
OMEGA
Correct development of Real-time systems

IST-2001-33522

Title: Planning a production line with LSCs

Authors: Hillel Kugler and Gera Weiss

Date: 12 February 2005

Document Version: WP23/D2.3.4, Annex 8

Status: Final

Confidentiality: Public

Note: A preliminary version appeared as Weizmann Institute
Technical Report MCS-04-05

Abstract

We display how LSCs can be used to analyze a production line systematically and synthesize
a scheduler from the model. This work demonstrates how the features of a scenario based
object oriented modeling language are exploited in this domain. It also shows advantages of the
play-in/play-out methodology combined with verification methods.



Planning a production line with LSCs ∗

Hillel Kugler and Gera Weiss †

February 13, 2005

Abstract

Using the Cybernetix case study, we display how LSCs can be used to analyze a production
line systematically. This work demonstrates how the features of a scenario based object oriented
modeling language are exploited in this domain. It also shows advantages of the play-in/play-out
methodology.

1 Introduction

Scenario-based modeling has become a common practice in many domains. With particular im-
pact on the telecommunication and software engineering industries. Scenario based techniques
are employed to capture requirements of reactive systems, to capture use cases in system doc-
umentation, to specify test cases, or to visualize runs of existing systems. They are often used
to represent concurrent systems that interact via message passing or method invocations.

There is an increasing practical interest in scenario-based notations and techniques. The
International Telecommunications Union has standardized Message Sequence Charts (MSC)
notation [10] as a language for specifying distributed protocols. Sequence diagram notations
play a dominant role within the UML software design methodology [12]. Currently, there is
active research on extending scenario notations and their use such as the inclusion of real-time
and probabilistic information, the inclusion of modalities, and the usage as play-in/play-out
scenarios. A survey on scenario-based notations and methods appears in [3]

In this report, we show that scenario-based modeling can be effectively used in the process of
evaluating designs and production schedules for an industrial production line. We take a smart-
card personalization machine as an example and use the LSCs scenario based, formal graphical
language to model it. We argue that the scenario-based nature of the modeling language allows
using a design process and methodology that is intuitive and less error prone.

When designing production lines, such as the HPX machine manufactured by Cybernetix,
one needs the ability to quickly come up with executable models that can be analyzed and
simulated. Design options are numerous while time to marked presses. It is also important that
models can be easily perturbed to check the affect of different variations. In this report, we
argue that the LSCs scenario based language together with the play-in/play-out methodology
supported by the PlayEngine prototype tool deliver these needs without compromising ease of
use and accessability to non experts.

The paper is structured as follows. We begin with two sections introducing the reader with
the language of LSCs and with the smart-card personalization machine case study. We then
provide a detailed description of the LSC model that we have constructed for the case study.

∗This research was supported in part by the European Commission projects AMETIST (IST-2001-35304) and
OMEGA (IST-2001-33522) and by the John von Neumann Minerva Center for the Verification of Reactive Systems.

†Weizmann Institute of Science, {hillel.kugler,gera.weiss}@weizmann.ac.il

2



We conclude with a section explaining our method of extracting schedules from an LSC model
and a section containing some conclusions.

2 LSCs, play-In/play-Out and the Play-Engine

We are adopting an inter-object, scenario-based modeling approach, using the language of live
sequence charts (LSCs) [4] and the play-in/play-out methodology supported by the Play-Engine
modeling tool [7].

The decision to take this approach, rather than the state-based one, emerged from the con-
sideration of how to best represent the personalization machine formally, and how to best carry
out the formalization process. LSCs constitute a visual formalism for specifying sequences of
events and message passing activity between objects. The language allows to specify scenarios of
behavior that cut across object boundaries and exhibit a variety of modalities, such as scenarios
that can occur, ones that must occur, ones that may not occur (called anti-scenarios), ones that
must follow others, ones that overlap with others, and more.

Technically, there are two types of LSCs, universal and existential. The elements of LSCs
(messages, locations, conditions, etc.) can be either mandatory (called hot in LSCs terminology)
or provisional (called cold). Universal charts are the more important ones for modeling, and
comprise a pre-chart and a main chart, the former triggering the execution of the latter. Thus,
a universal LSC states that whenever the scenario in the pre-chart occurs (e.g., the user has
flipped a switch), the scenario in the main chart must follow it (e.g., the light goes on). Thus, the
relation between the pre-chart and the chart body can be viewed as a dynamic condition-result:
if and when the former occurs, the system is obligated to satisfy the latter.

Play-in/play-out is a recently developed process for modeling in LSCs, with which one can
conveniently capture inter-object scenario-based behavior, execute it, and simulate the modeled
system in full. The play-in part of the method enables people who are unfamiliar with LSCs to
specify system behavior using a high level, intuitive and user-friendly mechanism. The process
asks that the user first build the graphical user interface (GUI) of the system, with no behavior
built into it. The user then ‘plays’ the GUI by clicking the graphical control elements (in
electronic systems these might be buttons, knobs, and so on), in an intuitive manner, in this
way giving the engine sequences of events and actions, and teaching it how the system should
respond to them.

As this is being done, the Play-Engine continuously constructs the corresponding LSCs
automatically. While play-in is the analogue of writing programs, play-out is the analogue of
running them. Here the user simply plays the GUI as he/she would have done when executing
the real system, also by clicking buttons and rotating knobs, and so on, but limiting him/herself
to end-user and external environment actions. As this is going on, the Play-Engine interacts
with the GUI and uses it to reflect the system state at any given moment.

The scenarios played in using any number of LSCs are all taken into account during play-
out, so that the user gets the full effect of the system with all its modeled behaviors operating
correctly in tandem. All specified ramifications entailed by an occurring event or action will
immediately be carried out by the engine automatically, regardless of where in the LSCs it was
originally specified. Also, any violations of constraints (e.g., playing out an anti-scenario) or
contradictions between scenarios, will be detected if attempted. This kind of integration of the
specified condition-result style behavior is most fitting for modeling industrial manufacturing
systems as objects participate in different scenarios.

Scenario based languages, such as LSCs, fit very well into an object oriented framework.
In particular the Play-Engine is fully object oriented. In the domain of structuring production
lines, this feature proves very useful because the user can form alternative designs by connecting
objects differently.

3



Personalization
Stations

Conveyor Belt

Unloader Loader

Figure 1: Schematic illustration of the personalization machine

3 The Smart-Card Personalization Machine

This section contains a short description of the smart-cart personalization machine. For a more
comprehensive description see [2].

Cybernetix is manufacturing machines for smart card personalization. These machines
take piles of blank smart-cards as raw material, program them with personalized data, print
and test them. The machines have a throughput of thousands of cards per hour. It is required
that the output of cards occurs in a predefined order. Unfortunately, some cards are defective
and they have to be discarded, but without changing the output order of personalized cards.
Decisions on how to reorganize the flow of cards must be taken within fractions of a second, if
no production time is to be lost. The aim of this case study is to model the desired production
requirements, the timing requirements of operations of the machine and on this basis synthesize
the coordination of the tracking of defective cards. The goal is to maximize the throughput of the
machine under certain error assumptions. Another design objective, specified by Cybernetix,
is to shorten the machine, i.e. use less slots. This means that we whould like to show that it s
possible to handle all errors using the minimal number of belt slots.

We handle a simplified version of the case study proposed by Cybernetix. Fig. 1 shows a
schematic overview of the personalization machine that we discuss in this paper. Cards are
transported by a Conveyer belt. There are three personalization stations where cards can be
personalized. The conveyor belt is nine positions long. The Unloader puts blank cards on the
belt. The Loader removes personalized cards from the belt. The order in which the cards are
loaded from the belt should be same as the order in which they were personalized.

The conveyer can move a step to the right or a step to the left each takes one time unit.
The conveyor belt cannot move while cards are unloaded onto the belt or loaded from the belt
or taken up/down to/from a personalization station. Unloading and loading can be done in
parallel. Unloading and loading takes 2 time units. If after a conveyer move, a blank card is
under a personalization station, the card might be taken up to the personalization station. This
operation takes one time unit. The personalization of the card will start immediately. The
personalization of a card takes five time units. After personalization a card can be taken down,
an operation that takes another time unit. The goal is to find an optimal schedule to maximize
the throughput of the machine (number of personalized cards per time unit).

4



Belt

Numerator Collector

Personalization

Figure 2: Mockup GUI for the smart-card personalization machine

4 LSCs model

4.1 Object Model

The personalization machine is modeled by the following objects: belt slots, personalization
slots, a numerator and a collector. The visual appearance of these objects is shown in Fig. 2.
We also defined one internal object named Controller.

Each belt and personalization slot has an attribute named card. This attribute represents
the card in this slot. The legend for the card attribute is as follows: -1 means empty slot, 0
means that there is a blank card in the slot and a positive number indicates the identification
of an initialized card.

In addition, the personalization slots and the three belt slots below them have another
attribute called PersId. This attribute is used to pair these objets. It is a constant attribute
set at design time such that the PersId of matching objects is equal.

The numerator object is used to record the last initialized card. Its nextCard attribute is
incremented whenever a card is personalized. The collector records the identification of the last
unloaded card. When a card is loaded, the recorded information is used to ensure order at the
output pack.

Note that the form in Fig. 2 contains some buttons. These are standard buttons used to
trigger scenarios for testing and manual operation. In order to enable symbolic formulation of
generalized scenarios, the buttons between a personalization station and its belt has the PersId

attribute set to match the corresponding personalization and belt slots.

We also defined some classes: Pers.Class, Belt.Class, Up.Class, Down.Class. These classes
wrap their respective objects with a standard interface to allow symbolic references to personal-
ization and belt slots and the pairs of buttons between them. We will use this abstraction later
to define generic scenarios [9].

The scenarios of the system are grouped into use cases which serve as organizational units.
In the following subsections we describe the different scenarios according to this grouping.

5



Figure 3: Unload Scenario

4.2 System Dynamics use case

System dynamics scenarios model the actual dynamics of the system. There are seven scenarios
in this category: right, left, up, down, load, unload and personalization.

The unload scenario given in Fig. 3 models the process of taking a card from the pile of
blank cards. The scenario is triggered by an unload() controller command. It quits instantly
if the belt slot under the loader is not empty. Otherwise, after two time ticks, an empty card
is put on that slot. No belt movements are allowed during this scenario. This is specified by
designating right and left messages as forbidden while the unload chart is active.

The right scenario given in Fig. 4 models the movement of the belt to the right. The scenario
is triggered by an right() controller command. It exists with no action if the rightmost belt
slot is not empty. Otherwise, after one time tick, the card attribute of every belt slot is copied
to its right neighbor using a local variable crd. All controller commands are forbidden while
this scenario is active. The left scenario is almost identical to the right scenario and therefore
omitted from this description.

The up scenario given in Fig. 5 defines how cards are taken up to the personalization stations.
This is a generic scenario relevant to all the personalization stations. The chart is triggered by an
up(pid) command issued by the controller. This is a parametric command where the controller
specifies the identification of the station involved. An actual value for the parameter allows
the classes to be associated with concrete instances. In our case, a specific personalization slot
together with its associated belt slot (paired by the persID attribute). If the personalization slot
is not empty or the belt slot does not contain a blank card - the scenario is ended. Otherwise,
after one time tick, the belt slot is emptied and the blank card is positioned at the personalization
slot. Belt movements are not allowed during this process. The down scenario is similar and
thus omitted from this description.

The personalization scenario is given in Fig. 6. It starts when a blank card is put on
a personalization slot. The first (left) object of type Pers.Class is instantiated by this mes-
sage. The nextCard attribute of the numerator is copied to a local variable crd. The func-
tion nxt which increases a card identity by one is applied to crd and the result is copied
back to numerator.nextCard. The effect of this procedure can be stated by the formula
crd = numerator.nextCard++.

Note the sub-chart denoted by black box around the first two steps of the scenario. This

6



Figure 4: Right Scenario

7



Figure 5: Up Scenario

sub-chart is used to exclude other copies of the scenario to share the same execution segment.
Mutual exclusion is forced by disallowing the message before the sub-chart while the sub-chart
is active. The semantics of instantiation say that the second Pers.Class object refers to all other
personalization slots. Thus, a personalization scenario on other stations can only start after the
assignment of a unique personalization id.

The crd variable is used again, after five time ticks, to put the personalized card on the
personalization slot.

4.3 Manual operation use case

The manual operation use cases are intended for testing and manual feeding of scenarios with
the Play-Engine. Fig. 7 gives an example of such scenario. When the operator presses the
”unload” button, the controller is forced to trigger the unload scenario. Most of the manual
scenarios have a similar structure. Only the manual up and manual down charts are slightly
different because they are used to invoke parametric scenarios. The manual up scenario is given
in Fig. 8. The up.Class is instantiated with a specific button by the Click message. The persID

attribute of the specific object is used to form a parameter to the up(pid) message.

4.4 Congruence use case

The system described by system-dynamics use cases (section 4.2) is not a finite state system
because identification numbers of personalized cards can grow indefinitely. To allow model
checking techniques we introduced a congruence relation with finite index. Our approach is to
decrease all positive numbers on the board by one whenever a card is loaded at the output post.
If we do this, we get that the transition relation is only among the smallest representatives of
the equivalence class defined by the following congruence relation: two states are equivalent if
one is obtained from the other by adding some positive constant to all positive cards.

Fig. 9 contains an example of a generic congruence scenario. This scenario is triggered when
a card is loaded at the output post. It applies to every personalization slot with a positive card

attribute. This attribute is copied to a local variable name crd. The function prv is used to
decrease this variable by one and the result is sent back to the card attribute. The result can be

8



Figure 6: Personalization Scenario

Figure 7: Manual Unload Scenario

9



Figure 8: Manual Up Scenario

formulated by Pers.Card = Pers.Card > 0 ?Pers.Card−− : Pers.Card. The same pattern is
used to decrease also all belt slots and the numerator.

4.5 Error Message use case

In manual operation the operator needs to get feedback for illegal actions. Consider, for example,
what happens when the right button is pressed while the rightmost belt slot is not empty. The
manual right scenario is triggered and then the controller is forced to trigger the right scenario.
The right scenario will abort immediately without any action. The problem is that the user
will not get any feedback. To allow more user-friendly debugging, we added charts to display
error messages on such scenarios.

Fig. 10 gives the chart that pops a message on illegal ”right” requests. The scenario is
triggered by the Click message of the ”right” button. If the rightmost slot is not empty the
message attribute of the messageBar object (an additional object used to display messages) is
set with an error string. All message conditions are formulated in a similar way.

5 Scheduler synthesis

The model described above can be used for schedulability analysis of the machine. One can
‘play’ with an interactive simulation of the system and test different schedules.

The term synthesis usually refers to automatic generation of a schedule. This ambition
is only achievable for relatively small designs ([5, 11, 8]). In order to cope with industrial
sized problems, we choose to aim at a less ambitious goal. Our road toward applicable schedules
involves an iterative process in which the designer changes the model until a schedule is achieved.
The automatic tools come as design aids when needed. More specifically, an advanced query
tool (based on model checking techniques) can be used to guide the search. Usually, This tool
cannot solve complete problems due to state space explosion.

To make the above idea more explicit, we demonstrate how the iterative process goes by an
example. As an example we describe how the super-single operation mode can be discovered.

Starting from the model detailed in the preceding section, one needs to come up with a good
rules for the controller. A natural way to go is to start with greedy rules ([1]). This amounts
to adding some scenarios that are triggered whenever a controller command can be issued and
executed correctly. For example, one can think of the the GreedyUp scenario. This scenario is
triggered whenever a card is positioned beneath an empty personalization slot. The main chart

10



Figure 9: Decrease Personalization on Load Scenario

Figure 10: Show Message on Illegal Right Scenario

11



describes how the card is taken up. It is not hard to imagine how such a chart is played-in via
the mockup GUI and then decorated with few annotations.

After playing-in greedy scenarios, one can play-out the model and examine the performance
of the resulting controller. As usual, the first attempt will not work. One can resolve problems
by adding more rules or changing existing rules. Note that the execution of a set of scenarios is
not always deterministic. It can happen that more than one system action is enabled because
several charts are traced in parallel. In this case, the play-out mechanism implemented in the
play-engine will choose one arbitrarily. Thus, another way to improve the model is to change
the precedence relations on system events and on scenarios.

At this point the play-out [6] mechanism comes useful. This tool allows the designer to form
advanced queries that can direct the search towards good schedules and refute errors. The query
engine is based on a translation of the LSCs model to an equivalent transition relation that can
be analyzed using model-checking techniques. Our implementation (described in details in [6]) is
based on translation to the SMV modeling language and utilization of the SMV model-checker.

For example, in our search for good schedules we came across a problem that we wanted to
resolve. In case more than one card can be taken up (if two personalization slots are empty at
the same time) we wanted to specify which goes up first. The way we resolved this question is
by issuing a question to the model checker. The model checker ruled that only one option leads
to acceptable schedule so we encoded this decision in the charts.

Such questions come frequently along the design phase. Most queries are answered in a
matter of seconds by the tool. Sometimes more time is needed to search the states space. If
the search takes too long, the designer can try to form simpler questions. In many case one
can do with a simple simulation via the naive play-out mechanism that resolves nondeterminism
arbitrarily (the next action in taken from the list of active actions according to a fixed precedence
relation).

To sum up, we offer a semi-automatic way to extract schedules. The process begins with
a coarse strategy which gets more specific as the designer adds charts and details to existing
scenarios. The progression is more like a software development process where automatic tools
guide the designer towards an implementation of an high level specification.

5.1 Error Handling

Besides the synthesis of the super single mode, described above, we also tested our methodology
against another optimization problem. In addition to speed requirements, the size of the machine
is also an important factor. Customers need to reserve expensive floor area for the machines, so
it is desirable to design machines with minimal belt length.

In this subsection, we describe a method to test if the machine can handle all errors within
a certain number of extra slots. If the answer is positive, the analysis produces also a trace that
can be used to derive a control program for the machine.

We begin with the problem description. Assume that the machine operates in the super
single mode described in the previous section. We know that this is a good schedule if no
defected card are present. Since defective cards are rare enough, we can stick to this schedule
and ignore the time overhead of handling defective cards. However, we must reserve extra belt
slots for error handling. The number of reserved slots must be big enough such that all errors
can be accommodated. The discussion is limited to a single error at a time.

The state exploration mechanism delivered by the smart-playout proved ideal for the task.
We used the naive playout to run the schedule and introduced an error at some point. From this
state, we asked the smart-playout to dump the defective card and return to the next state of
the super single mode. The smart playout provided us with a trace that can be used to program
a controller for the machine.

We didn’t automate this process, but one can imagine an automatic process that spawns
verification processes on a distributed network that explore all possible errors and verify that
the belt is long enough. This process can collect the traces and produce a control program that

12



handle all relevant errors - provably.
The general idea that we have used is: once a schedule is obtained, error handling can be

done by state space exploration of a path that returns to the cycle. Different errors can be
explored in parallel, using grid computing mechanisms.

6 Conclusions

A scenario-based model for a smart-card personalization machine is presented. We believe
that this model is easy to understand and maintain. Such models can be used together with
simulation and formal verification tools in various design phases. Designers can ‘play’ with
different architectures, apply model-checking techniques to extract schedules and gain intuitive
feeling and insight. Because the model is fully graphical, object-oriented and scenario-based it
is easy to manipulate it and test variations of the original design. We believe that these features
makes our approach suitable for designing production lines. We have also demonstrated a way to
extract useful schedules out of the model. Schedulability analysis is carried out semi-manually,
namely, the designer is guided by tools that allow her to run queries. The answers to the queries
are used to gradually improve the schedule until a complete scheduler is extracted. The resulting
scheduler can be run by the play-out which can be considered as an execution machine. One
can also translate it to some standard executable language.

References

[1] M. Agopian. A simulation tool for the SuperSingle mode, 2003. Not a paper, a tool.

[2] S. Albert. Cybernetix case-study: Informal description. Ametist web page
http://ametist.cs.utwente.nl/RESEARCH/CYBERNETIX/smartcard.ps, 2002.

[3] D. Amyot and A. Eberlein. An evaluation of scenario notations for telecommunication
systems development. In Int. Conf. on Telecommunication Systems, 2001.

[4] W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. Formal Meth-
ods in System Design, 19(1):45–80, 2001. Preliminary version appeared in Proc. 3rd IFIP
Int. Conf. on Formal Methods for Open Object-Based Distributed Systems (FMOODS’99).

[5] B. Gebremichael and F. Vaandrager. Smart card personalisation machine in smv. Ametist

web page http://ametist.cs.utwente.nl/RESEARCH/BINIAM/cyber.ps, 2002.

[6] D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart play-out of behavioral requirements.
In Proc. 4th Intl. Conference on Formal Methods in Computer-Aided Design (FMCAD’02),
Portland, Oregon, volume 2517 of Lect. Notes in Comp. Sci., pages 378–398, 2002. Also
available as Tech. Report MCS02-08, The Weizmann Institute of Science.

[7] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using LSCs and
the Play-Engine. Springer-Verlag, 2003.

[8] A. Mader. Cybernetix case study: approaching scheduling
by decomposition and mixed strategies. Ametist web page
http://ametist.cs.utwente.nl/INTERNAL/PUBLICATIONS/UTPublications.htm, 2003.

[9] R. Marelly, D. Harel, and H. Kugler. Multiple instances and symbolic variables in executable
sequence charts. In Proc. 17th Ann. ACM Conf. on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA’02), pages 83–100, Seattle, WA, 2002.

[10] ITU-TS Recommendation Z.120 (11/99): MSC 2000. ITU-TS, Geneva, 1999.

[11] T. C. Ruys. Optimal scheduling using branch and bound with spin 4.0. In Proceeding of
the 10th SPIN workshop, Portland, Oregon, 2002.

[12] UML. Documentation of the unified modeling language (UML). Available from the Object
Management Group (OMG), http://www.omg.org.

13


