

Offshore Wind Energy Outlook for the Gulf of Mexico

Walt Musial Principal Engineer National Renewable Energy Laboratory

Information Transfer Meeting

Session 1B, OFFSHORE RENEWABLE ENERGY

August 22, 2017

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Photo Credit : Lee Jay Fin

National Renewable Energy Laboratory (NREL)

About 2,300 Employees and Contractors

Visit us online at www.nrel.gov

NREL Program Portfolio

Strategic Analysis

Gulf of Mexico Offshore Renewable Technologies

 Eight renewable energy technology types to be evaluated for GoM in terms of resource, technology readiness and cost:

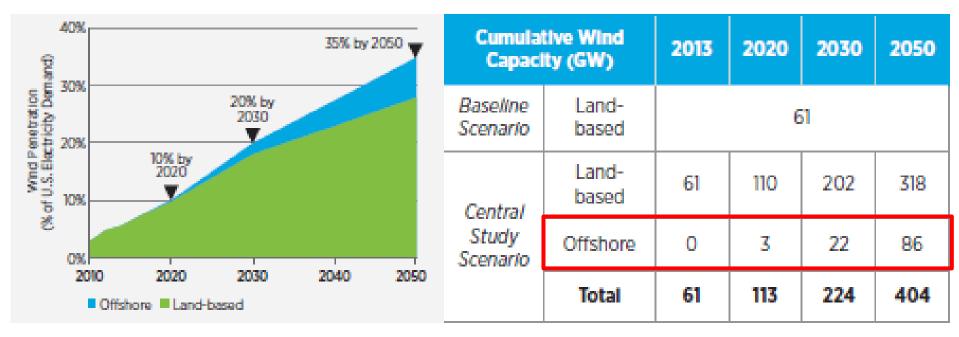
✓ Offshore wind energy

- ✓ Wave energy
- ✓ Tidal energy
- ✓ Ocean current energy (Loop Current)
- ✓ Ocean-based solar energy (PV)
- ✓ Ocean thermal energy conversion (OTEC)
- ✓ Deep water source cooling
- ✓ Hydrogen conversion and storage.

Offshore Wind shows the most promise in the Gulf of Mexico

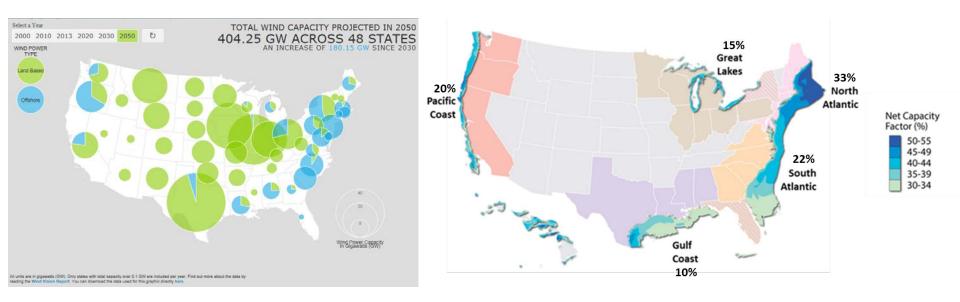
Offshore Wind Targets from Strategy Documents

March 2015


September 2016

http://energy.gov/eere/wind/downloads/windvision-new-era-wind-power-united-states http://energy.gov/sites/prod/files/2016/09/f33/ National-Offshore-Wind-Strategy-report-09082016.pdf

National Offshore Wind Strategy Follows 2015 DOE *Wind Vision* for 35% Electricity from Wind Power

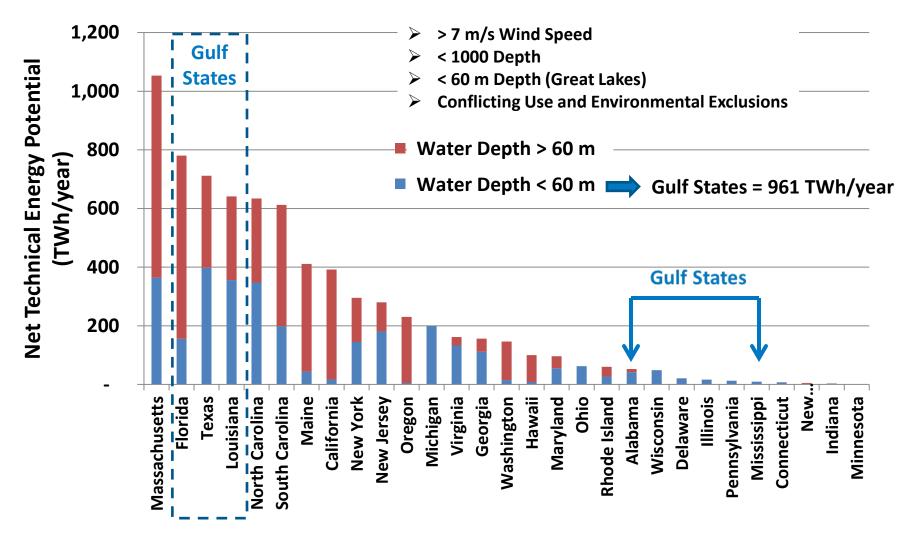

The Study Scenario consists of 10% wind generation by 2020, 20% by 2030, and 35% by 2050 compared against the Baseline Scenario.

82,132 MW installed wind capacity in the USA as of January 2017

Offshore Wind Grows to 21% of Total Wind by 2050 7% of U.S. Electric Supply

DOE Wind Vision 2050 Deployment Scenario

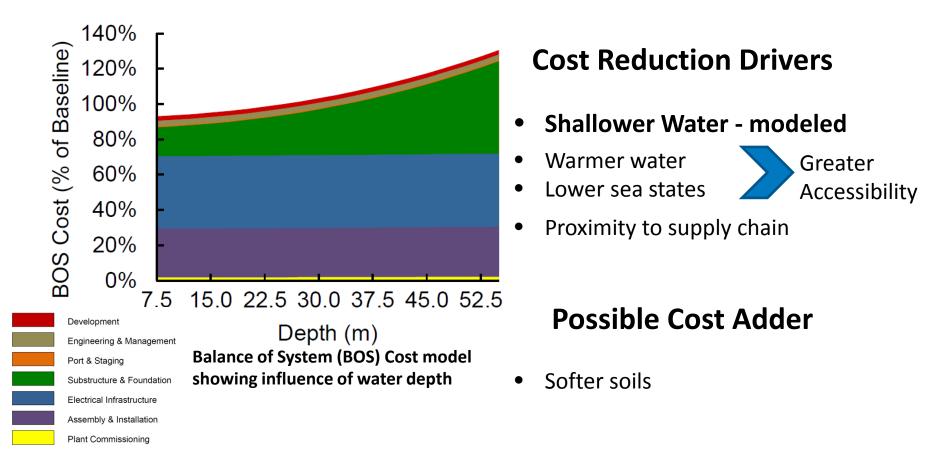
DOE *Wind Vision* Scenario for 2050 Showing Landbased and Offshore Wind Contributions DOE *Wind Vision* Regions and Offshore Wind Percentages for 2050


DOE *Wind Vision* has Gulf Coast region contributing 10% of U.S. offshore wind energy (8.6 GW) by 2050

Unique Offshore Wind Issues in the Gulf of Mexico

Abundant Quantity of Offshore Wind Resource

Net Technical Energy Potential (by Depth Class)

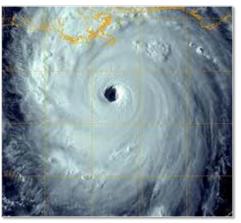


Musial, W. et al. **2016 Offshore Wind Energy Resource Assessment for the United States**. NREL/TP-5000-66599. http://www.nrel.gov/docs/fy16osti/66599.pdf

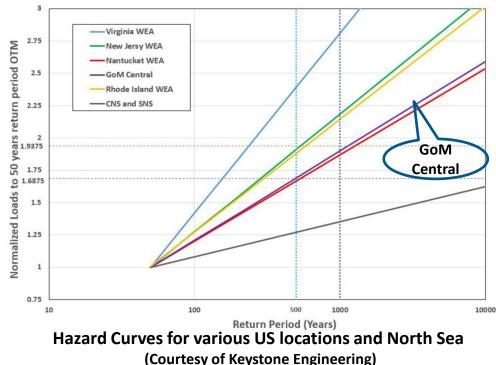
Gulf States have 32% of Shallow Offshore Wind Resource Potential

Cost Increases With Water Depth due to Substructure

Gulf of Mexico States have approximately 1/3 of the U.S. Shallow Water Offshore Wind Resource Technical Potential water depth less than 60 meters is 961 TWh/year

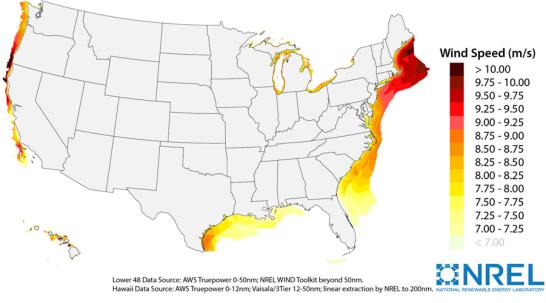

Maness M., Maples, B., and Smith, A. "**NREL Offshore Balance-of-System Model**", *National Renewable Energy Laboratory, Technical Report; NREL/TP-6A20-66874, January 2017, https://www.nrel.gov/docs/fy17osti/66874.pdf*

Hurricane Resiliency – Engineering for Robustness


- Offshore wind turbines are designed using IEC 61400-01 and IEC 61400-03 standards

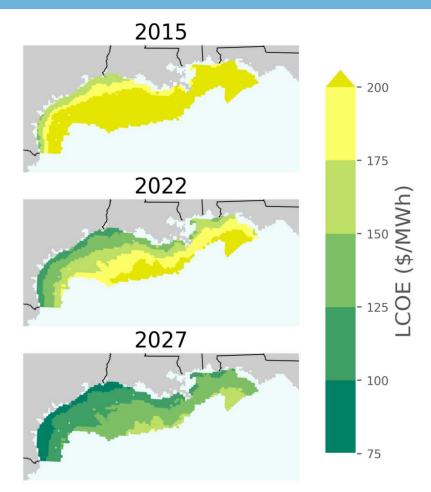
 (3 sec max gust = 70 m/s (156 mph)
- Substructures are designed using API RP 2A hazard curves – proven in the GOM oil and gas industry
- Current requirements will not be sufficient for all locations – site specific risk assessment needed
- New edition of IEC 61400-01 has a Typhoon class to upgrade 3 sec gust to near 80 m/s (179 mph)
- GoM hazard curves (from API RP 2A) are less steep than mid-Atlantic
- Possible additional survival design provisions
 - Aux Power to maintain yaw authority
 - Lower profile rotor designs

Hurricane Katrina 2005, Central Gulf of Mexico 400 Year Return Conditions (courtesy of Keystone Engineering)


L-2 Structures (DLC 6.1)

Low Wind Speed Technology to Address Resource Quality

- Current technology would yield net capacity factors 30% to 40%
- Only Texas has significant areas with average wind > 8 m/s
- Land-based trend is toward larger rotors at lower wind sites
- Energy capture can improve with larger rotors but extreme wind exposure also increases


Optimal performance for low wind (7 m/s to 8 m/s) sites with hurricanes may require new large rotor technology with strengthened turbine components in some areas.

Wind Speed Map For The U.S. Offshore Wind Energy Technical Resource Area

Levelized Cost of Energy (LCOE) Analysis for Gulf Coast

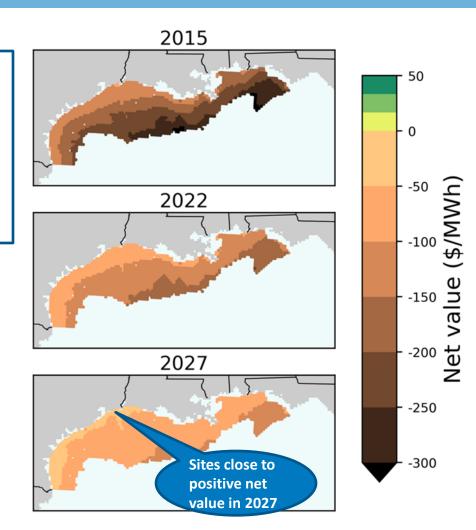
- Estimated LCOE using NREL Geospatial Offshore Wind Cost Model (Beiter et al 2016)
- Geo-spatial cost variables include water depth, wind resource, substructure type, turbine size, distance to port, distance to cable interconnect, installation method, sea state
- Temporal cost variables estimated cost reduction potential through 2030
- Results were vetted against literature and industry data
- Scenarios show LCOE below 100 MWh by 2025 in some sites.

Estimated LCOE in the Gulf Coast region

Is this LCOE low enough for cost competitiveness without subsidies in the Gulf of Mexico?

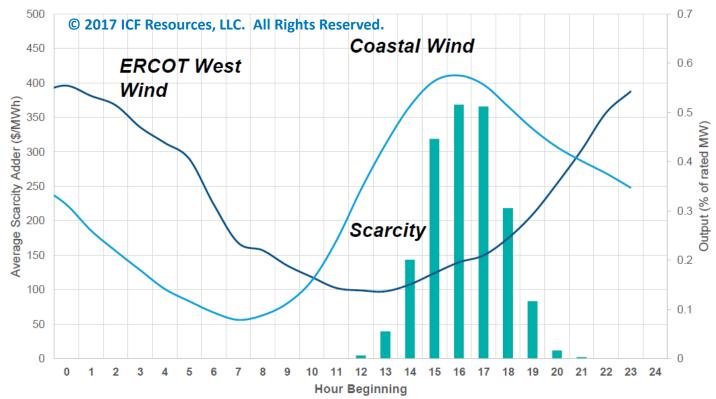
Beiter, P. et al . *A Spatial-Economic Cost Reduction Pathway for U.S. Offshore Wind Energy Development from* 2015–2030, NREL/TP-6A20-66579. <u>http://www.nrel.gov/docs/fy16osti/66579.pdf</u>

Can Offshore Wind Achieve Economic Potential in the Gulf?


Definitions

LACE = Levelized Avoided Cost

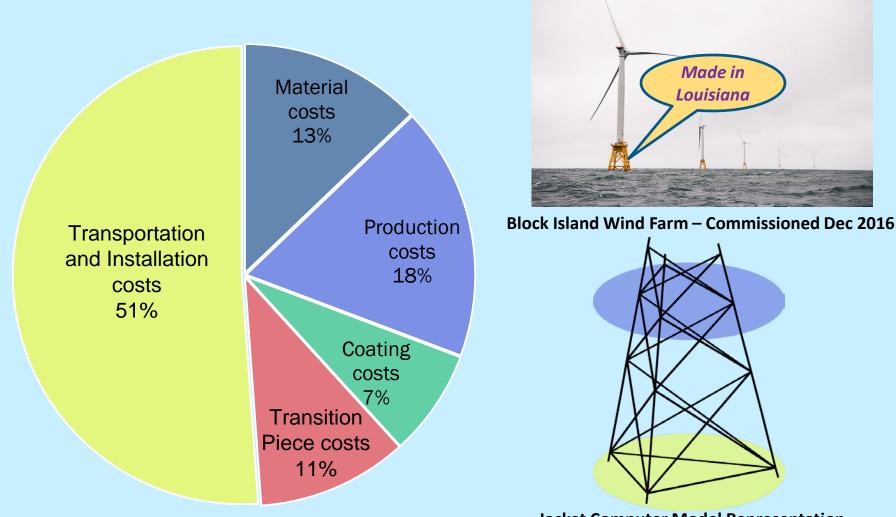
LCOE = Levelized Cost of Energy


Net Value = LACE – LCOE

- Positive "Net Value" defines economic potential
- No sites achieve positive net value by 2027 but many sites come close (< \$50/MWh over)
- Commercial market for offshore wind in GOM may be 10 years away
- North Atlantic timelines suggest regulatory planning should begin now

Gulf Coast net value distribution (2015–2027) (Assumes Zero Subsidies)

Coastal Wind Load Matching May Add Value in ERCOT


Source: ICF, ERCOT

Comparison of Diurnal Cycles for Interior Wind and Coastal Wind within ERCOT

- In ERCOT, favorable hourly output for coastal winds relative to the hourly price curve can result in higher realized energy prices
- ICF estimates possible 26% higher energy revenues in spite of lower CF

ICF AWEA Webinar – "Beyond the PPA –Understanding Market Complexities and Wind Margins", Presented by: Ken Collison, Vice President, Himanshu Pande, Manager, Pat Milligan, Associate

GoM Should Prepare Domestic Supply Chains for Offshore Wind

Jacket Cost Breakdown for 5 MW System

Jacket Computer Model Representation

(Jan Häfele, Raimund Rolfes (2016): Approaching the ideal design of jacket substructures for offshore wind turbines with a Particle Swarm Optimization algorithm, Proceedings of the Twenty-sixth International Ocean and Polar Engineering Conference, Rhodes, pp 156-163).

Summary of Gulf of Mexico Outlook – Unique Opportunities

• Resource Quantity - abundant

- o 961 TWh/yr in waters less than 60 m
- Warm water and lower sea states may result in lower cost
- **Resource Quality** is lower due to low winds
- *Hurricane Resiliency* and low winds should be addressed together with technology solutions for optimal performance
- Economics show some sites may achieve LCOE below \$100/MWh by 2027 without subsidies; approaching possible market viability in 10 years
- **Resource/Load matching** may enhance the value of offshore wind in some GoM regions
- Outlook: DOE Wind Vision models 8.6 GW of offshore wind in Gulf of Mexico (only 1% of total technical resource) – 10% of National Offshore Wind by 2050
- **Existing supply chain** should ramp up **TODAY** for emerging offshore wind industry in the North Atlantic.
- NREL/BOEM technology feasibility study underway

Thank you for your attention

Walt Musial Offshore Wind Manager National Renewable Energy Laboratory

walter.musial@nrel.gov

Photo Credit : Dennis Schroeder-NREL