3(5):11–17, 2008.
- [7] Sandhya Arora, Debotosh Bhattacharjee, Mita Nasipuri, Dipak Kumar Basu, and Mahantapas Kundu. Multiple classifier combination for off-line handwritten devnagari character recognition, June 30 2010.
- [8] Sandhya Arora, Debotosh Bhattacharjee, Mita Nasipuri, L. Malik, M. Kundu, and D. K. Basu. Performance comparison of SVM and ANN for handwritten devnagari character recognition, June 30 2010.
- B. Shaw, S. K. Parui, and M. Shridhar. Offline handwritten devanagari word recognition: A segmentation based approach. In *ICPR*, pages 1–4, 2008.
- [10] N. Sharma, U. Pal, F. Kimura, and S. Pal. Recognition of off-line handwritten devnagari characters using quadratic classifier. In Indian Conference on Computer Vision, Graphics and Image Processing, pages 805–816, 2006.
- [11] K. C. Santosh and Cholwich Nattee. Template-based nepali handwritten alphanumeric character recognition. Thammasat International Journal of Science and Technology (TIJSAT), Thammasat University, Thailand, 12(1), 2007.

э.

Introduction	Research Methodology	Datasets	Experimentation	Conclusion	References
Referer	nces II				

- [12] K. C. Santosh and Cholwich Nattee. A comprehensive survey on on-line handwriting recognition technology and its real application to the nepalese natural handwriting. (1):31–55, 2009.
- [13] M. Blumenstein, B. Verma, and H. Basli. A novel feature extraction technique for the recognition of segmented handwritten characters. In *ICDAR*, pages 137–141, 2003.
- [14] Ming-Kuei Hu. Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, IT-8:179–187, 1962.
- [15] R. C. Gonzalez and R. E. Woods. Digital Image Processing, Third Edition. Prentice Hall, 2008.

Introduction

Research Methodology

Datasets

Experimentation

Conclusion

References

Speaker: Ashok Kumar Pant

Handwritten Character Recognition

November 24, 2012 38 / 38