Offshore Wind Energy: An Immense US Natural Resource

Habib Joseph Dagher, Ph.D. University of Maine <u>hd@umit.maine.edu</u> (207) 581-2138 George Hart, Ph.D., Ocean Energy Institute (OEI) <u>ghart23@earthlink.net</u> (978) 250-1819

HSGAC Hearing "Energy Security: An American Imperative" July 22, 2008

Outline

1.	Maine heating state of emergency	3
2.	Offshore wind	.5
3.	PickensPlanPlus: + offshore wind	.11
4.	Europe	16
5.	Solutions for intermittency	20
6.	R&D needs	.23
7.	Recommendations	.25
8.	Acknowledgements	.26
9.	Additional background	.27

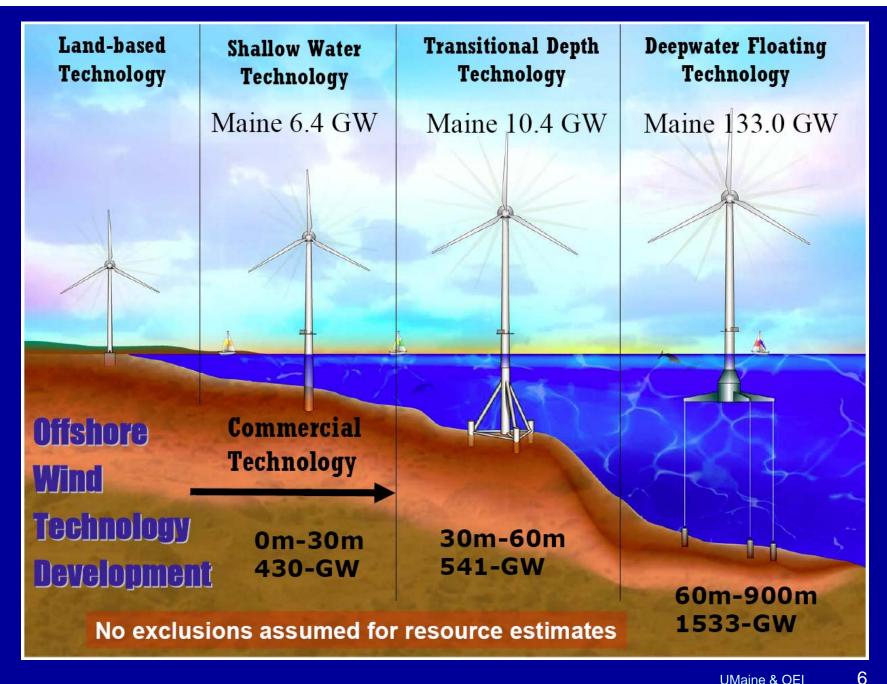
Maine Heating State of Emergency

Food or heat? Outmigration?

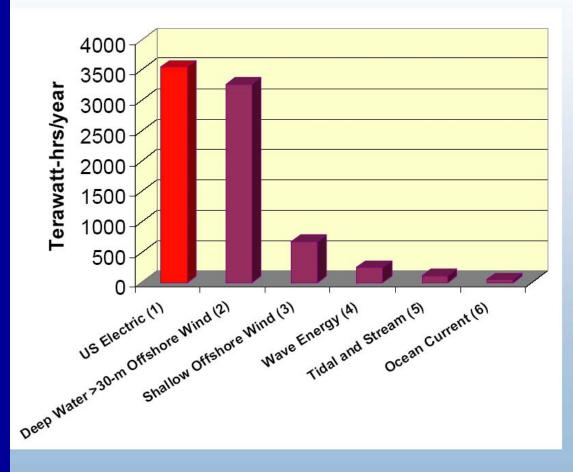
- 80% use heating oil
- Heating oil costs tracks crude
- Next winter's heating oil: \$5/gallon
- Maine family heating costs next winter: \$5,000
- In 2020, family heating costs: \$10,000 ('08 dollars)

How to Break a 'Maine' Budget 1998-2018 "Energy" = **50% Transportation 1998 Maine Family Budget** 40% Heating **10% Electric Power** 2008 Maine Family Budget Energy Health Other Energy Health 2018 Maine Family Budget Other Energy Health Other

This makes the "happy" assumption that health care costs do not grow past 30% of the average family's budget in 2008-2018


Ocean Energy Institute

4


UMaine & OEI

"Over-The-Horizon" Wind Turbines > 20 miles off Coast

US Marine Renewable Energy Electric Potential Estimates (7)

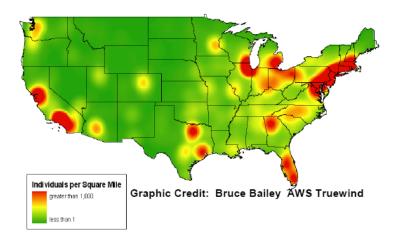
Assumptions

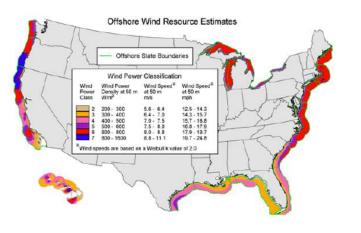
1.

- U.S. electric consumption based on 2005 EIA statistics.
- Class 5 wind or better; depths between 30-m and 900-m included; 60% exclusions; HI and AK not included; 0-50nm from shore; 45% Cap factor; Source: NREL.
- Class 5 wind or better; depths between 0-m and 30-m; included; 60% exclusions; HI and AK not included; 0-50nm from shore; 45% cap factor; Source NREL.
- 15% of incident wave energy; 20% conversion losses; AK and HI Included; Wave climate 10kW/m or better; Source EPRI.
- Estimated from aggregate siting studies; 15% extraction permitted; In stream river kinetic estimated by EPRI..
- 6. Estimated from *Coriolis Study, Aquantis,* and FAU; Miami/Gulf Stream region only, 57% capacity factor; 10-GW rated capacity.
- OTEC, salinity gradient, marine biomass not evaluated.

NREL National Renewable Energy Laboratory

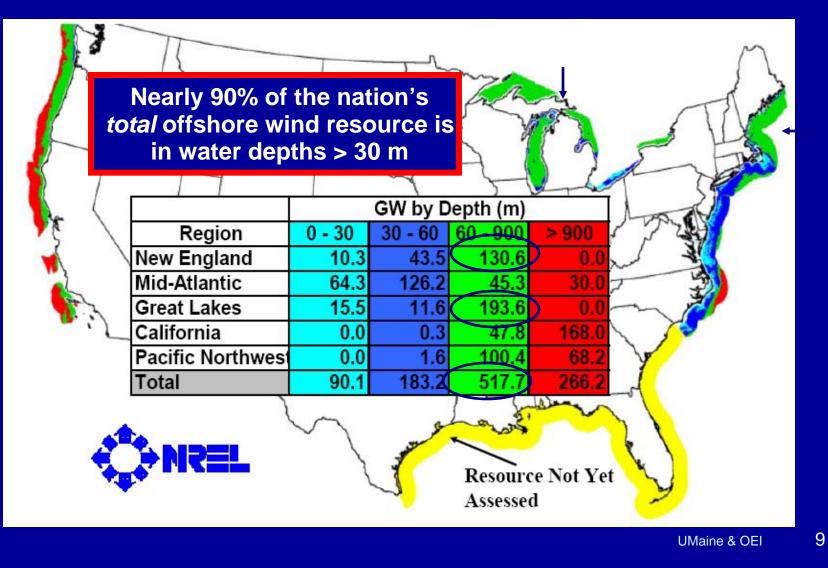
Why Marine Renewables?

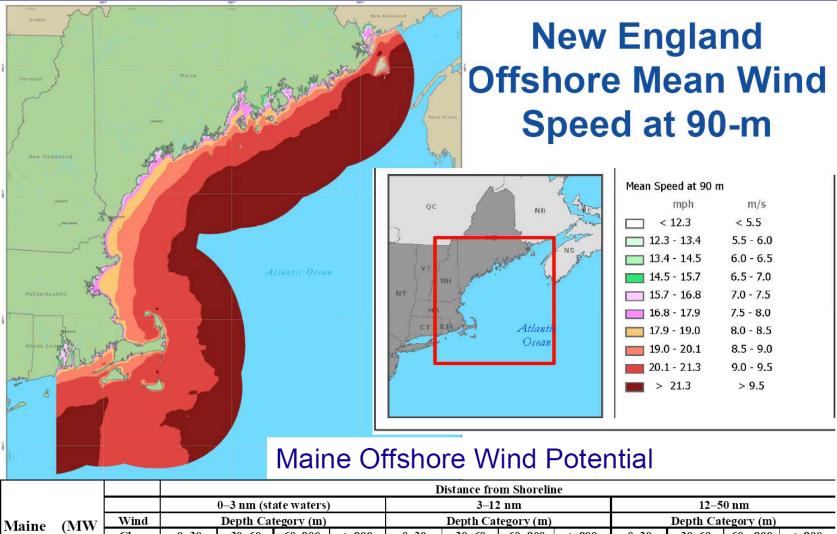

28 coastal states use 78% of the electricity in US


Many Coastal Load Centers Cannot Be Served by Landbased Renewable Resources

Renewable Energy Goals Cannot be Achieved Without Offshore Contributions

US Population Concentration

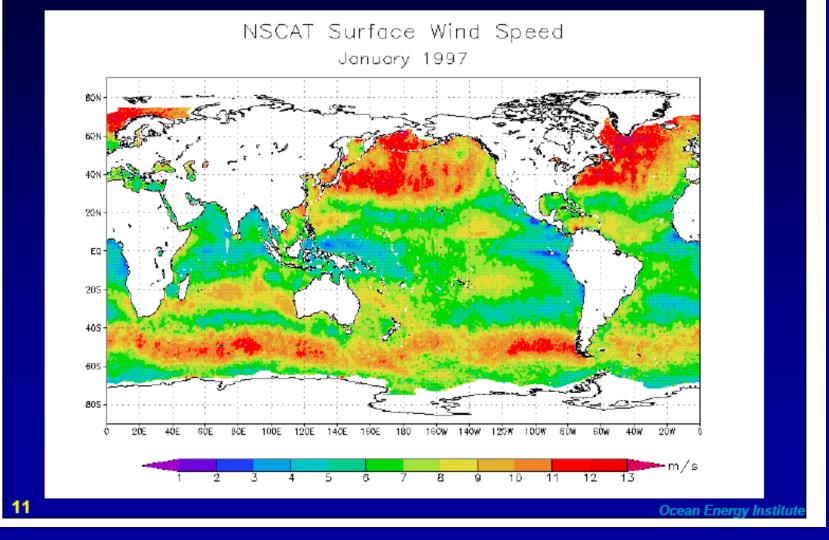

U.S. Wind Resource



NREL National Renewable Energy Laboratory

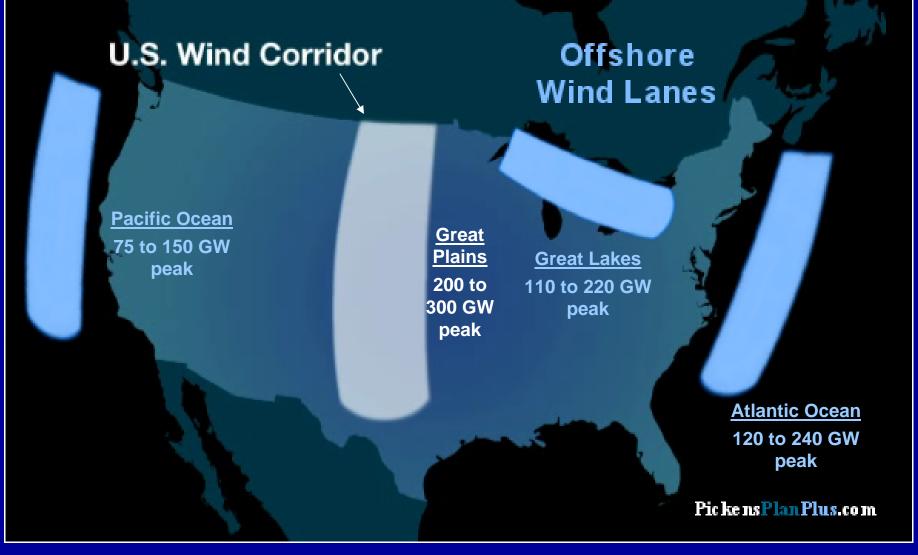
Floating Offshore Wind Technology Innovated in Gulf of Maine Exportable to Rest of US and World

Ocean Energy Institute

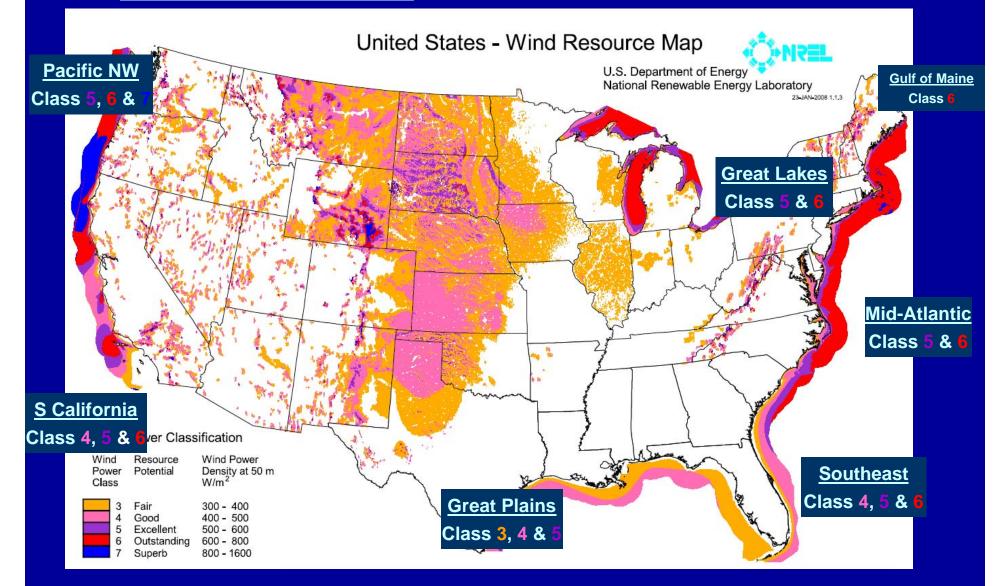


Class	0-30	30-60	60–900	> 900	0–30	30-60	60-900	> 900	0-30	30-60	60 - 900	>900
4	4,785	2,163	324	0	493	2,104	1,175	0	0	0	0	0
5	3,663	2,442	1,112	0	657	2,029	3,697	0	0	ß	0	0
6	1,516	2,250	1,487	0	630	3,413	20,928	0	2	1 48	105,789	0
7	0	0	0	0	0	0	0	0	0	8	41	0

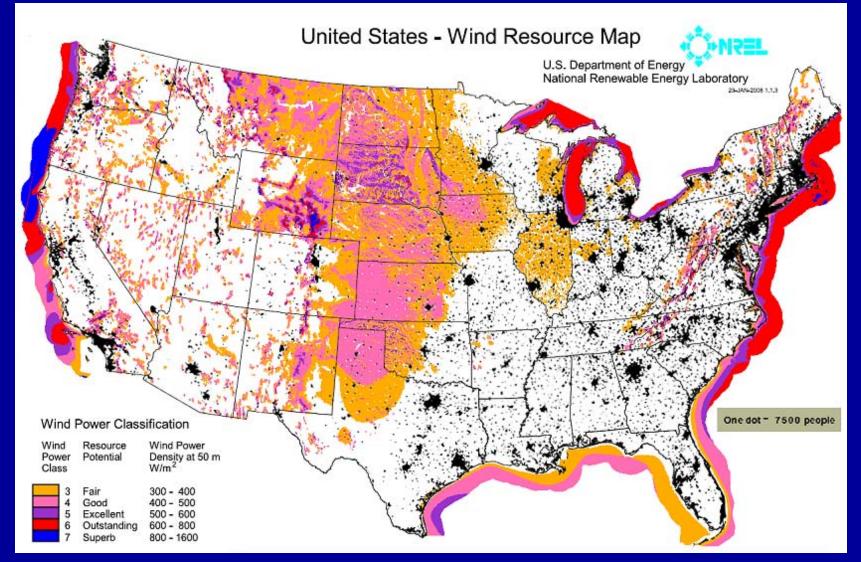
of wind

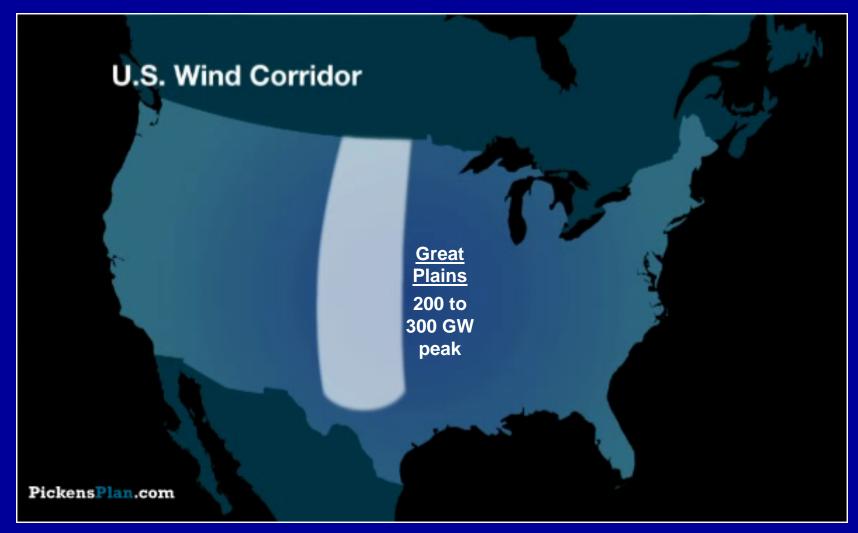

potential)

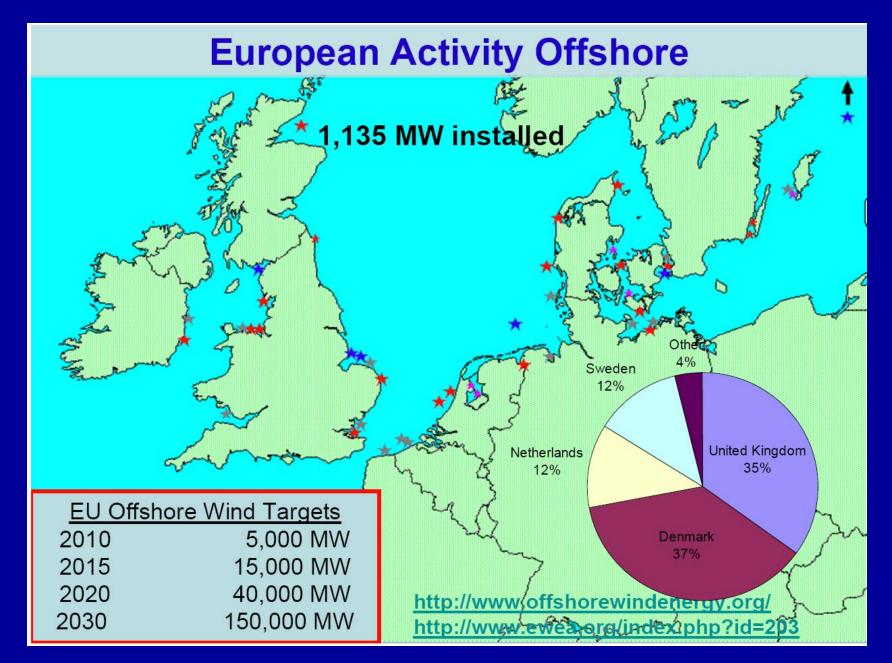
Global Wind Speed Distribution in Northern Hemisphere Winter



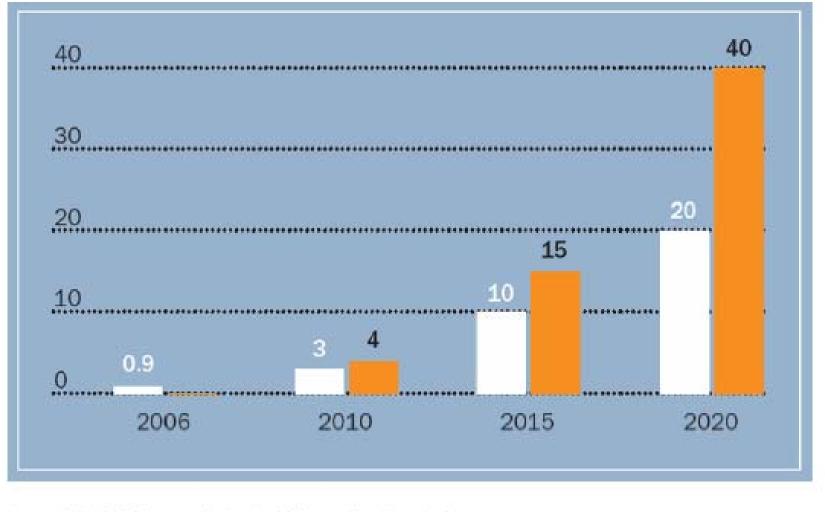
UMaine & OEI 11


10 to 20% of Available Offshore Wind

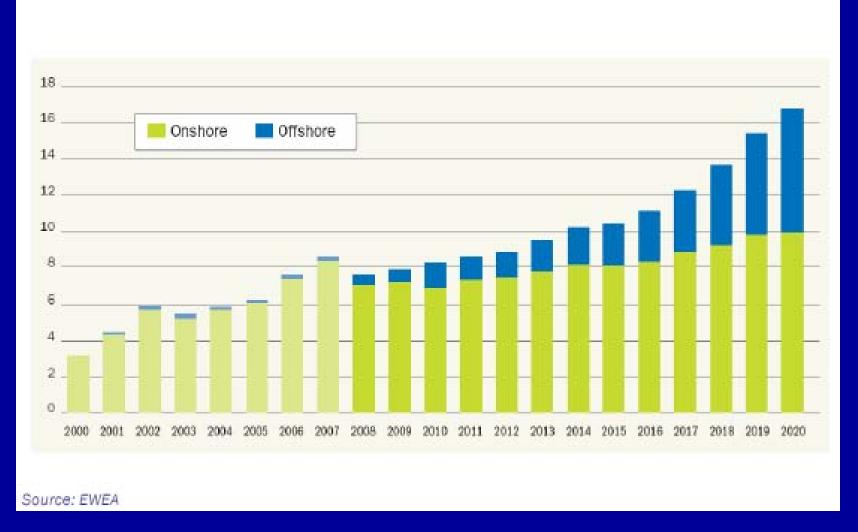

Added Value 1: Better Wind Resources



Added Value 2: Better Wind Resources Located Closer to Urban Load Centers


Added Value 3: Less Intermittency as Weather Moves from West to East

OFFSHORE WIND DEVELOPMENT 2006-2020 (CUMULATIVE, GW)



Source: EWEA 2007 report - Delivering Offshore Wind Power in Europe

WIND ENERGY ANNUAL INSTALLATION 2000-2020 (IN GW)

UK Plan: 33 GW by 2020

 ✓ 7,000 offshore wind turbines around the country's coastline

 ✓ Up to 50% of Country's electricity

 ✓ Mix of sources, including nuclear to cover no-wind days

Energy Secretary John Hutton plan announced on Dec 10, 2007

http://nds.coi.gov.uk/environment/fullDetail.asp?ReleaseID=3 37237&NewsAreaID=2&NavigatedFromDepartment=True

UMaine & OEI

19

Solutions for Intermittency

- Mix with traditional power generation
- Storage:
 - Pumped hydro (Norway 'battery' for Europe)
 - Plug-in Electric Hybrids
- Wide geographic coverage
- Smart grid technology

Plug-In Electric Hybrid Vehicles – Chevy Volt

http://www.edmunds.com/insideline/do/Features/articleId=119088

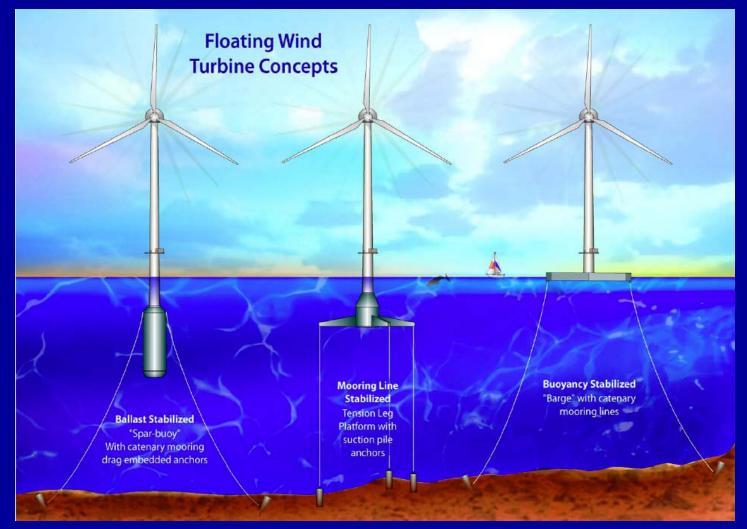
General Motors has unveiled the Chevrolet Volt concept, the company's first plug-in hybrid vehicle, at the 2007 North American International Auto Show in Detroit. The Chevrolet Volt concept is the first vehicle to use GM's new E-flex family of propulsion systems. GM claims the Volt delivers triple-digit fuel economy and can travel up to 640 28 miles without a fuel fill-up or a battery recharge. Scheduled for 2010 model year.

UMaine & OEI 21

Cold Climate Heat Pumps Hallowell Intl Acadia® CCHP

The Acadia™

The Acadia[™] was designed to provide years of comfort and reliability. Using electricity efficiently means that the Acadia[™] can provide savings of up to 70% over other traditional heating systems. Even better, the Acadia[™] was designed so that any HVAC contractor who currently works with air source heat pumps has all the tools and experience to install and service the system.



Ocean Energy Institute

R&D Needs: Deep Water

- Deep water (30m) > 90% of US resource
- Design/deploy prototype floating turbines
 - 2011 GEN1: refine design models
 - 2013 GEN2: optimize design
 - 2015 50 MW commercial farm: logistics
- 2016 Industrial development
- \$100 million R&D effort 1 US location
- \$240 million R&D effort 3 US locations:

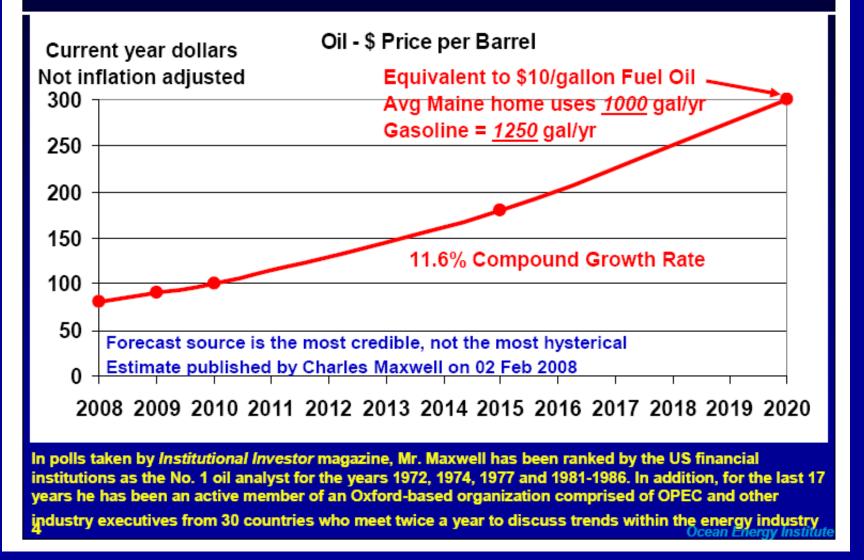
R&D: Floating Wind Turbines: Design and Prototype Deployment

24

UMaine & OEI

Summary & Recommendations

1. U.S. coastal states, including Maine, have significant offshore wind resources


- -- Development of offshore wind creates much needed, clean electricity at stable prices; increased revenues across all jurisdictions; and manufacturing and project development jobs
- -- over 100,000 MW potential in Maine
- -- each 1,000 MW of wind = \$2 billion in capital investment, \$5 m/yr for lease payments, 1800 construction jobs, 1.8 million metric tons of carbon avoided/yr, and 18 billion cubic feet of natural gas saved/yr
- 2. There is a strong role for federal agencies to ensure these benefits are realized:
 - -- Technology we need an offshore technology development and demonstration program as current wind technology cannot be used in offshore environment; need several test centers as well; R&D investment: \$100 million one demo location, \$240 million 3 demo locations
 - -- Resource Assessment -- we need to better understand the wind resource offshore at heights suitable for wind project development, vs. surface measurements
 - -- Regulatory Framework -- we need enhanced federal, state, and local regulatory framework to ensure offshore developers, investors, and customers have a clear, timely, predictable process for their projects
- 3. Role for Department of Homeland Security related to offshore wind:
 - -- DHS could also look at role offshore wind turbines-based sensors and their platforms can play as early detectors of hostile ship or airborne WMDs
 - -- Wind impact on DHS Mission -- we need to better understand and create tools to mitigate potential impacts of wind systems on DHS operations, such as long-range surveillance radars
 - -- DHS facilities could consider their role as a potential customer of wind power to meet their Executive Order requirements for all federal agencies to increase clean power purchases

Acknowledgements

- Walter Musial, Principal Engineer, National Renewable Energy Lab (NREL Slides)
- P.J. Dougherty (formerly DOE Wind Program) SMI Inc./Helios Strategies
- George Hagerman, Virginia Coastal Energy Research Consortium, Virginia Tech Advanced Research Institute
- Mark West, SWAY, Norway Blue H USA
- EWEA
- AWEA

ADDITIONAL BACKGROUND

Anatomy of a Granite Mountain

Offshore Wind Benefits

Better wind resources

Less turbulence – steadier wind Higher wind = better energy production Higher capacity factors – load matching Less visual impacts than land-based. Proximity to load centers Lowers transmission constraints Serves high cost regions Exploits indigenous resources Avoids land-based size limits

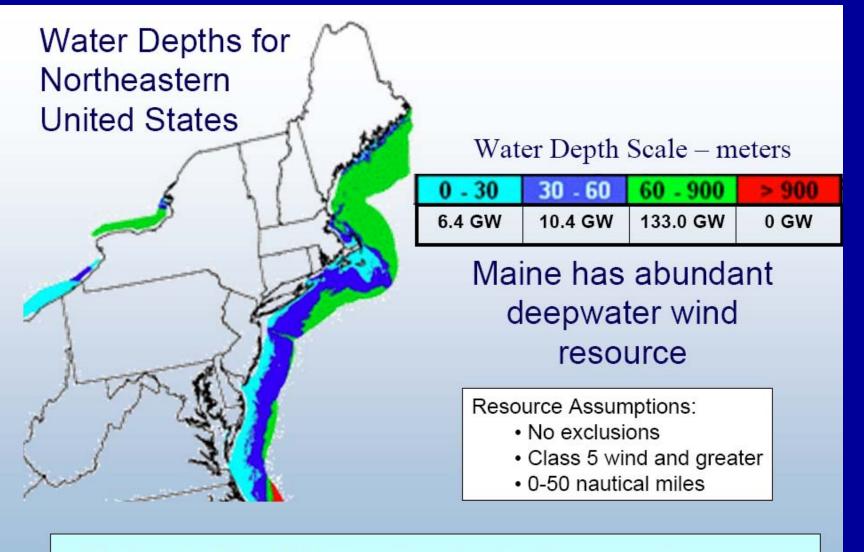
- Shipping Roadway limits
- Erection Crane limits
- Larger machines are more economical.

45-m Depth Offshore Demonstration Project Talisman Energy in Beatrice Fields

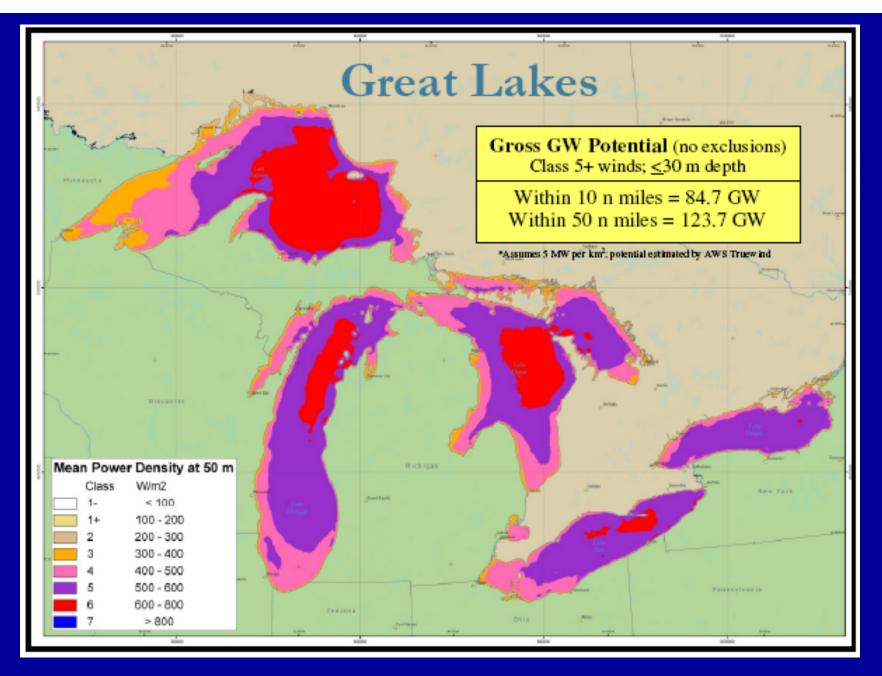
- 5-MW Rating
- 61.5-m Blade Length
- Worlds Largest Turbine
- Two Machines
- 45-m Water Depths

Offshore Turbine Suppliers

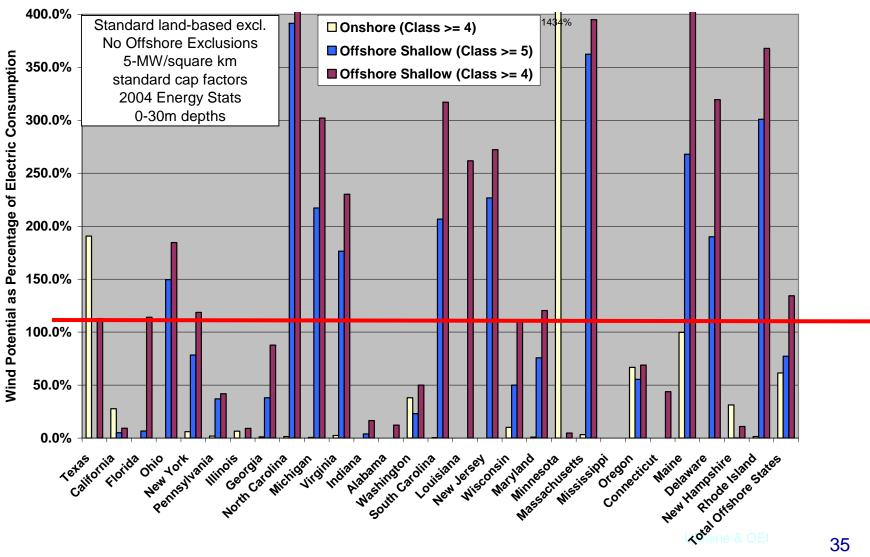
Turbine Manufacturer	Turbine model & rated power	Date of availability	Offshore Operating Experience
Bard Engineering	VM - 5 MW	2008-09	Onshore prototype 2008
General Electric	GE – 3.6-MW	2003	Commercial inactive
Multibrid	M5000 - 5 MW	2005	Onshore 2005
Nordex	N90 - 2.5 MW	2006	Offshore Demo 2003
RePower Systems	5M - 5 MW	2005	Offshore Demo 2006
Siemens	SWT-2,3 - 2.3 MW	2003	Commercial
Siemens	SWT-3.6 - 3.6 MW	2005	Commercial
Vestas	V80 - 2 MW	2000	Commercial
Vestas	V90 - 3 MW	2004	Commercial

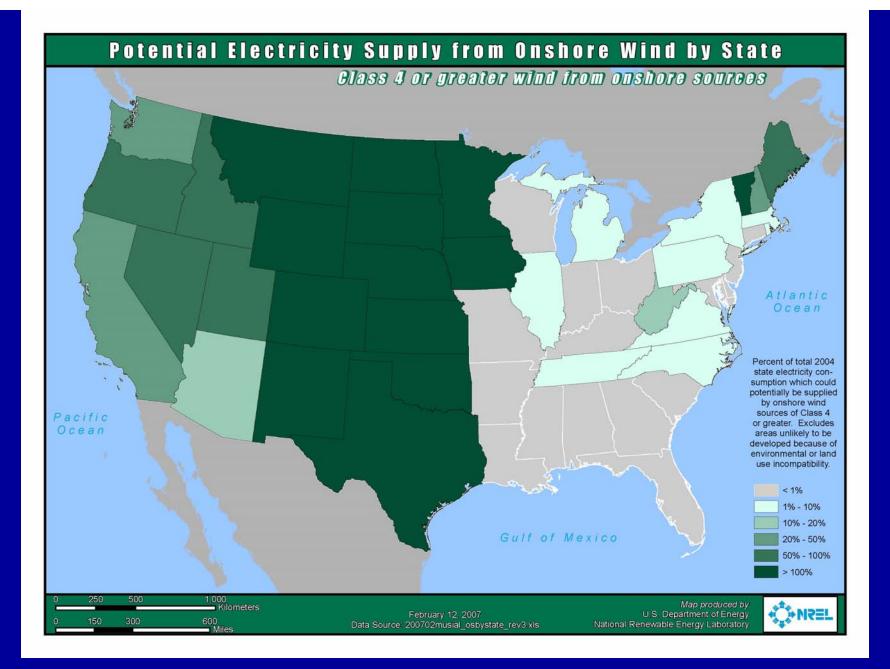


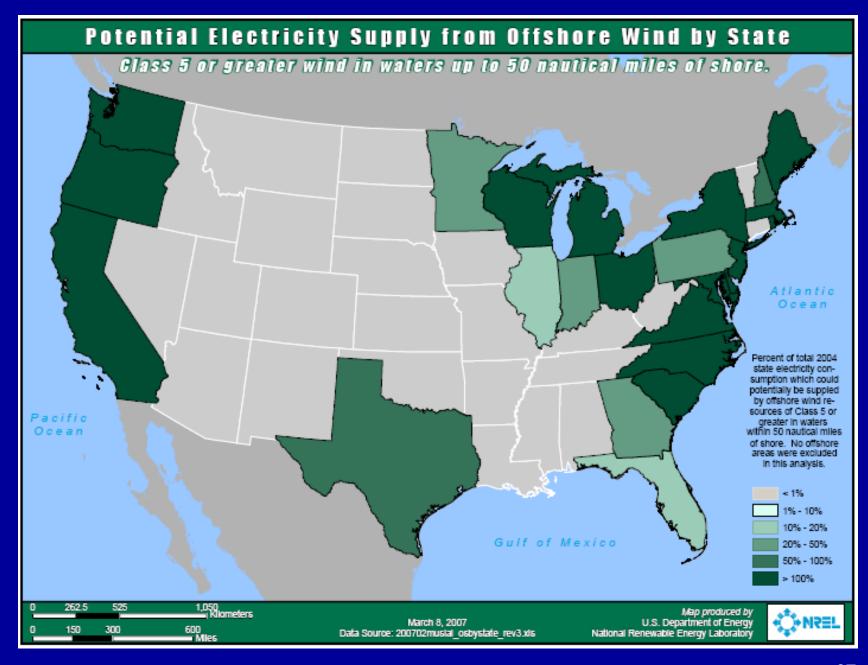
Offshore Technology Status


- Initial development and demonstration stage; 22 projects, 1135 MW installed
- Fixed bottom shallow water 0-30m depth
- 2 5 MW upwind configurations
- 70+ meter tower height on monopoles and gravity base
- Mature submarine power cable technology
- Existing oil and gas experience essential
- Reliability problems and turbine shortages have discouraged early boom in development.
- Cost are not well established in the US.

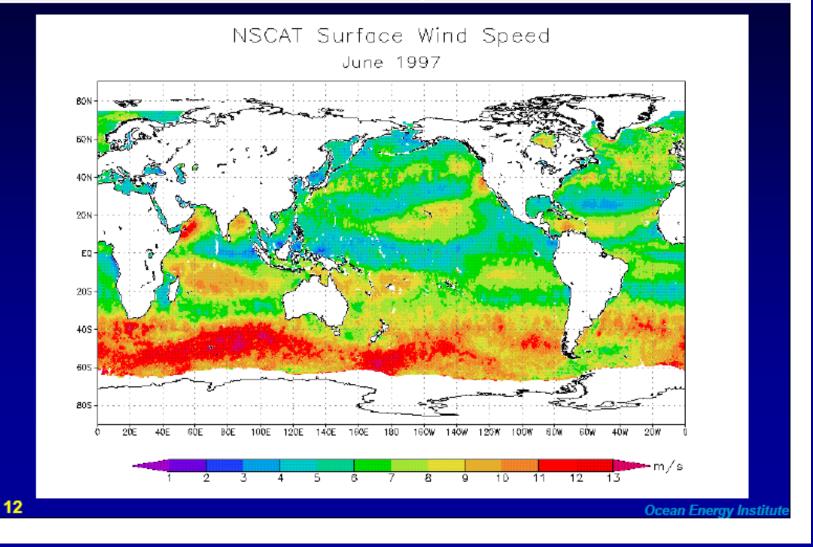
NREL National Renewable Energy Laboratory


Water depth will determine technology requirements


NREL National Renewable Energy Laboratory



28 Offshore States Wind Energy Potential


78% of Energy Consumption

Global Wind Speed Distribution in Northern Hemisphere Summer

US Projects Proposed

US Offshore Projects							
Project	State	MW					
Capewind	MA	468					
Winergy (plum Island)	NY	10					
Southern Company	GA	10					
W.E.S.T.	ТΧ	150					
Buzzards Bay	MA	300					
New Jersey	NJ	300					
Hull Municipal	MA	15					
Cuyahoga County	ОН	20					
Delmarva	DE	450					
Total		1723					

Automatical Automatica Automatical Automatica Automatical Automati

No Offshore wind projects Installed in U.S. yet

W.E.S.T.

Gulf of Mexico

Building an Advanced Energy Economy through Offshore Wind Power

Great Lakes Wind Energy Center (GLWEC) Pilot Project and Applied Research Center

David H. Matthiesen¹, A. Steven Dever², Richard T. Stuebi³, and William D. Mason² 1) Case Western Reserve University, 2) Cuyahoga County Prosecutor's Office, 3) Cleveland Foundation

Presented at the AWEA's WindPower 2008 Houston, TX June 1-4, 2008

Verification of Predicted Wind Energy Resources

GLWEC PERMITTING TEMPLATE— MAJOR PROGRAMS

FEDERAL

- Army Corps of Engineers Construction Permit needed (Section 10 and/or 404 of Clean Water Act) – construction activities in lakes, rivers, streams, wetlands (33 CFR 320 to 330).
- Construction Permit triggers National Environmental Policy Act (NEPA) and Environmental Assessment/Environmental Impact Statement Process.
- Construction Permit also triggers need for Water Quality Certificate (Section 401 of CWA). Issued by Ohio EPA under delegated CWA authority.
- Federal Endangered Species Consultation with US Fish and Wildlife service is tied into Construction Permit.
- Consultation with Federal Aviation Administration depending upon proximity to airports to determine whether hazard to air traffic.
- Coast Guard consultation re navigation issues.

PERMITTING TEMPLATE (CON'T)

State of Ohio

Department of Natural Resources (ODNR) consultations

- Divisions of Wildlife review of habitat issues.
- Division of Watercraft review of navigation issues.
- Division of Geological Survey re foundations and structures.
- Division of Coastal Management re submerged land leases and coastal impacts.
- Department of Transportation
 - Office of Aviation re potential aviation hazards. Cross reference to FAA review
- Ohio Power Siting Board
 - Approval required if electric generating facilities of at least 50 megawatts and electric transmission lines of 125kV or greater.

GLWEC Progress to Date

Identification of extensive wind energy supply chain manufacturing capability within Ohio

Data from 2-years of offshore wind measurements have verified the previously predicted potential for excellent wind in Lake Erie

All permitting and regulatory agencies have been engaged to develop an Environmental Assessment Plan for the Pilot Project

The award of \$1,041,454 contract to juwi, Gmbh to conduct a feasibility study, which will be completed in April, 2008

UK Offshore Wind Farms

Round 2 Award Options issued 2003

Potential UK Round 3 Locations

Construction of Kentish Flats © Elsam

Norway Offshore Winds and Pumped Hydro: 8GW, \$44 Billion by 2025

- OSLO, May 26, 2008 Norway could become "Europe's battery" by developing huge sea-based wind parks costing up to \$44 billion by 2025, Norway's Oil and Energy Minister said.
- Green exports could help the European Union reach a goal of getting 20 percent of its electricity by 2020 from renewable sources such as wind, solar, hydro or wave power.
- "Norway could be Europe's battery," Oil and Energy Minister Aaslaug Haga told Reuters after she was handed the report, which will be considered by the government in coming months.
- Haga said offshore wind parks -- which would stop on calm days -could be supplemented by hydro-power reservoirs which can be turned on and off to turn them into a battery storing power. Norway has about half Europe's reservoir capacity.

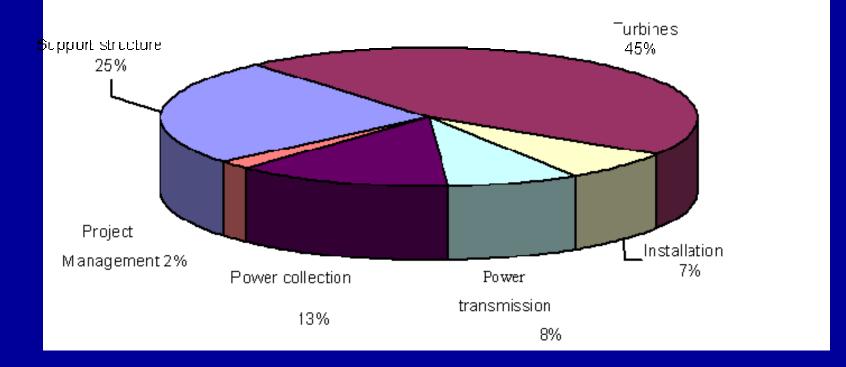
POLICY RECOMMENDATIONS REPORT

The report intends to map out the potential development up to 2020, alongside an analysis of the issues and barriers surrounding the sector, and which must be addressed if the potential for offshore wind is to be tapped fully.

Delivering Offshore Wind Power in Europe

FOLICY RECOMMONDATIONS FOR LARGE SCALE DEPLOYMENT OF OFFSHORE WIND POWER IN EUROPE BY 2020

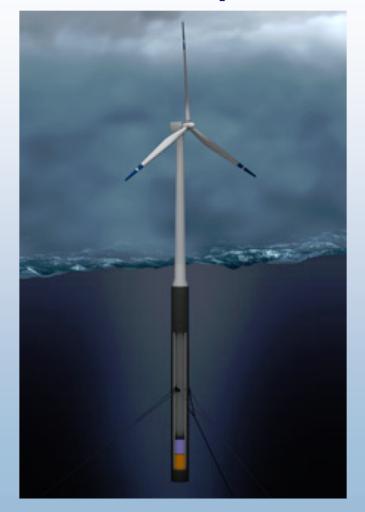
By the European West Energy Association


THE EUROPEAN COMMISSION

Wind could contribute 12% of EU electricity by 2020. One third of this will more than likely come from offshore installations"

(Commission's Energy Package 10 January 2007)

Cost of Offshore Wind Dropping


Costs have been reduced by 25% from the first Danish offshore wind farms to the Horns Rev

Benefits from Offshore Winds

Benefit	Basis	54-GW	78-GW
Energy Supplied	.4 cap factor	187.3 TWh	273.2 TWh
Percent of Current U.S. Electric Supply	3548 TWh consumed in 2004	5.3	7.7
Potential Jobs Created Construction Phase	39,000 job/yr/GW	2,110,680 job/yr	3,040,830 job/yr
Potential Jobs Created Permanent O&M	1,100 job/GW	59,532 jobs	85,767 jobs
Capital Invested	\$1800/kW-\$1600/kW	\$97.4 billion	\$124.8 billion
SO _x Avoided (metric tons/yr)	9.26 tons/yr/MW	501,151	722,002
NO _x Avoided (metric tons/yr)	3.29 tons/yr/MW	178,054	256,521
CO ₂ Avoided (metric tons/yr)	3,281 tons/yr/MW	177,567,720	255,819,570

HyWind Floating Wind Turbine Project Spar – Ballast Stabilized

- Under development by StatoilHydro – Norway
- Needs 100-m+ depth to operate.
- Announced a \$78MM demonstration project near Norway.
- Partnering with Siemens using their 2.3MW turbine.
- Costs estimated about where solar is today.
- Expectations to compete with conventional wind energy long term.

NREL National Renewable Energy Laboratory

Floating Wind Turbine Projections

- Technology will evolve from fixed bottom offshore experience.
- Floating wind turbine development must be developed as a full system with advanced engineering methods.
- Commercial floating wind systems will have optimized turbines to address platform motion, stability, weight, etc.
- Demonstration projects are needed to assess the technical issues and collect validation data.
- Commercial systems are years away but may be the endgame for wind power.

THREL National Renewable Energy Laboratory

Demonstration of Two Deep Offshore 5MW Floating Wind Turbines in the Gulf of Maine

			Draft	5/1/08		2008 D	ollars							
				GENI Deploy		GENII Deploy				nercial Offs				
				GENI Monitor		GENII Monitor			1st GW 2d GW 3d GW 4th GW		5th GW			
Task	Primary responsibility	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	GENI Retrieve Year 7	Year 8	GEN II Reti Year 9	rieve Year 10	Year 11	Year 12	Total
 Statewide site selection (analysis-based) Environmental, geophysical, wind, grid tie-in, distanc as close as possible to wind farm sites 	OEI, UM e	350,000	I											350,000 0 0
 Site investigation Environmental, geophysical, wind 	OEI, UM	450,000	350,000	350,000	350,000									1,500,000 0
 Permitting MMS or State, Environmental 	OEI, UM	200,000	300,000		300,000	200,000								1,000,000 0
4. Policy 5. Communication	UM, OEI UM, OEI	250,000 350,000		250,000 250,000	150,000 200,000		150,000	150,000	150,000) 150,000	150,000)		1,050,000 2,000,000
 Design for constructability (GEN I and GEN II) Modeling: Structural, Hydrodynamics/Aerodynamics 	UM, BlueH	1,000,000	1,000,000											0 2,000,000
Advanced Composites, design and component testing Foundations	UM AEWC BlueH, UM	3,800,000 600,000	3,200,000	4,000,000	3,000,000 300,000	2,200,000	500,000	500,000	500,000	500,000	500,000)		18,700,000 1,800,000
Constructability Construction documents, plans and specifications	Cianbro Cianbro	250,000 650,000												500,000 1,800,000
7. Construction, deployment GENI Platform construction	Cianbro Cianbro		10,500,000											0 21,000,000
Platform deployment (including blades) Contingency	Cianbro Cianbro		1,500,000	4,000,000 1,500,000										4,000,000 3,000,000
 Construction, deployment GENII Platform construction Platform deployment (including blades) 	Cianbro Cianbro Cianbro		10,500,000											0 21,000,000 4,000,000
Contingency 9. Certification	Cianbro ABS	100,000	1,500,000	, ,	100,000	100,000								4,000,000 3,000,000 400,000
 Advanced monitoring (5 years) Environmental, fish, birds, mammals Structural mechanical 	UMaine, OEI	100,000	100,000	2,400,000	1,500,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000				8,900,000 0 0 0
Power generation 11. Retrieval, salvage and disposal (optional) Subtotal R&D, Demonstration	Cianbro	8,000,000	31,500,000	39,550,000	5,900,000	3,800,000	1,650,000	2,000,000 3,650,000		2,000,000 3,650,000)		0 4,000,000 100,000,000
 Major Wind Farms (Total of 5 GW) Planning, Design, financing, permitting/environmental, 	Private sector													
Construction, \$3.5 billion/GW	UM, OEI	50,000	50,000	100,000	200,000	300,000	300,000	300,000	\$3.5 billion	\$3.5 billion	\$3.5 billion	\$3.5 billio	n \$3.5 billion	\$17.5 billion