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Overview

Offshore wind continues to surprise the industry with lower costs, and turbines and projects at 

ever bigger scale.  With these lower costs come lower margins, and an ever greater need to 

predict the output of projects with higher accuracy.  

The UK offshore sector benefits from globally unique, publicly available data sources, 

including those provided by The Crown Estate Marine Data Exchange.  K2 Management has 

leveraged these data sets to calculate long-term wind farm yield using both pre-construction 

and operational methods, across 91 % of the UK offshore installed capacity.

Through this approach, K2 Management has both measured and demonstrably improved state 

of the art offshore yield prediction.  Refinements to best practice methods presented here 

provide unbiased, low uncertainty yield prediction across a wide variety of offshore projects.

Key findings

Of the UK fleet of 26 operational offshore wind farms, 21 were considered appropriate for 

inclusion in the study, spanning 1,338 turbines, or 91 % of the currently installed fleet.    

Standard practice yield prediction methods work well, with all predictions within 8 % of 

operational observations.  Some residual bias remains, however, largely related to projects with 

very high wake losses.

Multi-mast analysis methods can lower wind speed prediction uncertainties, particularly for 

projects with imperfect measurement campaigns, as is often the case offshore.

Projects with very high wake losses generally perform less well compared to predictions, even 

using best practice wake models.  It is likely that these models either under-predict wake 

effects in these situations, or that there are additional losses that scale with wake effects.

An unbiased, lower uncertainty approach is possible with only minor adjustments to industry 

standard methods. These methods can increase investor confidence, supporting low risk 

offshore investment.  

Executive Summary



This report

The study is presented in the following sections:

Pages 4 - 7 outline the context, geographic scope, data sources, and validation approach.

Pages 8 - 13 provide additional detail on best practice offshore analysis methods, and how 

uncertainty is minimised at each stage.

Pages 14 - 17 explore the causes of bias in the validation results and the potential to improve 

the accuracy of yield prediction methods.

Page 18 applies these methods, demonstrating the ability to predict offshore wind farm yield 

with high accuracy.

The need for accurate yield prediction

The acceleration in offshore wind installations in recent years has been extraordinary. 

Sometimes the scale can be hard to comprehend. At the time of writing this report, Europe 

has 11 GW operating and 20 GW consented, the US is targeting 86 GW by 2050, and China has 

constructed over a Gigawatt to date.

Meanwhile, as the European market matures, reverse auctions and lower tariffs are putting 

real pressure on costs and margins. Sometimes this has been gradual and sometimes 

seismic, as seen during the Borssele and Kriegers Flak auctions. The need to recycle capital 

by introducing debt and equity leaves no space for the inaccurate or over-predicted pre-

construction yield assessments that have often dented confidence in the onshore market.

This study demonstrates the current accuracy of yield prediction across the entire UK offshore 

market, and outlines the steps required to reduce yield risk in offshore investment.

Study summary

We have estimated the long-term yield of 21 UK offshore wind farms using two methods, and 

then compared the results for each project, in order to better understand accuracy drivers for 

long-term yield prediction. 

Method 1:  Pre-construction 

Method 1 uses pre-construction techniques:  mast data, wind mapping, turbine power curves 

and wake models.  This approach is close in scope and detail to that used for financial grade 

assessments. 

Method 2:  Operational 

Method 2 uses high level, operational analysis techniques using public data only:  Monthly 

wind farm production, the ROC register, and major down-time events from industry news 

sources such as 4coffshore.com and others.

Introduction
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1.  http://www.marinedataexchange.co.uk/

2. https://www.renewablesandchp.ofgem.gov.uk/

3. https://www.thecrownestate.co.uk/media/476245/ei-uk-offshore-wind-resource-dataset-2015.pdf  

4. http://www.kis-orca.eu/

Geographic scope

There are 26 operational offshore wind farms in the UK Exclusive Economic Zone.  Of these, 

we were able to include 21 in the validation study based on their proximity to wind data and the 

availability of sufficient operational production data.  The study spans 1,338 turbines and nearly  

5 GW of installed capacity.
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The remaining 5 wind farms were not used 

in the analysis primarily because there was 

either a very short period of operational 

data available, or they were located too far 

away from a publicly available source of 

meteorological mast data to provide a robust 

prediction.  Demonstrator projects were also 

excluded due to uncertainties over their 

performance consistency.

Data availability

We would like to express our gratitude to the organisations that have made this study possible 

through the public sharing of extensive data sets. Without these, this report would not have 

been possible.  They include:

1.  47 mast-years of wind measurements and metadata from 11 masts on The Crown Estate’s 

Marine Data Exchange;

2.  the most recent 5 years of wind farm ROC production statistics published by OFGEM;

3.  The Crown Estate, UK Offshore Wind Resource Map (UKOWRD);

4.  wind farm layouts from the Kingfisher awareness charts. 

We hope that this report highlights the immense value of these data sharing exercises and 

their potential impact in reducing the cost of energy.



 

Pre-Construction Route 

Data 

collation 

Data was acquired from 11 anemometer masts around 

the UK, from the Crown Estate Marine Data Exchange. 

Wind data 

processing  

Wind data from each mast was processed to best 

practice energy yield assessment standards. 

Long-term 

assessment 

The cleaned, calibrated data was correlated to MERRA-

2 reanalysis data to derive a long term wind regime at 

each mast. 

Vertical 

extrapolation 

The measured shear profile was used to extrapolate 

long-term wind regime to the hub height of each wind 

farm 

Horizontal 

extrapolation 

The Crown Estate UKOWRD was used to extrapolate 

each mast prediction to each wind farm location.  

Ensemble 

wind speed 

The Gauss-Markov minimum uncertainty theorem was 

used to weight the nearest predictions for each wind 

farm based on the uncertainty in each individual mast 

prediction and extrapolation.  

Gross 

Energy 

calculation 

Gross Energy Yield at each wind farm was calculated 

using sales power curves, meteorological station air 

density and the predicted long-term wind regime. 

Wake loss  

The wake loss of each project was calculated 

using an ensemble average of 3 separate industry 

standard wake models.  

Net Yield 

Prediction  

The gross energy and wake loss were combined with 

industry standard assumptions for electrical, turbine 

performance and environmental losses. 

100% available pre-construction energy 

yield prediction  

Operational Route 

Data collation
 

Monthly production data from 21 wind farms was 

collated from OFGEM 

Data 

processing
 

Production data before wind farm commisioning 

date were removed. 

Data filtering  

Months listed in news sources as having severe 

outages were removed. 

Wake 

corrections  

Older periods were corrected to be representative

of current neighbouring wake conditions, or  

removed where large adjustments were required. 

Correlation
 

The filtered monthly data were correlated to the 

same MERRA-2 reanalysis data  used in the pre-

construction method 

Long-term

adjustement  

Using the correlation to MERRA-2 data, the long-

term energy yield was predicted 

Net Yield 

Prediction
 

Resulting Net yield predictions were scaled up by 

5% to account for wind turbine availability, 

following removal of major down-time events. 

100% available operational energy 

yield prediction  

Validation result = Operational / pre-construction estimate 

Validation Overview
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To review the performance of the UK offshore wind farm fleet, K2 Management has 

performed two separate analyses on each wind farm - one using wind mast data to form 

a ‘pre-construction’ yield prediction and a second using actual production data to form an 

‘Operational’ yield prediction. An outline of each method can be found on the opposite page, 

with more detail provided in the following sections. 

The two methods have been designed to provide an estimate of 100% available, long-term 

average energy yield.  The validation process is that of comparing the pre-construction 

estimates with their operational counterparts, in order to improve prediction methods.
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For the technically-minded, this chapter provides some additional detail on the assumptions 

involved in the study, and methods that allow us to produce the highest accuracy offshore 

yield assessments in the industry, with demonstrably lower uncertainty.

Pre-construction  

Analysis Methods

Mast data processing

Approximately 47 years of wind data from 11 anemometer masts were 

processed using industry standard techniques and included the following 

stages:

Calibration: A variety of anemometers are in use, each with wind tunnel 

calibration factors, some of which were applied by the on-mast data 

loggers and others that required adjustment. In some cases, due to 

whole scale deviations highlighted by wind tunnel owners, a correction 

factor was also necessary. Once corrected, the resultant wind speed is of 

a lower uncertainty than using generic factors alone.

Cleaning: the marine environment is a harsh one leading to increased wear and degradation of 

the anemometers, and wind vanes, recording the wind speed and direction.  While some mast 

owners implement rolling replacement programs, failures and degradation do occur and data 

from these instruments were removed.

Wind vane alignment: Often the wind vanes on a mast are not aligned to north or the 

alignment of their north is not recorded at installation.  It was therefore necessary to reference 

the wind data recorded by these instruments to grid north, to allow for accurate weighting of 

the directional wake effects. 

Mast effects: While onshore anemometry masts are typically guyed for stiffness, this is not 

possible offshore and so thicker, free standing lattice structures are required. This not only 

causes wake effects when the anemometers are behind the mast but can also cause speedup 

effects around the mast and blockage effects in front of the mast.  These effects also vary with 

height as the mast tapers.  K2 Management has used careful selection of anemometers, and 

averaging of parallel instruments, to minimise these effects on wind speed.

Spatial variation

The UK Offshore Wind Resource Database (UKOWRD), 

commissioned by The Crown Estate, and produced by the Met 

Office, was used to establish expected spatial variation in wind 

resource, between masts and turbine locations.   

 

Other approaches, such as bi-cubic interpolation were applied in 

order to extract maximum accuracy from the model data.
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Long-term adjustment

For financial grade analysis, K2 Management would typically undertake a detailed study of 

nearby meteorological stations and reanalysis datasets to define a robust, consistent and 

representative long-term dataset. This generally takes the form of an index of several datasets 

to reduce uncertainty in the long-term wind speed.

For the purposes of the validation, however, we simply required a dataset that was consistent 

over the mast and wind farm operational periods in order to eliminate long-term adjustment 

differences from the study.  MERRA-2  reanalysis data is well validated in the UK and hence 

was used to tie the two analysis routes together.  
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Wind speed

Multi-mast analysis

Onshore, wind flow structures are complicated. They require substantial, high-resolution 

modelling effort and can be a significant source of uncertainty, even across relatively small sites. 

Offshore, the spatial variations in wind speeds are more gradual and predictable.  It is possible 

to predict wind speed at distances such as 40 km away from a mast with a level of confidence 

unachievable onshore.  This widescale prediction allows the use of multiple regional masts to 

inform wind speed predictions for a single offshore project.

K2 Management has used The Crown Estate UKOWRD wind speed map to extrapolate the 

long term mean wind speed prediction from each mast to each wind farm in the region. This 

provides up to four independent wind speed predictions at each wind farm, with varying 

uncertainty associated with each.

Rather than pick the closest mast prediction and discard the other measurements, we have 

employed Gauss-Markov minimum uncertainty theorem to derive a weighted average of these 

predictions.  This method uses the uncertainty in each wind speed prediction to define the 

overall mean wind speed at each site.  The approach results in a lower uncertainty than the use of 

any single mast, and substantially improves accuracy for sites without an available mast dataset.

This approach is of particular value when short, or non-standard data sets are considered, 

such as those available early in a project’s life, or where devices such as floating LiDARs have 

been deployed. 

Pre-construction  

Analysis Methods
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Ensemble wake modelling

The interaction of the 1,338 wind turbines 

constructed in the three areas covered 

by this study have a significant impact 

on energy yield.  The modelling of these 

interactions have been conducted using 

three separate industry standard wake 

models:

•  Risø FUGA2 , run with both neutral and 

stable atmospheric configurations;

•  Eddy Viscosity  (WindFarmer 

implementation with Large Wind Farm 

Correction);

•  PARK (WindFarmer implementation with 

Large Wind Farm Correction).

A confidence-weighted ensemble of these 

results is used to provide a robust prediction 

of wake loss.

We will look later at the wake models, both 

on an individual basis and alongside other 

wake models used in the industry. 

 

Other losses

Standard loss assumptions have been applied and include:

•  site specific turbine performance assumptions;

•  internal electrical system losses between the turbines and OFTO connection point;

•  environmental factors such as blade degradation.

Availability assumptions have not been applied since the comparison baseline with the 

operational analysis path does not include this loss.
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Standard operational analysis methods have been applied and include: data quality filtering; 

long-term adjustment; and removal of project commissioning and ramp up periods.  Due to the 

use of public data only in this study, a different approach to availability was required.

Availability assumptions

Operational wind farm yield analysis typically includes analysis of availability data, either at 

monthly resolution provided by the project operator, or derived from SCADA data directly.

Since wind farm availability data is not made public, for the purposes of this validation, another 

approach was required.

For this purpose, two imperfect, pragmatic methods were employed: 

1  Any months with extensive unscheduled down time affecting the whole wind farm, for 

example subsea export cable failure, were identified using public industry news sources of 

down-time and their causes. 

2  Scheduled maintenance is generally carried out through rolling programmes across a 

project, and is therefore difficult to identify.  In order to estimate 100 % available production, 

it was necessary to assume a turbine availability value.  For the purposes of the validation, 

95 % has been assumed to represent residual availability over months not identified in the 

first stage.

Operational Analysis Method

In order to correlate fully available 

monthly production, we have removed 

months with major down-time and 

increased the remaining data by 5%.  This 

is crude compared with use of known 

monthly system availability values and 

has degraded correlation quality to some 

extent. However, the validation process 

allows us to consider the residual 

availability assumption in more detail, 

and assess the impact of known causes 

removed from the data set.
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Operational data period selection and adjustment

Two steps were included to improve the accuracy of operational analysis results:

Firstly, as a precaution, initial commissioning periods were removed, in order that the results 

would represent long-term performance levels.

Secondly, where changes in external wake effects from construction of neighbouring projects 

were minor, production values were adjusted to simulate current exposure.  Periods prior to 

major changes due to neighbouring project construction were removed to avoid biasing the 

results.



 

Initial results using typical industry methods

The final stage of the analysis was to compare the two sets of energy yield predictions.

Despite some major assumptions in the operational analyses, such as a fixed 95 % turbine 

availability value, there is a high level of agreement between operational and pre-construction 

estimates.

All wind farms were seen to operate within 8 % of their pre-construction prediction.  This is 

higher than the average P90 value assigned to offshore wind farms and indicates the high 

level of confidence that can be gained from correctly performed pre-construction offshore 

yield predictions.

The error distribution has an average bias of -2.8 %, however this is driven by some older 

projects, often with very high wake effects, unrepresentative of expected round 3 layout 

designs.  

The broad range of the validation has allowed us to examine, in detail, the underlying causes of 

this bias in order to refine the prediction methods and seek a zero-bias approach.

Balance of plant availability

In calculating the operational energy yield prediction, we removed any months in which major 

or newsworthy downtime events occurred.  These included items such as sub-station failures 

or issues with the cable connection to shore.  The majority of these whole wind farm affecting 

issues are typically assigned to Balance of Plant availability.  

Observations

In a pre-construction energy yield 

assessment, Balance of Plant 

availability is typically assessed using 

details of the equipment involved, and 

O&M infrastructure and schedules. 

In the absence of this information, a 

value between 0.5% and 2% is typically 

assumed.

The net energy impact of these months 

on long-term yield is a reduction of 1.1% 

across the UK operational fleet.  This 

can be seen to be an approximation of 

typical Balance of Plant downtime.
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Selection of wake models

Wake losses are the single largest loss in energy for offshore wind farms and therefore one of 

the first places to look when refining the pre-construction assessments. 

As part of our offshore energy yield assessments, three wake models were considered: 

•  Risø FUGA-2, run with both neutral and stable atmospheric configurations;

• Eddy Viscosity (WindFarmer implementation with Large Wind Farm Correction);

• PARK (WindFarmer implementation with Large Wind Farm Correction).

As part of this study, we also looked at the following wake models which are in common 

industry use: 

• Eddy Viscosity (WindFarmer implementation without Large Wind Farm Correction);

• PARK (WindFarmer implementation without Large Wind Farm Correction); 

• PARK (WAsP implementation).

Using results from individual models, across all 21 wind farms, it is possible to show the bias 

caused by each.  The associated results are shown in the graph above, grouped by models 

that either do, or do not, account for deep array effects.

Findings of this comparison are as follows: 

•  There is a significant risk associated with using any one model to predict wind farm energy 

yield, with individual wake models having higher scatter than an appropriately weighted 

ensemble. 

•  Older generations of wake models, that do not account for large wind farm effects, are 

significantly more likely to over-predict wind farm yield.
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Refined wake modelling

The plot below shows the inter-relation between project performance and wake effect.  

Some projects are either known, or suspected to have, experienced significant performance 

issues unrelated to wake effects such as grid curtailment.  Once these are excluded, a clear 

relationship indicating pre-construction over-prediction or operational under-performance is 

visible, particularly at sites predicted to have very high wake effects.  

While there is a clear relationship between under-performance and increased wake loss, The 

root cause cannot be defined using publicly available data. There are several potential drivers 

of this effect:

•  Wake model inaccuracy: While efforts have been made to use the cutting edge of validated 

wake models, these models are primarily validated on a small number of wind farms which 

contain fewer, smaller turbines than later projects included in this study. It is therefore 

possible that the accuracy of wake models is decreasing for more recent projects.

•  Turbine aerodynamics: Even if the wind speed deficit effect of wind turbine wakes is 

correctly predicted, the boundary layer behind wind turbines is heavily disturbed.  This 

highly turbulent flow affects the later rows of the wind farms, and has the potential to 

reduce the aerodynamic performance of heavily wake affected turbines.

•  Wake-correlated down-time: The highly turbulent flow experienced by wake affected 

turbines has the potential to cause increased failure rates. There have been a number of 

high profile replacements at offshore wind farms for issues such as gearbox degradation 

and blade flex damage.  It is likely that these issues are in part linked to vibration levels 

caused by wake induced, highly turbulent wind. 

The cause of the linkage between wake effects and lower project performance cannot be 

conclusively proven from publicly available data.  However the trend is sufficiently clear that it 

is appropriate to consider a sub-optimal performance adjustment.  The green line on the graph 

shows the approximate trend likely to be related to very high wake effects.

Observations



Other losses

After the identified trend with wake loss has been applied, a 0.7% average deficit between 

operational and pre-construction predictions is observed. 

It is expected that this residual bias may include a number of factors including:

•  inaccuracy of the 95 % turbine availability assumption – no public availability data was 

available for any project considered;

•  influence of grid curtailment (not modelled in this study);

•  non-turbine down-time events not considered in the major event removal process;

•  turbine performance below the levels assumed;

•  assumed electrical losses of 2.0 % between the turbines and OFTO metering point.  In reality 

this value will vary between projects.

In general these issues are related, to an extent, to the limitations imposed by use of publicly 

available data only.  Such issues would typically be expected to be investigated in detail during 

the investment process, and quantified to a high level of certainty.
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More than half of the wind farms operate at the 100 % prediction level, with equal numbers either side, demonstrating 

low bias prediction. 
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Most of the UK offshore capacity has been analysed in a major validation of offshore yield 

prediction methods.  Through this process, K2 Management has identified improvements to 

best practice methods that reduce both uncertainty and bias in yield prediction offshore.

(i)  Current best practice 

Robust analysis methods are a vital component of accurate offshore yield prediction.  

Highlighted methods in this report include the following:

•  Multi-mast analysis methods reduce wind prediction uncertainties, particularly when 

measurement campaigns are imperfect, as is often the case offshore.

•  Ensemble wake modelling, combining multiple deep array models, reduces prediction 

uncertainty and bias.  Excluding deep array effects causes significant over-prediction of 

wind farm yield.

(ii)  A refined wake modelling approach

When standard methods are applied to the UK operational fleet, yield predictions over-predict 

compared to operational results by around 2.8 %.  However, much of this bias is caused by 

older projects with high wake losses compared to next-generation designs.

Projects with very high wake losses generally perform less well compared to predictions, even 

using a deep array ensemble approach.  It is likely that this is due to under-prediction of wake 

effects, or that there are additional losses that scale with wake effects.

K2 Management has refined best practice methods for high wake loss projects to improve 

accuracy.  

(iii)  Low uncertainty, low bias

With K2 Management’s refined wake modelling approach for high wake cases, a residual bias 

of just 0.7 % energy remains.  Much of this bias relates to aspects that would normally be well 

understood in an investment scenario, such as availability expectations and grid curtailment.  

The standard deviation of long-term predictions compared to actual yield is just 2.3 %, demon-

strating high confidence yield prediction, vital for a low-subsidy or subsidy free offshore future.  

Conclusions
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