

OMF I

NTERCHANGE

®

Specification

Version 2.1

OMF Developers’ Desk
Avid Technology, Inc.
1925 Andover St.
Tewksbury, MA 01876
Phone: 800-949-OMFI
International: 978-640-3400
FAX: 978-640-0065 directed to OMF Developers’ Desk
Internet URL: http://www.omfi.org
September 18, 1997

© Copyright 1995, 1997 Avid Technology, Inc.

All rights reserved. No part of this document may be reproduced, transmitted, and/or distributed
in any form or by any means for any purpose without the express written permission of Avid
Technology, Inc.

This document may be reproduced, transimitted, and distributed by registered OMF partners.
Registration as an OMF Partner requires a signed partnership form on file with the OMF
Developers’ Desk at Avid Technology, Inc.

The information in this document and any software described in this document are subject to
change without notice. This document does not represent a commitment on the part of Avid
Technology, Inc.

The OMF Interchange Developers’ Toolkit, which is a reference implementation of the OMF
Interchange Specification, is Bento® compatible.

Trademarks

Avid, OMF, OMF Interchange, and Open Media Framework are registered trademarks of Avid
Technology, Inc.

Apple, AppleLink, Bento, Macintosh, and Power Macintosh are trademarks of Apple Computer,
Inc., registered in the United States and other countries. Kodak is a trademark of Eastman Kodak
Company. Intel is a registered trademark of Intel Corporation. IBM is a registered trademark of
International Business Machines Corporation. Microsoft and Windows are registered trademarks
of Microsoft Corporation. Motorola is a registered trademark of Motorola Corporation. UNIX is
a registered trademark in the United States and other countries, licensed exclusively through X/
Open Company, Ltd. All other trademarks and registered trademarks used herein are the property
of their respective owners.

OMF Interchange Specification• Part 0130-00254-01 Rev. B• 9/97

9/18/97 OMF Interchange Specification Version 2.1 iii

Table of Contents

Preface

. ix

About this Document

 . ix

Documentation Conventions

. x

For More Information

 . .xi

Chapter 1
Overview

. . 1

Goals of OMF Interchange

. 1

History of OMF Interchange

 3

Version 2.1 and 2.0 Goals

. 4

Key Media Information

 . 5

OMF Interchange and Media Applications

 7

File Structure and Access

 . 8

Digital Media Data Formats

 10

Chapter 2
Media Concepts

 . 17

Composition Building Blocks

. 17

Source Building Blocks

 . 23

Time Management

 . 26

Chapter 3
The OMF Class Model

 27

Benefits of the OMF Class Model

. 27

iv Contents 9/18/97

Elements of Object-Oriented Systems

. 28

OMF Interchange Class Model

. 31

Introduction to OMF Classes

. 40

Chapter 4
Mobs and the Header Object

 43

Mobs

 . 43

The Header Object (HEAD)

 49

From HEAD to Media—an Overview

 51

Chapter 5
Composition Mobs

 63

Composition Mob Basics

 63

Simple Composition Mobs and Sequences

 66

Sequences with Transitions

 70

Effect Invocations

 . 74

Scope and References

 . 85

Other Composition Mob Features

. 89

Chapter 6
Describing Media

 91

Describing Media with Mob Slots

. 92

Describing Media with Master Mobs

 94

Describing Timecode with Source Mobs

. 95

Describing Media with Pulldown Objects

. 97

Describing Media with Media Descriptors

 102

Appendix A
OMF Object Classes

. 111

AIFC Audio Data Class (AIFC)

. 112

AIFC Audio Descriptor Class (AIFD)

 113

Attribute Class (ATTB)

 114

Attribute Array Class (ATTR)

. 116

Class Dictionary Entry Class (CLSD)

 117

9/18/97 OMF Interchange Specification Version 2.1 v

Color Difference Component Image Descriptor Class (CDCI)

. . . 119

Component Class (CPNT)

. 124

Composition Mob Class (CMOB)

. 126

Constant Value Class (CVAL)

 128

Control Point Class (CTLP)

 130

Data Definition Class (DDEF)

 132

Digital Image Descriptor Class (DIDD)

 133

DOS Locator Class (DOSL)

 138

Edgecode Class (ECCP)

 139

Edit Rate Converter Class (ERAT)

 141

Effect Definition Class (EDEF)

 143

Effect Invocation Class (EFFE)

. 145

Effect Slot Class (ESLT)

. 149

Filler Class (FILL)

 . 151

Header Class (HEAD)

. 152

Identification Class (IDNT)

. 156

Image Data Class (IDAT)

 158

JPEG Image Data Class (JPEG)

 159

Locator Class (LOCR)

 160

Mac Locator Class (MACL)

 161

Master Mob Class (MMOB)

 162

Media Data Class (MDAT)

. 164

Media Descriptor Class (MDES)

 165

Media File Descriptor Class (MDFL)

 167

Media Film Descriptor Class (MDFM)

 169

Media Group Class (MGRP)

. 171

Media Tape Descriptor Class (MDTP)

. 173

Mob Class (MOBJ)

 . 175

Mob Slot Class (MSLT)

 177

Nested Scope Class (NEST)

. 179

Network Locator Class (NETL)

. 181

OMFI Object Class (OOBJ)

 182

Pulldown Class (PDWN)

 183

RGBA Component Image Descriptor Class (RGBA)

. 186

Scope Reference Class (SREF)

 190

vi Contents 9/18/97

Segment Class (SEGM)

. 192

Selector Class (SLCT)

 193

Sequence Class (SEQU)

 195

Source Clip Class (SCLP)

. 197

Source Mob Class (SMOB)

 200

Text Locator Class (TXTL)

. 202

TIFF Image Data Class (TIFF)

 203

TIFF Image Descriptor Class (TIFD)

 204

Timecode Class (TCCP)

 206

Track Description Class (TRKD) 207

Transition Class (TRAN) 209

UNIX Locator Class (UNXL) 211

Varying Value Class (VVAL) 212

WAVE Audio Data Class (WAVE) 216

WAVE Audio Descriptor Class (WAVD) 217

Windows Locator Class (WINL) 218

Appendix B
Data Types . 219

Appendix C
References and Media Formats 227

References . 227

Media Formats . 228

Appendix D
Changes in Version 2.1 231

List of Changes . 231

Changes in Version 2.0 233

Appendix E
Effects Dictionary 239

Mono Audio Dissolve Effect 240

Mono Audio Gain Effect 241

9/18/97 OMF Interchange Specification Version 2.1 vii

Mono Audio Mixdown Effect 242

Mono Audio Pan Effect 243

SMPTE Video Wipe Effect 244

Video Dissolve Effect . 246

Video Fade To Black Effect 247

Video Pull-Down Frame Mask Effect 248

Video Repeat Effect . 250

Video Speed Control Effect 251

Appendix F
Class Hierarchy. 253

Glossary . 255

Index . 261

OMF™ Participation Form269

viii Contents 9/18/97

9/18/97 OMF Interchange Specification Version 2.1 ix

Preface
About this Document

The OMF Interchange Specification is written for two audiences. It is for system
programmers who need to know the details of the file format for the purpose
of reading or writing interchange files. It is also for system architects, system
analysts, and others who want to understand the goals and overall semantics
of OMF Interchange.

Version Information
This document describes OMF Interchange Version 2.1. Appendix D contains
a summary of the changed features and new features in Version 2.1.

How to Use this Document
There are three major parts to this book. Depending on your purpose, you
might want to read some sections and skip others.

¥ The first part provides an overview and an introduction to concepts.

Ñ Chapter 1 gives an overview of the OMF Interchange goals, applica-
tion domains, and file structures.

Ñ Chapter 2 describes the basic media concepts that are used in OMF.

¥ The second part describes the OMF object model in detail and uses exam-
ples to show how to describe media with OMF. This part should be read
in conjunction with the last part.

Ñ Chapter 3 describes the OMF class model and class hierarchy.

Ñ Chapter 4 describes Mobs and the Header object.

Ñ Chapter 5 describes how to use OMF compositions.

Ñ Chapter 6 describes how to use OMF to describe media.

x Preface 9/18/97

¥ The third part contains the reference appendixes for OMF.

Ñ Appendix A provides a comprehensive description of each OMF class.

Ñ Appendix B describes the OMF data types and data kinds.

Ñ Appendix C lists related reference documents and describes the for-
mats used to store digital media data in files.

Ñ Appendix D describes whatÕs new in Version 2.0.

Ñ Appendix E lists the OMF effects.

Ñ Appendix F shows the OMF class hierarchy illustration.

At the end of the book, there are the following sections:

¥ Glossary

¥ Index

¥ OMF Participation Form

Documentation Conventions

This document follows these conventions:

¥ Class names are always capitalized and appear in Helvetica typeface. A
class name can refer to the class or an object that belongs to the class.

¥ Class property names and property values appear in Courier typeface.

The class reference descriptions in Appendix A use a diagram to describe the
data model. The following is an example data model diagram:

Data Model

The top portion of the large box in the Data Model identifies

Effect Invocation Class (EFFE)

IS-a-kind-of Segment

EffectKind

EffectSlots Effect Slot (ESLT)

BypassOverride

FinalRendering

WorkingRendering

Effect Definition (EDEF)

Source Clip (SCLP)

Source Clip (SCLP)

9/18/97 OMF Interchange Specification Version 2.1 xi

¥ The class name, which is Effect Invocation in the example.

¥ The four-character Class ID, which is EFFE in the example.

¥ The parent class, which is Segment in the example.

¥ Optionally, the text Abstract Class indicates that the class is used to show
what is shared among a set of subclasses; this is not illustrated in this ex-
ample.

The bottom portion of the large box lists the properties that are defined for the
particular class, but it does not include the properties that are inherited from a
superclass. For properties with values that are specified directly, without an
object, you will see only the property name listed in the large box, such as
BypassOverride.

For properties with values that are specified by objects, the Data Model shows
the kinds of objects that specify the value and the relationship between the
objects and the properties. The properties appear in the large box, and the class
names indicating the kinds of objects appear in the small boxes to the right. In
the sample Data Model, an Effect Definition object specifies the value of the
EffectKind property. The relationship between property and object is indi-
cated by the type of line connecting them:

¥ A solid line without a solid circle indicates that the property has a single
object as its value, as shown with the FinalRendering and Working-
Rendering properties.

¥ A solid line with a solid circle indicates that the property has a set of objects
as its value, as shown with the EffectSlots property. If the set is an or-
dered set, this is indicated by the word ordered above the solid line.

¥ A dashed line indicates that the property has a reference to the object, as
shown by the EffectKind property and the Effect Definition object. This
shows that more than one object can have a reference to a single Effect Def-
inition object.

Technical changes from the OMF Interchange Specification Version 2.0 are
marked with change bars.

For More Information

This section tells where you can get more information about OMF Interchange
and OMF software.

There is a form at the end of this document that describes how you can register
as an OMF Interchange Sponsor, Partner, or Champion.

To request a unique application or organization identifier, to order copies of
this document, to order the OMF Interchange Toolkit software, or for more

xii Preface 9/18/97

information about OMF Interchange and the OMF Interchange Toolkit soft-
ware, contact:

OMF DevelopersÕ Desk
Avid Technology, Inc.
1925 Andover St.
Tewksbury, MA 01876

Phone: 800-949-OMFI
International: 978-640-3400
FAX: 978-640-0065 Attention: OMF DevelopersÕ Desk

Email: omf-request@omfi.org
World Wide Web URL: http://www.omfi.org

For more information about the TIFF format for graphic images, the Bento
container format and Bento API, and other file formats, see Appendix C, which
lists standards documents and format specifications.

9/18/97 OMF Interchange Specification Version 2.1 1

1
Overview

The Open Media Framework (OMF) Interchange format is a standard format
for the interchange of digital media data among heterogeneous platforms. The
format encapsulates all the information required to transport a variety of
digital media such as audio, video, graphics, and still images, as well as the
rules for combining and presenting the media. The format includes rules for
identifying the original sources of the digital media data, and it can encapsu-
late both compressed and uncompressed digital media data.

This overview describes the goals and history of OMF, defines key terms,
describes the overall file structure, and lists the required formats for the
exchange of digital media data among OMF Interchange applications.

Goals of OMF Interchange

OMF Interchange is the product of many years of experience with the manage-
ment and manipulation of digital media. Throughout the development of
OMF Interchange, certain design goals were paramount:

¥ Portability and platform independence.

Digital media processing systems exist on a multitude of platforms, each
with different characteristics for storage capacity, throughput, multimedia
hardware, and overall system architecture. OMF Interchange eases prob-
lems that arise due to particular platform characteristics. For example,
OMF Interchange uses a numeric representation that can easily be
converted to a platformÕs native format.

¥ Encoding of compositions and sources as well as digital media data.

2 Chapter 1: Overview 9/18/97

OMF Interchange provides structures for three distinct elements: digital
media data, media sources, and compositions:

Ñ Digital media data such as audio, video, and graphics, is only part of
the information that constitutes a media presentation.

Ñ Sources describe the digital media data and the original, physical
sources of the data.

Ñ Compositions describe the arrangement of sections of sources and
how they are played over time.

You can think of a composition as a ÒrecipeÓ and digital media data as
Òingredients.Ó The source information identifies each ingredient and tells
where the ingredient came from.

OMF Interchange keeps sources separate from compositions for several
reasons. More than one composition can reference sections of the same
digital media data, reducing storage requirements. An editor of a compo-
sition can choose to include more or less of the digital media data in a
section. Storing the digital media data separately allows an editor the
freedom to modify the selection at any time in the editing process. Because
the OMFI file identifies the source of the digital media data, an editor can
re-create the digital media data to use a different sampling frequency or
compression. OMF Interchange provides a comprehensive set of formats
for describing the original (often analog) source material, even when that
material is outside the computer system.

¥ Program encapsulation.

OMF Interchange provides for a variety of existing digital media types
and the ability to easily support new types in the future. A single OMF
Interchange file can encapsulate all the information required to create,
edit, and play digital media presentations.

¥ Suitability for playback.

Digital media for video and audio is typically large and stresses the capa-
bilities of most of todayÕs systems. While OMF Interchange is designed
primarily for data interchange, it is structured to facilitate playback
directly from an interchanged file when being used on platforms with
characteristics and hardware similar to those of the source platform,
without the need for expensive translation or duplication of the sample
data.

¥ Application independence.

Different applications will add value to OMF Interchange structures based
on the applicationÕs purpose. OMF Interchange is specifically designed to
permit different applications to create, edit, enhance, modify, play back,
and then transmit the same compositions and media in object form
without loss of information.

¥ Direct access to internal objects.

OMF Interchange files may be large and contain many different kinds of
media data structures, which are called Òobjects.Ó Applications can deter-
mine the contents of an OMF Interchange file and extract objects of interest
such as compositions and media source information, without reading the
entire file.

¥ Encapsulation and specialization.

9/18/97 OMF Interchange Specification Version 2.1 3

The classification of data objects in OMF Interchange, with the refinement
or amplification of information through specialized properties, allows
applications to deal with all known objects in a uniform fashion and
bypass the specializations they do not need to interpret.

¥ External file references.

The OMF Interchange standard anticipates that sample data or other data
might exist in files external to an OMF Interchange file that references it.
The external file can be another OMF Interchange file or a file containing
ÒrawÓ sample data. The standard provides a mechanism for specifying a
reference to the external file and, when necessary, identifying the origi-
nating system, the path to the file, and hints for locating the file.

¥ Extensibility.

OMF Interchange provides for the development and integration of new
media and composition types. In its general framework, OMF Interchange
allows applications to add extensions without resorting to supplemental
files.

¥ Application-specific data.

Along with extensibility, OMF Interchange provides applications with a
way of embedding annotations, auxiliary data structures, and data partic-
ular to the application. OMF Interchange provides a framework that
allows other applications to deal with this data, even if they are not able to
interpret its meaning.

¥ Incremental update.

Because digital media files may be large, OMF Interchange specifically
provides for incremental change to OMF Interchange files without
requiring a complete recalculation and rewrite of an existing file.

History of OMF Interchange

The development of the Open Media Framework Interchange format is the
result of the cooperative efforts of many industry and standards partners and
Avid Technology, Inc.

Version 1.0 of the OMF Interchange format was published in November 1993.
Version 2.0 was published in August 1996. This document describes Version
2.1.

The OMF DeveloperÕs Desk at Avid Technology, Inc., publishes and maintains
the specification. In addition, the OMF DeveloperÕs Desk provides the OMF
Interchange Toolkit, which is a software package that provides an Application
Program Interface (API) that applications can use to read and write OMFI files.
The purpose of the toolkit is to make it easier for applications to interchange
media and compositions.

OMF uses a container format to store and access objects. OMF uses the Bento¨
software to define and access the container format. The Bento software defines

4 Chapter 1: Overview 9/18/97

the container file format and provides an API that the OMF Interchange
Toolkit uses to store and access the objects in a file. It is not necessary to have
a detailed knowledge of the Bento software to understand the concepts and
terminology of OMF Interchange. To find out whom to contact to get more
information about the Bento software, see Appendix C. The OMF Interchange
DevelopersÕ Toolkit Version 2.1, which is a reference implementation of the
OMF Interchange Specification, is Bento compatible.

Version 2.1 and 2.0 Goals

The major goals for Version 2.1 and Version 2.0 of the OMF Interchange spec-
ification are to increase the capabilities available to the end user and to reduce
the roadblocks to interchanging digital media data. These versions of the spec-
ification helps achieve these goals by:

¥ Allowing more kinds of information to be interchanged between applica-
tions

¥ Making it easier for an application to include OMF support, which will in-
crease the number of applications available to the end user

Another goal for these versions is to enhance existing capabilities and to fix
any errors that have been found in the previous version.

OMF Interchange Version 2.1 provides the following enhancements:

¥ Identification information in the Header object that allows you to deter-
mine the application that created an OMF file

¥ Support for large media files (greater than 2 gigabytes) with 64-bit posi-
tions, lengths, and frame indexes

¥ Support for user comments on Mobs and tagged user-defined information

¥ Improved support for film pulldown conversions

¥ Minor improvements to media handling and storage

OMF Interchange Version 2.0 provides the following enhancements:

¥ Interchange of effects

¥ Easier support of compositions

¥ Enhanced media support

Appendix D provides a detailed list of the new and changed features in
Version 2.1 and 2.0.

9/18/97 OMF Interchange Specification Version 2.1 5

Key Media Information

At the most general level, an OMF Interchange file contains the following
kinds of media information:

¥ Compositions

¥ Sources of media data

This section defines these terms and describes the role of each type of informa-
tion in an OMF Interchange file.

Compositions
A composition is a description of all the information required to play or re-edit
a media presentation. A composition describes the logical organization of a
time-based media presentation, and an application can combine and play the
contents of the composition, relating the elements over time.

Typically, a composition comprises multiple types of media from a variety of
sources, with references to the digital media data. It does not actually contain
the digital media data such as the video, audio, graphics, or animation.
Instead, it points to sections of source data. When an application plays a
composition, it follows the compositionÕs references to the digital data and
then plays it.

The simplest type of composition represents how to play all the information
from a single stream of media data. In contrast, a complex composition might
contain the information required to play four tracks of audio and a video track
with a graphic overlay track, for example. The audio tracks might contain
volume and fader information, and the video track might be a combination of
multiple video sources, including transition effects at the boundaries between
sources (such as wipes, dissolves, or fades). The graphic overlay track could
specify information needed to position the graphic, choose the keying charac-
teristics, and fade in or out.

Sources of Media Data
An OMF Interchange file identifies sources of data and describes what kind of
media data these sources provide. Is it a videotape source or a film source? Is
it a file containing video frame data or audio data? What type of data does the
source contain and what format is it in? The OMF composition names each
source it uses and describes the section of the sourceÕs data that it needs.

Information About Previous Generations of Media

The OMF media source descriptions allow an application to trace a piece of
media data from the digital data stored in a file to all previous generations of

6 Chapter 1: Overview 9/18/97

media that it was derived from. For example, when an application digitizes the
audio and video data from a videotape, it creates a source description for each
generation of media. During the digitizing process, it creates a source descrip-
tion for each section of media that is digitized, a source description that iden-
tifies the videotape source, and, if applicable, source descriptions that identify
the film or audio tape that were used to generate the videotape. Source infor-
mation can identify any type of source, whether it is an analog source such as
a videotape, film reel, or audio tape, or whether it is a digital source such as a
file containing video data, audio data, animation data, or graphic data.

If the source media data was derived from another source of media, this infor-
mation about the original source is stored in OMF so that an application can
access the original media. For example, a file containing video data can be
derived from the video from a videotape. Accessing the original source is
required when you need to reconstruct the digital media data, for example to
redigitize it at a higher resolution. Accessing source information is also
required if you want to generate an edit decision list (EDL) or a cut list for
assembling a finished production from the original sources.

The Source’s Media Data

Media data is the digital or analog data you play. The data can be in the form
of audio samples, video samples, computed effects, animation, and graphics.
OMF Interchange files store digital media data. Digital media data is either
data that a user created directly in digital form such as a graphic, or data that
a user digitized from an analog source such as the video and audio from a
videotape. An OMF Interchange file includes information about the format of
the data such as the sample rate and compression technique, in addition to the
data itself.

Although composition information is usually compact, a set of media data can
be extremely large; therefore, OMF Interchange files allow applications to
store the digital media data in separate files. Sometimes the pieces of media
data used by a composition are spread across many files or disks.

The advantage of storing the digital media data separately from compositions
is that any number of compositions can reference a single source without
duplicating the storage requirements. Also, compositions can reference
sections of a sourceÕs data any number of times. The fact that a composition
uses only a portion of the digital media data does not reduce the availability of
the data in any way, so an editor could reedit the composition to use more or
less of the data at any time.

When digital media data is in a separate file, the source information includes
hints for locating the file that contains the data. The external file can also
contain the source information that identifies and describes the data, along
with the media data itself. The information identifying and describing the
source is important in case the data becomes separated from an OMF Inter-
change file that refers to it.

9/18/97 OMF Interchange Specification Version 2.1 7

Mobs
OMF Interchange uses objects called Mobs (from Òmedia objectsÓ) to uniquely
describe compositions and sources. Each Mob contains an identifier, called a
MobID. An OMFI file describes a composition by using a Composition Mob.
An OMFI file describes a source of media data by using a Source Mob. File
Source Mobs are Source Mobs that identify digital media data.

A Composition Mob identifies each digital source that it references by the
sourceÕs MobID. Using the MobID, there are various ways that an application
can locate the digital media data, depending on whether it is in the same file
or in an external file.

Similarly, a file Source Mob stores the physical Source Mob MobID of its orig-
inal source. An application can use the stored MobIDs to follow the informa-
tion to the original media.

OMF Interchange and Media Applications

OMF Interchange supports a series of classes of applications with increasingly
complex requirements for the manipulation of media:

1. Media producers and consumers

This is the most basic class of application. These applications create digital
media such as audio, video, or graphics, to be used by another application.
This class includes applications that take digital media information from
other applications in order to display it or store it. In general, these appli-
cations do not make use of the more expressive features of the composition
information, but work with simple sequences of media. Examples of these
applications are graphics drawing packages, animation programs, char-
acter generators, digitization packages, and display utilities (viewers).

2. Composition producers and consumers

This is a more complex class of OMF application, which accepts informa-
tion from media producer and consumer applications and combines the
media to create a finished composition. The finished composition can
contain complicated sequencing information such as multitrack audio, or
it can combine complex transition effects such as crossfades, wipes, and
digital video effects (DVEs). It may combine these components in the
composition with finished audio information such as pan, volume, and
equalization information.

These applications make use of all of the information used by the media
producers and consumers, and, in addition, they make use of the full
expressive power of OMF Interchange compositions. However, these
applications might not make full use of the media data information. For
example, they could specify that a transition effect occur, but might not be
able to produce the media necessary to display that effect.

3. Full-service media applications

8 Chapter 1: Overview 9/18/97

At the highest level, a full-service application includes aspects of both the
previous application types, but it also has the ability to create the finished
product, including all media necessary to play the finished composition.
These applications may also deal with collections of compositions and
may have additional information regarding the compositions or media
data.

File Structure and Access

An OMF Interchange file contains objects. An object can be simple such as a
Filler object that describes a blank segment of media, or an object can include a
complex structure of other objects. A Mob is an object that has a complex struc-
ture of other objects. A Mob describes editing information or media by means
of the objects it contains and the structure that connects these objects.

Each file has a file Header object that provides efficient access to top-level
objects such as mobs and Media Data objects. Figure 1 shows an OMF Inter-
change file containing a file Header object, Mobs, and Media Data. OMF Inter-
change defines many common types of objects and a data model for using
these objects to represent composition and source information.

Objects, Properties, and Values
Each object consists of a set of properties. Properties contain data and identify
the uses of the data in a way that resembles the role of fields in a database
record. Each property has a name and a value. A propertyÕs name identifies
the property, and a propertyÕs value has a type that specifies how the value
should be treated. The OMF Interchange Specification defines a set of unique
property names and a set of standard data types that can be used in inter-
change files.

The object class property identifies the kind of object. OMF Interchange
defines a set of unique four-character class names to identify the objects
needed in OMF Interchange files.

Although Bento allows a single property to have multiple types and a value
for each type, OMF Interchange allows only a single type and value for each
property in an object.

Access to Objects

OMF Interchange is a flexible format that allows applications to freely add
objects, properties, and values to the file. And because each file has a file
Header object containing file-wide information for locating objects, applica-
tions can easily access objects and their properties by using the OMF Inter-
change Toolkit API. OMF Interchange supports the use of private objects and
properties by applications. If an application does not know how to process a

9/18/97 OMF Interchange Specification Version 2.1 9

certain value, or chooses not to process it, the application can ignore that value.
For example, given a property that represents pan settings for an audio media
section, if an application has no way to adjust the pan settings dynamically, it
can ignore the value.

The File Header

The file Header object has indexes to the locations of key objects in the file,
including an index to the Mobs in the file and an index to the pieces of digital
media data in the file. It also has additional properties such as ones that specify
the OMF Interchange Specification version and when the file was last modi-
fied.

When it is necessary, the file Header contains a list of extensions to the OMF
Interchange class hierarchy. OMF Interchange assumes that all applications
support the standard class hierarchy; so when an application extends the class
hierarchy, the file Header must define the extensions.

The Class Hierarchy and Object Properties

OMF Interchange defines a class hierarchy that allows objects to share proper-
ties with other similar objects. The hierarchy defines general classes with more
specialized subclasses that all share the general properties. Based on the hier-
archy, an object class that is a subclass of another class inherits the properties

Figure 1: An OMF Interchange file can have any number of objects in any order. The
file Header object provides access to objects in the file.

OMF Interchange File

Header

Master Mobs

Source Mobs

Digital Media Data Objects

Composition Mob

10 Chapter 1: Overview 9/18/97

its parent class. Chapter 3 provides a more detailed introduction to the OMF
class model. Appendix A contains reference information about each object
class and its properties.

Object Classes

OMF Interchange defines classes of objects for the elements in mobs, as well as
classes of objects for digital media data and other objects that are used outside
of mobs.

The OMF Interchange file describes compositions and sources by means of the
relationships between mobs, the structure of the objects within the mob, the
class of each object included in the mob, and the property values in each object.
This object model allows you to create simple OMFI files to describe simple
media and compositions but does not prevent you from describing extremely
complex media and compositions.

Data Interchange Considerations
Interchanging data across heterogeneous systems may require data conver-
sions due to different storage characteristics, including byte ordering, numeric
format, and integer size. OMF objects describe how the data is stored, which
enables applications to convert data to their native form when necessary.

The OMF Interchange file can contain objects having values in either of the two
byte orders commonly used to store data. If OMFI allowed only one of the byte
orders, then it would reduce the efficiency of using OMF on computer archi-
tectures that use the other byte order since it would require resource-intensive
conversion from one byte order to another. By supporting both byte orders,
OMF allows applications to create files efficiently using their native byte
order. If another application that uses the same byte order reads the file, it can
read it efficiently without converting the byte order. Applications that use a
different byte order can still read the file by converting it to the correct byte
order.

Digital Media Data Formats

OMF Interchange provides a basic set of required media formats that can be
shared among many different products from multiple vendors. At the same
time, it provides a structure for incorporating many different kinds of addi-
tional media formats into a standardized interchange mechanism. OMF Inter-
change provides this flexibility by maintaining these three levels of support for
media data formats:

¥ Required interchange formats

¥ Registered interchange formats

9/18/97 OMF Interchange Specification Version 2.1 11

¥ Private interchange formats

This section describes the purpose and use of each of the media format support
categories, and it lists the required formats that OMF Interchange supports.

Required Interchange Formats
Required formats are a basic set of media data formats that are well defined
and widely used for representing digital media. These formats are published
and easily implemented by a wide range of products without relying on any
proprietary hardware or software algorithms, and without bias toward a
specific computer platform. Readers and writers for required formats must be
either available or easily implementable.

For each required format, a descriptor class and a Media Data class is regis-
tered with OMF, and full support exists in the OMF Toolkit.

An application claiming OMF compliance must support required formats
where applicable. In some cases, an OMF-compliant application may only
support some media types such as audio, and not other media types such as
video.

Registered Interchange Formats
Registered formats are also recognized by the OMF DeveloperÕs Desk as being
widely used. However, implementation of registered formats is not required
for an application to be considered OMF compliant.

A registered format must either be published so that vendors can implement
their own readers and writers, or software must be available (source or object
code) to support this format. Registered formats can rely on proprietary hard-
ware or software, and can be specific to a certain computer platform or soft-
ware product. A descriptor and a media data class identifier will be registered
for each registered format. Support for these formats may or may not exist in
the OMF Toolkit.

The OMF DeveloperÕs Desk provides information about all registered formats.
This information includes the descriptor class, the digital data class, contact
information for all providers of software and documentation, and the current
level of OMF Toolkit support. Optionally, when a format has been widely
adopted, the OMF DeveloperÕs Desk may directly provide software and docu-
mentation.

Private Interchange Formats
OMF Interchange allows media data in private formats so that applications
can embed their own nonstandard media formats in an OMF Interchange file.
Private formats can be considered internal to an organization or intended for
use between two parties with a private agreement. If a format is intended to be

12 Chapter 1: Overview 9/18/97

shared between products from different vendors, it probably belongs in the
registered category.

Because of the proprietary use and nature of these formats, there should be no
conflicts with private formats from other vendors. Reader and writer software
is usually considered proprietary and is not available to the general public or
provided by the OMF Toolkit. The internal nature of these formats implies that
support in applications is obviously not required, and the OMF DeveloperÕs
Desk need not support them.

OMF Interchange supports multiple coexisting representations of the same
media. For example, an OMF Interchange file can represent digital audio in
both a private format and in a required format.

The Required Formats
This section describes the required interchange formats included in the OMF
Interchange standard. Table 1 summarizes the required formats.

OMF Interchange Version 1.0 specified the TIFF video, graphic, and still format
instead of the RGBA Component Image and Color Difference Component
Image formats included in the current version. During a transition period,
OMF-compliant applications must support the TIFF format to allow compati-
bility with existing OMF Interchange files and OMF Interchange-compliant
applications. After this transition period, OMF-compliant applications do not
have to support the TIFF format and should use the RGBA or CDCI required
format instead.

Appendix C contains additional information about the digital media data
storage formats including references to other documents that describe the
TIFF, WAVE, and AIFC formats.

Required Video, Graphic, and Still Image Formats

The RGBA Component Image format (RGBA) and the Color Difference
Component Image (CDCI) formats allow for great flexibility in the specifica-
tion of video, graphic, and image data. These formats also contain the informa-
tion needed to allow conversion to many other possible formats. The TIFF

Table 1: OMF Interchange Required Interchange Formats

Types of Media Data Required Formats

video, graphic, and still image RGBA Component Image (RGBA)
Color Difference Component Image (CDCI)
TIFF

animation Stored as video

audio Audio Interchange File Format (AIFC)
RIFF Waveform Audio File Format (WAVE)

9/18/97 OMF Interchange Specification Version 2.1 13

format is included in this specification for compatibility with the previous
version.

RGBA images are uncompressed component-based images where each pixel
is made up of a red, a green, and a blue value. In addition, RGBA images can
contain an alpha value. CDCI images are images made up of one luminance
component and two color-difference components, commonly known as
YCbCr, and can optionally be compressed with the Joint Photographic Experts

Group (JPEG) algorithm.

The RGBA and CDCI formats allow you to specify the following:

¥ Dimensions of the image

¥ Relationship between the dimensions of the stored image and those of the
analog media

¥ Information on how the images are interleaved

¥ Information on how the analog media was digitized

You can describe the following by using the RGBA image format:

¥ The color palette used for the component video

¥ The order of the components in the data

You can describe the following by using the CDCI image format:

¥ The ratio of luminance sampling to chrominance sampling

¥ The black and white reference levels

¥ The color range used to determine the color difference

¥ The JPEG tables used to compress the images

TIFF Video Format

The TIFF format is based on the TIFF specification, Version 6.0. The baseline
TIFF, as specified in Version 6.0, is the minimum subset that an OMF Inter-
change application must be able to read and write. The TIFF format provides
a means of exchanging video data stored in these formats:

¥ Red-green-blue (RGB) pixel arrays; the RGB data can be 24-bit or 8-bit data

¥ The JPEG File Interchange Format (JFIF) format

¥ The YCC compressed format

RGB pixel arrays are the simplest required format for representing video data
in an OMF Interchange file.

The YCC format is a standard compression format for JPEG data. It uses a stan-
dard ratio of luminance information to chrominance information.

The JFIF standard is a compressed video format that results in high compres-
sion of the input data (sometimes 50:1 and higher) with minimal degradation
in the appearance of the decompressed frames. Although this JPEG format is
a Òstill imageÓ format, it is suitable for representing video data as a series of
frames, provided that there is some auxiliary information such as frame rate.

14 Chapter 1: Overview 9/18/97

Animation Formats

There is currently no widely accepted, multiplatform, standard format for
representing animation in an object-oriented fashion. For the most part, appli-
cations exchange animations by rendering them as a series of frames. As a
result, the OMF Interchange required format allows the required video or
graphics formats specified previously.

The lack of a common animation format limits the quality of the rendered
animation to that of the source that originated the animation. As OMF Inter-
change evolves, a goal is the selection of an object-oriented animation data
format.

Required Audio Formats

Because audio data is usually represented in a form that conforms to the byte
ordering of the target platform, OMF Interchange provides the required audio
formats AIFC and RIFF WAVE, which support the two OMF byte orderings.

Applications using the same byte ordering can exchange data in their native
byte order without the need for translation. Applications using different byte
ordering can still interchange audio data, but with a translation step required
for playback.

AIFC Format

The Audio Interchange File Format (AIFF) is a widely used format based on
the AIFF 85 standard. AIFF includes the AIFC format for both uncompressed
and compressed data. It specifies parameters such as sample size, number of
channels (interleaving), and sample rate, and it provides a wrapper for the raw
audio data.

AIFC also specifies that the data will be in big-endian byte order. This provides
a native format for applications running on systems that use this byte
ordering. The uncompressed form of AIFC data is supported as an OMF Inter-
change required format; compressed audio format is not included in the
required format in this version of OMF Interchange.

WAVE Format

The RIFF Waveform Audio File Format (RIFF WAVE) specifies data that will
be in little-endian byte order. This provides a native audio format for applica-
tions running on systems that use this byte ordering. The uncompressed form
of RIFF data will be supported as an OMF Interchange required format;
compressed audio format is not included in the required format in this version
of OMF Interchange.

9/18/97 OMF Interchange Specification Version 2.1 15

The Registered Formats
Contact the OMF DevelopersÕ Desk for information on registered formats.

16 Chapter 1: Overview 9/18/97

9/18/97 OMF Interchange Specification Version 2.1 17

2
Media Concepts

Compositions and source information work together in an OMF Interchange
file. This section introduces concepts and terms and describes the logical struc-
ture of compositions and source descriptions in an OMF Interchange file.

There are three main topics in this section:

¥ Composition building blocks

OMF Interchange defines components that an application can create and
arrange to form a composition.

¥ Physical source information building blocks

OMF Interchange defines elements that describe a physical source and the
digital media data to be played.

¥ Time management

Compositions manage time in a way that allows a nonlinear approach to
editing, unlimited access to physical source material, and guarantees
synchronized playback of physical sources that do not share the same
native sample rate.

Composition Building Blocks

Composition Mobs contain all the information required to play a piece of
media data or an entire media presentation. A single Composition Mob may
represent something as small as a few frames of video or as large as an entire
movie. The Composition Mob represents both playable media data and a
network of behind-the-scenes information about how the media fits together.

18 Chapter 2: Media Concepts 9/18/97

Remember that the Composition Mob contains no actual media data. Rather,
it is descriptive information that acts as a model of a media presentation. This
section describes the parts of this model and shows how the parts are related
over time.

Composition Mobs and Mob Slots
A Composition Mob is a collection of synchronized Mob Slots. Each Mob Slot
represents a single type of media. A Mob Slot typically represents playable
media, such as video and audio, but a Mob Slot can also represent descriptive
information. For example, a Mob Slot can include timecode, edge code, or
effect control arguments.

A Composition Mob, for instance, could represent a four-channel audio
presentation, with one Mob Slot for each of the audio channels, as shown:

You can think of each Mob Slot as a logical playback channel. Placing the Mob
Slots in a Composition Mob indicates that the four channels are to be played at
the same time and synchronized.

Typically, a Mob represents a number of Mob Slots for different media types,
such as video and audio to be played together, starting at the same time and
ending at the same time.

A single Mob Slot may contain a Sequence that represents multiple pieces of
media. The order of the pieces within the sequence determines the playback
order in that channel. For example, a video Mob Slot could consist of sections
from the same or different sources, as shown:

The Mob is a key mechanism in OMF Interchange. It imposes the synchroni-
zation of media; at the highest level, it synchronizes the Mob Slots in a compo-
sition.

time

Composition Mob

0 n

audio Mob Slots
vocalist

piano
bass

drums

video Mob Slot

time
0 n

1 2 3 4 5 6

A video Mob Slot consisting of six sections:

9/18/97 OMF Interchange Specification Version 2.1 19

The Composition Mob controls the synchronization among the different Mob
Slots. All Mob Slots in a Composition Mob must be played simultaneously, as
demonstrated in the following diagram:

Segments
Mob Slots can contain a Segment of media or a Sequence of Segments of
media. The simplest kind of Segment is a Source Clip, which represents a
section of media. The following diagram illustrates the relationship between
Mob Slots and Segments:

The order of the Segments in a Sequence specifies the order in which the
Segments should appear when the composition is played.

Source Clips to Represent Media

Compositions use Source Clips to represent the media for a Segment. A Source
Clip in a Composition Mob represents a section of digital media data in a file.

time

Composition Mob

0 n

video Mob Slot

audio Mob Slots

video Mob Slot scene 1 video Source Clip

A Mob Slot containing only one Segment:

video Mob Slot scene 1 video scene 2 video

A Mob Slot containing a sequence of two Segments:

20 Chapter 2: Media Concepts 9/18/97

It identifies the data by storing the file source mob ID and describing the
starting position and the length of the data.

Source Clips are a mechanism for describing the actual media data that the
Composition Mob uses. This data might be the digital media data contained in
a file, live data being digitized from an external source, such as a camera or CD
player, or a precomputed effect. Source Clips do not contain the media data
itself, they reference the media data. The information in the source clip refers
to a current digitized version of the media.

Timecode

Timecode provides a means of storing the timecode associated with a
Segment. A Timecode can appear in a Mob Slot. For example, assume you are
selecting synchronized segments of video and audio that were digitized from
a videotape and adding them to a Mob Slot in a Composition Mob. To keep
the SMPTE timecodes for each Segment accessible during editing, you could
include a Timecode in a Mob Slot.

The editing application might display the source timecode for each Segment
as you view it.

Source Clip Source Clip Source Clip

A Sequence of three Source Clips from the same source:

Source A

video Mob Slot

audio Mob Slot

timecode Mob Slot

audio Mob Slot

Composition Mob

A composition that includes a Timecode Mob Slot:

V
T

Seg 1 Seg 2 Seg 3

A
A

time
0 n

9/18/97 OMF Interchange Specification Version 2.1 21

Similarly, an application can use Timecode to represent the composition-wide
time associated with each Segment. In this way, the application could display
the total Mob Slot length in timecode or the timecode associated with any
point in the Mob Slot.

Edge Code

Edge Code is similar to Timecode, except that it stores the edge code associated
with a film source. An Edge Code is used in a Source Mob describing film.
Edge Code information is necessary to produce a description of the film
source, such as when creating a cut list.

Filler

When there is no media specified in a Mob Slot or for a time period within a
Sequence, the Filler object shows that there are no specified values.

Effects as Segments

An Effect Invocation can be a Segment in a Mob Slot or Sequence within a Mob
Slot. When played, an Effect Invocation produces a single stream of media data
from one or more input Segments. Effect Invocations can also have control
arguments. The application reading the Effect Invocation can interpret the
information in the control arguments based on the effect documentation.

Transitions
A Transition specifies the way to go from the end of one Segment to the begin-
ning of the next. It specifies an effect to use such as an audio cross-fade or a
video dissolve.

Segment 1 Filler Segment 2

Segment 1 Transition
Segment 2

A transition for a dissolve:

cut point

Segment 1 length

22 Chapter 2: Media Concepts 9/18/97

A cut is a simple divider between the two Segments in a Sequence. A Transi-
tion specifies an effect to be computed from the media in the Segments that
precede and follow the Transition. OMF Interchange does not require a Transi-
tion between Segments; if one is not present, a simple cut from one Segment
to the next is implied.

The Transition specifies an Effect Invocation to be used when going from the
preceding Segment of media to the following Segment. The Effect Invocation
object can specify a rendered or precomputed representation of the Transition
effect. In this way, applications that can create the effect in real playback time
may do so, while those that cannot may use the rendered version as a normal
piece of digital media data.

A Scope Reference

A Scope Reference gets its media by reference to another slot within the
Composition Mob. For example, a Scope Reference in one video Mob Slot can
reference a section of the image media described in another Mob Slot.

Scope References provide a general way of implementing layered effects in a
Composition Mob. For example, the simplest way to put a title over a video
Segment is to include the two Segments in an Effect Invocation that specifies
that the title Segment should be superimposed over the video Segment.
However, by using a Scope Reference, it becomes much easier to edit the
Composition Mob because you can change the underlying video Segment
without changing the Effect Invocation or the title Segment.

An Example Composition Mob
Here is a simple example that shows the Components in a Composition Mob.
The Composition Mob synchronizes all the Mob Slots within it. The following
figure shows a small Composition Mob containing a video Mob Slot and an
audio Mob Slot. The audio Mob Slot consists of only one Component: a Source
Clip for audio to be played. The video Mob Slot contains a Sequence of two
Source Clips separated by a dissolve Transition.

Composition Mob

Source Clip Source Clip Dissolve

 Transition

Video Mob Slot

Audio Mob Slot
Source Clip

time
0 n

Effect

9/18/97 OMF Interchange Specification Version 2.1 23

Source Building Blocks

Recall that sources are represented by Source Mobs. A Source Mob can be a
file Source Mob or a physical Source Mob such as a tape Source Mob, a film
Source Mob, or an audio tape Source Mob. Each Source Mob describes its
media data and can optionally provide information that may help the user or
application locate the previous generation source.

Mob Slots in Source Mobs
A Source Mob that represents a physical source such as a film or tape has Mob
Slots that represent the information contained by the source. These physical
Source Mobs are simpler than Composition Mobs; they contain one Mob Slot
for each type of information on the source. Typically, each Mob Slot contains
a single Source Clip that represents the length of the source known to the appli-
cation that created the Source Mob.

For example, a video cassette might have a video track and two audio tracks.
If both video and audio information is digitized from this tape, then the appli-
cation creates a tape Source Mob with three Mob Slots. The length of the
Source Clips is set to the length of the digitized section.

It is also useful to include a timecode or edge code track in the Source Mob for
a physical source that uses one of these measurement systems. This lets users
of the source maintain precise positioning of samples relative to the source. A
Source Mob contains this information in a Mob Slot that has a Timecode or
Edge Code.

A file Source Mob that represents digital media data has a single Mob Slot
with a single Source Clip that describes the nature and length of the digitized
information in the file. Its source position represents the point of the first
sample within the original physical source. The Source Clip references the
Mob for the original source, if it exists, and the appropriate Mob Slot within
that Mob.

In the example above, digitizing from the video tape produces three file Source
Mobs, each with a single Mob Slot and Source Clip: one for the video track, and
one for each audio track.

The digital data described by a file Source Mob must not be changed once it is
created, because doing so would invalidate Mobs that reference it. If media
data is digitized from the physical source again, new Mobs must be created.

Maintaining references in Composition Mobs while allowing the media data
to be redigitized is accomplished by using an intermediate Master Mob. This
Mob contains a Mob Slot for each of the synchronized media tracks digitized
together, each with one Source Clip referencing one of the file Source Mobs. In
the example above, the Mob would have three Mob Slots. Composition Mobs
using the data reference the Master Mob instead of the file Source Mobs; if new

24 Chapter 2: Media Concepts 9/18/97

media data is digitized from the tape, only the Master Mob needs to be
updated. The references within Composition Mobs remain intact.

Media Descriptors
A Source Mob includes a Media Descriptor that describes the kind of source
and describes the format of the media data. A Media Descriptor for a film
source might contain the film aspect ratio; a Media Descriptor for a videotape
source might contain the tape format.

Media descriptors for file Source Mobs can include information about the loca-
tion where the digital media data is stored. For example, a Media Descriptor
can include the directory name and filename for a file.

Media Descriptors for Digital Media Data

In a file Source Mob, the Media Descriptor is specialized for the type of media
data. An RGBA Component Image Descriptor describes the characteristics of
component video digital media data. A Color Difference Component Image
Descriptor describes the characteristics of image digital media data stored with
one luminance component and two color difference components. An AIFC
Audio Descriptor describes the characteristics of audio samples in the AIFC
format. A WAVE Audio Descriptor describes the characteristics of audio data in
the WAVE format. A TIFF Image Descriptor describes the characteristics of
video, graphic, or still-image data in the TIFF format.

The information in these types of media descriptors is necessary for inter-
preting the sample data for editing or playback. For example, it is necessary to
know the audio sample rate, the video frame rate, whether the video data is
compressed, and the type of compression.

An important OMF Interchange feature is that the media descriptor provides
enough information to enable an application to interpret and play the piece of
data without a supporting composition.

Applications can add properties to the Media Descriptor to store their own
information about the data it describes. These properties could contain infor-
mation about the media content, the media quality, or any other information
that an application may choose to record.

The Digital Media Data
The sample data in an OMF Interchange file is contained in a Media Data
object. An Image Data object contains component video data, a JPEG Image
object contains JPEG compressed video data, an AIFC object represents AIFC
data, a WAVE object represents WAVE data, and a TIFF object represents TIFF
data. The Media Data object contains the digital media data and the Mob ID of
the file Source Mob that represents it. A Media Data object describes the

9/18/97 OMF Interchange Specification Version 2.1 25

number of bytes occupied by the data, and it can also include version informa-
tion.

File Source Mobs and Media Data Objects

An application can store digital media data in a file that is separate from
Composition Mobs that reference it. OMF Interchange provides a framework
that includes both recommended and required practices for maintaining refer-
ences to the external digital media data.

Creating a File Source Mob

Once created, the digital media data associated with a file Source Mob is
immutable: it cannot be updated or modified. If it is necessary to change the
digital media data, an application must delete the Mob ID and create a new file
Source Mob.

When the Digital Data Is External

When an OMF Interchange file contains a composition that references external
digital media data, it must contain a copy of the file Source Mob and the
Master Mob. Ideally, the file Source Mob provides hints as to the identity and
location of the file that contains the Media Data object. However, it is the Mob
ID that is the actual link to the data.

When the Digital Data Is Internal

OMF Interchange files containing digital media data must also contain the file
Source Mob and Master Mob that represents this data. Multiple Mobs and the
data they represent can be contained within a single file; for identification, the
Media Data objects contain the Mob ID of the file Source Mob to which they
belong.

Raw Digital Data in a Non-OMF Interchange External File

Situations can arise in which a Composition Mob references digital data in an
external file that is not an OMF Interchange file. An application can create a file
Source Mob and Master Mob for this external data, and it can use its own
method of handling the data.

26 Chapter 2: Media Concepts 9/18/97

Time Management

Composition Mobs usually use a variety of media types from different phys-
ical sources. In order to combine sections of these sources and synchronize
them, a composition must establish a common time unit for editing and
playing all of the different types of media.

Edit Units and Edit Rate
Compositions measure sections of digital media data in abstract units called
Òedit unitsÓ (EUs). An EU is a unit of duration, representing the smallest
interval of time that is meaningful to a composition. The number of EUs per
second is called the Òedit rate.Ó

A Mob Slot in a Composition Mob uses an edit unit that is convenient for the
editing process. When editing video data, for example, an editor edits frames,
based on a certain display rate of frames per second.

But, while the composition describes media data in editable units, the physical
source provides the data in sample units, which are the time duration of media
represented by each sample in the media data file.

Another way of thinking of edit rate is as a ÒvirtualÓ sample rate. This rate may
or may not match the actual sample rate of the digital media. When it does not
match, an OMF Interchange file provides the necessary data for converting
EUs to sample units in order to access the data.

Sample Units and the Sample Rate
Media data consists of digitized samples of physical sources. When you digi-
tize media data, you use a sample rate. The sample rate is the number of
samples per second. The sample rate determines the duration of one sample.

 A file Source Mob stores the sample rate of its digital media data. It also iden-
tifies the digitized section in the physical source by storing a start position
measured in sample units.

9/18/97 OMF Interchange Specification Version 2.1 27

3
The OMF Class Model

OMF uses a class model to describe compositions and media. The OMF class
model specifies how to define the classes and objects used in OMF Interchange
files.

Although this chapter provides a brief introduction to some object-oriented
concepts, it assumes that you have a basic understanding of object-oriented
programming.

Benefits of the OMF Class Model

The OMF Interchange Specification was designed according to an object-
oriented paradigm because this paradigm provides an efficient abstract model
to describe complex structures and relationships. This abstract model allows
OMF to focus on the important data needed to describe media and composi-
tions and to defer the details of the data formats used to store this information
to a lower level of specification. This model provides the following benefits:

¥ It makes it easier to understand the OMF Interchange file format

¥ It makes it easier to write programs that create or read OMF Interchange
files if the programmer chooses to adopt the class model in the program

¥ It allows you to extend OMF Interchange by defining new classes that are
subclasses of the classes defined in this document

28 Chapter 3: The OMF Class Model 9/18/97

Elements of Object-Oriented Systems

This section provides a brief introduction to object-oriented modeling systems.

Note If you are familiar with object-oriented systems or languages, you can skip this
section. If you are not familiar with object-oriented systems or languages, read
this section to get a quick overview that will help you understand the descrip-
tions in the following sections of this specification. Please be aware that this is
an abridged overview and omits fundamental concepts not pertinent to OMF
that are otherwise present in typical object-oriented systems.

Two basic concepts of object-oriented systems are objects and classes. An
object is an individual item that can be a physical object or a model of a phys-
ical object. A class is an abstract description of a set of objects. A class can be
defined in terms of properties and rules that the objects must follow. Once you
have defined a class, an object that belongs to that class is said to be an instance
of the class.

Class Model Terminology
This section defines the terms used in the OMF Interchange class model. Other
object-oriented systems may define these terms differently.

object An object has a collection of properties, each of which has a name and a value.
An object is-an-instance-of of a class.

class A class is a category of objects. The objects have common properties, relation-
ships, and semantics. OMF objects do not have behavior because methods
(code to perform actions on objects) are not stored in the object. Applications
using OMF objects must supply the behavior based on the OMF Interface
Specification.

inheritance Inheritance is the mechanism that defines a relationship between classes where
a subclass inherits the properties, relationships, and semantics of its superclass.

subclass A subclass is a class that is defined as having the properties, relationships, and
semantics as another class, which is called its superclass. The subclass can have
additional properties, relationships, and semantics that are not in the super-
class.

superclass A superclass is a class that has another class, its subclass, that is defined as hav-
ing the properties, relationships, and semantics as the superclass.

is-an-instance-of The is-an-instance-of relationship is a relationship between an object and a
class. An object is-an-instance-of a class if the object is in the set defined by the
class.

is-a-kind-of The is-a-kind-of relationship is a relationship between two classes. If a class has
the properties, relationships, and semantics of a second class, then the first
class is-a-kind-of the second class. The first class is called the subclass and the
second class is the superclass.

9/18/97 OMF Interchange Specification Version 2.1 29

substitutability The rule of substitutability specifies that an object can be used in place of an ob-
ject of any class that is a superclass of its class.

abstract class An abstract class provides a way to refer to a group of classes. An object belong-
ing to an abstract class must also belong to a nonabstract class that is a subclass
of the abstract class.

data model The data model is the high-level description that specifies the logical and se-
mantic meaning. In contrast, the implementation is the lower-level description
of a class that specifies the storage details.

implementation The implementation is the lower-level description of a class that specifies the
storage details. In contrast, the data model is the high-level description of a class
that specifies meaning.

HAS The HAS relationship is between an object and a property value. A value can be
simple, such as a number or a string, or can be another object. If the value is
another object, then that object is owned by the object that HAS it. In the data
model diagrams, the HAS relationship is indicated by a solid line from a prop-
erty to an object. The HAS relationship is also called CONTAINS or OWNS.

HAS-REFERENCE The HAS-REFERENCE relationship is between an object and a property value
that is another object. An object does not own the other object that it has a ref-
erence to, and more than one object can have a reference to a single object. In
the data model diagrams, the HAS-REFERENCE relationship is indicated by a
dashed line from a property to an object. The HAS-REFERENCE relationship is
also called DEPENDS-ON or USES.

set A set is an unordered collection of unique values. This is sometimes used in
class definitions to store multivalued properties.

ordered set An ordered set is an ordered collection of unique values. This is sometimes
used in class definitions to store multivalued properties when ordering is im-
portant.

Example Class Model
The examples in this section are not part of OMFÑthese examples are just
used to introduce object-oriented concepts. The example classes in this section
are part of an object-oriented system designed for a zoo. The Animal class mod-
els any individual live animal. It has the following data model:

Data Model

The class name is Animal and there are three properties: CommonName,
LatinName, and BirthDate. Objects that belong to this class include a tiger
in the zoo, a turtle on a Pacific island, and a fish in the authorÕs aquarium.

Animal

CommonName

LatinName

BirthDate

30 Chapter 3: The OMF Class Model 9/18/97

Objects are not included in the class if they do not have one of the properties
defined for the class or do not follow the rules and description of the class. For
example, a fictional animal is not alive and does not belong to the class. In
addition, if an animalÕs birth date is unknown, it would not belong to the class.
To include animals with unknown birth dates, the BirthDate property could
be specified as optional.

You can define subclasses that include additional properties or usage rules.
For example, you can define the Zoo Resident class for live animals that are
residents of the zoo with the following definition:

Data Model

An object in the Zoo Resident class is also in the Animal class. It has all the
properties of both classes.

The subclass is a means of specializing the original or superclass so that an
object in a subclass is a special case of the superclass. This object has all the
properties of the superclass, as well as added information in its own special-
ized properties.

A property of a class can have a simple value, such as a number or text string,
or it can have another object as its value. For example, in the following
ZooHabitat class, the Residents property has a value that is a set of Zoo Resi-
dents.

Data Model

If the zoo also provided behavior training for pets that are privately owned
and do not belong to or live at the zoo, they could be in the Pet Student class,
which has the following properties:

¥ CommonName

¥ LatinName

¥ BirthDate

Zoo Resident
Is-a-Kind-of Animal

DateAcquired (optional)

IndividualName

Zoo Habitat

Residents

Dimensions

Zoo Resident

Location

9/18/97 OMF Interchange Specification Version 2.1 31

¥ IndividualName

¥ DateAcquired

¥ Owner

¥ TrainingSession

¥ Grade

Since this class has all of the properties that the Zoo Resident class has, one
might be tempted to make the Pet Student class a subclass of it. Although
objects in the Pet Student class have all the properties defined for the Zoo Resi-
dent class, Pet Student should not be defined as a subclass of Zoo Resident
because the objects in the class do not fit the rules and description of the Zoo
Resident class. They are not residents of the zoo.

The Pet Student class should be defined as a subclass of the Animal class with
the following definition:

Data Model

When defining a new class, you can reuse the name of a property in another
class; reusing the name does not imply any inheritance.

OMF Interchange Class Model

OMF defines a set of classes. A class specifies a kind of object by defining its
use and properties. The class definition does not itself appear in the OMF
Interchange file; only objects that are instances of the class appear in the file.

OMF objects consist of a series of properties. An object stores information by
having a property for that piece of information. Each property has a name and
a value. The property value has a data type. The value of a property can be a
simple data value or another object. For example, the Media File Descriptor
(MDFL) object contains a SampleRate property that specifies the number of
samples per second of the digital media data.

Pet Student
Is-a-Kind-of Animal

DateAcquired (optional)

IndividualName

Owner

TrainingSession

Grade

32 Chapter 3: The OMF Class Model 9/18/97

Class Hierarchy
OMF Interchange uses a class hierarchy to group objects that can be used in
the same way and to define common properties through inheritance. Classes
inherit the properties of classes above them in the hierarchy.

The hierarchy represents classes as a means of specializing superclasses, so
that an object in a subclass lower in the hierarchy is a special case of the super-
class. This object has all the properties of the superclass, as well as added infor-
mation in its own specialized properties. The hierarchy makes it easier to
define new classes and to create rules about how objects can be used.

A particular object has the required properties for its class. This includes all the
required properties of its superclass and the required properties for each
preceding superclass back to the root of the hierarchy.

Figure 2 illustrates the OMF class hierarchy. Appendix F contains a fold-out
version of this illustration. Table 2 lists the four-character Class IDs shown in
the class hierarchy diagrams and the corresponding full class name.

The names of the properties include the Class ID of the class that defines them.
When a subclass inherits the properties from a superclass, the property name
retains the superclass ID.

For example, both the Source Clip (SCLP) and Effect Invocation (EFFE) classes
are subclasses of the Segment (SEGM) class, which is itself a subclass of the
Component (CPNT) class. This means that anywhere a Segment is allowed,
such as in a Sequence (SEQU) object, you can use a Source Clip or Effect Invo-
cation object. Since the Component class has the OMFI:CPNT:Length and
OMFI:CPNT:DataKind required properties, all Source Clip and Effect Invoca-
tion objects will have these properties.

Note Some class definitions specify rules restricting substitutability. For example,
the Source Mob and Master Mob classes have rules that state that Effect Invo-
cations are not allowed within them.

How Classes Are Defined in OMF
Classes are defined in this specification with a data model and an implemen-
tation. The data model specifies the superclass and the properties that contain
the specialized information for the class. The implementation lists the
complete set of properties (including those that are inherited). The implemen-
tation definition provides a description of each property and specifies the data
type of its value.

All classes in the OMF class hierarchy are subclasses of the OMFI Object
(OOBJ) class. The OMFI Object class has one property:
OMFI:OOBJ:ObjClass. The value of this property for all OMFI objects is the
four-character class ID of the class of the object. The ObjClass value is the
class ID of the most specialized class of which the object is an instance. To find

9/18/97 OMF Interchange Specification Version 2.1 33

Figure 2: OMF Class Hierarchy

OOBJ

CPNT

CTLP
DDEF
EDEF
ESLT
HEAD
IDNT
LOCR

MSLT
TRKD

SEGM

JPEG

CDCI
RGBA

TRAN

MDAT

DOSL
MACL
NETL
TXTL
UNXL
WINL

AIFC
IDAT

TIFF
WAVE

AIFD
DIDD

TIFD
WAVD

MDES

MDFL

MDFM
MDTP

MOBJ

CMOB
MMOB
SMOB

CLSD

ATTB
ATTR

CVAL
ECCP
ERAT
EFFE
FILL
MGRP
NEST
PDWN
SREF
SLCT
SEQU
SCLP
TCCP
VVAL

34 Chapter 3: The OMF Class Model 9/18/97

Table 2: Class IDs and Full Class Names

Class ID Class Name
AIFC AIFC Audio Data
AIFD AIFC Audio Descriptor
CDCI Color Difference Component Image Descriptor
CLSD Class Dictionary
CMOB Composition Mob
CPNT Component (abstract)
CTLP Control Point
CVAL Constant Value
DDEF Data Definition
DIDD Digital Image Descriptor (abstract)
DOSL DOS Locator
ECCP Edge Code
EDEF Effect Definition
EFFE Effect Invocation
ERAT Edit Rate Converter
ESLT Effect Slot
FILL Filler
HEAD Header
IDAT Image Data
JPEG JPEG Image Data
LOCR Locator (abstract)
MACL MAC Locator
MDAT Media Data (abstract)
MDES Media Descriptor (abstract)
MDFL Media File Descriptor (abstract)
MDFM Media Film Descriptor
MDTP Media Tape Descriptor
MGRP Media Group
MMOB Master Mob
MOBJ Mob (abstract)
MSLT Mob Slot
NEST Nested Scope
OOBJ OMFI Object (abstract)
RGBA RBGA Component Image Descriptor
SCLP Source Clip
SEGM Segment (abstract)
SEQU Sequence
SLCT Selector
SMOB Source Mob
SREF Scope Reference
TCCP Timecode
TIFD TIFF Image Descriptor
TIFF TIFF Image Data
TRAN Transition
TRKD Track Description
TXTL Text Locator
UNXL UNIX Locator
VVAL Varying Value
WAVD WAVE Audio Descriptor
WAVE WAVE Audio Data
WINL Windows Locator

9/18/97 OMF Interchange Specification Version 2.1 35

out the class of any object in an OMFI file, you can examine the value of the
ObjClass property.

Data Model and Implementation

The descriptions of the properties in the data model and the implementation
are similar, but there are important differences. One difference is that the
implementation includes all properties stored with the object, and the data
model does not list the properties inherited from the superclass. Another
difference is that the data model and implementation contain different infor-
mation for each property.

For example, the data model and implementation for the OMFI Object class
are as follows:

Data Model

Implementation

The implementation shows the full property and type names and lists the class
ID, but otherwise contains the same information as the data model.

For properties whose value is another object, the data model and the imple-
mentation provide different information. For example, the following are the
Effect Invocation data model and implementation are as follows:

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is OOBJ.

OMFI Object Class (OOBJ)

ObjClass

Abstract Class

36 Chapter 3: The OMF Class Model 9/18/97

Data Model

Implementation

The data model illustrates a value that is another object by using a line from
the property name to a box representing the other object. A solid line indicates
that the property HAS the object as a value. A dashed line indicates that the
property HAS-REFERENCE to the object. A filled-in black circle at the end of the

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is EFFE.

OMFI:CPNT:DataKind omfi:ObjRef Specifies the data kind generated by the effect.
Media effects typically have a data kind of
omfi:data:Picture, omfi:data:Pic-
tureWithMatte, omfi:data:Sound, or
omfi:data:StereoSound.

OMFI:CPNT:Length omfi:Int32 Specifies the duration of the effect in edit units.

OMFI:EFFE:EffectKind omfi:ObjRef Identifies the kind of effect with an Effect Defi-
nition, which specifies the unique name of the
effect.

OMFI:EFFE:EffectSlots omfi:ObjRefArray Specifies the Effect Slots that contain the input
media Segments and the effect control argu-
ment Segments. Optional.

OMFI:EFFE:BypassOverride omfi:ArgIDType Specifies the ArgID value of the input
media Effect Slot to be substituted for the
Effect Invocation if the application cannot
generate the effect. Overrides the bypass
specified in the Effect Definition.
Optional.

OMFI:EFFE:FinalRendering omfi:ObjRef Specifies a Source Clip that contains a
rendered version of the effect intended for
final use. Optional.

OMFI:EFFE:WorkingRendering omfi:ObjRef Specifies a Source Clip that contains a
rendered version of the effect intended for
viewing during editing but not intended
for final use. Optional.

Effect Invocation Class (EFFE)

IS-A-KIND-OF Segment

EffectKind

EffectSlots Effect Slot (ESLT)

BypassOverride

FinalRendering

WorkingRendering

Effect Definition (EDEF)

Source Clip (SCLP)

Source Clip (SCLP)

9/18/97 OMF Interchange Specification Version 2.1 37

line indicates that the property HAS a set of the objects. In most cases, the HAS-
REFERENCE relationship has the same implementation as the HAS relation-
ship (using an omfi:ObjRef), but a few HAS-REFERENCE relationships are
implemented with other mechanisms.

Types
OMF has two sets of types: the data type, which specifies the type of property
values, and the data kind, which specifies the type of media represented by
objects of the Component class. The implementation section describing a class
lists the data type of each property that the class includes. Objects that belong
to either the Component or Control Point class have a property that identifies
the data kind of the object. Data kind is used to describe time-varying values
produced by Components that describe media and Components that supply
control arguments to Effect Invocations.

Data Type

The data type is identified by a globally unique text string that starts with the
prefix omfi: and identifies the type. Table 3 lists the data types. See Appendix
B for a complete explanation of the data types.

Table 3: Data Types

Data Type Explanation

omfi:Boolean Specifies either True or False.

omfi:Char Specifies a single character value.

omfi:ClassID Specifies the 4-character class identification.

omfi:ColorSitingType Specifies how to compute subsampled values.

omfi:CompCodeArray Specifies the order in which the RGBA compo-
nents are stored.

omfi:CompSizeArray Specifies the number of bits reserved for each
component.

omfi:DataValue Specifies media data or a block of data whose
type is specified by a data kind.

omfi:EdgeType Specifies the kind of film edge code.

omfi:EditHintType Specifies hints to be used when editing Control
Points.

omfi:FadeType Specifies the kind of fade.

omfi:FilmType Specifies the format of the film.

omfi:InterpKind Specifies the method to use when interpolating
between Control Points.

38 Chapter 3: The OMF Class Model 9/18/97

omfi:Int8 Specifies an 8-bit integer value.

omfi:Int16 Specifies a 16-bit integer value.

omfi:Int32 Specifies a 32-bit integer value.

omfi:Int32Array Specifies an array of 32-bit integer values.

omfi:JPEGTableIDType Specifies the JPEG tables used in compressing
TIFF data.

omfi:LayoutType Specifies whether the image data is interleaved.

omfi:Length32 Specifies the length of a Component with a 32-
bit integer value.

omfi:Length64 Specifies the length of a Component with a 64-
bit integer value.

omfi:ObjRef Specifies another object.

omfi:ObjRefArray Specifies a set of other objects.

omfi:Position32 Specifies an offset into a Component with a 32-
bit integer value.

omfi:Position64 Specifies an offset into a Component with a 64-
bit integer value.

omfi:Rational Specifies a rational number by means of an
Int32 numerator and an Int32 denominator.

omfi:String Specifies a string of characters.

omfi:TapeCaseType Specifies the physical size and container of the
videotape or audio tape.

omfi:TapeFormatType Specifies the format used to store media on the
videotape or audio tape.

omfi:TimeStamp Specifies a date and time.

omfi:UID Specifies a Mob ID.

omfi:UInt8 Specifies an unsigned 8-bit integer.

omfi:UInt16 Specifies an unsigned 16-bit integer.

omfi:UInt32 Specifies an unsigned 32-bit integer.

omfi:UniqueName Specifies a qualified name which conforms to
the OMFI naming conventions.

omfi:VersionType Specifies a 2-byte unsigned OMFI version num-
ber.

omfi:VideoSignalType Specifies the type of video signal on the video-
tape.

Table 3: Data Types (Continued)

Data Type Explanation

9/18/97 OMF Interchange Specification Version 2.1 39

The Rational type can accurately represent the video edit rate of 29.97
frames per second as the numerator value 2997 and the denominator value
100. This format avoids problems with round-off or imprecision for
commonly used values in video and audio applications, and it does not bias
the format toward any particular native format.

Applications use timestamps to record the current time, as when marking the
last time a file is modified. OMF Interchange uses a timestamp format that
allows applications to use any timestamp, whether it is local, GMT, or other.
But, it makes it possible for applications to mark a timestamp as GMT in order
to guarantee the ability to exchange files with a common reference to time.

Some properties can have one of two data types. These properties specify the
length of a Component or an offset from the beginning of the Component.
Properties specifying a length can have either the omfi:Length32 or
omfi:Length64 data types and properties specifying an offset can have
either the omfi:Position32 or omfi:Position64 data type. The 64-bit
types allow OMF files to be larger than the maximum number of bytes that can
be specified in 32 bits, which is approximately 4 gigabytes. Applications that
cannot generate files that require the 64-bit types, may choose to use the 32-bit
types to reduce the disk storage required by an OMF file.

Data Kind

The data kind is specified by a Data Definition object, which contains the
globally unique text string of the data kind. The data kinds defined in this
document start with the prefix omfi:data:. The meaning, internal format,
and size of the data kind are not described in the Data Definition object. This
information is provided in this document or in the documentation provided
with registered or private media formats and Effect Definitions. Table 4 lists the
data kinds. See Appendix B for a complete explanation.

Table 4: Data Kinds

Data Kind Explanation

omfi:data:Boolean Specifies either True or False.

omfi:data:Char Specifies a single character value.

omfi:data:Color Specifies a ColorSpace followed by a
series of Rational, with one Rational for
each color component in the color
space.

omfi:data:ColorSpace Specifies the color space used to
describe color.

omfi:data:DirectionCode Specifies one of 8 directions in a 2-
dimensional plane.

omfi:data:Distance Specifies a distance relative to the dis-
play dimensions of the image.

40 Chapter 3: The OMF Class Model 9/18/97

Introduction to OMF Classes

This section contains a brief summary of some frequently used OMF classes.
The complete list of classes and the complete description for each is in
Appendix A.

Mob and Header Classes
¥ Composition Mob (CMOB)Ñdescribes the editing information and media

that constitute a complete media production.

¥ Master Mob (MMOB)Ñprovides an indirect way for a Composition Mob
to reference a Source Mob and provides a way to synchronize data in mul-

omfi:data:Edgecode Specifies a stream of film edge code val-
ues.

omfi:data:Int32 Specifies a signed 32-bit integer.

omfi:data:Matte Specifies a stream of media that con-
tains an image of alpha values.

omfi:data:Picture Specifies a stream of media that con-
tains image data.

omfi:data:PictureWithMatte Specifies a stream of media that con-
tains image data and a matte.

omfi:data:Point Specifies a point relative to the display
dimensions of the image.

omfi:data:Polynomial Specifies a polynomial value.

omfi:data:Rational Specifies a rational number by means of
an Int32 numerator and an Int32
denominator.

omfi:data:Sound Specifies a stream of media that con-
tains a single channel of sound.

omfi:data:StereoSound Specifies a stream of media that con-
tains two stereo channels of sound.

omfi:data:String Specifies a string of characters.

omfi:data:Timecode Specifies a stream of tape timecode val-
ues.

omfi:data:UInt8 Specifies an unsigned 8-bit integer.

Table 4: Data Kinds (Continued)

Data Kind Explanation

9/18/97 OMF Interchange Specification Version 2.1 41

tiple Source Mobs.

¥ Source Mob (SMOB)Ñdescribes media data; can be digital media data
that is accessible to OMF (in which case it is a file Source Mob) or other me-
dia data stored in videotape, audio tape, film, or some other storage for-
mat.

¥ Header (HEAD)Ñspecifies OMF Interchange file-wide information; there
is exactly one Header object in each OMFI file.

¥ Class Dictionary Entry (CLSD)Ñextends the OMFI class hierarchy with a
new class.

¥ Data Definition (DDEF)Ñidentifies a globally defined data kind and so it
can be referenced within an OMFI file.

¥ Effect Definition (EDEF)Ñidentifies an effect so it can be referenced within
an OMFI file.

Classes Used in All Mobs
¥ Mob Slot (MSLT)Ñspecifies a track of media or other time-varying infor-

mation.

¥ Track Description (TRKD)Ñprovides the information needed to access a
Mob Slot from outside the Mob.

¥ Source Clip (SCLP)Ñspecifies a playable segment of media and identifies
the Mob that describes the source of the media data.

¥ SequenceÑcombines a set of Components into a a single segment. The Se-
quence object is the basic mechanism for combining sections of media to
be played in a sequential manner in an OMFI file.

¥ Filler (FILL)Ñspecifies an unknown or unused section of media.

Classes Used in Composition Mobs
¥ Transition (TRAN)Ñspecifies an effect that controls the transition between

one piece of media and another within a Sequence.

¥ Effect Invocation (EFFE)Ñspecifies an effect to be used in a Composition
Mob; specifies kind of effect, input media slots and control arguments.

¥ Effect Slot (ESLT)Ñspecifies the input media Segments and control argu-
ments for an Effect Invocation.

¥ Constant Value (CVAL)Ñis typically used in Effect Invocations to supply
control argument values.

¥ Varying Value (VVAL)Ñis typically used in Effect Invocations to supply
control argument values.

¥ Nested Scope (NEST)Ñdefines a scope of slots that can reference each oth-
er; the Nested Scope object produces the values of the last slot within it.
Typically, Nested Scopes are used to enable layering or to allow a compo-
nent to be shared.

¥ Scope Reference (SREF)Ñrefers to a section in another Mob Slot or Nested
Scope slot.

42 Chapter 3: The OMF Class Model 9/18/97

¥ Selector (SLCT)Ñspecifies a selected Segment and preserves references to
some alternative Segments that were available during the editing session.
Typically, a Selector object is used to present alternative presentations of
the same content, such as alternate camera angles of the same scene.

¥ Edit Rate Converter (ERAT)Ñconverts part of a segment in one edit rate
into a segment in another edit rate.

Classes Used in Master Mobs
¥ Media Group (MGRP)Ñprovides alternative digital media representa-

tions.

Classes Used in Source Mobs
¥ Media Descriptor Classes (MDFM, MDTP)Ñdescribes physical media

sources such as videotape, film, or audio tape.

¥ Media File Descriptor Classes (AIFD, CDCI, RGBA, TIFD, and WAVD)Ñ
describe sampled media sources.

¥ DOS, Mac, Text, UNIX, and Windows Locators (DOSL, MACL, TXTL, UN-
XL, WINL)Ñprovide information to help find a file that contains the media
data.

¥ Timecode (TCCP)Ñstores videotape or audio tape timecode information
(also used in Composition Mobs).

¥ Edge Code (ECCP)Ñstores film edge code information.

Classes for Digital Media Data
¥ Image Data (IDAT)Ñcontains sampled image media in RGBA Component

or Color Difference Component Image format.

¥ JPEG Image Data (JPEG)Ñcontains sampled image media that has been
compressed using the JPEG algorithm.

¥ Audio Data Classes (AIFC and WAVE)Ñcontain sampled audio media in
the Audio Interchange Format (AIFC) or the RIFF Waveform (WAVE) for-
mat.

¥ TIFF Image Class (TIFF)Ñcontains sampled image media in the TIFF for-
mat.

9/18/97 OMF Interchange Specification Version 2.1 43

4
Mobs and the Header Object

This chapter describes Mobs and the OMF Header (HEAD) object. Mobs
describe compositions and media. The Header provides the starting point to
access objects in the OMFI file.

This chapter contains the following major sections:

¥ Mobs

¥ Header Object

¥ From Header to MediaÑan example OMF Interchange file showing the
way to get from the Header object to the Composition Mob and the media
that it uses

Mobs

A Mob is an OMF object that describes editing information or media by means
of the kinds of objects it contains, the tree structure that connects these objects,
and the property values within each object.There are several different kinds of
Mobs used in OMF Interchange files, but all Mobs describe time-varying
media information.

Mobs are the basic units of identity in the OMF world. They have a globally
unique ID, and they are the only elements of an OMFI file that can be refer-
enced from outside the file.

There are the following kinds of Mobs:

¥ Composition Mobs (CMOB)Ñdescribe editing information.

¥ Master Mobs (MMOB)Ñsynchronize Source Mobs and provide a layer of

44 Chapter 4: Mobs and the Header Object 9/18/97

indirection to make it easy to change Source Mobs without changing Com-
position Mobs that reference them.

¥ Source Mobs (SMOB)Ñdescribe media. There are two kinds of Source
Mobs:

❑ File Source MobsÑdescribe digital media data stored in files.

❑ Physical Source MobsÑdescribe media such as videotape, audio tape,
and film.

A typical OMF Interchange file consists of one Composition Mob and the
Master Mobs, Source Mobs, and media data used by the Composition Mob.
However, there can be more than one Composition Mob in an OMFI file.
Figure 3 illustrates an OMF Interchange file.

Mobs can have very simple or very complex structures. Typically, Master
Mobs and Source Mobs have simple structures and Composition Mobs are
more complex.

Figure 4 illustrates the structure of a Composition Mob and Figure 5 illustrates
the structure of a file Source Mob. The meanings of the objects within the Mobs
are described later in this document.

Figure 3: OMF Interchange File with Mobs and Digital Media Data

OMF Interchange File

Header

Master Mobs

Source Mobs

Digital Media Data Objects

Composition Mob

9/18/97 OMF Interchange Specification Version 2.1 45

Mobs and Immutable Media Data
Since Mobs can be referenced from outside the OMFI file containing them, it
is important to avoid making any changes that invalidate these external refer-
ences. In general, you can change Composition Mobs and Master Mobs but
you are not allowed to change the Media Data associated with a file Source
Mob. If the digital media data is changed in any way, you must create a new
file Source Mob with a new MobID.

If you are revising the contents of a Composition Mob or Master Mob and
intend the new contents to replace all existing copies of the Mob, you should
use the same MobID. If you are revising the contents of the Mob but want the
existing copy of the Mob to remain valid, you must create a new Mob with a
new MobID and you must not reuse the MobID of the existing Mob.

Figure 4: Structure Within a Composition Mob

Figure 5: Structure Within a File Mob

SEQU
MSLT

TRKD

CMOB

SCLP

SEQU
MSLT

TRKD

SCLP

SEQU
MSLT

TRKD

SCLP

TRKD

MSLT

RGBA

SMOB

SCLP

46 Chapter 4: Mobs and the Header Object 9/18/97

Mob References
One Mob refers to another by having a Source Clip that specifies the second
MobÕs identifier. A Mob identifier, called a MobID, is a unique identification
number assigned to a mob when it is first created. A Composition Mob can
contain Source Clips that refer to many different Master Mobs. More than one
Source Clip in a Composition Mob can refer to the same Master Mob, and
Source Clips in different Composition Mobs can refer to the same Master Mob.

Mob Chain to Sources
In a typical OMF Interchange file, a Source Clip object in the Composition Mob
points to a chain of Mobs. Following this chain enables you to get to the digital
media data and to find out about the original source media. Figure 6 follows
the Mob links from a Source Clip in a composition to the Master Mob, file
Source Mob, and finally the physical Source Mobs describing the original
media.

Figure 6: Mob Links from Composition to Physical Source

Logical MobsSEQU
MSLT

TRKD

CMOB

SCLP

SEQU
MSLT

TRKD

SCLP

SEQU
MSLT

TRKD

SCLP

Composition Mob

Header

Master Mobs

Source Mobs

Digital Media Data Objects

OMF Interchange File

Video File
Source Mob

Film MobVideotape MobMaster Mob

9/18/97 OMF Interchange Specification Version 2.1 47

File Source Mobs and Media Data
A file Source Mob describes the digital media data and is used to access it, but
does not contain the digital media data. OMF separates the description and the
storage of the digital media data for the following reasons:

¥ Digital media data can be very large and may need to be stored in a sepa-
rate file, on a different disk, over a network, or temporarily deleted to free
disk space. Having the mob separate from the media data provides more
flexible storage options while still allowing the composition to use the
same access mechanism.

¥ Digital media data may be used in more than one Compositon Mob and
these Composition Mobs can be in different OMF Interchange files. Sepa-
rating the Source Mob from the digital media data means that only the in-
formation in the Source Mob needs to be duplicated in OMF Interchange
files. Only one copy of the Media Data is needed.

The digital media data referenced in a Composition Mob can be stored in three
ways:

1. In a Media Data object in the same OMFI file as the Composition Mob

2. In a Media Data object in a different OMFI file

3. In a raw data file

The MobID connects the file Source mob to the digital media data when the
digital media data is stored in an OMFI file. The file Source Mob and its corre-
sponding Media Data object have the same MobID value. This implies that
there is always one and only one file Source Mob for each Media Data object,
though there may be more than one copy of the file Source Mob.

48 Chapter 4: Mobs and the Header Object 9/18/97

Figure 7 illustrates how MobID is used to match the Media Data object with
the file Source Mob.

A raw data file contains only digital media data; it does not contain any OMFI
objects or structures. Storing digital data in a raw data file allows you to access
the data both from applications that support OMF and those that do not.
However, since there is no MobID stored with raw media data, it is difficult to
identify a raw media data file if the file has been moved or renamed.

If a Composition Mob references Media Data in another OMFI file, the OMFI
file containing the Composition Mob must contain a copy of the Master Mob
and the file Source Mob. This copy can have Locator data that helps an appli-
cation find the OMFI file containing the Media Data. The OMFI file containing
the Media Data also must have a copy of the Master Mob and file Source Mob.

If a Composition Mob references digital media data stored in a raw data file,
the OMFI file containing the Composition Mob contains a file Source Mob for
the digital media data but does not contain a Media Data object. The file Source
Mob contains Locator data that helps an application find the raw data file. If
more than one Composition Mob references the same raw data file, they
should use the same file Source Mob and Master Mob.

Figure 7: MobID Connection between File Source Mob and Media Data Object

Head

Source Mobs

Digital Media Data Objects

OMF Interchange File

Composition Mob Master Mobs

Header

Mob ID 6-4-7

IDAT Image Data Object

MediaData

Mobs

Source Mob

TRKD

MSLT

RGBA

SMOB

SCLP

9/18/97 OMF Interchange Specification Version 2.1 49

The Header Object (HEAD)

Each OMF Interchange file must have a single Header object (HEAD). The
Header defines file-wide information and provides indexes for efficient access
to the data in the file. It can also define extensions to the OMF classes, which
can then be used in the OMFI file. The Header data refers to the file as a whole.
Examples of file-wide information that are defined in the Header object are the
byte order and the OMF Interchange Framework version number.

The Header object provides the starting point for accessing the information in
the file. It lists Mobs and Media Data objects. In addition, it lists the primary
MobsÑ primary Mobs are the Mobs that the file is intending to communicate.

Byte Order
The value of ByteOrder property is either’MM’ (hexadecimal 0x4d4d) for
big-endian byte order, which is used in some architectures such as the
Motorola¨ 680x0 architecture, or ’II’ (hexadecimal 0x4949) for little-
endian byte order, which is used in some architectures, such as the Intel¨ x86
architecture.

Big-endian and little-endian refer to whether the most or least significant byte
is stored first. In the big-endian byte order, the most significant byte is stored
first (at the address specified, which is the lowest address of the series of bytes
that comprise the value). In the little-endian byte order, the least significant
byte is stored first. In both cases, bytes are stored with the most significant bit
first.

Modification Date
The value of LastModified represents the last time the file was modified.

Class Dictionary Property
The ClassDictionary property defines file-wide extensions to the OMFI
class hierarchy. It consists of an array of references to class dictionary objects.
These objects are not required to define the standard class dictionary; they are
required only for any extensions an application is adding for public or private
objects.

The class dictionary property of the header object provides a mechanism for
adding object classes to the standard set. Compliance with the standard objects
is assumed for all applications and no class dictionary property is required for
it. This property enables OMF Interchange readers to handle unknown objects.

50 Chapter 4: Mobs and the Header Object 9/18/97

Mob Index
Since references to Mobs are by MobID and not by object references, you need
the Mobs property to have a list of all the Mobs in the file. This list contains the
object references for all the Mobs in the OMFI file. You can examine each Mob
to find its MobID and whether it is a Composition Mob, Master Mob, or Source
Mob.

The PrimaryMobs index lists the mobs that you should examine first. If the
OMFI file represents a single composition, the Composition Mob for it should
be in the PrimaryMobs index. In addition, you may wish to include any other
Mobs that you intend to be referenced independently by other Mobs.

The primary Mobs are the Mobs that the file is intending to communicate; all
other Mobs are present only because they are dependencies of the primary
Mobs. If an OMFI file has no primary Mobs, it is providing a repository for its
Mobs but is not specifying which one should be used.

Media Data Index
Since Mobs are associated with Media Data objects by matching MobID values
and not by object references, you need the MediaData property to be able to
access all of the Media Data objects in the file. You can examine each Media
Data object to find its MobID and to determine the subclass of Media Data that
it belongs to.

Definition Objects
This index lists all Data Definition and Effect Definition objects in the OMFI file.
Although these objects are referenced by other OMFI objects, they do not be-
long to any tree structure. This index is provided to improve efficiency in han-
dling these definition objects.

Version Number
The OMFI:Version property specifies the version of OMF Interchange used
to create the file. In the data type for this property the first byte indicates the
major revision number. The second byte indicates the minor revision number.
Any OMF Interchange file conforming to this version of the OMF Interchange
specification must have a VersionNumber with the first byte having a value
of 2.

Identification List
The omfi:HEAD:IdentificationList property identifies the application
that created the OMF file and, optionally, other applications that have modi-

9/18/97 OMF Interchange Specification Version 2.1 51

fied the OMF file. The identification list consists of an ordered set of Identifica-
tion (IDNT) objects. The first Identification object describes the application that
created the OMF file. Any following Identification objects describe applica-
tions that have modified the OMF file.

Mob Requirements for File Interchange
OMF Interchange files that are used for interchange purposes must include a
complete set of Mobs. In other words, the file must include all the Mobs that
are referenced in the file. The Media Data objects, which contain the actual
media data, may be in external OMF Interchange files. Ideally, the file Source
Mob provides location hints for finding external files.

From HEAD to Media—an Overview

This section provides an example of an OMF Interchange file to help you
understand the overall structure of OMFI files. The example OMFI file
described in this section contains the following objects:

¥ Header

¥ Composition Mob

¥ Master Mobs

¥ File Source Mobs

¥ Physical Source Mobs

¥ Media Data objects

The topics of this sections describe:

¥ Starting with the Header object to find the Mobs and Media Data objects

¥ Examining the Composition Mob and finding the Master Mob for a Source
Clip

¥ Examining the Master Mob and then finding the corresponding file Source
Mob

¥ Finding the Media Data object associated with the file Source Mob

¥ Following the links to the original Source Mobs

Starting with the Header Object
When you are importing or reading an OMF Interchange file, you first need to
examine the data stored in the Header object. You use the Header object to find
the Mobs and Media Data objects.

Figure 8 illustrates a Header object.

52 Chapter 4: Mobs and the Header Object 9/18/97

The Header object has:

¥ A set of Mobs

¥ A set of Media Data objects

¥ References to a set of primary Mobs

¥ A set of OMFI Objects (OOBJ) that are Data Definition or Effect Definition
objects (not shown in illustration)

MobID Match Between File Mob and Digital Data

Each Mob and Media Data object has a MobID. The MobIDs, which are triplets
of 32-bit integers, are displayed in the example as three integers separated by
hyphens. The values of the integers in the example are not meaningful except
to distinguish one MobID from another.

Figure 8: Header Object

MediaData

DefinitionObjects

HEAD

ByteOrder 'MM'
Last Modified May-27-95:09:30
Version 2.0

PrimaryMobs

Mobs

CMOB
MobID 6-5-5
. . .

MMOB
MobID 6-2-3
. . .

SMOB
MobID 6-4-7
. . .

AIFC
MobID 6-3-1
AudioData

AIFC
MobID 6-1-6
AudioData

IDAT
MobID 6-4-7
ImageData

IDAT
MobID 6-5-8
ImageData

9/18/97 OMF Interchange Specification Version 2.1 53

There is one Source Mob that has the same MobID as each digital Media Data
object in the OMFI file. A file Source Mob is associated with the digital Media
Data object that shares its MobID. For example, the Mob with the MobID 6-4-7
is the file Source Mob that corresponds to the Image Data (IDAT) object with
the same MobID.

Examining the Composition Mob
By examining the structure of a Composition Mob and following the Mob
links to the sources, you obtain access to all the information needed to play the
Composition Mob.

Figure 9 shows the structure of the Composition Mob and shows the objects
contained within it.

The Slots property in the Composition Mob has an ordered set of Mob Slot
objects. These Mob Slots describe tracks of media or other time-varying infor-
mation. In this example, they describe one video track and two audio tracks.

Within each Mob Slot , the Segment property has a Segment object. In this
example as in most Composition Mobs, the Segment property has a
Sequence Object, which contains a series of Components that are to be played
sequentially. (The Sequence class is a subclass of Segment.) In the video Mob
Slot in the example, there are four Source Clips in the Sequence, and in the two
audio Mob Slots,there are two Source Clips in each Sequence.

In the Source Clip object, the SourceID property identifies the Master Mob
that is used to find the media; the SourceTrackID property, identifies the
Mob Slot within the Master Mob; and the Length and StartTime properties
identify the section within the Mob SlotÕs Segment.

The first video Source Clip specifies the SourceID 6-2-3. This is the MobID of a
Master Mob in the OMFI file.

Through the Master Mob to the File Mob
In this example, the first video Source Clip in the Composition Mob references
the Master Mob that describes the media digitized from a section of a single
videotape. When this section was digitized, there were three Media Data
objects created: one for the video media and one for each of the two stereo
audio channels. The Master Mob describes the synchronization of these three
Media Data objects.

In addition to grouping these data objects, the Master Mob isolates the
Composition Mob from any changes in the digitized media data. For example,
you may need to change the data by redigitizing the original source media to
include more data from the beginning or end of the section or to use a different
compression to increase the quality of the image or to reduce the disk storage
required. In order to ensure the integrity of compositions, OMF requires that
you cannot reuse the same MobID for the new sampled media as for the

54 Chapter 4: Mobs and the Header Object 9/18/97

Figure 9: Composition Mob with Property Values

SCLP
DataKind
Length 300
SourceID 6-4-7
SourceTrackID 2
StartTime 850

SCLP
DataKind
Length 200
SourceID 10-1-290
SourceTrackID 1
StartTime 920

SCLP
DataKind
Length 400
SourceID 6-2-3
SourceTrackID 1
StartTime 400

SCLP
DataKind
Length 100
SourceID 10-1-930
SourceTrackID 1
StartTime 60

SCLP
DataKind
Length 80
SourceID 10-1-930
SourceTrackID 1
StartTime 100

SCLP
DataKind
Length 300
SourceID 6-6-0
SourceTrackID 1
StartTime 940

CMOB

Slots MSLT

Segment

EditRate 2997/100

TrackDesc
SEQU

DataKind

Length 600
Components

TRKD
Origin 0
TrackID 1
TrackName ‘V1’

MobID 6-5-5

...

MSLT

Segment

EditRate 2997/100

TrackDesc

MSLT

Segment

EditRate 2997/100

TrackDesc

SEQU

DataKind

Length 600
Components

SEQU

DataKind

Length 600
Components

TRKD
Origin 0
TrackID 2
TrackName ‘A1’

TRKD
Origin 0
TrackID 3
TrackName ‘A2’

SCLP
DataKind
Length 300
SourceID 6-2-3
SourceTrackID 2
StartTime 400

DDEF
DataKindID

omfi:data:Picture

DDEF
DataKindID

omfi:data:Sound

SCLP
DataKind
Length 120
SourceID 6-2-3
SourceTrackID 1
StartTime 400

9/18/97 OMF Interchange Specification Version 2.1 55

previous version. You must create a new file Source Mob with a new MobID.
You must then update all references to the file Source Mob to the new MobID.
OMF requires that the Composition Mob always access file Source Mobs
through Master Mobs to minimize the number of updates required. Even if
there are many Source Clips in a Composition Mob that use media from a
redigitized Media Data object only the Master Mob needs to be updated.

56 Chapter 4: Mobs and the Header Object 9/18/97

Figure 10 shows the contents of a Master Mob from the example OMFI file.

Figure 10: Source Clip to Master Mob

MMOB

Slots MSLT

Segment

EditRate 2997/100

TrackDesc

TRKD
Origin 0
TrackID 1
TrackName ‘V1’

MobID 6-2-3

...

MSLT

Segment

EditRate 2997/100

TrackDesc

MSLT

Segment

EditRate 2997/100

TrackDesc

TRKD
Origin 0
TrackID 2
TrackName ‘A1’

TRKD
Origin 0
TrackID 3
TrackName ‘A2’

SCLP
DataKind
Length 5400
SourceID 6-3-1
SourceTrackID 1
StartTime 0

SCLP
DataKind
Length 5400
SourceID 6-1-6
SourceTrackID 2
StartTime 0

SCLP
DataKind
Length 5400
SourceID 6-4-7
SourceTrackID 1
StartTime 0

SCLP
DataKind
Length 120
SourceID 6-2-3
SourceTrackID 1
StartTime 400

DDEF

DataKindID
omfi:data:Picture

DDEF

DataKindID
omfi:data:Sound

CMOB
Composition Mob

Master Mob

9/18/97 OMF Interchange Specification Version 2.1 57

There are three Mob Slots in the Master Mobs, one video and two audio. The
Source Clip in the Composition Mob identifies the first Mob Slot in this Master
Mob because it has the SourceTrackID 1.

Each Mob Slot in the Master Mob contains a single Source Clip. Each Source
Clip specifies the MobID of the file Source Mob that describes the Media Data
object from the videotape. For example, the Source Clip in the first Mob Slot
specifies the file Source Mob with the MobID 6-4-7.

This connection from a Source Clip in one mob to a Mob Slot in another mob
is the mechanism that is used to link mobs.

File Mob to Data Object
Figure 11 shows the contents of the Source Mob and its associated Media Data
object that the Source Clip in the Master Mob represents. The Source Mob has
one Mob Slot, which contains one Source Clip. The Source Clip shows how
long the media data is and specifies its edit rate. In addition, it identifies the
Source Mob that describes the previous generation of media.

The file Source Mob MediaDescriptor property describes the format of the
media stored in the Media Data object or in the raw data file. In this example,
it has an RGBA Component Image Descriptor. The Media Descriptor object
specifies whether the digital media data is stored in an OMFI file or a raw data
file. If the IsOMFI property has a True value, it is stored in a Media Data object
in an OMFI file. If the IsOMFI property has a False value, it is stored in a raw
data file.

The Media Descriptor object also specifies the sample rate of the digital media
data and specifies the number of samples that it contains. See Chapter 6,
Describing Media, for a description of the difference between sample units
and edit units.

To find the digital media data itself, you need to find the Media Data object
with the same MobID as the Source Mob. If you only need to play or access
the digital media data, you do not have to follow the mob links to the original
sources. However, if you need to redigitize the media, then you need to find
the physical Source Mobs.

Following the Links to Original Sources
The Source Clip in the file Source Mob specifies the MobID of the previous
generation of media. In Figure 11, the video file Source MobÕs Source Clip
identifies the Source Mob for the videotape. Figure 12 illustrates the videotape
Source Mob. The videotape Source Mob has four Mob Slots. These Mob Slots
describe the video, two audio tracks, and timecode track on the videotape.

The video and audio Mob Slots each typically contain a single Source Clip that
shows how long the media data is and specifies its edit rate. In addition, it
identifies the Source Mob that describes the previous generation of media for

58 Chapter 4: Mobs and the Header Object 9/18/97

that track of media. If a video tape was transferred from more than one film or
audio tape, its Mob Slots should contain a Sequence of Source Clips that iden-
tify the previous generation for each section of the videotape.

The timecode Mob Slot contains a single Time Code (TCCP).

The videotape Source Mob MediaDescriptor property describes the format
of the media stored in the videotape.

Figure 11: Master Mob Source Clip to Source Mob and Media Data

SMOB

Slots
MSLT

Segment

EditRate 2997/100

TrackDesc

TRKD
Origin 0
TrackID 1
TrackName ‘V1’

MobID 6-4-7

...

SCLP
DataKind
Length 5400
SourceID 6-4-1
SourceTrackID 1
StartTime 9000

SCLP
DataKind
Length 5400
SourceID 6-4-7
SourceTrackID 1
StartTime 0

DDEF
DataKindID

omfi:data:Picture

MMOB
Master Mob

MediaDescription

RGBA

IDAT

MobID 6-4-7
ImageData

Image Data with

Matching MobID

Source Mob

IsOMFI True
SampleRate 2997/100
Length 5400
Compression ‘JPEG’
...

9/18/97 OMF Interchange Specification Version 2.1 59

Figure 12: Source Clip to Videotape Source Mob

SMOB

Slots MSLT

Segment

EditRate 2997/100

TrackDesc

TRKD
Origin 0
TrackID 1
TrackName ‘V1’

MobID 6-4-1

...
SCLP

DataKind
Length 36000
SourceID 6-1-2
SourceTrackID 1
StartTime 0

SCLP
DataKind
Length 5400
SourceID 6-4-1
SourceTrackID 1
StartTime 9000

DDEF
DataKindID

omfi:data:Picture

SMOB
RBGA Source Mob

MediaDescription

MDTP

Videotape Source Mob

MSLT

Segment

EditRate 2997/100

TrackDesc

TRKD
Origin 0
TrackID 2
TrackName ‘A1’

SCLP
DataKind
Length 36000
SourceID 6-1-6
SourceTrackID 1
StartTime 0

MSLT

Segment

EditRate 2997/100

TrackDesc

TRKD
Origin 0
TrackID 3
TrackName ‘A2’

SCLP
DataKind
Length 36000
SourceID 6-1-6
SourceTrackID 2
StartTime 0

DDEF
DataKindID

omfi:data:Sound

FormFactor 3
VideoSignal 0
TapeFormat 0

MSLT

Segment
EditRate 2997/100
TrackDesc

TRKD
Origin 0
TrackID 4
TrackName ‘TC’

TCCP
DataKind
Length 36000
Start 108000
FPS 30
Drop False

DDEF
DataKindID
omfi:data:TimeCode

60 Chapter 4: Mobs and the Header Object 9/18/97

In videotape Source Mob, the video Source Clip identifies a film Source Mob
and the two audio Source Clips identify the two Mob Slots in an audio tape
Source Mob. Figure 13 illustrates the film Source Mob.

If a Source Mob describes the original media, then its Mob Slots contain Source
Clips with SourceID properties that specify the 0-0-0 MobIDÑthere is no
previous generation of media.

Figure 13: Source Clip to Film Source Mob

SMOB

Slots
MSLT

Segment

EditRate 24/1

TrackDesc

TRKD
Origin 0
TrackID 1

MobID 6-1-2

...

SCLP
DataKind
Length 28000

SCLP
DataKind
Length 36000
SourceID 6-1-2
SourceTrackID 1
StartTime 0

DDEF
DataKindID

omfi:data:Picture

SMOB
Videotape Source Mob

MediaDescription

MDFM

Film Source Mob

FilmFormat 0

MSLT

Segment

EditRate 24/1

TrackDesc

TRKD
Origin 0
TrackID 2

ECCP
DataKind
Length 28000

DDEF
DataKindID

omfi:data:Edgecode
Start 100
FilmKind 1
CodeFormat 2

FrameRate 24
...

9/18/97 OMF Interchange Specification Version 2.1 61

Note that if digital media data is created without a physical source, such as
media data created by a graphics or animation application, then the file Source
Mob is the original source and its Source Clips have a SourceID with a 0-0-0
value.

62 Chapter 4: Mobs and the Header Object 9/18/97

9/18/97 OMF Interchange Specification Version 2.1 63

5
Composition Mobs

This chapter describes the OMF Composition Mob (CMOB)Ðthe OMF object
that describes editing information. Whereas the previous chapter introduced
Mobs and described how the Composition Mob fits in the overall OMF Inter-
change file structure, this chapter focuses on the internal structure of the
Composition Mob.

Composition Mob Basics

The Composition Mob describes editing information. It describes it by means
of properties that have simple values and properties whose values are speci-
fied by other objects. The Composition Mob is the root of a tree structure
containing these other objects. The kinds of objects in the tree, the structure
that connects them, and the property values within each object describe the
editing information.

Figure 14 illustrates a simple Composition Mob with three Mob Slots. Each
Mob Slot in this figure represents a track of playable media and has a
Sequence. Each Sequence object has a set of Source Clips. In this example, the
tree structure has three main branches: the Mob Slots. The Source Clips are the
leaves of the tree structure.

A Source Clip describes a section of media (or other time-varying data) and
typically has a reference to a Mob Slot in a Master Mob, which identifies the
media source. A Source Clip can also have a reference to a Mob Slot in another
Composition Mob.

64 Chapter 5: Composition Mobs 9/18/97

In more complex Composition Mobs, each Mob Slot contains a Sequence that
contains Transitions, Effect Invocations, Nested Scopes, Scope References,
Selectors, and other embedded Sequences as well as Source Clips.

The Composition Mob structure describes how the pieces of the media
production should go together. Because structures can sometimes be atypical,
your application should read a Composition Mob by using the OMFI class
model and class definitions, which determine what is legal in a Composition
Mob. For example, although a typical Mob Slot in a Composition Mob has a
Sequence, it can have any Segment, so it could contain a Source Clip, Effect
Invocation, Nested Scope, or any other kind of Segment.

Mob Slots and Track Descriptions
Mob Slots contain Segments of media or other time-varying data. A Mob Slot
may represent an externally accessible track or a slot that can only be refer-
enced internally from another Mob Slot within the same Mob. By definition, a
Mob Slot is an externally accessible track if and only if it has a Track Descrip-
tion (TRKD). The Track Description object specifies the TrackID, TrackLa-
bel, and Origin of the track; these properties allow Source Clips in other
Mobs to reference the Mob Slot.

A Segment is a section of time-varying data. Segment is an abstract class; its
subclasses are Source Clip (SCLP), Filler (FILL), Sequence (SEQU), Effect Invoca-
tion (EFFE), Nested Scope (NEST), Scope Reference (SREF), Selector (SLCT),
Timecode (TCCP), Constant Value (CVAL), Varying Value (VVAL), Edge Code
(ECCP), Edit Rate Converter (ERAT), and Media Group (MGRP). These subclass-
es of Segment all have in common the attribute that each can stand alone. This

Figure 14:Composition Mob

SEQU
MSLT

TRKD

CMOB

SCLP

SEQU
MSLT

TRKD

SCLP

SEQU
MSLT

TRKD

SCLP

9/18/97 OMF Interchange Specification Version 2.1 65

is in contrast with the other subclass of the Component class, Transition. Tran-
sition objects may only be used within a Sequence object and must be preced-
ed and followed by a Segment object. The value produced by a Transition
object depends on the values produced by the preceding and following Seg-
ments.

The Segment specified in a Mob Slot can be any of the following:

¥ SequenceÑCombines a set of Components into a single segment. The Se-
quence object is the basic mechanism for combining sections of media to
be played in a sequential manner in an OMFI file. The Components in a
Sequence can be Segments or Transitions.

¥ Source ClipÑSpecifies a section of media or other time-varying data and
identifies the Mob Slot in another Mob that describes the media. In a Com-
position Mob, Source Clip objects are used to reference the digitized media
data to be played or manipulated.

¥ TimecodeÑIn a Composition Mob, represents the timecode associated
with the virtual media represented by the Composition Mob. If the Com-
position Mob is traversed in order to record the media data to a videotape,
the Timecode should be used to generate the timecode for the videotape.
Timecode can also be used in videotape Source Mobs.

¥ FillerÑSpecifies an unknown value for the ComponentÕs duration. Typi-
cally, a Filler is used in a Sequence to allow positioning of a Segment when
not all of the preceding material has been specified. Another typical use of
Filler objects is to fill time in Mob Slots and Nested Scope Segments that
are not referenced or played.

¥ Effect InvocationÑSpecifies an effect to be used in a Composition Mob;
specifies kind of effect, input media slots, and control arguments.

¥ Nested ScopeÑDefines a scope of slots that can reference each other; the
Nested Scope object produces the values of the last slot within it. Typical-
ly, Nested Scopes are used to enable layering or to allow a component to
be shared.

¥ Scope ReferenceÑRefers to a section in another Mob Slot or Nested Scope
slot.

¥ SelectorÑSpecifies a selected Segment and preserves references to some
alternative Segments that were available during the editing session. The
alternative Segments can be ignored while playing a Composition Mob
because they do not affect the value of the Selector object and cannot be
referenced from outside of it. The alternative Segments can be presented
to the user when the Composition Mob is being edited. Typically, a Selec-
tor object is used to present alternative presentations of the same content,
such as alternate camera angles of the same scene.

¥ Edit Rate ConverterÑConverts part of a segment in one edit rate into a seg-
ment in another edit rate. In most cases, it is not necessary to convert from
one edit rate to another. It is usually possible to express the same informa-
tion in another edit rate. Two cases where you may want to use an Edit
Rate Converter are when you want to make an exact copy of a Segment
that is in another edit rate and when it is important to control the rounding
errors caused by edit rate conversions.

66 Chapter 5: Composition Mobs 9/18/97

¥ Constant ValueÑProvides a single value that does not vary over time and
is typically used in Effect Invocations to supply control argument values.

¥ Varying ValueÑProvides values that vary over time and is typically used
in Effect Invocations to supply control argument values.

In addition, there are two Segment subclasses, Media Group and Edge Code,
that are not used in Composition Mobs. A Media Group object can only be in
a Master Mob, and an Edge Code object can only be in a Source Mob.

The following sections describe

¥ Simple Composition Mobs with Sequence of Source Clips

¥ Composition Mobs with Transitions

¥ Composition Mobs with Effect Invocations

¥ Composition Mobs with Scope References

¥ Composition Mobs with Selectors, Audio Crossfades, and Edit Rate Con-
verters

Simple Composition Mobs and Sequences

Typically, a Composition Mob (CMOB) has one or more Mob Slots (MSLT) and
each Mob Slot has a Sequence (SEQU). The Sequence contains an ordered set
of Components (CPNT). Within this ordered set any Transition (TRAN) object
must be preceded and followed by a Segment (SEGM). Figure 15 illustrates the
structure of a simple Composition Mob and shows the values of object prop-
erties. It has three Mob Slots, each of which contains a Sequence of Source
Clips (SCLP).

The composition is defined by the structure of the Composition Mob, the kind
of objects that appear in it, and the order in which the objects appear. The
objects in the illustration have the following meaning:

¥ CMOBÑthe Composition Mob object identifies this as a composition.

¥ MSLT and TRKDÑthe Mob Slot represents an externally visible track of
media if it has a Track Description.

¥ SEQUÑthe Sequence, which is a kind of Segment, specifies that the Mob
Slot contains a series of Components (CPNT) that are to be played in se-
quential order.

¥ SCLPÑthe Source Clips represent sections of media.

¥ DDEFÑthe Data Definition objects show what kind of media each Compo-
nent represents. Components within a Mob have a reference to a Data
Definition but the Mob does not contain them; they can be referenced by
Components in other Mobs also.

9/18/97 OMF Interchange Specification Version 2.1 67

Mob Slot and Component Properties

Figure 16 shows the objects in the Composition Mob and shows the properties
of all the Source Clips in the video Mob Slot. Examining the property values in
the objects provides the information needed to describe and play the compo-
sition. Some properties have simple values, such as a number or a string. Other
properties have values that are themselves objects. When a property has a
object, it is shown in the figures as a line from the property name to its object
or objects. If it has a reference to an object (an object can be referenced by many

Figure 15:Composition Mob with Object Properties

DataKind
Length 120
SourceID 6-2-3
SourceTrackID 1
StartTime 400

DataKind
Length 120
SourceID 6-2-3
SourceTrackID 1
StartTime 400

CMOB

MobID 6-5-5
Slots
. . . MSLT

Segment
EditRate 2997/100
TrackDesc

SEQU
DataKind
Length 600
Components

TRKD
Origin 0
TrackID 1
TrackName 'V1'

MSLT
Segment
EditRate 2997/100
TrackDesc

SEQU
DataKind
Length 600
Components

TRKD
Origin 0
TrackID 2
TrackName 'A1'

MSLT
Segment
EditRate 2997/100
TrackDesc

SEQU
DataKind
Length 600
Components

DDEF
DataKindID
 omfi:data:Picture

TRKD
Origin 0
TrackID 3
TrackName 'A2'

SCLP

SCLP

SCLP
DataKind
Length 120
SourceID 6-2-0
SourceTrackID 3
StartTime 920

SCLP

SCLP

SCLP
DataKind
Length 120
SourceID 6-2-3
SourceTrackID 2
StartTime 850

SCLP
DataKind
Length 300
SourceID 6-2-3
SourceTrackID 2
StartTime 400

DDEF
DataKindID
 omfi:data:Sound

SCLP

SCLP

SCLP
DataKind
Length 120
SourceID 6-6-0
SourceTrackID 1
StartTime 940

SCLP
DataKind
Length 120
SourceID 6-2-3
SourceTrackID 1
StartTime 400

SCLP
DataKind
Length 400
SourceID 6-2-3
SourceTrackID 3
StartTime 400

68 Chapter 5: Composition Mobs 9/18/97

other objects), the line is a dashed line. The following list explains the meaning
of the properties in Figure 16:

¥ The Composition Mob (CMOB) Slots property has a set of Mob Slots.

¥ The first Mob Slot (MSLT) describes the video media track.

Ñ The Segment property has a Sequence object. This property specifies
the value of the Mob Slot.

Ñ The EditRate property specifies that the edit rate is 29.97 units per
second. The Mob Slot EditRate property specifies the edit rate for all
Components in the Mob Slot except for any objects within Edit Rate
Converters (ERAT).

Ñ The TrackDesc property has a Track Description (TRKD) object,
which identifies the Mob Slot as an externally visible track.

¥ The Sequence object specifies the media in the Mob Slot. It specifies the
kind of media, the duration of the media, and the media itself.

Figure 16:Composition Mob Showing Video Mob Slot

DataKind
Length 80
SourceID 6-2-3
SourceTrackID 1
StartTime 100

DataKind
Length 300
SourceID 6-6-0
SourceTrackID 1
StartTime 940

CMOB

MobID 6-5-5
Slots
. . .

MSLT

MSLT
Segment
EditRate 2997/100
TrackDesc

SEQU
DataKind
Length 600
Components

TRKD
Origin 0
TrackID 1
TrackName 'V1'

SCLP

SCLP

SCLP
DataKind
Length 100
SourceID 6-2-3
SourceTrackID 1
StartTime 60

SCLP

SCLP

SCLP

DataKind
Length 120
SourceID 6-2-3
SourceTrackID 1
StartTime 400

MSLT

DDEF
DataKindID
 omfi:data:Picture

9/18/97 OMF Interchange Specification Version 2.1 69

Ñ The DataKind property has a reference to a Data Definition (DDEF)
object that identifies the media as omfi:data:Picture, which is
video media.

Ñ The Length property has a value of 600 edit units. Since each edit
unit is approximately 1/30th of a second, the duration of the Sequence
is approximately 20 seconds.

Ñ The Components property has a set of four Source Clips.

¥ Each Source Clip specifies its data kind, duration, and a section of a Mob
Slot in another Mob that describes the media.

Ñ The DataKind property of each Source Clip has a reference to the
same Data Definition object that the Sequence references. They must
either specify the same data kind as the Sequence or a data kind that
can be converted to the SequenceÕs data kind.

Ñ The Length property of each Source Clip specifies its duration. The
sum of these values equals the duration of the Sequence.

Ñ The SourceID property of each Source Clip specifies the MobID of a
Master Mob. The first, third, and fourth Source Clips specify the
MobID 6-2-3, and the second specifies 6-6-0.

Ñ The SourceTrackID property of each Source Clip specifies the Mob
Slot within the specified Mob.

Ñ The StartTime property of each Source Clip specifies the offset
within the Mob SlotÕs Segment where the section of media starts.

The Source ClipÕs SourceID and SourceTrackID properties specify the
Mob and the Mob Slot within the Mob; the Source ClipÕs Length and
StartTime properties specify the section of the Mob SlotÕs Segment.

¥ The Track Description object identifies the Mob Slot as one that is intended
to be externally referenced. If you are playing a Composition Mob, you
can ignore the TrackID and Origin properties; they are only used if you
reference the Composition Mob from a Source Clip in another Mob. A
Composition Mob can be referenced by a Source Clip in either another
Composition Mob or in a Source Mob.

To get the basic information about the contents of a Mob Slot, you must
examine both the Mob SlotÕs properties and the properties of its Segment and
Track Description. The properties that contain this basic information are:

¥ Mob Slot EditRate

¥ Segment DataKind

¥ Segment Length

¥ Track Description TrackID

¥ Track Description Origin

The EditRate, DataKind, and Length properties tell you the kind of media
in the Mob Slot and its duration in absolute time. The Origin and TrackID
properties tell you how the Mob Slot can be referenced from outside of the
Composition Mob.

Figure 17 shows how the Sequence object structure relates to the timeline view
of the Sequence. In this and other illustrations showing the structure of Mobs,

70 Chapter 5: Composition Mobs 9/18/97

the first object in an ordered set is shown at the top and the last is at the bottom.
In showing the relation between the structural view of the Sequence and the
timeline view, Figure 17 shows the Source Clip objects with a horizontal
dimension that is proportional to their duration.

Sequences with Transitions

Transitions (TRAN) take part of the adjacent Segments, overlap them, and
combine them with an effect to produce a single Segment. A typical Transition
produces a Segment that starts with media that appears to be the same as the
preceding Segment and ends with media that appears the same as the
following Segment. A Transition can thus appear to be a gradual change from
the preceding Segment to the following Segment. However, a Transition can
use an effect where the change is not gradual or linear.

The way a Transition combines these media segments depends on the effect
specified by the Transition Effect property. Typical Transitions for image
media include dissolves, wipes, and cuts. For more information on effects, see
the section describing Effect Invocations on Page 74.

When playing a Transition, the last part of the preceding Segment is combined
with the first part of the following Segment, effectively overlapping the two
Segments. The duration of the transition specifies the amount of the overlap.

Figure 18 illustrates how a Transition object combines a part of the preceding
and following media Segments and causes them to overlap.

To calculate the duration of a Sequence with Transitions, you add the dura-
tions of the Segments and then subtract the duration of the Transitions. In the
example in Figure 18, the duration of the Sequence is 180 + 320 +80 +100 Ð 80,
which equals 600.

If you are inserting a Transition between two Segments and you want to
preserve the overall duration of the two Segments, you must adjust the
Segments’ Length and StartTime values. Table 5 compares the Length

9/18/97 OMF Interchange Specification Version 2.1 71

Figure 17:Sequence with Object Structure and Timeline View

. . .

. . .

SCLP

Length 80
StartTime 100

SCLP
Length 300
StartTime 940

SCLP
Length 120
StartTime 400

SEQU

Length 600
Components

SCLP
Length 100
StartTime 60

Object
Structure View

Timeline View

0

SCLP

Length 80
StartTime 100

SCLP
Length 80
StartTime 100

SCLP
Length 120
StartTime 400

SCLP
Length 120
StartTime 400

SEQU

Length 600
Components

SCLP
Length 100
StartTime 60

SCLP
Length 100
StartTime 60

SCLP
Length 300
StartTime 940

SCLP
Length 300
StartTime 940

72 Chapter 5: Composition Mobs 9/18/97

Figure 18:Sequence with Transition

SCLP

Length 180
StartTime 400

0

. . .

. . .

SCLP

Length 320
StartTime 920

SEQU
Length 600
Components

Object
Structure View

Timeline View

SCLP

Length 100
StartTime 60

Length 100
StartTime 60

Length 320
StartTime 920

SEQU

SCLP

Length 320
StartTime 920

SCLP

TRAN

Length 80
Effect
Cutpoint 20

SCLP

Length 180
StartTime 400

EFFE

Length 80

SCLP
Length 180
StartTime 400

SCLP
Length 80
StartTime 100

SCLP

Length 80
StartTime100

SCLP

Length 600
Components

TRAN

Length 80
Effect
Cutpoint 20

TRAN

Length 80
Effect
Cutpoint 20

9/18/97 OMF Interchange Specification Version 2.1 73

and StartTime values of the first two Source Clips before inserting the Tran-
sition (Figure 17) and after inserting the Transition (Figure 18).

Note that the Transition has a Length of 80 and the Length of the preceding
Source Clip was increased by 60 and the Length of the following Source Clip
was increased by 20. The StartTime of the following Source Clip was
decreased by 20. The Length of the Transition cancels the increase in the
Lengths of the Source Clips because the Source Clips are overlapped.

Cuts and the Transition Cut Point

Transitions also specify a CutPoint. The CutPoint has no direct effect
on the results specified by a Transition, but the CutPoint provides informa-
tion that is useful if an application wishes to remove or temporarily replace the
transition. The CutPoint represents the time within the Transition that the
preceding Segment should end and that the following one begin if you remove
the Transition and replace it with a cut. To remove a Transition and preserve
the absolute time positions of both Segments, your application should trim the
end of the preceding Segment by an amount equal to the Transition Length
minus the CutPoint offset, and trim the beginning of the succeeding
Segment by an amount equal to the CutPoint offset.

In this example transition, the CutPoint is 20 edit units. This means that to
remove the Transition, you should trim the Length of the preceding Segment
by 80 (Transition Length) minus 20 (CutPoint). This returns it to its original
Length of 120. You should also need to trim the Length of the following
Segment by 20 (CutPoint) and increase its StartTime by the same amount.
This returns this Source Clip to its original Length of 300 and its original
StartTime of 940.

Treating Transitions As Cuts

If you cannot play a TransitionÕs effect, you should treat it as a cut. Treating is
as a cut means that you should play the two Segments surrounding the tran-
sition as if they had been trimmed as described in the preceding paragraphs.
If you play the two Segments without trimming, the total elapsed time for

Table 5: Inserting a Transition and Preserving Overall Duration

Without Transition With Transition

First Source Clip Length 120 Length 180

StartTime 400 StartTime 400

Transition Ñ Length 80

CutPoint 20

Second Source Clip Length 300 Length 320

StartTime 940 StartTime 920

74 Chapter 5: Composition Mobs 9/18/97

them will be greater than it should be, which can cause synchronization prob-
lems.

Restriction on Overlapping Transitions

Transitions can occur only between two Segments. In addition, the Segment
that precedes the Transition and the Segment that follows the Transition must
each have a Length that is greater than or equal to the Length of the Transi-
tion. If a Segment has a Transition before it and after it, the SegmentÕs Length
must be greater than or equal to the sum of the Length of each of the two Tran-
sitions. This ensures that Transitions do not overlap. These restrictions allow
applications to treat Transitions in a uniform manner and avoid ambiguous
constructions.

It is possible to create Sequences that appear to start or end with Transitions or
that appear to contain overlapping Transitions. To create the appearance of a
Transition at the beginning of a Sequence, precede the Transition with a Filler
object that has the same length as the Transition. To create the appearance of a
Transition at the end of a Sequence, follow the Transition with a Filler object
that has the same length as the Transition.

To create the appearance of overlapping Transitions, you nest the Transitions
by using a Sequence within another Sequence. You can put two Segments
separated by a Transition in the inner Sequence. Then you can use this
Sequence object as the Segment before or after another Transition. The Transi-
tions will appear to be overlapping.

Effect Invocations

An Effect Invocation (EFFE) combines or alters the appearance media from one
or more input Segments and produces a single Segment of media. An example
of an effect that combine different Segments of media to produce a single
Segment is the picture-in-picture video effect, which inserts one image within
another. An example that takes a single Segment of media as input and modi-
fies it is the image flop effect, which reverses the left and right side of an image.
Figure 19 illustrates these two effects.

The Effect Invocation identifies the kind of effect by having a reference to an
Effect Definition object that specifies a global unique name for the effect. The
global unique name is associated with a registered or private effect. In order
for your application to process the effect, it must recognize the global unique
name and have code to handle the recognized effect. If it does not recognize
the effect, it can perform some operations on the Effect Invocation, but it cannot
perform the operations required to generate the effect.

The description of the effect and its expected input are described in the effectÕs
documentation. The OMF DevelopersÕ Desk provides this documention for

9/18/97 OMF Interchange Specification Version 2.1 75

registered effects. The OMF DevelopersÕ Desk can help you find documenta-
tion on private effects.

An Effect Invocation typically has one or more Segments that provide the
media to be combined or altered.

In addition to the input media, an effect can also have control arguments that
determine how the effect is to be applied. These control arguments can specify
an effectÕs location, size, transparency, and other parameters.

The Effect Invocation object specifies the input media Segments and control
arguments with Effect Slot (ESLT) objects. Each Effect Slot identifies its purpose
with an argument ID integer value. The effectÕs documentation describes the
meaning of each integer value used for an effect.

An effect can have control arguments whose values vary over time. For
example, a picture-in-picture effect where the size and transparency of the
inserted picture stays constant throughout the effect has constant control argu-
ments. In contrast, a picture-in-picture effect that starts with a small inserted
picture that grows larger during the effect has control arguments with time-
varying values.

A constant control argument can be specified with a Constant Value (CVAL)
object in an Effect Slot. A time-varying value is specified with a Varying Value
(VVAL) object in an Effect Slot. An Effect Slot can also contain a Sequence of
Constant Value and Varying Value objects.

A-track video image B-track Video Image Picture-in-picture combined image

A-track video image Image modified by flop effect

Figure 19:Examples of Effects

76 Chapter 5: Composition Mobs 9/18/97

When an effect specifies time-varying control values, it can also specify how to
interpolate these values. Interpolation is a mathematical method to calculate a
value for a point based on the values of two surrounding points.

The documentation for an effect can describe how the effect is treated in a
Transition. Typically, the effect uses the media from the two overlapping
Segments and sets the default for a level control argument to specify a smooth
transition from the preceding Segment to the following one.

An Effect Invocation can included rendered versions of the intended effect.
These are Source Clips that identify digital media data that can be played
instead of generating the effect from the input media. If an application does
not recognize the effect, it should use the rendered media. It can also use the
rendered media rather than generating the effect for reasons of efficiency.

The following sections describe:

¥ Example Effect Invocation in a Sequence

¥ Example Effect Invocation in a Transition

¥ Effect Invocations with Rendered Media

¥ Varying Value Objects in Effect Invocations

Example Effect Invocation in a Sequence
An Effect Invocation can be used anywhere in a Composition Mob that a
Segment is allowed. Figure 20 illustrates an Effect Invocation as one of the
components in a Sequence.

The Effect Invocation specifies the data kind of the Segment produced by the
Effect Invocation, the duration of the Segment, the effect that is to be applied,
and the media and control arguments.

The following explains the objects in Figure 20.

¥ EFFEÑthe Effect Invocation specifies that an effect is used in the Sequence.
Its properties specify:

Ñ DataKind specifies the kind of media produced by the Effect Invoca-
tion. In this example, it specifies omfi:data:Picture, the data kind
for video media.

Ñ Length specifies the duration of the Effect Invocation.

Ñ EffectKind specifies the Effect Definition (EDEF) object that specifies
the effect to be used when combining or altering the media.

Ñ EffectSlots specify the media and control argument Effect Slots
(ESLT).

¥ EDEFÑthe Effect Definition object specifies the omfi:effect:
VideoDissolve effect.

¥ ESLTÑthe Effect Slots contain the input media segments and the control
arguments. Its properties specify:

Ñ ArgID specifies the purpose of the Effect Slot. The ArgID property
has an integer value, whose meaning is defined in the documentation

9/18/97 OMF Interchange Specification Version 2.1 77

Figure 20:Video Dissolve Effect in Sequence

SEQU

SCLP

EFFE

ArgID -1
ArgValue

EDEF

ESLT
DataKind
Length 120

SCLP

EffectID
 Omfi:effect:
 VideoDissolve

DataKind
Length 120
EffectKind
EffectSlots

ArgID -2
ArgValue

ESLT
DataKind
Length 120

SCLP

ArgID -3
ArgValue

ESLT
DataKind
Length 120
Value 1/2

CVAL
. . .

DDEF
DataKindID
 omfi:data:Picture

DDEF
DataKindID
 omfi:data:Rational

78 Chapter 5: Composition Mobs 9/18/97

for the omfi:effect:VideoDissolve effect. Table 6 contains a
summary of the ArgID description from this documentation.

Ñ ArgValue specifies a Segment that provides the data for the slot. In
this example, the Effect Slots that specify input media (Effect Slots -1
and -2) have Source Clips that describe the media and the Effect Slot
that specifies a control argument (Effect Slot -3) has a Constant Value
(CVAL) object.

¥ SCLPÑthe Source Clip specifies the input media. The duration of the
Source Clips must equal the duration of the Effect Invocation.

¥ CVALÑthe Constant Value object specifies a single value for the Effect In-
vocation. Its properties specify:

Ñ DataKind specifies that the value has a data kind omfi:data:Ra-
tional. This data kind must match or be convertible to the data kind
specified in the effectÕs documentation.

Ñ Length specifies the duration during which the constant value is de-
fined. The duration of the Constant Value object must equal the dura-
tion of the Effect Invocation.

Ñ Value specifies 1/2, which means that the resulting image is an equal
mix of the images in A Track and in B Track.

¥ DDEFÑthe Data Definition objects specify the unique name that identifies
the data kind of the Components.

Example Effect Invocation in a Transi-
tion
A Effect Invocation specifies the effect to perform when changing from the
preceding media Segment to the following one in a Transition. Figure 21 illus-
trates using a Effect Invocation in a Transition.

The effect documentation specifies whether an effect is allowed in a Transition
and how the Effect Slots should be treated. Typically, an effect that is allowed
in a Transition will specify that the Effect Slot with the ArgID values -1 and -2

Table 6: ArgID Values for Video Dissolve

ArgID
Value

Meaning Data Kind

-1 Specifies the A Track of video media, the background. omfi:data:
PictureWithMatte

-2 Specifies the B Track of video media that will be superimposed
on the background.

omfi:data
PictureWithMatte

-3 Specifies the level of superimposition of the images. If 0, then
the image is 100% from A Track. If 1/2, then the image is 50%
from A Track and B Track. If 1, then the image is 100% from B
Track.

omfi:data:Rational

9/18/97 OMF Interchange Specification Version 2.1 79

should correspond to the overlapping sections from the preceding and
following Segments. Typically, the default value for the Effect Slot with the
ArgID value -3 varies from 0.0 to 1.0, but this Effect Slot can be explicitly over-
riden by specifying it in the Effect Invocation.

Figure 21:Video Dissolve Effect in Transition

SCLP
DataKind
Length 100
SourceID 6-2-3
SourceTrackID 1
StartTime 60

SCLP
DataKind
Length 80
SourceID 6-2-3
SourceTrackID 1
StartTime 100

SCLP

TRAN
Length 80
Effect
CutPoint 20

DataKind
Length 180
SourceID 6-2-3
SourceTrackID 1
StartTime 400

SCLP
DataKind
Length 320
SourceID 6-6-0
SourceTrackID 1
StartTime 920

. . .

DDEF
DataKindID
 omfi:data:Picture

EFFE
DataKind
Length 80
EffectKind

EDEF
EffectID
 omfi:effect:
 VideoDissolve

SEQU
DataKind
Length 600
Components

80 Chapter 5: Composition Mobs 9/18/97

Table 7 describes the typical values for these Effect Slots when the Effect Invo-
cation object is in a Transition object.

In Figure 21, the Effect Invocation (EFFE) omits the EffectSlots property.
Effect Invocations in Transitions only specify Effect Slots to override the default
value for the Effect Slot with the ArgID value -3 and when the effectÕs docu-
mentation specifies additional ArgID values.

Rendered Effects
Sometimes it is desirable to compute the results of Effect Invocations once and
store them. When the Effect Invocation is being played or accessed later, the
results can be retrieved quickly and repeatedly without having to perform
complex calculations.

A rendered version is digital media data that can be played to produce the ef-
fect. An application can produce a working rendering, a final rendering, or
both. A working rendering is intended to store a partially rendered or approx-
imately rendered implementation of the effect but is not intended for final pro-
duction. A final rendering of the effect is intended for final production. Either
a working rendering or a final rendering can be used to play the effect during
editing.

Typically, an Effect Invocation is rendered and the result is stored in a Media
Data object with an associated file Source Mob and Master Mob. The Effect
Invocation FinalRendering or WorkingRendering property has a Source
Clip that refers to the Master Mob. If there is more than one implementation of
a rendering, the Master Mob could contain a Media Group (MGRP) object.

Table 7: Typical Value for Effect Slots in Transitions

ArgID
Value

Typical Use in
Effect

Value

-1 A Track Last section of preceding segment; length of the
section is equal to the Transition length.

-2 B Track First section of following segment; length of the
section is equal to Transition length.

-3 Level Default value is a Rational value that varies from 0.0
at the beginning of the transition to 1.0 at the end of
the transition and has a linear interpolation between.
This is equivalent to a Varying Value object that has a
length equal to the transition’s length and linear
interpolation and that contains two Control Point
objects; the first specifies a time of 0.0 and a value of
0.0 and the second specifies a time of 1.0 and a value
of 1.0.

9/18/97 OMF Interchange Specification Version 2.1 81

Dealing with Unrecognized Effects
If an application importing an OMFI file encounters an unknown effect, it can
preserve the Effect Invocation and Effect Definition objects so that if the Com-
position Mob containing the effect is exported, the effect will be preserved. If
any application cannot preserve the information, the OMF DevelopersÕ Desk
recommends that the application inform the user that some effect information
is being lost.

If an application is trying to play an unknown effect, the OMF DevelopersÕ
Desk recommends that it perform the first action in the following list that ap-
plies:

1. If there is a rendered version of the effect, play the rendered ver-
sion.

2. If the Effect Invocation specifies a BypassOverride property, play the
media in the Effect Slot with the specified argument ID.

3. If the Effect Definition specifies a Bypass property, play the media in the
Effect Slot with the specified argument ID.

4. Play blank media for the effect.

Varying Value Control Arguments
A Varying Value object is a Segment that represents time-varying values that
are determined by an ordered set of Control Points. Each Control Point speci-
fies the value for a specific time point within the Segment. The values for time
points between two Control Points are calculated by interpolation.

Typically, Varying Value objects are used in Effect Slots to specify the value of
a control argument for the Effect Invocation, but Varying Value objects can be
used in any context where a Segment is allowed and the data kinds are com-
patible.

Figure 22 illustrates an Effect Invocation in a Sequence that has Varying Value
control arguments.

Control Points

A Control Point that has a Time value equal to 0.0 represents the time at the
beginning of the Varying Value object; one with a Time equal to 1.0 represents
the time at the end of the Varying Value object. Control Points with Time values
less than 0.0 and greater than 1.0 are meaningful but are only used to establish
the interpolated values within the Varying Value objectÑthey do not extend
the duration of the Varying Value object.

Since time is expressed as a rational value, any arbitrary time can be speci-
fiedÑthe specified time point does not need to correspond to the starting point
of an edit unit of the Segment.

82 Chapter 5: Composition Mobs 9/18/97

Figure 22:Picture-in-Picture Effect in Sequence

SEQU

SCLP

EFFE

ArgID -1
ArgValue

EDEF

ESLT
DataKind
Length 120

SCLP

EffectID
 omfi:effect:examPIP

DataKind
Length 120
EffectKind
EffectSlots

ArgID -2
ArgValue

ESLT
DataKind
Length 120

SCLP

ArgID 1
ArgValue

ESLT
DataKind
Length 120
Value 1/1, 2/3

CVAL

. . .

. . .

DDEF
DataKindID
 omfi:data:Picture

ArgID 4
ArgValue

ESLT
DataKind
Length 120
Value True

CVAL

ArgID 2
ArgValue

ESLT
DataKind
Length 120
Interpolation 2
PointList

VVAL

DDEF
DataKindID
 omfi:data:Boolean

DDEF
DataKindID
 omfi:data:Point

DataKind
Time 0
Value 2/1

CTLP

CTLP
DataKind
Time 1/1
Value 3/1

DDEF
DataKindID
 omfi:data:Distance

9/18/97 OMF Interchange Specification Version 2.1 83

If two Control Point objects specify the same time value, the first Control Point
is only used to interpolate for time points before this value. The second Control
Point determines the value for the time point specified and is also used to in-
terpolate values after this time point. It is not legal for more than two Control
Points to specify the same time value.

Interpolating Control Points

For some control arguments, it is very important to be able to specify exactly
how the control argument varies. For example, minor changes in the value can
have a significant impact on the visual appearance of an effect that moves an
insert in a spiral into the center of the image.

You can specify how the control varies by specifying many Control Points, but
this can be hard to maintain when an Effect Invocation is changed. An alterna-
tive is to specify the interpolation method that governs how the control is
calculated between Control Points.

An interpolation method is a mathematical formula for determining a value
for a variable at any point based on values specified for points that surround
that point. OMF Interchange Version 2.1 includes two interpolation methods:
linear and constant. A linear interpolation means that a control argument
varies in a straight line between the two specified values. A constant interpo-
lation means that a control argument maintains a constant value until a new
value is specified.

The following equation specifies the value at time X by using a linear interpo-
lation and the values specified for time A and time B.

Extrapolation of Control Values

Extrapolation is a mathematical method to calculate a value for a point that has
values defined only on one side. Extrapolation is used if values are not speci-
fied for the start or end of a Varying Value object. If the first Control Point in a
Varying Value object specifies a time value greater than 0, this value is extrap-
olated to the 0 time point by holding the value constant. If the last Control
Point in a Varying Value object specifies a time value less than 1.0, this value is
extrapolated to the 1.0 time point by holding the value constant. This holding
extrapolation method is used if the interpolation method specified for the
Varying Value object is constant or linear interpolation.

Sequence of Varying Value Objects

If you need to specify values for an Effect Slot using more than one kind of in-
terpolation, you must use a Sequence object that contains a series of Varying
Value objects in the Effect Slot. Each Varying Value object can have its own in-

ValueX

TimeX TimeA–()

TimeB TimeA–()
--- ValueB ValueA–()× ValueA+=

84 Chapter 5: Composition Mobs 9/18/97

terpolation method. Each Varying Value object defines the control argument
values for its section of the Sequence. A time value of 0 specifies the beginning
of the Varying Value object, which, if it is in a Sequence, may not correspond
to the beginning of the Effect Slot. A time value of 1 specifies the end of the
Varying Value object, which, if it occurs in a Sequence, may not always corre-
spond to the end of the Effect Slot.

If an Effect Slot has a Sequence the value to be used at the time point where
one Segment ends and another begins is specified by the following Segment.

Quantization Adjustments

The Varying Value object specifies a value for each time point within the Vary-
ing Value object; however, if you are generating a stream of media from the
Composition Mob containing the Varying Value object, it can be important to
adjust values produced by the Varying Value object based on sample-rate
quantization. Within a media sample unit, there can only be a single value
used from the Varying Value object when generating that sample.

When the number of samples is large (when quantization error is not notice-
able) it is usually sufficient to express a curve in a sample-rate independent
form, which is converted to the appropriate sampled values when needed.
However, there are often times when the desired sample rate is low enough
that some precise control over how the curve gets sampled is needed for the
right result. In particular, this occurs at video sample rates.

An example using a dissolve can illustrate the quantization problem. It is nat-
ural to think of a dissolve as a mixture between video stream A and video
stream B, where the mix is controlled by a level parameter that goes from 0 to
1 over the duration of the dissolve. However, since the frame at any particular
time freezes the value of level that was specified at the beginning of the frame,
the first frame of the dissolve will have a value of 0, and the last frame of the
dissolve will be slightly less than 1. This result is incorrect, because the result-
ing frame sequence has a value of level which is asymmetrical. Changing the
definition so that the middle of a frame is sampled instead of the beginning
does not solve the problem; instead, it just transforms it into a case where the
level change on the first and last frame of the dissolve is half of that for all the
other frames. This is not correct because it is not uniform.

This error is due to quantization and becomes vanishingly small as the sample
rate increases. But because it is sample-rate dependent, it is not something that
can be accounted for in a sample-rate independent way simply by adjusting
the Time values of the Control Points. Instead, it is up to the software that im-
plements a particular effect to adjust the Control Point mapping for the actual
sample rate at the time of rendering. This mapping adjustment is done by scal-
ing the curve represented by the VaryingValue so that the 0 point is moved
back by one sample time before interpolation and quantization is performed.

The following formula scales a Control Point's Time value from its stored
number in edit units to its actual number in sample units, relative to the begin-
ning of the VaryingValue component.

9/18/97 OMF Interchange Specification Version 2.1 85

This algorithm makes the level 0 sample be the sample before the Effect Invo-
cation starts and the level 1 sample be the sample after the Effect Invocation
ends. For most effects, this is the desired results. However, some effects, such
as fade-to-black or fade-from-color may need to modify the algorithm so that
the level 0 or level 1 sample is included within the Effect Invocation. The effect
documentation must specify a modified scaling algorithm if it should be used
for the effect.

Control Point Editing Hints

The Control Point objects can specify editing hints that help applications
decide how to handle edits to the Effect Invocation. These editing hints do not
have an impact on how the Effect Invocation should be generated; they only
provide hints that can help preserve the original intent of the Control Points
when the Effect Invocation is edited and its length or starting or ending posi-
tion is changed. Table 8 lists the editing hints that you can specify:

Scope and References

Scope Reference (SREF) objects allow you to reference from within one slot the
values produced by another slot. A Scope Reference can refer to a Mob Slot in
the Composition Mob or it can refer to a Segment in a Nested Scope (NEST)
Slots property. Both Composition Mobs and Nested Scope objects define a
scope and an ordered set of slots. You can put one Nested Scope object within
another. Within any Nested Scope object you can reference the slots within its
scope and the slots within any Nested Scope object that contains it. You cannot
reference a slot in a Nested Scope object from outside of the Nested Scope
object. The following sections describe:

¥ Why to use Scope References

Table 8: Editing Hints

Hint Meaning

CC_HINT_PROPORTIONAL Keep point in time proportional to effect length
(default).

CC_HINT_RELATIVE_LEFT Keep point in time relative to beginning of effect.

CC_HINT_RELATIVE_RIGHT Keep point in time relative to ending of effect.

CC_HINT_FIXED Keep point in time fixed to current position.

SampleTime
Length SampleRate×

EditRate
-- 

  1+ 
  ControlPointTime× 

  1– 
 =

86 Chapter 5: Composition Mobs 9/18/97

¥ How to specify a Scope Reference

¥ How to choose between Mob scope and Nested Scope

Why Use Scope References
Two reasons to use Scope References are:

¥ To layer sections of media that overlap

¥ To share the values produced by a slot in different contexts

Although you can layer overlapping sections of media without using Scope
References, you lose some information that makes it harder for the user to
make changes. For example, consider the following sequence of shots that a
user wants to appear in a production:

1. An long shot of a Mediterranean island, with waves breaking on
the shore

2. A title superimposed on the island

3. A shot of the star inserted in a picture-in-picture effect over the island shot

4. Ending with the island shot

You could get this sequence of shots without using Scope References by
creating the following Sequence:

1. Source Clip for the island shot

2. Effect Invocation for title effect

3. Effect Invocation for picture-in-picture effect

4. Another Source Clip for the island shot

Within each of the Effect Invocations, you would specify one of the Effect Slots
to have a Source Clip of the island shot. The problem with this way of imple-
menting the Sequence is that there are four Source Clips that refer to adjacent
sections of the same scene with no linkage indicated in the OMFI file. If you
change the length of one of the Source Clips or Effect Invocations, you need to
change the other Segments in the Sequence to ensure continuity.

To implement this sequence of shots using Scope Reference, you would have:

¥ The first slot contain a Source Clip for the entire island shot

¥ The second slot contain the following Sequence:

1. Scope Reference to the first slot

2. Effect Invocation for title effect including a Scope Reference to the first
slot

3. Effect Invocation for picture-in-picture effect including a Scope Refer-
ence to the first slot

4. Scope Reference to the first slot

The length of any of the Segments in the second slot can be changed without
losing the continuity of the background island scene. The user can also easily
replace the background island scene and retain the edits in the second slot.

9/18/97 OMF Interchange Specification Version 2.1 87

Another reason to use Scope References is to share the values produced by one
slot in different contexts. An example of this is an effect that produces a
rotating cube where each side of the cube shows the Segment from a different
Effect Slot. If you want some of the sides to show the same Segment, you can
use Scope References and put the desired Segment in another slot.

How to Specify Scope References
The Mob defines a scope consisting of the ordered set of Mob Slots. A Scope
Reference object in a Mob Slot can specify any Mob Slot that precedes it within
the ordered set. Nested Scope objects define scopes that are limited to the
Components contained within the Nested Scope objectÕs slots. A Scope Refer-
ence is specified with a relative scope and a relative slot.

Relative scope is specified as an unsigned integer. It specifies the number of
Nested Scopes that you must pass through to find the referenced scope. A val-
ue of 0 specifies the current scope, which is the innermost Nested Scope object
that contains the Scope Reference or the Mob scope if no Nested Scope object
contains it. A relative scope value of 1 specifies that you must past through the
Nested Scope object containing the Scope Reference to find the Nested Scope
or Mob scope that contains it.

Relative slot is specified as a positive integer. It specifies the number of
preceding slots that you must pass to find the referenced slot within the spec-
ified relative scope. A value of 1 specifies the immediately previous slot.
Figure 23 illustrates Scope References. The slots are shown in a timeline view.

The first Scope Reference has a RelativeScope 2 and a RelativeSlot 2.
This Scope Reference passes through 2 scopes: the current Nested Scope and
the Nested Scope that contains it. By passing through two scopes, it refers to
the scope defined by the Mob. Within that scope, it appears in slot 3. Since
RelativeSlot has a value 2, it passes 2 slots to refer to a section in slot 1.

The second Scope Reference has a RelativeScope 0 and a RelativeSlot
3. Since RelativeScope is 0, it refers to a slot within its own scope. It appears
in slot 4 and passes 3 slots to refer to a section of slot 1.

A Scope Reference object returns the same time-varying values as the corre-
sponding section of the slot that it references. The corresponding section is the
one that occupies the same time period as the Scope Reference.

If a Scope Reference specifies a Mob Slot, the corresponding section of the slot
is the time span that has the equivalent starting position from the beginning of
the Mob Slot and the equivalent length as the Scope Reference object has with-
in its Mob Slot. If the specified Mob Slot has a different edit rate from the Mob
Slot containing the Scope Reference, the starting position and duration are
converted to the specified Mob SlotÕs edit units to find the corresponding sec-
tion.

If a Scope Reference specifies a Nested Scope slot, the corresponding section
of the slot is the one that has the same starting position offset from the begin-

88 Chapter 5: Composition Mobs 9/18/97

ning of the Nested Scope segments and the same duration as the Scope Refer-
ence object has in the specified scope.

Mob Scope and Nested Scope
The following describes the tradeoffs between using a Nested Scope or Mob
scope to share segments:

Figure 23:Relative Scope and Slot

SREF
RelativeScope 0
Relative Slot 3
...

SREF
RelativeScope 2
Relative Slot 2
...

Mob
Slots

1

2

3

4

0

1

2

3

4

0

Nested
Scope

Slots

Nested
Scope

Slots

1

2

3

0

SREF

NEST

NEST

SREF

9/18/97 OMF Interchange Specification Version 2.1 89

¥ It may be easier to synchronize the Scope Reference to a slot within a Nest-
ed Scope than to a Mob Slot. The synchronization within the Nested
Scope is isolated from any changes made outside of it.

¥ Mob Slots allow you to reference a Segment that has a different edit rate,
but all Nested Scope slots have the same edit rate.

¥ If two different Mob Slots need to share access to a Component, that Com-
ponent must be in a Mob SlotÑa Component in a Nested Scope slot can
be referenced only from within the Nested Scope object.

¥ The Nested Scope object limits the scope in which a Component can be
shared. It is limited by the duration of the Nested Scope object. Access is
limited to the objects contained within the Nested Scope. This limited ac-
cess can enable applications to process the sharing in a more efficient man-
ner.

In summary, either Mob Slot objects or Nested Scope objects can be used to al-
low sharing within a Composition Mob. If you need to reference a Component
that has a different edit rate, or if you need to share access to a Component
from more than one Mob Slot, you must use a Mob Slot. In all other cases, you
can use either method of sharing.

Other Composition Mob Features

This section describes how to perform the following in Composition Mobs:

¥ Preserve editing choices

¥ Use audio fades

¥ Convert edit rates

Preserving Editing Choices–Selectors
In some cases, an application may need to preserve alternatives that were
presented to the user and not chosen. For example, if a scene was shot with
multiple cameras simultaneously, the user can choose the video from the
preferred camera angle. In a future editing session, the user may wish to
change the video to one that was shot from another camera. By preserving the
original choices in the Composition Mob, your application can make it easier
for the user to find the alternatives.

The Selector object specifies a selected Segment and a set of alternative
Segments. When playing a Composition Mob, an application treats the
Selector object as if it were the selected Segment. However, when a user wants
to edit the Composition Mob, the application can present the alternative
Segments as well as the selected one.

90 Chapter 5: Composition Mobs 9/18/97

Using Audio Fade In and Fade Out
The Source Clip FadeInLength, FadeInType, FadeOutLength, and Fade-
OutType properties allow you to specify audio fades without an Effect Invoca-
tion object. Audio fades use these Source Clip properties instead of Effect
Invocations for the following reasons:

¥ Some applications use audio fades on every Segment of audio to avoid
noise when cutting from one audio Segment to anotherÑusing the Source
Clip properties rather than Effect Invocations simplifies the Composition
Mob structure.

¥ Audio fades typically have simple controls arguments and do not need the
time-varying control arguments that are allowed in Effect Invocations.

The Composition Mob can contain a default value for audio fade in and fade
out. This default value should be used for any audio Source Clip in the Compo-
sition Mob that does not explicitly specify a fade in or fade out property.

However, if you want to create a crossfade, you need to do one of the
following:

¥ Insert a Transition object with the omfi:effect:MonoAudioMixdown
effect between the two audio source clips to cause them to overlap. If the
FadeOutLength of the preceding Source Clip is not equal to the Fa-
deInLength of the following Source Clip, the crossfade will be asymmet-
ric.

¥ Store overlapping audio Source Clips on different Effect Slots in a
omfi:effect:MonoAudioMixdown.

Converting Edit Rates
An Edit Rate Converter object converts part of a segment in one edit rate into a
segment in another edit rate. You may want to use an Edit Rate Converter
when you want to make an exact copy of a Segment in another edit rate and it
is important to avoid the rounding errors caused by edit rate conversions.

Edit rate conversions can also be performed by the following mechanisms:

¥ Scope References to a Mob Slot with a different edit rate

¥ Source Clip reference to a Mob Slot in another Mob with a different edit
rate

9/18/97 OMF Interchange Specification Version 2.1 91

6
Describing Media

This chapter shows how OMF Interchange files describe media. OMFI files can
include digital media data stored in formats unique to OMF and in formats
based on media interchange formats that are also used independently of OMF.
Consequently, the way digital media data is described is, in part, dependent
on the format used to store it. OMF makes it easier for your program to handle
these different formats by providing a layer that is common to all, but your
program must know some details about the media format.

OMFI uses the following mechanisms to describe media:

¥ Source MobsÑdescribe digital media data stored in files or a physical me-
dia source such as videotape, audio tape, and film. The Source Mob con-
tains the following objects that provide information about the media:

Ñ Mob Slots—specify the number of tracks in the media source, the du-
ration of each track, the edit rate, and the Source Mob that describes
the previous generation of media. In addition, Mob Slots contain time-
code and edge code information.

Ñ Media DescriptorsÑdescribe the kind of media and the format of the
media and specify whether the Source Mobs describe digital media
data stored in files or a physical media source.

Ñ Pulldown objectsÑdescribe how media is converted between a film
speed and a video speed.

¥ Media Data objectsÑcontain the digital media data and provide a frame
index for compressed digital media data.

¥ Digital Media DataÑcontains additional descriptive information for some
media formats.

In addition, Master Mobs (MMOB) synchronize Source Mobs and provide a
layer of indirection to make it easy to change Source Mobs without changing
Composition Mobs that reference them.

92 Chapter 6: Describing Media 9/18/97

This chapter contains the following sections:

¥ Describing Media with Mob Slots

¥ Describing Media with Master Mobs

¥ Describing Timecode with Source Mobs

¥ Describing Media with Pulldown objects

¥ Describing Media with Media Descriptors

Appendix C contains a description of the media formats used to store digital
media data. It lists references that specify the media formats. In addition, it
summarizes some of the descriptive information that is stored in the digital
media data.

Describing Media with Mob Slots

A Source Mob represents a file containing digitized media or a physical media
source, such as an audio tape, film, or videotape.

If the media described by the Source Mob has been derived from a previous
generation of media, the Mob Slots should contain Source Clips that identify
the Mob that describes the previous generation. The Source Clip SourceID,
SourceTrackID, and StartTime properties identify the Mob. If the Source
Mob describes media that is not derived from a previous generation, the Mob
Slots should contain Source Clips that omit these properties.

Timecode and Segment Length
A Timecode object in a Source Mob typically appears in a Mob Slot in a Source
Mob that describes a videotape or audio tape. In this context it describes the
timecode that exists on the tape.

If a tape has a contiguous timecode, the Source Mob should have:

¥ A Mob Slot with a Track Description for each track of media on the tape;
the Mob Slot should have a single Source Clip whose Length equals the
duration of the tape.

¥ A Mob Slot with a Track Description for the timecode track that has a
Start value equal to the timecode at the beginning of the tape and whose
Length equals the duration of the tape.

If a tape contains noncontiguous timecodes, then the Mob Slot should contain
a Sequence of Timecode (TCCP) objects; each representing a contiguous
section of timecode on the tape.

In some cases the information required to accurately describe the tapeÕs time-
code may not be available. For example, if only a section of a videotape is digi-
tized, the application may not have access to the timecode at the start of the

9/18/97 OMF Interchange Specification Version 2.1 93

videotape. In these cases, applications may create a Source Mob in which the
duration of the Source Clip does not necessarily match the duration of the
videotape.

Sample Rate and Edit Rate
In many cases the sample rate and edit rate in a file Source Mob will be the
same. However, it is possible to use different edit rates and sample rates in a
Source Mob. For example, you can create a Source Mob for digital audio data,
where the edit rate matches the edit rate of the associated video but the sample
rate is much higher. The sample rate is specified in the SampleRate property
in the Media File Descriptor (MDFL). When accessing the digital media data,
your application must convert from the edit rate to the sample rate.

The Source Origin

When an application accesses the digital media data, it locates the starting
position by measuring from a position known as the source origin. Each file
Source Mob indicates this position for each Mob Slot with a Track Description
in order to provide a reference point for measurements of its media data.

For example, when you first digitize the audio from a tape, your application
would most likely assign a value of 0 to the Track Description Origin prop-
erty. In this case the source origin corresponds to the beginning of the data.
Any Source Clip that references this audio will specify a StartTime value
that is relative to the start of the media.

However, the location of the origin does not necessarily correspond to the
actual beginning of the source. For example, if a user redigitizes the audio data
in the previous example to add more data at the beginning, the new Media
Data object starts at a different point. However, the application will ensure
that existing Source Clips in Composition Mobs remain valid by changing the
value of the Origin property in the Master Mob. By setting the Origin to the
current offset of the original starting point, the application ensures that
existing Composition Mobs remain valid.

Converting Edit Units to Sample Units

A Mob Slot uses its own edit rate. So, a Source Clip in a Composition Mob indi-
cates the starting position in the source and the length of the Segment in edit
units. When an application plays a Composition Mob, it maps the Composi-
tion MobÕs references to the source material into references to the corre-
sponding digital media data.

To play the digital media data referenced by a Composition Mob, the applica-
tion uses the StartTime and Length values of the Composition MobÕs
Source Clip, which are specified in edit units, along with the edit rate to deter-
mine the samples to be taken from the media data. The application converts
EUs to sample durations, adds the file Mob SlotÕs Origin to the Source ClipÕs
StartTime, then converts the resulting sample time offset to a sample byte

94 Chapter 6: Describing Media 9/18/97

offset. Performing the final calculation for some media data formats involves
examining the data to find the size in bytes of the particular samples involved.
(All samples need not be the same size.) For example, the JPEG Image Data
object contains a frame index.

An application would not need to reference the original physical Source Mob
of the digitized data unless it is necessary to redigitize or generate a source-
relative description, such as an EDL or cut list.

In summary:

¥ Composition Mobs deal entirely in edit units, which are application-
defined time units.

¥ Digital media data such as video frames, animation frames, and audio
samples are stored in a stream of bytes, measured in sample units that rep-
resent the time duration of a single sample.

¥ Applications access media data by converting edit units to sample units
and then to byte offsets.

¥ Master Mobs maintain a reference point in the digitized media data called
the source origin. Composition Mobs reference positions in the media data
relative to the origin.

Describing Media with Master Mobs

A Master Mob object provides a level of indirection for accessing Source Mobs
from Composition Mobs. The media associated with a Source Mob is immuta-
ble. Consequently, if you must make any changes to the media data, you must
create a new Source Mob with a new unique MobID. Typical reasons to change
the media data include redigitizing to extend the section of the media included
in the file, redigitizing to change the compression used to create the digital me-
dia data, and redigitizing to change the format used to store the media data,
such as from AIFF audio data to WAVE audio data. A Composition Mob may
have many Source Clip objects that reference media dataÑupdating every
Source Clip in the Composition Mob each time the media is redigitized would
be inefficient. By having the Composition Mob access a Source Mob only
through a Master Mob, OMF ensures that you have to change only a single
Master Mob when you make changes to the media data.

In addition, a Master Mob can synchronize media data in different Source
Mobs. For example, when an application digitizes a videotape, it creates sepa-
rate Source Mobs for the video and audio data. By having a single Master Mob
with one Mob Slot for each Source Mob, the Composition Mob avoids having
to synchronize the audio and video tracks each time it references media from
different tracks of the videotape.

The same media data can exist in more than one digital media data implemen-
tation. Different implementations represent the same original media data but
can differ in media format, compression, or byte order. If there are multiple

9/18/97 OMF Interchange Specification Version 2.1 95

implementations of digitized media, the Master Mob can contain a Media
Group object. The Media Group object contains a set of Source Clip objects,
each of which identifies a Source Mob associated with a different implemen-
tation of the media data. An application can examine these implementations
to find the one that it is able to play or that it can play most efficiently. Media
Groups may be needed if you have systems with different architectures or
compression hardware accessing a single OMFI file.

If, when a media data file is redigitized, it has to be broken into multiple files,
this can be represented by a Sequence object in the Master Mob that contains
a series of Source Clip objects, each identifying the Source Mob associated with
one of the files.

Typically, Master Mobs have a very simple structure. They have an externally
visible Mob Slot for each track of media and do not have any other slots. Typ-
ically, each Mob Slot contains a single Source Clip object that identifies the
Source Mob. Master Mobs cannot have Effect Invocations, Nested Scopes, Se-
lectors, Edit Rate Converters, or Transitions.

The following lists the reasons for having a Mob Slot in a Master Mob contain
an object other than a Source Clip:

¥ If there are multiple implementations of the same media, the Mob Slot can
contain a Media Group instead of a Source Clip object.

¥ If the media source has been broken into several Source Mobs, the Mob
Slot can contain a Sequence object. The Sequence object cannot contain
any component other than a Source Clip object or a Media Group object.

Describing Timecode with Source Mobs

The timecode information for digital media data and file Source Mobs is con-
tained in the videotape Source Mob that describes the videotape used to gen-
erate the digital media data. Figure 24 illustrates how timecode information is
stored in videotape Source Mobs.

96 Chapter 6: Describing Media 9/18/97

The starting timecode for digital media data is specified by the Source Clip in
the File Source Mob and by the timecode track in the videotape Source Mob.
The Source Clip specifies the MobID of the videotape Source Mob, the TrackID
for the track describing the media data, and the offset in that track. To find the
timecode value, you must find the value specified for that offset in the time-
code track of the videotape Source Mob.

If a videotape has continuous timecode for the entire tape, it is specified by a
single Timecode object. If a videotape has discontinuous timecode, OMF files
typically describe it with a single Timecode object that encompasses all time-
code values that are used on the videotape. An alternative mechanism to
describe discontinuous timecode is to use a timecode track that contains a
sequence of Timecode objects, each of which specifies the starting timecode
and the duration of each section of continuous timecode on the videotape.

If the timecode track has a single Timecode object, you add the offset to the
starting timecode value specified by the Timecode object.

If the timecode track has a sequence of Timecode objects, you calculate the
timecode by finding the Timecode object that covers the specified offset in the
track and add to its starting timecode the difference between the specified
offset and the starting position of the Timecode object in the track.

Figure 24: Describing Timecode in Source Mobs

Videotape Source Mob

File Source Mob

Picture track

Picture track

Source Clip

Source Clip

Timecode

Timecode track

Start Time

0:0:0:0 01:00:10:03

9/18/97 OMF Interchange Specification Version 2.1 97

Describing Media with Pulldown Objects

Pulldown is a process to convert media with one frame rate to media with an-
other frame rate. OMF describes how media has been converted with Pull-
down objects in File Source Mobs and videotape Source Mobs.

What is Pulldown?
Pulldown is a process to convert between media at film speed of 24 frames per
second (fps) and media at a videotape speed of either 29.97 fps or 25 fps. It is
important to track this conversion accurately for two reasons:

¥ If the final media format is film and the edits are being done in video, you
must be able to accurately identify a film frame or the cut may be done at
the wrong frame in the film.

¥ You need to be able to maintain the synchronization between picture and
audio.

There are two processes that are used to generate a videotape that matches the
pictures on film:

¥ TelecineÑafter the film has been processed a videotape is generated from
the film negative or workprint.

¥ Video tap during filmingÑa video camera taps the images being filmed
and records a videotape as the film camera shoots the take. The video cam-
era gets the same image as the film camera either by means of a half-sil-
vered mirror or a parallel lens.

The videotape can then be digitized to produce a digital video data that can be
edited on a nonlinear editing system.

It is also possible to digitize a film image without creating a videotape. The
film image can be digitized at film resolution, video resolution, or both.

The audio tracks also are transferred from the original recording media to
digital audio data stored on a nonlinear editing system. The audio tracks can
be transferred by the same mechanism as the video tracks or by a different
mechanism.

Nonlinear editing of material that originated on film can use any of the
following workflows:

¥ Offline film projectÑfilm to tape to digital to film cut list

¥ Offline video projectÑfilm to tape to digital with matchback to videotape
EDL and/or film cut list

¥ Online video projectÑfilm to tape to digital, recording a final cut from
digital to tape

98 Chapter 6: Describing Media 9/18/97

Each of these workflows has a different requirement for synchronizing the
digital, tape, and film media for both audio and video.

NTSC Three-Two Pulldown

The relation between film speed (24 fps) and NTSC (29.97) is approximately 4 to
5. A videotape will have five frames for each four frames of film. Three-Two
pulldown accomplishes this by creating three fields from half of the frames
and two fields from the other frames. The SMPTE standard specifies that the
A and C frames are transferred into two fields and the B and D frames are
transferred into three fields.

Since NTSC videotape has a speed of 29.97 fps, in order to get an exact ratio of
4 to 5, the film is played at 23.976 fps in the telecine machine instead of its
natural speed of 24 fps.

Figure 25 illustrates how four film frames are converted to five video frames
in Three-Two pulldown by converting film frames to either two or three video
fields.

Figure 25: Telecine Three-Two Pulldown

A

A B C D

A B B B C C D D D

00:00 00:01 00:02 00:03 00:04

Four Film Frames

Five Video Frames
(10 Video Fields)

9/18/97 OMF Interchange Specification Version 2.1 99

During the telecine process, a white flag can be added to the vertical blanking
interval of the first field of video that corresponds to a new film frame. Figure
26 illustrates the fields in Three-Two pulldown that are marked with the white
flag.

A tape Mob describing a tape produced by telecine should have edit rates of
30 fps for its tracks. Although the videotape is always played at 29.97 fps, the
content has a speed of 30 fps.

If the final distribution format is being generating from film, there are advan-
tages to digitizing the videotape to digital video media that has a film sample
rate. This is done by a reverse telecine process where only 4 digital fields are
created from 5 video frames, which contain 10 video fields. Figure 27 illus-
trates using reverse three-two pulldown to generate 24 fps digital video media
from a videotape.

Figure 26: White Flag in Three-Two Pulldown

A A B B B C C D D D
White
Flag

White
Flag

White
Flag

White
Flag

100 Chapter 6: Describing Media 9/18/97

Other Forms of Pulldown

If an NTSC videotape is generated by a video camera running in synchroniza-
tion with the film camera, the film camera runs at 24 fps and the video runs at
29.97 fps. Four film frames do not correspond to exactly five video frames; they
correspond to slightly more than five video frames. The video tap uses a white
flag in the vertical blanking area to indicate when a new film frame starts. The
first field that starts after the film frame starts is indicated by a white flag.

PAL video and 24 fps film can be converted by simply speeding up the film to
PALÕs 25 fps rate or can be converted by a pulldown process by converting all
24 frames except the twelfth and twenty-fourth into two fields of video and
converting the twelfth and twenty-fourth film frames into three fields of video.

Figure 27: Reverse Three-Two Pulldown

A

A B C D

A B B B C C D D D

Four Film-Speed Digital Frames

Five Video Frames
(10 Video Fields)

9/18/97 OMF Interchange Specification Version 2.1 101

Pulldown Objects in Source Mobs
If NTSC video is digitized to a 24-fps film rate using a reverse Three-Two pull-
down, both the File Source Mob and the Videotape Source Mob contain Pull-
down objects. Figure 28 illustrates how Pulldown objects describe the process
of converting film to video and the video to digitized video media at a film
frame rate.

The Pulldown object in the File Source Mob describes how the videotape was
digitized. The track in the File Source Mob has an edit rate of 24/1 but the
Source Clip in the Pulldown object has an edit rate of 30/1. The Pulldown object
specifies the phase of the first frame of the digital media data. The phase has a
value in the range 0 to 3, where 0 specifies the A frame and 3 specifies the D
frame.

The Pulldown object in the videotape Source Mob describes how the video was
generated from film. The track in the videotape Source Mob has an edit rate of
30/1 but the Source Clip in the Pulldown object has an edit rate of 24/1. The
phase specifies where the first frame of the section of videotape is in the 5-
frame repeating pattern. The phase has a value in the range 0 to 4, where 0
specifies that the first frame is the AA frame.

You need to use the phase information to convert an offset in the Mob track
containing the Pulldown object to an offset in the previous generation Mob. To

Figure 28: Describing Pulldown in Source Mobs

Videotape Source Mob

File Source Mob

Picture track at film speed

Picture track at video speed

Picture track at film speed

Pulldown

Film Source Mob

Source Clip

Source Clip at video speed

Pulldown Source Clip at film speed

102 Chapter 6: Describing Media 9/18/97

convert a film-rate offset, you multiply it by 5/4 to get a video rate offset, but
if the result is not an integer, you use the phase information to determine
whether you round up or down to get an integer value.

Typically a videotape is generated from more than one piece of film. In this
case, the picture track in the videotape Source Mob contains a Sequence object
which contains a Pulldown object for each section of film that has been tele-
cined. If the videotape has discontinuous timecode and the videotape Source
Mob timecode track contains a single Timecode object, then the Pulldown ob-
jects in the Sequence are separated by Filler objects that correspond to the
skipped timecodes on the videotape. Figure 29 illustrates how pulldown infor-
mation can be described with discontinuous timecode which is specified by a
single Timecode object.

Describing Media with Media Descriptors

Media Descriptor is an abstract class that describes the format of the media da-
ta. The media data can be digitized media data stored in a file or it can be me-
dia data on audio tape, film, videotape, or some other form of media storage.

There are two kinds of Media Descriptors:

¥ Media File Descriptors that describe digital media data stored in Media
Data objects or in raw data files. The Media File Descriptor class is also an
abstract class; its subclasses describe the various formats of digitized me-
dia. If a Media Descriptor object belongs to a subclass of Media File De-
scriptor, it describes digital media data. If a Media Descriptor object does
not belong to a subclass of Media File Descriptor, it describes a physical
media source.

¥ Media Descriptors that describe a physical media source. This specification
defines the Media Film Descriptor and Media Tape Descriptor, but addi-

Figure 29: Describing Discontinuous Timecode in Videotape Source Mobs

Videotape Source Mob

Picture track

Timecode track

Fill Fill Fill Fill

Timecode

Pulldown Pulldown Pulldown

9/18/97 OMF Interchange Specification Version 2.1 103

tional private or registered subclasses of Media Descriptors can be defined.

The Media File Descriptor class has the following subclasses defined in this
specification:

¥ AIFC Audio Descriptor (AIFD) class

¥ Digital Image Descriptor (DIDD) class, which is itself an abstract class and
has the following subclasses:

Ñ Color Difference Component Image Descriptor (CDCI) classÑimages
stored using one luminance and two color-difference components

Ñ RGBA Component Image Descriptor classÑimages stored using RGB
component color data optionally including an alpha component

¥ TIFF Image Descriptor class

¥ WAVE Audio Descriptor class

If the digital media data is stored in an OMFI file, the value of the IsOMFI
property in the Media Descriptor must be true. If the digital media data is
stored in a raw data file, the value of the IsOMFI property must be false. Dig-
ital media data can be stored in a raw data file to allow an application that does
not support OMFI to access it or to avoid duplicating already existing digital
media data. However, since there is no MobID stored with raw media data, it
is difficult to identify a raw media data file if the Locator information is no
longer valid. The format of the digital media data in the raw file is the same as
it would be if it were stored in an OMFI Media Data object.

The Media File Descriptor specifies the sample rate and length of the media da-
ta. The sample rate of the data can be different from the edit rate of the Source
Clip object that references it.

Describing Image Media
The goal of the OMF image format is to simplify the representation of image
data and to be able to store the information required by video formats in
common use. It can support compressed and uncompressed video and can
store images in either a color difference component or RGBA component
image format. It provides a rich description of the sampling process used to
create the digital media from an analog source. This information allows appli-
cations to interpret the digital data to represent the original media.

This section explains the image media descriptions that are common to all im-
age media descriptors that are subclasses of the Digital Image Descriptor class.

In order to correctly process or regenerate images, you need access to a com-
plete description of the layout of the images in the file. This description allows
applications to extract the relevant information from the files, or, if the images
have been lost, restore images to their original digital form. At the most gener-
ic level, the description of the images is conveyed by a combination of the fol-
lowing properties: dimensional properties (geometries), sampling properties
and colorspace properties.

These properties specify the following about the image format:

104 Chapter 6: Describing Media 9/18/97

¥ Properties describing interleaving

¥ Properties describing geometry

¥ Properties describing sampling

¥ Properties describing alpha transparency

¥ Properties describing compression

Properties Describing Interleaving

The major structure of the images is determined by how the images are collat-
ed. Images can be compound or atomic. Atomic images contain the entire
frame in one contiguous segment. Examples of atomic images include comput-
er graphic frames, digitized film frames, progressive-scan video, two-field in-
terlaced video (even and odd fields mixed together), and single-field video
(video where one of the fields is discarded). Compound images are, at this
time, limited to two-field non-interlaced video, in which the fields are stored
separately.

Since compound video images represent two sub-images, each with the same
characteristics, the properties describe the individual fields, and will apply
equally to both fields. This is important for applications to recognize, since
compound video images have a listed height that is half of the entire frame.

Some image formats allow some form of selection between ÒinterleavedÓ and
ÒblockedÓ component order. Interleaved ordering has the data organized by
pixels, with each pixel containing all of the components it comprises.

Properties Describing Geometry

The geometry properties describe the dimensions and meaning of the stored
pixels in the image. The geometry describes the pixels of an uncompressed im-
age. Consequently, the geometry properties are independent of the compres-
sion and subsampling.

Three separate geometries, stored view, sampled view, and display view, are
used to define a set of different views on uncompressed digital data. All views
are constrained to rectangular regions, which means that storage and sam-
pling have to be rectangular.

The relationships among the views are described in Figure 30.

9/18/97 OMF Interchange Specification Version 2.1 105

The stored view is the entire data region corresponding to a single uncom-
pressed frame or field of the image, and is defined by its horizontal and verti-
cal dimension properties. The stored view may include data that is not derived
from and would not usually be translated back to analog data.

The sampled view is defined to be the rectangular dimensions in pixels corre-
sponding to the digital data derived from an analog or digital source. These
pixels reside within the rectangle defined by the stored view. This would in-
clude the image and auxiliary information included in the analog or digital
source. For the capture of video signals, the mapping of these views to the
original signal is determined by the VideoLineMap property.

The display view is the rectangular size in pixels corresponding to the view-
able area. These pixels contain image data suitable for scaling, display, warp-
ing, and other image processing. The display view offsets are relative to the
stored view, not to the sampled view.

Although typically the display view is a subset of the sampled view, it is pos-
sible that the viewable area may not be a subset of the sampled data. It may
overlap or even encapsulate the sampled data. For example, a subset of the in-
put image might be centered in a computer-generated blue screen for use in a
chroma key effect. In this case the viewable pixels on disk would contain more
than the sampled image.

Figure 30: Stored, Sampled, and Displayed View

���
���
���
���

���
���
���
���

Display View

Sampled View

Stored View

Analog Video
Source

Information

Sample
Process

(0,0)

106 Chapter 6: Describing Media 9/18/97

Each of these data views has a width and height value. Both the sampled view
and the display view also have offsets relative to the top left corner of the
stored view.

Properties Describing Sampling

The sampling properties describe the parameters used during the analog-to-
digital digitization process. The properties detail the mapping between the
signals as well as the format of the source analog signal. If the media originat-
ed in a digital format, these properties do not apply.

The VideoLineMap property is necessary for images that are derived from or
will be converted to video (television) signals. For each field, it describes the
mapping, relative to the Sampled View in the digital media, of the digital im-
age lines to the analog signal lines.

The VideoLineMap specifies the relationship between the scan lines in the an-
alog signal and the beginning of the digitized fields. The analog lines are ex-
pressed in scan line numbers that are appropriate for the signal format. For
example, a typical PAL two-field mapping might be {20,332}, where scan line
20 corresponds to the first line of field 1, and scan line 332 corresponds to the
first line of field 2. Notice that the numbers are based on the whole frame, not
on offset from the top of each field, which would be {20,20}.

A value of 0 is allowed only when computer-generated media has to be treated
differently. If the digital media was computer generated (RGB), the values can
be either {0,1} (even field first) or {1,0} (odd field first).

Properties Describing Alpha Transparency

The AlphaTransparency property determines whether the maximum alpha
value or the 0 value indicates that the pixel is transparent. If the property has
a value of 1, then the maximum alpha value is transparent and a 0 alpha value
is opaque. If the property has a value of 0, then the maximum alpha value is
opaque and the 0 alpha value is transparent.

Properties Describing Compression

The Compression property specifies that the image is compressed and the
kind of compression used. Applications are required to support JPEG and no
compression. Registered and private compression kinds are described in doc-
umentation available separately from the OMF DevelopersÕ Desk. A value of
JPEG specifies that the image is compressed according to the following:

¥ Each image frame conforms to ISO DIS 10918-1. If the frame has two fields
then each field is stored as a separate image.

¥ Images may be preceded or followed by fill bytes.

¥ Quantization tables are required; they may not be omitted.

¥ Huffman tables are optional; if omitted, tables from the ISO standard are
used.

9/18/97 OMF Interchange Specification Version 2.1 107

JPEG image data are color difference component images that have been
compressed using the JPEG compression algorithm. The JPEG descriptor spec-
ifies a general set of quantization tables for restoring images from the original
media. While tables may vary per image, these tables will represent a starting
point.

The JPEG Image Data object (JPEG) contains a frame index that allows you to
access the frames without searching through the file sequentially. Since the
size of the compressed frame is different depending on the image stored on the
frame, the frame index is needed to directly access data for a frame.

RGBA Component Image (RGBA) Descriptors

An RGBA Component Image (RGBA) object describes media data that contains
component-based images where each pixel is made up of a red, a green, and a
blue value. Each pixel can be described directly with a component value or by
an index into a pixel palette.

Properties in the RGBA descriptor allow you to specify the order that the color
components are stored in the image, the number of bits needed to store a pixel,
and the bits allocated to each component.

If a color palette is used, the descriptor allows you to specify the color palette
and the structure used to store each color in the palette.

Color Difference Component (CDCI) Image Descriptors

Color Difference Component Image objects specify pixels with one luminance
component and two color-difference components. This format is commonly
known as YCbCr.

It is common to reduce the color information in luma/chroma images to gain
a reasonable data reduction while preserving high quality. This is done
through chrominance subsampling. Subsampling removes the color informa-
tion from a fraction of the pixels, leaving the luminance information unmodi-
fied. This removal has the effect of cutting the sampling rate of the
chrominance to a fraction of the luminance sampling rate. The fraction is
controlled by the subsampling specification property. The subsampling
factor specifies the number of pixels that will be combined down to one for
chrominance components.

Since the color information is reduced across space, it is useful to be able to
specify where in the space the stored pixel is sited. Understanding the siting is
important because misinterpretation will cause colors to be misaligned.

For uncompressed images, subsampling is limited to horizontal, since the
pixels are interleaved.

108 Chapter 6: Describing Media 9/18/97

Describing Audio Media
An AIFC object contains digitized audio data in the big-endian byte ordering.
It contains data formatted according to the Audio Interchange File Format
(AIFF), Apple Computer, Inc., Version 1. The audio data and the AIFC
descriptor data are contained in the AIFC object.

Note that, although the AIFC standard is designed to support compressed
audio data, the OMF Interchange required AIFC media format does not
include any compressed audio formats. The only AIFC compression form
supported is NONE and the only AIFC data items that are necessary are the
ÒCOMMÓ and ÒSSNDÓ data items. All other AIFC data items can be ignored.
The descriptive information is contained directly in the OMF AIFC object. The
AIFC SSND data is duplicated in the AIFC Audio Descriptor to make it more
efficient to access this information.

A WAVE object contains digitized audio data in the little-endian byte ordering.
It contains data formatted according to the Microsoft/IBM Multimedia
Programming Interface and Data Specifications, Version 1.0, but limited to the
section describing the RIFF Waveform Audio File Format audio data. The
WAVE file information (without the sample data) is duplicated in the WAVE
Audio Descriptor to make it more efficient to access this information.

The descriptive information is contained directly in the WAVE object. No addi-
tional data properties or objects are defined for WAVE data, because this
format contains all of the information needed for playback.

If a Master Mob or Source Mob contains two audio media tracks , the TrackIDs
indicate the physical input channel according to the following convention: an
odd TrackID indicates the left channel and an even TrackID indicates the right
channel.

Describing TIFF Image Media
A TIFF Image Descriptor object describes the TIFF image data associated with
the Source Mob. The image data is formatted according to the TIFF specifica-
tion, Revision 6.0, available from Aldus Corporation. The TIFF object type
supports only the subset of the full TIFF 6.0 specification defined as baseline
TIFF in that document.

Note The TIFF image format has been superseded by the Color Difference
Component Image Descriptor (CDCI) format and the RGBA Compo-
nent Image Descriptor (RGBA) format in the current version of the
specification. The TIFF format is included in this specification for com-
patibility with OMF Interchange Version 1.0.

The JPEGTableID is an assigned type for preset JPEG tables. The table data
must also appear in the TIFF object along with the sample data, but cooper-
ating applications can save time by storing a preapproved code in this prop-
erty that presents a known set of JPEG tables.

9/18/97 OMF Interchange Specification Version 2.1 109

See Appendix C for the descriptive information stored in the TIFF digital
media data.

Describing Tape and Film
The Media Tape Descriptor (MDTP) describes videotape and audio tape media
sources. The Media Film Descriptor (MDFM) describes film sources. Their
properties describe the physical storage format used for the media. When you
create a tape or film Source Mob, you can include as many of these properties
as your application has access to. Since these properties are optional, they can
be omitted when they are unknown.

110 Chapter 6: Describing Media 9/18/97

9/18/97 OMF Interchange Specification Version 2.1 111

Appendix A
OMF Object Classes

This appendix contains the reference descriptions of the OMF Interchange
classes. The reference pages are arranged alphabetically by the full class name.

112 Appendix A: OMF Object Classes 9/18/97

AIFC Audio Data Class (AIFC)

Contains AIFC audio data.

Data Model

Implementation

Description
An AIFC Audio Data object contains digitized audio data in the big-endian byte
ordering (used, for example, on the Motorola 680x0 architecture). It contains
data formatted according to the Audio Interchange File Format (AIFF), Apple
Computer, Inc., Version 1. The audio data and the AIFC descriptor data are
contained in the AIFC object.

Note that, although the AIFC standard is designed to support compressed
audio data, the OMF Interchange required AIFC media format does not
include any compressed audio formats. The only AIFC compression form
supported is NONE, and the only properties that are necessary to specify the
data are the COMM and SSND AIFC objects. All other AIFC objects can be
ignored.

Related Classes
AIFC Audio Descriptor (AIFD), Header (HEAD), Media Data (MDAT), Source
Mob (SMOB), WAVE Audio Data (WAVE), WAVE Audio Descriptor (WAVD)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is AIFC.

OMFI:MDAT:MobID omfi:UID MobID of the file Source Mob describing the media
data.

OMFI:AIFC:AudioData omfi:DataValue AIFC format audio data.

AIFC Audio Data Class (AIFC)
Is-a-Kind-of Media Data

AudioData

9/18/97 OMF Interchange Specification Version 2.1 113

AIFC Audio Descriptor Class (AIFD)

Describes the AIFC media associated with a Source Mob.

Data Model

Implementation

Description
An AIFC Audio Data object contains digitized audio data in the big-endian byte
ordering (used, for example, on the Motorola 68000 architecture). It contains
data formatted according to the Audio Interchange File Format (AIFF), Apple
Computer, Inc., Version 1. The data is contained directly in the AIFC object.
The descriptive data from the AIFC object is duplicated in the AIFC Audio De-
scriptor to make it more efficient to access this information.

Related Classes
AIFC Audio Data (AIFC), Media File Descriptor (MDFL), Locator (LOCR), Source
Mob (SMOB), WAVE Audio Data (WAVE), WAVE Audio Descriptor (WAVD)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is AIFD.

OMFI:MDES:Locator omfi:ObjRefArray Set of locators that provide hints to help find the OMFI
file or the raw data file that contains the media data.
Optional.

OMFI:MDFL:IsOMFI omfi:Boolean A True value indicates that the media data is stored in an
OMFI file; a False value indicates that the media data is
stored in a raw data file.

OMFI:MDFL:SampleRate omfi:Rational The native sample rate of the digitized media data.

OMFI:MDFL:Length omfi:Length32
omfi:Length64

Duration of the media in sample units.

OMFI:AIFD:Summary omfi:DataValue A copy of the descriptive information in the associated
AIFC Audio Data value.

AIFC Audio Descriptor Class (AIFD)
Is-a-Kind-of Media File Descriptor

Summary

114 Appendix A: OMF Object Classes 9/18/97

Attribute Class (ATTB)

Contains user-specified data.

Data Model

Implementation

Description
An Attribute object specifies a category name and a value for the category.
Each Attribute object has a category name and a value. The Mob object User-
Attributes property provides a mechanism to associate user-specified data

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is ATTB.

OMFI:ATTB:Kind omfi:AttrKind Specifies the kind of Attribute value. May have the
following values:
0 kOMFNullAttribute Unspecified type
1 kOMFIntegerAttribute Integer value
2 kOMFStringAttribute String value
3 kOMFObjectAttribute Object reference

value

OMFI:ATTB:Name omfi:String User-specified name.

OMFI:ATTB:IntAttribute omfi:Int32 User-specified integer value. Optional, but if the Kind
property has a kOMFIntegerAttribute value, this prop-
erty is required.

OMFI:ATTB:StringAttribute omfi:String User-specified string value. Optional, but if the Kind
property has a kOMFStringAttribute value, this prop-
erty is required.

OMFI:ATTB:ObjAttribute omfi:ObjRef User-specified value contained in an OMF object.
Optional, but if the Kind property has a
kOMFObjectAttribute value, this property is required.

Attribute Class (ATTB)

Is-a-Kind-of OMFI Object

Kind

Name

IntAttribute

StringAttribute

ObjAttribute

9/18/97 OMF Interchange Specification Version 2.1 115

with a Mob by using Attribute Arrays and Attributes.This mechanism allows
the user to define categories and provide values for one or more Mobs in the
OMF file. User attributes can be used to specify information such as the take
number or lighting conditions of a section of media.

Related Classes
Attribute Array (ATTR), Mob (MOBJ)

116 Appendix A: OMF Object Classes 9/18/97

Attribute Array Class (ATTR)

Contains a set of Attribute objects.

Data Model

Implementation

Description
An Attribute Array object contains a set of Attribute objects. Each Attribute ob-
ject has a category name and a value. Attribute Arrays are typically used to
store user-specified data. The Mob object UserAttributes property pro-
vides a mechanism to associate user-specified data with a Mob.

Related Classes
Attribute (ATTB), Mob (MOBJ)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is ATTR.

OMFI:ATTR:AttrRefs omfi:ObjRefArray HAS a set of Attribute objects.

Attribute Array Class (ATTR)

Is-a-Kind-of OMFI Object

AttrRefs Attribute Class (ATTB)

9/18/97 OMF Interchange Specification Version 2.1 117

Class Dictionary Entry Class (CLSD)

Extends the OMFI class hierarchy with a new class.

Data Model

Implementation

Description
The Header (HEAD) object ClassDictionary property has a set of Class Dic-
tionary Entry objects. This set describes extensions to the classes described in
this specification that are used in the OMFI file. Each Class Dictionary Entry ob-
ject describes a new class or a parent class of a new class.

If the class being defined by the Class Dictionary Entry object is defined in this
document, the ParentClass property must be omitted. You are not allowed
to define a new parent class for a class defined in this specification. Any class
extension must be descended from the OMFI Object class.

For example, to define a new class called the Modulated Source Clip (MSCP)
class that is a subclass of the Source Clip class, you create two Class Dictionary
Entry objects:

¥ The first Class Dictionary Entry object Class property has a value of
MSCP, and its ParentClass property has a value that references the sec-
ond Class Dictionary Entry object.

¥ The second Class Dictionary Entry object Class property has a value of
SCLP, and it does not have a ParentClass property.

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is CLSD.

OMFI:CLSD:Class omfi:ClassID Specifies the class being defined.

OMFI:CLSD:ParentClass omfi:ObjRef HAS-REFERENCE to a Class Dictionary Entry that speci-
fies the parent of the class being defined. Optional; if
the class being defined is a class described in this spec-
ification, this property must be omitted.

Class Dictionary Entry Class (CLSD)

Is-a-Kind-of OMFI Object

Class

ParentClass Class Dictionary Entry (CLSD)

118 Appendix A: OMF Object Classes 9/18/97

This relationship defines the class identified by the Class ID MSCP as a subclass
of the class identified by SCLP. Since the Source Clip class is defined in this
specification, you must not specify its parent class.

An application that encounters a Modulated Source Clip object and does not
recognize the new class can treat the object as a Source Clip object based on the
information in the Header ClassDictionary property. This application will
ignore any additional properties defined for the class.

Related Classes
Header (HEAD)

9/18/97 OMF Interchange Specification Version 2.1 119

Color Difference Component Image Descriptor Class (CDCI)

Describes the media stored with one luminance component and two color-
difference components that is associated with a Source Mob.

Data Model

Implementation

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is CDCI.

OMFI:MDES:Locator omfi:ObjRefArray Set of locators that provide hints to
help find the OMFI file or the raw
data file that contains the media
data. Optional.

OMFI:MDFL:IsOMFI omfi:Boolean A True value indicates that the media
data is stored in an OMFI file; a False
value indicates that the media data is
stored in a raw data file.

OMFI:MDFL:SampleRate omfi:Rational The native sample rate of the digi-
tized media data.

OMFI:MDFL:Length omfi:Length32
omfi:Length64

Duration of the media in sample
units.

OMFI:DIDD:Compression omfi:String Kind of compression and format of
compression information; a string
with the following values that must
be recognized by all OMFI-compat-
ible applications:

JPEG ISO JPEG stream
Other registered and private strings
may be defined. Optional; if there is
no compression, the property is
omitted.

Color Difference Component Image Descriptor Class (CDCI)

Is-a-Kind-of Digital Image Descriptor

HorizontalSubsampling

ColorSiting

BlackReferenceLevel

ComponentWidth

WhiteReferenceLevel

ColorRange

PaddingBits

120 Appendix A: OMF Object Classes 9/18/97

OMFI:DIDD:StoredHeight omfi:UInt32 Number of pixels in vertical dimen-
sion of stored view. See the Descrip-
tion section of DIDD class for an
explanation of image geometry.

OMFI:DIDD:StoredWidth omfi:UInt32 Number of pixels in horizontal
dimension of stored view.

OMFI:DIDD:SampledHeight omfi:UInt32 Number of pixels in vertical dimen-
sion of sampled view. Optional; the
default value is StoredHeight.
See the Description section of DIDD
class for an explanation of image
geometry.

OMFI:DIDD:SampledWidth omfi:UInt32 Number of pixels in horizontal
dimension of sampled view.
Optional; the default value is
StoredWidth.

OMFI:DIDD:SampledXOffset omfi:Int32 X offset, in pixels, from top left cor-
ner of stored view. Optional; the
default value is 0.

OMFI:DIDD:SampledYOffset omfi:Int32 Y offset, in pixels from top left corner
of stored view. Optional; the default
value is 0.

OMFI:DIDD:DisplayHeight omfi:UInt32 Number of pixels in vertical dimen-
sion of display view. Optional; the
default value is StoredHeight.
See the Description section of DIDD
class for an explanation of image
geometry.

OMFI:DIDD:DisplayWidth omfi:UInt32 Number of pixels in vertical dimen-
sion of display view. Optional; the
default value is StoredWidth.

OMFI:DIDD:DisplayXOffset omfi:Int32 X offset, in pixels, from top left cor-
ner of stored view. Optional; the
default value is 0.

OMFI:DIDD:DisplayYOffset omfi:Int32 Y offset, in pixels, from top left cor-
ner of stored view. Optional; the
default value is 0.

Property Name Type Explanation

9/18/97 OMF Interchange Specification Version 2.1 121

OMFI:DIDD:FrameLayout omfi:LayoutType Describes whether all data for a com-
plete sample is in one frame or is
split into more than one field. Values
are

0 FULL_FRAME: frame contains
full sample in progressive
scan lines.

1 SEPARATE_FIELDS: sample
consists of two fields, which
when interlaced produce a
full sample.

2 SINGLE_FIELD: sample
consists of two interlaced
fields, but only one field is
stored in the data stream.

3 MIXED_FIELDS.

OMFI:DIDD:VideoLineMap omfi:Int32Array Specifies the scan line in the analog
source that corresponds to the
beginning of each digitized field. For
single field video, there is 1 value in
the array and for interleaved video,
there are 2 values in the array.

OMFI:DIDD:ImageAspectRatio omfi:Rational Describes the ratio between the hori-
zontal size and the vertical size in the
intended final image.

OMFI:DIDD:AlphaTransparency omfi:Int32 A value of 1 means that the maxi-
mum Alpha value is transparent. A
value of 0 means that the 0 Alpha
value is transparent. Optional.

OMFI:DIDD:Gamma omfi:Rational Specifies the expected output
gamma setting on the video display
device. Optional.

OMFI:DIDD:ImageAlignmentFactor omfi:Int32 Specifies the alignment when storing
the digital media data. For example,
a value of 16 means that the image
is stored on 16-byte boundaries. The
starting point for a field will always
be a multiple of 16 bytes. If the field
does not end on a 16-byte bound-
ary, the remaining bytes are unused.
Optional.

OMFI:CDCI:ComponentWidth omfi:Int32 Specifies the number of bits used to
store each component. Can have a
value of 8, 10, or 16. Each compo-
nent in a sample is packed contigu-
ously; the sample is filled with the
number of bits specified by the
optional OMFI:CDCI:Padding-
Bits property. If the
OMFI:CDCI:PaddingBits prop-
erty is omitted, samples are packed
contiguously.

Property Name Type Explanation

122 Appendix A: OMF Object Classes 9/18/97

OMFI:CDCI:HorizontalSubsampling omfi:UInt32 Specifies the ratio of luminance
sampling to chrominance sampling
in the horizontal direction. For 4:2:2
video, the value is 2, which means
that there are twice as many lumi-
nance values as there are color-
difference values. The other legal
value is 1.

OMFI:CDCI:ColorSiting omfi:ColorSitingType Specifies how to compute subsam-
pled chrominance component
values. Values are:

0 coSiting
To calculate subsampled
pixels, take the preceding
pixel’s color value, discard
the other color values, and
cosite the color with the
first luminance value.

1 averaging
To calculate subsampled
pixels, take the average of
the two adjacent pixels’
color values, and site the
color in the center of the
luminance pixels.

2 threeTap
To calculate subsampled
pixels, take 25 percent of
the previous pixel’s color
value, 50 percent of the first
value, and 25 percent of
the second value. For the
first value in a row, use 75
percent of that value since
there is no previous value.
The threeTap value is
only meaningful when the
HorizontalSubsampling
property has a value of 2.

Optional; when omitted, treat as
coSiting.

OMFI:CDCI:BlackReferenceLevel omfi:UInt32 Specifies the digital luminance
component value associated with
black. For CCIR-601/2, the value is
16; for YUV, the value is 0. The same
value is used in CDCI and RGBA
when the standard CCIR colorspace
conversion is used. Optional; if
omitted the default value is 0.

Property Name Type Explanation

9/18/97 OMF Interchange Specification Version 2.1 123

Description
Color Difference Component Image objects specify pixels with one luminance
component and two color-difference components. This format is commonly
known as YCbCr.

Chrominance subsampling reduces storage requirements by omitting the col-
or difference information for some pixels. When reading the image, the color
difference information for these pixels is calculated from the color difference
information of the adjacent pixels. Color siting specifies how to calculate the
color difference information when the two pixels have unequal color differ-
ence information.

See the description of the Digital Image Descriptor class for a description of the
compression and geometry properties.

If the PaddingBits property is set to 0 or omitted, the image data contains
one pixel immediately after another. If one pixel ends within a byte, the re-
maining bits in that byte are used for the following pixel. In all cases, the video
frame is padded to a byte boundary.

Related Classes
Digital Image Descriptor (DIDD), Image Data (IDAT), JPEG Image Data (JPEG),
RGBA Component Image Descriptor (RGBA), Source Mob (SMOB)

OMFI:CDCI:WhiteReferenceLevel omfi:UInt32 Specifies the digital luminance
component value associated with
white. For CCIR-601/2, 8-bit video,
the value is 235; for YUV 8-bit video,
the value is 255. Optional; if
omitted, the default value is
maximum unsigned integer value for
component size.

OMFI:CDCI:ColorRange omfi:UInt32 Specifies the range of allowable
digital chrominance component
values. Chrominance values are
signed and the range specified is
centered on 0. For CCIR-601/2, the
value is 225; for YUV the value is
255. This value is used for both
chrominance components. Optional;
the default value is the maximum
unsigned integer value for the
component size.

OMFI:CDCI:PaddingBits omfi:Int16 Specifies the number of bits padded
to each pixel. Optional; default is 0.

Property Name Type Explanation

124 Appendix A: OMF Object Classes 9/18/97

Component Class (CPNT)

Represents time-varying data and has a type and length.

Data Model

Implementation

Description
The Component class is an abstract class that represents a section of media or
other time-varying data. Since it is an abstract class, there are no objects in an
OMFI file that have an ObjClass value of CPNT; all objects in any OMFI file
that belong to the Component class also belong to a subclass of Component.
The two subclasses of Component defined in this specification are Segment
(SEGM) and Transition (TRAN). A Segment is a time-varying object that has an
independent meaning and does not have to be followed or preceded by
another object in a Sequence. Segment is also an abstract classÑit has many
subclasses such as Effect Invocation, Filler, Sequence, and Source Clip. A Tran-
sition object describes the way to change from one segment to another; conse-
quently, a Transition can only appear in a Sequence between two Segments.

The two properties of the Component class, DataKind and Length, specify
the fundamental attributes of any OMFI time-varying object. DataKind iden-
tifies the format and meaning of the data values, and Length specifies the
duration in edit units of the component. The duration is the time period in
which the component defines data values. The componentÕs edit rate is
defined by the Mob Slot, Effect Slot, or Edit Rate Converter that contains the
Component. With the information from these two properties, an application
can determine its level of support for a Component. If it cannot accurately play

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is CPNT.

OMFI:CPNT:DataKind omfi:ObjRef HAS-REFERENCE to a Data Definition object that specifies
the data kind of the component.

OMFI:CPNT:Length omfi:Length32
omfi:Length64

Specifies the duration in edit units of the component.

Component Class (CPNT)
Is-a-Kind-of OMFI Object

DataKind

Length

Data Definition (DDEF)

Abstract Class

9/18/97 OMF Interchange Specification Version 2.1 125

the Component, at least it can use the basic information to decide how to
proceed.

A typical DataKind value of a Component in a video slot would be
omfi:data:Picture. The data kind for a Component must match or be
convertible to the data kind required by the context of the Component. For
example, a Component object in a Sequence object must have a data kind that
is the same as or convertible to the data kind of the Sequence.

Related Classes
Data Definition (DDEF), Edit Rate Converter (ERAT), Effect Slot (ESLT), Mob
Slot (MSLT), OMFI Object (OOBJ), Segment (SEGM), Transition (TRAN)

126 Appendix A: OMF Object Classes 9/18/97

Composition Mob Class (CMOB)

Describes the editing information that combines segments of media into a pre-
sentation.

Data Model

Implementation

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is CMOB.

OMFI:MOBJ:MobID omfi:UID Unique Mob Identification.

OMFI:MOBJ:Name omfi:String Name of mob for display to end user.
Optional.

OMFI:MOBJ:Slots omfi:ObjRefArray Contains the externally visible Mob Slots and the
internal slots containing media and other time-
varying information.

OMFI:MOBJ:LastModified omfi:TimeStamp Date and time when mob was last modified.

OMFI:MOBJ:CreationTime omfi:TimeStamp Date and time when the mob was originally
created.

OMFI:MOBJ:UserAttributes omfi:ObjRef Specifies a set of user attributes, which provide
additional information about the Mob. The
Attribute Array contains a set of Attributes.
Optional.

OMFI:CMOB:DefFadeLength omfi:Length32
omfi:Length64

Specifies the default length of the audio fade-in and
fade-out to be applied to all audio Source Clips that
do not specify the audio fade properties. Optional;
if specified, then the default fade type and the
default fade edit units must also be specified.

Composition Mob Class (CMOB)
Is-a-Kind-of Mob

DefFadeLength

DefFadeType

DefFadeEditUnit

9/18/97 OMF Interchange Specification Version 2.1 127

Description
A Composition Mob object contains a complete multimedia presentation.
Composition Mob objects can range from a very simple structure containing
only a single Segment of media to extremely complex structures containing
multiple Mob Slots representing different media kinds; each Mob Slot contain-
ing complex Sequences, Transitions, and multilayer effects.

Mob Slots and Track Descriptions

Mob Slots contain Segments of media or other time-varying data. A Mob Slot
can be externally visible or externally hidden. Mob Slots that are externally vis-
ible by definition have a Track Description (TRKD); these Mob Slots represent
outputs of the Mob. All slots can be referenced by other slots within the same
Mob via Scope References (SREF).

Mob Slots are ordered to allow Scope References with the Mob.

Default Audio Fade Properties

Specify the default values to create audio Òsoft cuts,Ó which are created by ap-
plying a fade-in effect at the start of an audio Source Clip and a fade-out effect
at its end. If the edit rate specified in the DefFadeEditUnit property is dif-
ferent from the edit rate of the track containing the audio Source Clip, the
length specified by the DefFadeLength property must be converted to the
trackÕs edit rate. The fade length and fade type specified by these properties
specify both the default fade-in and fade-out.

Related Classes
Header (HEAD), Master Mob (MMOB), Mob (MOBJ), Mob Slot (MSLT), Source
Clip (SCLP), Source Mob (SMOB), Track Description (TRKD)

OMFI:CMOB:DefFadeType omfi:FadeType Specifies the default type of audio fade. Optional; if
specified, then the default length and default edit
units must also be specified. Specifies the type of
the audio fade in; may have one of the following
values:

0 No fade
1 Linear amplitude fade
2 Linear power fade
3 Linear dB fade

Additional registered and private fade in types may
be defined. Optional.

OMFI:CMOB:DefFadeEditUnit omfi:Rational Specifies the edit units in which the default fade
length is specified. Optional; if specified, then the
default fade length and default fade type must also
be specified.

Property Name Type Explanation

128 Appendix A: OMF Object Classes 9/18/97

Constant Value Class (CVAL)

Specifies a constant data value for the duration of the component; typically
used to specify a constant value for an effect control slot.

Data Model

Implementation

Rule
A Constant Value object can only have a data kind that has a defined data con-
stant format. A Constant Value object cannot have a data kind that specifies a
media stream because these formats do not have a defined constant format.
Data kinds that specify a media stream include omfi:data:EdgeCode, om-
fi:data:Picture, omfi:data:PictureWithMatte, omfi:da-
ta:Matte, omfi:data:Sound, omfi:data:StereoSound, and
omfi:data:Timecode.

Description
A Constant Value object can be used to supply a constant value for a control
argument in an Effect Slot object. Typically, this is done by having the Effect
Slot Segment be the Constant Value object.

Although Constant Value objects are typically used as effect control argu-
ments, they can be used in any context that a Segment object is allowed. For
example, you can use a Constant Value object with an omfi:data:Color val-
ue in any place where an omfi:data:Picture Segment is allowed. This is
allowed because the Color data kind is automatically converted to the Pic-
ture data kind.

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is CVAL.

OMFI:CPNT:DataKind omfi:ObjRef HAS-REFERENCE to a Data Definition object that speci-
fies the data kind of the value.

OMFI:CPNT:Length omfi:Length32
omfi:Length64

Specifies the duration in edit units of the constant
value.

OMFI:CVAL:Value omfi:DataValue Specifies the value.

Constant Value Class (CVAL)
Is-a-Kind-of Segment

Value

9/18/97 OMF Interchange Specification Version 2.1 129

Related Classes
Effect Invocation (EFFE), Effect Slot (ESLT), Segment (SEGM), Varying Value
(VVAL)

130 Appendix A: OMF Object Classes 9/18/97

Control Point Class (CTLP)

Specifies a value for the specified time point in a Varying Value segment; typ-
ically used to specify a value in an effect control slot.

Data Model

Implementation

Rule
A Control Point object can only have a data kind that has a defined data con-
stant format. A Control Point object cannot have a data kind that specifies a
media stream because these formats do not have a defined constant format.
Data kinds that specify a media stream include omfi:data:EdgeCode, om-
fi:data:Picture, omfi:data:PictureWithMatte, omfi:da-
ta:Matte, omfi:data:Sound, omfi:data:StereoSound, and
omfi:data:Timecode.

Description
A Control Point object specifies the value at a specific time in a Varying Value
object. The Control Point object must have the same data kind as the Varying
Value object containing it.

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is CTLP.

OMFI:CTLP:Time omfi:Rational Specifies the time within the Varying Value segment
for which the value is defined.

OMFI:CTLP:DataKind omfi:ObjRef HAS-REFERENCE to a Data Definition object that spec-
ifies the data kind of the value.

OMFI:CTLP:Value omfi:DataValue Specifies the value.

OMFI:CTLP:EditHint omfi:EditHintType Specifies a hint to be used if the Effect Invocation
starting time or length is changed during editing. Can
be EH_Proportional, EH_RelativeLeft,
or EH_RelativeRight. Optional.

Control Point Class (CTLP)
Is-a-Kind-of OMFI Object

DataKind

Value

Data Definition (DDEF)

Time

EditHint

9/18/97 OMF Interchange Specification Version 2.1 131

A Time equal to 0.0 represents the time at the beginning of the Varying Value
object; a Time equal to 1.0 represents the time at the end of the Varying Value
object.

Related Classes
Data Definition (DDEF), Effect Invocation (EFFE), Effect Slot (ESLT), Varying Val-
ue (VVAL)

132 Appendix A: OMF Object Classes 9/18/97

Data Definition Class (DDEF)

Identifies a globally defined data kind and makes it referenceable within an
OMFI file.

Data Model

Implementation

Description
A Data Definition object identifies the kind of the time-varying data produced
by a Component object. Each Component object in an OMFI file has a refer-
ence to a Data Definition object. Many Component objects can have a reference
to a single Data Definition object.

The Data Definition object specifies the unique name of the data kind. The
meaning, internal format, and size of the data kind are not described in the
Data Definition object. This information is provided in this specification or in
the documentation provided with registered or private formats.

A Data Definition can identify either a kind of data with a constant value for-
mat or a kind of data associated with a media stream.

Related Classes
Component (CPNT), Control Point (CTLP), Header (HEAD)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is DDEF.

OMFI:DDEF:DataKindID omfi:UniqueName A string of characters that specify a qualified name.
Segments of the name are separated by: (colon charac-
ters).

Data Definition Class (DDEF)
Is-a-Kind-of OMFI Object

DataKindID

9/18/97 OMF Interchange Specification Version 2.1 133

Digital Image Descriptor Class (DIDD)

Describes the image media data associated with a Source Mob.

Data Model

Implementation

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is DIDD.

OMFI:MDES:Locator omfi:ObjRefArray Set of locators that provide hints to help
find the OMFI file or the raw data file that
contains the media data. Optional.

OMFI:MDFL:IsOMFI omfi:Boolean A True value indicates that the media
data is stored in an OMFI file; a False
value indicates that the media data is
stored in a raw data file.

OMFI:MDFL:SampleRate omfi:Rational The native sample rate of the digitized
media data.

OMFI:MDFL:Length omfi:Int32 Duration of the media in sample units.

OMFI:DIDD:Compression omfi:String Kind of compression and format of
compression information; a string with
the following values that must be recog-
nized by all OMFI-compatible applica-
tions:

JPEG ISO JPEG stream
Other registered and private strings may
be defined. Optional; if there is no
compression, the property is omitted.

Digital Image Descriptor Class (DIDD)
Is-a-Kind-of Media File Descriptor

StoredHeight

StoredWidth

SampledHeight

É
Compression

SampledWidth

SampledXOffset

SampledYOffset

DisplayHeight

Abstract Class

134 Appendix A: OMF Object Classes 9/18/97

OMFI:DIDD:StoredHeight omfi:UInt32 Number of pixels in vertical dimension of
stored view. See the Description section
for an explanation of image geometry.

OMFI:DIDD:StoredWidth omfi:UInt32 Number of pixels in horizontal dimension
of stored view.

OMFI:DIDD:SampledHeight omfi:UInt32 Number of pixels in vertical dimension of
sampled view. Optional; the default value
is StoredHeight. See the Descrip-
tion section for an explanation of image
geometry.

OMFI:DIDD:SampledWidth omfi:UInt32 Number of pixels in horizontal dimension
of sampled view. Optional; the default
value is StoredWidth.

OMFI:DIDD:SampledXOffset omfi:Int32 X offset, in pixels, from top-left corner of
stored view. Optional; default value is 0.

OMFI:DIDD:SampledYOffset omfi:Int32 Y offset, in pixels from top-left corner of
stored view. Optional; default value is 0.

OMFI:DIDD:DisplayHeight omfi:UInt32 Number of pixels in vertical dimension of
display view. Optional; the default value
is StoredHeight. See the Descrip-
tion section for an explanation of image
geometry.

OMFI:DIDD:DisplayWidth omfi:UInt32 Number of pixels in vertical dimension of
display view. Optional; the default value
is StoredWidth.

OMFI:DIDD:DisplayXOffset omfi:Int32 X offset, in pixels, from top-left corner of
stored view. Optional; the default value is
0.

OMFI:DIDD:DisplayYOffset omfi:Int32 Y offset, in pixels, from top-left corner of
stored view. Optional; the default value is
0.

OMFI:DIDD:FrameLayout omfi:LayoutType Describes whether all data for a complete
sample is in one frame or is split into
more than one field. Values are

0 FULL_FRAME: frame contains full
sample in progressive scan lines.

1 SEPARATE_FIELDS: sample consists
of two fields, which when inter-
laced produce a full sample.

2 SINGLE_FIELD: sample consists of
two interlaced fields, but only one
field is stored in the data stream.

3 MIXED_FIELDS.

OMFI:DIDD:VideoLineMap omfi:Int32Array Specifies the scan line in the analog
source that corresponds to the beginning
of each digitized field. For single-field
video, there is 1 value in the array; for
interleaved video, there are 2 values in
the array.

Property Name Type Explanation

9/18/97 OMF Interchange Specification Version 2.1 135

Rules
1. If you specify any of the sampled geometry properties, Sampled-

Height, SampledWidth, SampledXOffset, and SampledYOff-
set, you must specify all of them.

2. If you specify any of the display geometry properties, Display-
Height, DisplayWidth, DisplayXOffset, and DisplayYOff-
set, you must specify all of them.

Description
The Digital Image Descriptor (DIDD) is an abstract class. Objects of its subclass-
es, Color Difference Component Image Descriptor (CDCI) and RBGA Compo-
nent Image Descriptor (RGBA) are used in a Source Mob and describe the
format of the digital image data associated with the Source Mob. The Digital
Image Descriptor specifies the properties common to these formats. These
properties specify the following about the image format:

¥ Compression

¥ Geometry

¥ Alpha Transparency Value

Compression

The Compression property specifies that the image is compressed and the
kind of compression used. Applications are required to support JPEG and no
compression. Registered and private compression kinds are described in doc-
umentation available separately from the OMF DevelopersÕ Desk. A value of
JPEG specifies that the image is compressed according to the following:

¥ Each image frame conforms to ISO DIS 10918-1. If the frame has two fields,

OMFI:DIDD:ImageAspectRatio omfi:Rational Describes the ratio between the hori-
zontal size and the vertical size in the
intended final image.

OMFI:DIDD:AlphaTransparency omfi:Int32 A value of 1 means that the maximum
Alpha value is transparent. A value of 0
means that the 0 Alpha value is transpar-
ent. Optional.

OMFI:DIDD:Gamma omfi:Rational Specifies the expected output gamma
setting on the video display device.
Optional.

OMFI:DIDD:ImageAlignmentFactor omfi:Int32 Specifies the alignment when storing the
digital media data. For example, a value
of 16 means that the image is stored on
16-byte boundaries. The starting point
for a field will always be a multiple of 16
bytes. If the field does not end on a 16-
byte boundary, the remaining bytes are
unused. Optional.

Property Name Type Explanation

136 Appendix A: OMF Object Classes 9/18/97

then each field is stored as a separate image.

¥ Images may be preceded or followed by fill bytes.

¥ Quantization tables are required; they may not be omitted.

¥ Huffman tables are optional; if omitted, tables from the ISO standard are
used.

Geometry

The geometry properties describe the dimensions and meaning of the stored
pixels in the image. The geometry describes the pixels of an uncompressed im-
age. Consequently, the geometry properties are independent of the compres-
sion and subsampling.

Three separate geometriesÑstored view, sampled view, and display viewÑ
are used to define a set of different views on uncompressed digital data. All
views are constrained to rectangular regions, which means that storage and
sampling has to be rectangular.

Each of these data views will have a width and height value. Both the sampled
view and the display view also have offsets relative to the top left corner of the
stored view.

The FrameLayout property describes whether a complete image is contained
in one full field or in two separate fields.

The ImageAspectRatio describes the ratio between the horizontal size and
the vertical size in the intended final image.

The VideoLineMap specifies the relationship between the scan lines in the an-
alog signal and the beginning of the digitized fields. The analog lines are ex-
pressed in scan line numbers that are appropriate for the signal format. For
example, a typical PAL two-field mapping might be {20,332}, where scan line
20 corresponds to the first line of field 1, and scan line 332 corresponds to the
first line of field 2. Notice that the numbers are based on the whole frame, not
on offsets from the top of each field, which would be {20,20}

A value of 0 is allowed only when computer-generated media has to be treated
differently. If the digital media was computer generated (RGB), the values
may be either {0,1} (even field first) or {1,0} (odd field first).

Alpha Transparency

The AlphaTransparency property determines whether the maximum alpha
value or the 0 value indicates that the pixel is transparent. If the property has
a value of 1, then the maximum alpha value is transparent and a 0 alpha value
is opaque. If the property has a value of 0, then the maximum alpha value is
opaque and the 0 alpha value is transparent.

9/18/97 OMF Interchange Specification Version 2.1 137

Related Classes
Color Difference Component Image Descriptor (CDCI), Image Data (IDAT),
JPEG Image Data (JPEG), RGBA Component Image Descriptor (RGBA), Source
Mob (SMOB)

138 Appendix A: OMF Object Classes 9/18/97

DOS Locator Class (DOSL)

Provides information to help find the DOS file containing media data.

Data Model

Implementation

Description
The DOS Locator (DOSL) provides a DOS pathname that contains a hint to
help an application find the OMFI file or raw data file containing the media da-
ta.

The Source Mob (SMOB) describing the digital media data HAS a Media De-
scriptor object that optionally HAS a set of Locators.

Related Classes
Locator (LOCR), Mac Locator (MACL), Network Locator (NETL), Text Locator
(TXTL), UNIX Locator (UNXL), Windows Locator (WINL)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is DOSL.

OMFI:DOSL:PathName omfi:String MS DOS pathname for raw data file or OMFI file containing
the media data.

DOS Locator Class (DOSL)
Is-a-Kind-of Locator

PathName

9/18/97 OMF Interchange Specification Version 2.1 139

Edgecode Class (ECCP)

Stores film edge code information.

Data Model

Implementation

Description
An Edge Code object typically appears in a Mob Slot in a Source Mob that de-
scribes a film source. For a film source where the edge codes are contiguous

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is ECCP.

OMFI:CPNT:DataKind omfi:ObjRef HAS-REFERENCE to a Data Definition object that speci-
fies the data kind omfi:data:Edgecode.

OMFI:CPNT:Length omfi:Length32
omfi:Length64

Duration of contiguous edge code values.

OMFI:ECCP:Start omfi:Position32
omfi:Position64

Specifies the edge code at the beginning of the
segment.

OMFI:ECCP:FilmKind omfi:FilmType Specifies the type of film; one of these:
0 FT_NULL
1 FT_35MM
2 FT_16MM
3 FT_8MM
4 FT_65MM

OMFI:ECCP:CodeFormat omfi:EdgeType Specifies the edge code format; one of these:
0 ET_NULL
1 ET_KEYCODE
2 ET_EDGENUM4
3 ET_EDGENUM5

OMFI:ECCP:Header omfi:DataValue Specifies the text prefix that identifies the film. Typically,
this is a text string with no more than 8 characters;
optional.

Edge Code Class (ECCP)
Is-a-Kind-of Segment

FilmKind

CodeFormat

Start

140 Appendix A: OMF Object Classes 9/18/97

for the entire source, the Mob Slot should contain a single Edge Code object
with a length equal to the length of the Source Clip in the video Mob Slot. For
a film source where the edge codes are not contiguous, the Mob Slot should
contain a Sequence object that contains a series of Edge Code objects.

Related Classes
Segment (SEGM), Source Mob (SMOB), Timecode (TCCP)

9/18/97 OMF Interchange Specification Version 2.1 141

Edit Rate Converter Class (ERAT)

Converts from one edit rate to another.

Data Model

Implementation

Rule
The span of time represented by the input Segment must completely include
the span of time represented by the Edit Rate Converter object.

Description
An Edit Rate Converter object converts part of a Segment in one edit rate into
a Segment in another edit rate. You may want to use an Edit Rate Converter
when you want to make an exact copy of a Segment that is in another edit rate
and it is important to avoid the rounding errors caused by edit rate conver-
sions.

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is ERAT.

OMFI:CPNT:DataKind omfi:ObjRef HAS-REFERENCE to a Data Definition object that spec-
ifies the data kind of the Edit Rate Converter.

OMFI:CPNT:Length omfi:Length32
omfi:Length64

Duration of the Edit Rate Converter in output edit
units.

OMFI:ERAT:InputSegment omfi:ObjRef HAS a Segment that is to be converted from input
edit rate to output edit rate.

OMFI:ERAT:InputEditRate omfi:Rational Edit rate of the Segment being converted.

OMFI:ERAT:InputOffset omfi:Position32
omfi:Position64

Offset in input edit units from an arbitrary synchroni-
zation point to the start of the input Segment.

OMFI:ERAT:ResultOffset omfi:Position32
omfi:Position64

Offset in output edit units from the same arbitrary
synchronization to the start of the input Segment.

Edit Rate Conversion Class (ERAT)
Is-a-Kind-of OMFI Segment

InputSegment

InputEditRate

Segment (SEGM)

InputOffset

ResultOffset

142 Appendix A: OMF Object Classes 9/18/97

Edit rate conversions can also be performed by the following mechanisms:

¥ Scope References to a Mob Slot with a different edit rate

¥ Source Clip reference to a Mob Slot with a different edit rate

Related Classes
Scope Reference (SREF), Segment (SEGM), Source Clip (SCLP)

9/18/97 OMF Interchange Specification Version 2.1 143

Effect Definition Class (EDEF)

Identifies an effect and allows it to be referenced within an OMFI file.

Data Model

Implementation

Description
An Effect Definition object identifies an effect by its effect ID, a unique effect
name. For registered effect IDs, you can use the effect documentation available
separately from the OMF DevelopersÕ Desk. Effect documentation for private
effects should be available from the organization that defined the effect.

The effect documentation provides a brief description of how the effect should
modify or combine media and of the purpose of the data in the Effect Invoca-
tion slots. It lists the argument ID values allowed in an Effect Invocation and
the data kind and meaning of the time-varying data in the Effect Slot. It can
also specify the allowed range of values for a Effect Slot with the argument ID
value. This information is not encoded in the Effect Definition itself.

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is EDEF.

OMFI:EDEF:EffectID omfi:UniqueName Specifies the unique name registered for the
effect; for example,
omfi:effect:VideoSpeedControl.

OMFI:EDEF:EffectName omfi:String Name for displaying to users. Optional.

OMFI:EDEF:EffectDescription omfi:String Description for displaying to users.
Optional.

OMFI:EDEF:Bypass omfi:ArgIDType The Argument ID value that identifies the
primary input slot. Optional.

OMFI:EDEF:IsTimeWarp omfi:Boolean Specifies that the duration for the Effect
Slots can be different from the duration of
the Effect Invocation. Optional.

Effect Definition Class (EDEF)

Is-a-Kind-of OMFI Object

EffectName

EffectDescription

Bypass

EffectID

IsTimeWarp

144 Appendix A: OMF Object Classes 9/18/97

The EffectName and EffectDescription properties are intended for dis-
play to end users to help them choose a substitute for unknown effects. The
Bypass property is intended to provide applications a way to play effects that
they do not know or cannot generate.

Each Effect Invocation object HAS-REFERENCE to an Effect Definition. If your
application is processing an Effect Invocation object and has code to handle the
effect specified by the effect ID unique name, it does not need to examine any
of the other properties of the Effect Definition objectÑthis information is de-
scribed in the effect documentation and cannot be changed.

All Effect Definition objects in an OMFI file are part of the Header Defini-
tionObjects property.

Related Classes
Effect Invocation (EFFE), Effect Slot (ESLT), Header (HEAD)

9/18/97 OMF Interchange Specification Version 2.1 145

Effect Invocation Class (EFFE)

Specifies an effect in a Composition Mob.

Data Model

Implementation

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is EFFE.

OMFI:CPNT:DataKind omfi:ObjRef HAS-REFERENCE to a Data Definition object
that specifies the data kind of the Effect Invoca-
tion. Media effects typically have a data kind
of:

omfi:data:Picture
omfi:data:PictureWithMatte
omfi:data:Sound
omfi:data:StereoSound

OMFI:CPNT:Length omfi:Length32

omfi:Length64

Specifies the duration of the effect in edit units.

OMFI:EFFE:EffectKind omfi:ObjRef HAS-REFERENCE to an Effect Definition that
identifies the kind of effect with a unique
name.

OMFI:EFFE:EffectSlots omfi:ObjRefArray HAS a set of Effect Slots containing the input
media Segments and the effect control argu-
ment Segments. Optional.

OMFI:EFFE:BypassOverride omfi:ArgIDType Specifies the ArgID value of the input
media Effect Slot to be substituted for the
Effect Invocation if the application cannot
generate the effect. Overrides the bypass
specified in the Effect Definition.
Optional.

Effect Invocation Class (EFFE)

Is-a-Kind-of Segment

EffectKind

EffectSlots Effect Slot (ESLT)

BypassOverride

FinalRendering

WorkingRendering

Effect Definition (EDEF)

Source Clip (SCLP)

Source Clip (SCLP)

146 Appendix A: OMF Object Classes 9/18/97

Rules
1. In all Effect Invocation objects, the length of the FinalRendering

Source Clip and the length of the WorkingRendering Source Clip
must each equal the length of the Effect Invocation.

2. In Effect Invocation objects whose Effect Definition object does not specify
a time warp, the length of the Segment in each Effect Slot must each equal
the length of the Effect Invocation.

Description
An Effect Invocation object specifies the kind of effect, the input media Seg-
ments, and the values of control arguments that specify how the effect should
be applied. The EffectSlots property contains the input media Segments
and values of control arguments.

Effect Definition

The Effect Invocation EffectKind property HAS-REFERENCE to an Effect
Definition object that specifies the effect ID, the unique name of the effect. For
registered effect IDs, you can use the effect documentation available separate-
ly from the OMF DevelopersÕ Desk. Effect documentation for private effects
should be available from the organization that defined the effect. This effect
documentation provides a brief description of how the effect should modify or
combine media and of the meaning of effect control arguments in the Effect In-
vocation object. This information is not encoded in the Effect Definition object.

If your application is processing an Effect Invocation object and has code to
handle the effect specified by the effect ID unique name, it does not need to ex-
amine any of the other properties of the Effect Definition objectÑthis informa-
tion is described in the effect documentation and cannot be changed.

The effect documentation provides a brief description of how the effect should
modify or combine media and of the purpose of the data in the Effect Invoca-
tion slots. It lists the argument ID values allowed in an Effect Invocation and
the data kind and meaning of the time-varying data in the Effect Slot. It can
also specify the allowed range of values for a Effect Slot for each argument ID
value.

OMFI:EFFE:FinalRendering omfi:ObjRef HAS a Source Clip that contains a
rendered version of the effect intended for
final use. Optional.

OMFI:EFFE:WorkingRendering omfi:ObjRef HAS a Source Clip that contains a
rendered version of the effect intended for
viewing during editing but not intended
for final use. Optional.

Property Name Type Explanation

9/18/97 OMF Interchange Specification Version 2.1 147

Effect Slots

The EffectSlots property contains both input media Segments and control
arguments. Input media Segments provide the media that is altered or com-
bined to produce the intended effect. Control arguments contain values that
specify parameters for adjustments in the way the effect should be performed.
The Effect Slot ArgID property contains an integer that identifies the purpose
of the slot. The effect documentation lists all valid argument ID integers and
their meaning for an effect.

An effect can have constant control arguments or have control arguments
whose values vary over time. For example, a picture-in-picture effect where
the size and transparency of the inserted picture stays constant throughout the
effect has constant control arguments, but a picture-in-picture effect that starts
with a small inserted picture that grows larger during the effect has control
arguments with time-varying values.

A constant control argument can be specified with a Constant Value (CVAL)
object in an Effect Slot. A time-varying value is specified with a Varying Value
(VVAL) object in an Effect Slot.

When an effect specifies time-varying control values, it can also specify how to
interpolate these values. Interpolation is a mathematical method to calculate a
value for a point based on the values of two surrounding points. In effects, you
can use interpolation to find the value for control arguments for any point in
time in an effect or transition object by using the values that are specified.

Rendered Effects

When an application creates an Effect Invocation object in an OMFI file, it can
also include rendered versions of the effect. A rendered version is media data
that can be played to produce the effect. An application can produce a working
rendering, a final rendering, or both. A working rendering is intended to store
a partially rendered or approximately rendered implementation of the effect
but is not intended for final production. A final rendering of the effect is in-
tended for final production; it can also be used to play the effect during edit-
ing.

If there are more than one implementation of a rendered effect, you should use
a Media Group object in the Master Mob.

Dealing with Unrecognized Effects

If an application importing an OMFI file encounters an unknown effect, it can
preserve the Effect Invocation and Effect Definition objects so that if the Com-
position Mob containing the effect is exported, the effect will be preserved. If
any application cannot preserve the information, it should inform the user that
some effect information is being lost.

148 Appendix A: OMF Object Classes 9/18/97

If an application is trying to play an unknown effect, the OMF DevelopersÕ
Desk recommends that it perform the first action in the following list that ap-
plies:

1. If there is a rendered version of the effect, play the rendered ver-
sion.

2. If the Effect Invocation specifies a BypassOverride property, play the
media in the Effect Slot with the specified argument ID.

3. If the Effect Definition specifies a Bypass property, play the media in the
Effect Slot with the specified argument ID.

4. Play blank media for the effect.

Related Classes
Constant Value (CVAL), Control Point (CTLP), Data Definition (DDEF), Effect
Definition (EDEF), Effect Slot (ESLT), Media Group (MGRP), Segment (SEGM),
Source Clip (SCLP), Varying Value (VVAL)

9/18/97 OMF Interchange Specification Version 2.1 149

Effect Slot Class (ESLT)

Specifies an input media segment or a control argument for an effect.

Data Model

Implementation

Description
An Effect Slot object can contain either input media segments or control argu-
ments. Input media segments provide the media that is altered or combined to
produce the intended effect. Control arguments contain values that specify pa-
rameters for adjustments in the way the effect should be performed. The
ArgID property has an integer value that identifies the purpose of the slot. The
effect documentation lists all valid argument ID integers and their meaning for
an effect.

The effect documentation provides a brief description of how the effect should
modify or combine media and of the purpose of the data in the Effect Invoca-
tion slots. It lists the argument ID values allowed in an Effect Invocation and
the data kind and meaning of the time-varying data in the slot. It can also spec-
ify the allowed range of values for a slot. This information is not encoded in the
Effect Definition itself.

An effect can have constant control arguments or have control arguments
whose values vary over time. For example, a picture-in-picture effect where
the size and transparency of the inserted picture stays constant throughout the
effect has constant control arguments, but a picture-in-picture effect that starts
with a small inserted picture that grows larger during the effect has control
arguments with time-varying values.

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is ESLT.

OMFI:ESLT:ArgID omfi:ArgIDType Integer that identifies the role of the slot in the effect.
The meaning of the integer is described in the
effect’s documentation.

OMFI:ESLT:ArgValue omfi:ObjRef HAS a Segment that contains the input media or the
control argument values.

Effect Slot Class (ESLT)

Is-a-Kind-of OMFI Object

ArgID

ArgValue Segment (SEGM)

150 Appendix A: OMF Object Classes 9/18/97

A constant control argument can be specified with a Constant Value (CVAL)
object in an Effect Slot. A time-varying value is specified with a Varying Value
(VVAL) object in an Effect Slot.

Related Classes
Constant Value (CVAL), Control Point (CTLP), Data Definition (DDEF), Effect
Definition (EDEF), Effect Invocation (EFFE), Source Clip (SCLP), Varying Value
(VVAL)

9/18/97 OMF Interchange Specification Version 2.1 151

Filler Class (FILL)

Represents an unknown or unspecified value for the duration of the object.

Data Model

Implementation

Description
A Filler object is a placeholder for an unknown value for the componentÕs du-
ration.

Typically, a Filler object is used in a Sequence to allow positioning of a Seg-
ment when not all of the preceding material has been specified. Another typi-
cal use of Filler objects is to fill time in Mob Slots and Nested Scope Slots that
are not referenced or played.

If a Filler object is played, applications can choose any appropriate blank media
to play. Typically, a video Filler object would be played as a black section, and
an audio Filler object would be played as a silent section.

Related Classes
Component (CPNT), Scope Reference (SREF), Segment (SEGM)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is FILL.

OMFI:CPNT:DataKind omfi:ObjRef HAS-REFERENCE to a Data Definition object that specifies
the data kind of the unspecified value. A Filler object can
have any data kind.

OMFI:CPNT:Length omfi:Length32
omfi:Length64

Specifies the duration of the unspecified value.

Filler Class (FILL)
Is-a-Kind-of Segment

no additional properties

152 Appendix A: OMF Object Classes 9/18/97

Header Class (HEAD)

Provides file-wide information and indexes to the OMF Interchange file.

Data Model

Implementation

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is HEAD.

OMFI:HEAD:ByteOrder omfi:Int16 Specifies the byte order for the OMFI file.
One of the following:

’II’ Little-endian byte order
’MM’ Big-endian byte order

OMFI:HEAD:LastModified omfi:TimeStamp Time and Date the file was last modified.

OMFI:HEAD:PrimaryMobs omfi:ObjRefArray HAS-REFERENCE to a set of Mobs that
should be examined first to determine
contents of OMFI file. Optional.

OMFI:HEAD:Mobs omfi:ObjRefArray HAS a set of all Mobs defined in the OMFI
file.

OMFI:HEAD:MediaData omfi:ObjRefArray HAS a set of all Media Data objects
defined in the OMFI file.

OMFI:HEAD:ClassDictionary omfi:ObjRefArray HAS a set of Class Dictionary Entry objects
that extend the OMFI class hierarchy.
Optional.

Header Class (HEAD)
Is-a-Kind-of OMFI Object

ClassDictionary

Mobs

LastModified

PrimaryMobs

MediaData

Class Dictionary Entry(CLSD)

ByteOrder

Mob (MOBJ)

Mob (MOBJ)

Media Data (MDAT)

DefinitionObjects OMFI Object (OOBJ)

Version

IdentificationList Identification (IDNT)

9/18/97 OMF Interchange Specification Version 2.1 153

Rules
1. Each OMF Interchange file must have exactly one Header object.

2. All mobs defined in the OMFI file must be included in the Mobs property
set of mobs.

3. All Media Data objects in the OMFI file must be included in the Media-
Data set of Media Data objects.

4. Only Data Definition (DDEF) and Effect Definition (EDEF) objects can be in-
cluded in the DefinitionObjects set.

Description
The Header object stores information about the OMFI file as a whole, such as
byte order, Mob indexes, Media Data index, version number, and information
about the applications that created or modified the file.

Byte Order

The value of the ByteOrder property is either ’MM’ (hexadecimal 0x4d4d)
for big-endian byte order, which is used in some architectures such as the
Motorola 680x0 architecture, or ’II’ (hexadecimal 0x4949) for little-endian
byte order, which is used in some architectures such as the Intel x86 architec-
ture.

Big-endian and little-endian refer to whether the most- or least-significant byte
is stored first. In the big-endian byte order, the most-significant byte is stored
first (at the address specified, which is the lowest address of the series of bytes
that constitute the value). In the little-endian byte order, the least-significant
byte is stored first. In both cases, bytes are stored with the most-significant bit
first.

Modification Date

The value of LastModified represents the last time the file was modified.

OMFI:HEAD:DefinitionObjects omfi:ObjRefArray HAS a set of all Data Definition and Effect
Definition objects defined in the OMFI
file.

OMFI:HEAD:Version omfi:VersionType OMF Interchange specification version
number that the file conforms to; must be
2.0 or higher.

OMFI:HEAD:IdentificationList omfi:ObjRefArray HAS an ordered set of Identification
objects, which identify the application
that created or modified the OMF file.
Optional.

Property Name Type Explanation

154 Appendix A: OMF Object Classes 9/18/97

Class Dictionary Property

The ClassDictionary property defines file-wide extensions to the OMFI
class hierarchy. It HAS a set of Class Dictionary objects. These objects are not
required to define the standard class dictionary; they are required only for any
extensions an application is adding for public or private objects.

The ClassDictionary property of the Header object provides a mechanism
for adding object classes to the standard set. Compliance with the standard ob-
jects is assumed for all applications and no ClassDictionary property is re-
quired for it. This property enables OMF Interchange readers to handle
unknown objects.

Mob Indexes

Since references to Mobs are by Mob ID and not by object references, you need
the set of all mobs in the file provided in the Mobs property. This property has
the object references for all the Mobs in the OMFI file. You can examine each
Mob to find its Mob ID and whether it is a Composition Mob, Master Mob, or
Source Mob.

The PrimaryMobs index lists the Mobs that you should examine first. If the
OMFI file represents a single composition, the Composition Mob for it should
be in the PrimaryMobs index. In addition, you may wish to include any other
Mobs that you intend to be referenced independently of the single composi-
tion.

The primary Mobs are the Mobs that the file is intending to communicate; all
other Mobs are present because the primary Mobs reference them. If an OMFI
file has no primary mobs, it is providing a repository for its Mobs but is not
specifying which one should be used.

Media Data Index

Since Mobs are associated with media objects by matching Mob ID values and
not by object references, you need the MediaData property to be able to access
all of the Media Data objects in the file. You can examine each Media Data
object to find its Mob ID and to determine the subclass of Media Data that it
belongs to.

Definition Objects

This index lists all Data Definition and Effect Definition objects in the OMFI file.
Although these objects are referenced by other OMFI objects, they do not be-
long to any tree structure. This index is provided to improve efficiency in han-
dling these definition objects.

9/18/97 OMF Interchange Specification Version 2.1 155

Version Number

The Version property specifies the version of OMF Interchange used to
create the file. In the data type for this property, the first byte indicates the
major revision number. The second byte indicates the minor revision number.
Any OMF Interchange file conforming to this version of the OMF Interchange
specification must have a VersionNumber with the first byte having a value
of 2.

In OMF Interchange Version 1.0, the VersionNumber property was optional.
Any OMFI file that omits the Header VersionNumber must be an OMFI
Version 1.0 file.

Identification List

The IdentificationList property identifies the application that created
the OMF file and, optionally, other applications that have modified the OMF
file. The identification list consists of an ordered set of Identification (IDNT) ob-
jects. The first Identification object describes the application that created the
OMF file. Any following Identification objects describe applications that have
modified the OMF file.

OMFI Tree Structure

In the same way that a mob consists of a tree structure, the entire OMFI file
consists of a tree structure with the Header object being the root of the tree. The
ClassDictionary, Mobs, MediaData, and DefinitionObjects proper-
ties represent the major branches of the tree. By following the branches of this
tree, you can find all the required OMFI objects in the file. Note that, when fol-
lowing the tree, you should not follow any property that has a reference to an-
other object (indicated by dashed lines in the Data Model syntax). It is possible
that there are private objects in the OMFI file that are not included in this tree.

Related Classes
Class Dictionary Entry (CLSD), Composition Mob (CMOB), Data Definition
(DDEF), Effect Definition (EDEF), Master Mob (MMOB), Media Data (MDAT),
Mob (MOBJ), Source Mob (SMOB)

Appendix DAppendix D

156 Appendix A: OMF Object Classes 9/18/97

Identification Class (IDNT)

Provides information about the application that created or modified the OMF
file.

Data Model

Implementation

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is IDNT.

OMFI:IDNT:CompanyName omfi:String Specifies the name of the company or organi-
zation that created the application. Optional.

OMFI:IDNT:ProductName omfi:String Specifies the name of the application.
Optional.

OMFI:IDNT:ProductVersion omfi:ProductVersion Specifies the version number of the applica-
tion. Consists of 5 16-bit integer values that
specify the version of an application. The first
four integers specify the major, minor, tertiary,
and patch version numbers. The fifth integer
has the following values:
0 kVersionUnknown: No additional version

information
1 kVersionReleased: Released product
2 kVersionDebug: Development version
3 kVersionPatched: Released product with

patches
4 kVersionBeta: Prerelease beta test version
5 kVersionPrivateBuild:
Optional.

OMFI:IDNT:ProductVersion-
String

omfi:String Specifies the version number of the applica-
tion in string form. Optional.

Identification Class (IDNT)
Is-a-Kind-of OMFI Object

CompanyName

ProductName

ProductVersion

ProductVersionString

ProductID

Date

ToolkitVersion

Platform

9/18/97 OMF Interchange Specification Version 2.1 157

Description
The Identification (IDNT) class identifies the application that created or modi-
fied the OMF file.

Related Classes
Header (HEAD)

OMFI:IDNT:ProductID omfi:Int32 Specifies the identification number assigned to
the application and vendor. This number spec-
ifies the first integer field in MobIDs for Mobs
created by the application.

OMFI:IDNT:Date omfi:TimeStamp Time and date the application created or
modified the OMF file.

OMFI:IDNT:ToolkitVersion omfi:ProductVersion Specifies the version number of the OMF
Toolkit library. Optional.

OMFI:IDNT:Platform omfi:String Specifies the platform on which the applica-
tion is running. Optional.

Property Name Type Explanation

158 Appendix A: OMF Object Classes 9/18/97

Image Data Class (IDAT)

Contains image media data.

Data Model

Implementation

Description
An Image Data object contains a stream of image media data. It has the same
MobID as a Source Mob object in the OMFI file. This Source Mob describes
the format of the image media. The required OMFI formats for image media
stored in Image Data objects are Color Difference Component Image Descrip-
tor and RGBA Component Image Descriptor.

TIFF image media data is not stored in an Image Data object but is stored in-
stead in a TIFF Image Data object. The TIFF format is included for compatibility
with OMF Interchange Version 1.0.

Related Classes
Color Difference Component Image Descriptor (CDCI), JPEG Image Media
Data (JPEG), Media Data (MDAT), RGBA Component Image Descriptor (RG-
BA), Source Mob (SMOB), TIFF Image Data (TIFF)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is IDAT.

OMFI:MDAT:MobID omfi:UID MobID of source mob that describes media data.

OMFI:IDAT:ImageData omfi:DataValue Media data stream.

Image Data Class (IDAT)
Is-a-Kind-of Media Data

ImageData

9/18/97 OMF Interchange Specification Version 2.1 159

JPEG Image Data Class (JPEG)

Contains image media that has been compressed with the JPEG algorithm.

Data Model

Implementation

Description
A JPEG Image Data object contains digital images stored in variable-length
frames; consequently, the JPEG Image Data object includes the FrameIndex
property that provides the offset for each frame in the stream.

Every JPEG Image Data object in the OMF Interchange file must have a corre-
sponding Source Mob object in the file that has the same value for the MobID
property. The Source Mob object describes the media in the JPEG Image Data
object and allows Composition Mobs to reference it.

The Media Descriptor that describes media stored in a JPEG Image Data object
is the Color Difference Component Image Descriptor (CDCI).

TIFF image media data that has been compressed by using the JPEG algorithm
is not stored in a JPEG Image Data object but is stored instead in a TIFF Image
Media Data object. The TIFF format is included for compatibility with OMF In-
terchange Version 1.0.

Related Classes
Color Difference Component Image Descriptor (CDCI), Image Data (IDAT),
Media Data (MDAT), RGBA Component Image Descriptor (RGBA), Source
Mob (SMOB), TIFF Image Data (TIFF)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is JPEG.

OMFI:MDAT:MobID omfi:UID Mob ID of Source Mob that describes media data.

OMFI:IDAT:ImageData omfi:DataValue Media data stream.

OMFI:JPEG:FrameIndex omfi:Position32Array
omfi:Position64Array

Array containing an offset into the media stream for
each frame in the stream.

JPEG Image Data Class (JPEG)
Is-a-Kind-of Image Data

FrameIndex

160 Appendix A: OMF Object Classes 9/18/97

Locator Class (LOCR)

Provides information to help find a file that contains the media data.

Data Model

Implementation

Description
The Locator (LOCR) class is an abstract class that provides information on find-
ing an OMFI file or a raw data file that contains the media data associated with
a source mob. The Locator provides hints to help an application find the file
containing the media data.

The Source Mob (SMOB) describing the digital media data HAS a Media De-
scriptor object that optionally HAS a set of Locators.

Related Classes
DOS Locator (DOSL), Mac Locator (MACL), Network Locator (NETL),Text Lo-
cator (TXTL), UNIX Locator (UNXL), Windows Locator (WINL)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is LOCR.

Locator Class (LOCR)
Is-a-Kind-of OMFI Object
Abstract Class

no additional properties

9/18/97 OMF Interchange Specification Version 2.1 161

Mac Locator Class (MACL)

Provides information to help find a Mac file containing media data.

Data Model

Implementation

Description
The MAC Locator (MACL) provides a Macintosh¨ volume name, directory,
and file name that contain hints to help an application find the OMFI file or
raw data file containing the media data.

The Source Mob (SMOB) describing the digital media data HAS a Media De-
scriptor object that optionally HAS a set of Locators.

Related Classes
DOS Locator (DOSL), Locator (LOCR), Network Locator (NETL), Text Locator
(TXTL), UNIX Locator (UNXL), Windows Locator (WINL)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is MACL.

OMFI:MACL:VName omfi:String Identifies the volume name. Optional.

OMFI:MACL:DirID omfi:Int32 Identifies the Mac directory. Optional.

OMFI:MACL:FileName omfi:String Identifies the filename. Optional.

OMFI:MACL:PathName omfi:String Identifies the pathname of the file containing the media
data.

MAC Locator Class (MACL)
Is-a-Kind-of Locator

VName

DirID

FileName

PathName

162 Appendix A: OMF Object Classes 9/18/97

Master Mob Class (MMOB)

Provides an indirect way for a Composition Mob to reference a Source Mob
and synchronizes data in multiple Source Mobs.

Data Model

Implementation

Description
A Master Mob object provides a level of indirection for accessing Source Mobs
from Composition Mobs. The media associated with a Source Mob is immuta-
ble; consequently, if you must make any changes to the media data, you must
create a new Source Mob with a new unique Mob ID. Typical reasons to
change the media data include redigitizing to extend the section of the media
included in the file, redigitizing to change the compression used to create the
digital media data, and redigitizing to change the format used to store the me-
dia data, such as from AIFF audio data to WAVE audio data. A Composition
Mob may have many Source Clip objects that reference media dataÑupdating
every Source Clip in the Composition Mob each time the media was redigi-
tized would be inefficient. By having the Composition Mob only access a

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is MMOB.

OMFI:MOBJ:MobID omfi:UID Unique Mob identification.

OMFI:MOBJ:Name omfi:String Name of the mob for display to end user.
Optional.

OMFI:MOBJ:Slots omfi:ObjRefArray Contains the externally visible Mob Slots and the
internal Mob Slots containing media and other
time-varying information.

OMFI:MOBJ:LastModified omfi:TimeStamp Date and time when the Mob was last modified.

OMFI:MOBJ:CreationTime omfi:TimeStamp Date and time when the Mob was originally
created.

OMFI:MOBJ:UserAttributes omfi:ObjRef Specifies a set of user attributes, which provide
additional information about the Mob. The
Attribute Array contains a set of Attributes.
Optional.

Master Mob Class (MMOB)
Is-a-Kind-of Mob

no additional properties

9/18/97 OMF Interchange Specification Version 2.1 163

Source Mob through a Master Mob, OMF ensures that you only have to
change a single Master Mob when you make changes to the media data.

In addition, a Master Mob can synchronize media data in different Source
Mobs. For example, when an application digitizes a videotape, it creates sepa-
rate Source Mobs for the video and audio data. By having a single Master Mob
with one Mob Slot for each Source Mob, the Composition Mob avoids having
to synchronize the audio and video tracks each time it references media from
different tracks of the videotape.

If there are multiple implementations of digitized media, the Master Mob can
contain a Media Group (MGRP) object. The Media Group object contains a set
of Source Clip objects, each of which identifies a Source Mob containing a dif-
ferent implementation of the media data. An application can examine these
implementations to find the one that it is able to play or that it can play most
efficiently. Media Groups may be needed if you have systems with different ar-
chitectures or compression hardware accessing a single OMFI file.

If when a media data file is redigitized and it has to be broken into multiple
files, this can be represented by a Sequence object in the Master Mob that con-
tains a series of Source Clip objects, each identifying the Source Mob associat-
ed with one of the files.

Typically, Master Mobs have a very simple structure. They have a Mob Slot
with a Track Description for each track of media and do not have any other
slots. Typically, each Mob Slot contains a single Source Clip object that identi-
fies the Source Mob. Master Mobs cannot have Effect Invocation objects, Nest-
ed Scope objects, Selector objects, Edit Rate Converter objects, or Transition
objects.

The following lists the reasons for having a Master Mob slot contain an object
other than a Source Clip:

¥ If there are multiple implementations of the same media, the Mob Slot can
contain a Media Group instead of a Source Clip object.

¥ If the media source has been broken into several source mobs, the Mob
Slot can contain a Sequence object. The Sequence object cannot contain
any Component other than a Source Clip object or a Media Group object.

Related Classes
Composition Mob (CMOB), Header (HEAD), Master Mob (MMOB), Media
Group (MGRP), Mob (MOBJ), Mob Slot (MSLT), Source Clip (SCLP), Source
Mob (SMOB), Track Description (TRKD)

164 Appendix A: OMF Object Classes 9/18/97

Media Data Class (MDAT)

Contains digital media data.

Data Model

Implementation

Description
The Media Data class is an abstract class that has digital media data. Any pri-
vate class that contains digital media data and has a Source Mob associated
with it should be a subclass of Media Data.

The Header (HEAD) object contains an index to all Media Data objects in the
OMFI file. For each Media Data object in the OMFI file, there is a correspond-
ing Source Mob that specifies the same MobID value.

Related Classes
AIFC Audio Data (AIFC), Image Data (IDAT), Media Descriptor (MDES), Source
Mob (SMOB), TIFF Image Data (TIFF), WAVE Audio Data (WAVE)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is MDAT.

OMFI:MDAT:MobID omfi:UID MobID of the source mob that describes the media data.

Media Data Class (MDAT)
Is-a-Kind-of OMFI Object
Abstract class

MobID

9/18/97 OMF Interchange Specification Version 2.1 165

Media Descriptor Class (MDES)

Describes the media associated with a Source Mob.

Data Model

Implementation

Description
Media Descriptor is an abstract class that describes the format of the media da-
ta. The media data can be digital media data stored in a file, or it can be media
data on audio tape, film, videotape, or some other form of media storage.

The Source Mob MediaDescription property has the Media Descriptor
that describes the media data. There are two kinds of Media Descriptors:

¥ Media File Descriptors that describe digitized media stored in raw data
files or in OMFI files. The Media File Descriptor class is also an abstract
class; its subclasses describe the various formats of digitized media.

¥ Physical Media Descriptors that describe a physical media source. This
specification defines two physical Media Descriptors: Media Film Descrip-
tor and Media Tape Descriptor, but additional private or registered sub-
classes can be defined.

The Locator objects provide hints to help find media data files associated with
the Source Mob, but they are only hints because their correctness cannot be
guaranteed, since users may rename or delete files. Typically, this can happen
if the OMFI file is renamed after being created. If your application cannot find
an OMFI file by using the hint, it can search through all accessible OMFI files
to find the media data object with the MobID value.

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is MDES.

OMFI:MDES:Locator omfi:ObjRefArray HAS a set of Locator objects that contain operating-
system-dependent data or text information that provide
hints for finding raw data files or OMFI files that contain
the media data. Optional.

Media Descriptor Class (MDES)

Is-a-Kind-of OMFI Object

Locator Locator (LOCR)

Abstract Class

166 Appendix A: OMF Object Classes 9/18/97

A Media Descriptor may have more than one Locator object if the file may be
accessed from more than one operating system or for any reason that multiple
Locators may make it more likely that the application can find the file.

Related Classes
Locator (LOCR), Media File Descriptor (MDFL), Media Film Descriptor
(MDFM), Media Tape Descriptor (MDTP), Source Mob (SMOB)

9/18/97 OMF Interchange Specification Version 2.1 167

Media File Descriptor Class (MDFL)

Describes digital media data associated with a Source Mob.

Data Model

Implementation

Description
The Media File Descriptor class is an abstract class that describes the format of
digital media data; its subclasses describe the various formats of digitized me-
dia. The Media File Descriptor class has the following subclasses defined in this
specification:

¥ AIFC Audio Descriptor class

¥ Digital Image Descriptor class, which is itself an abstract class and has the
following subclasses:

❑ Color Difference Component Image Descriptor class

❑ RGBA Component Image Descriptor class

¥ TIFF Image Descriptor class

¥ WAVE Audio Descriptor class

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is MDFL.

OMFI:MDES:Locator omfi:ObjRefArray HAS a set of Locator objects that contain operating-
system-dependent data or text information that
provide hints for finding raw data files or OMFI files that
contain the media data. Optional.

OMFI:MDFL:IsOMFI omfi:Boolean A True value indicates that the media data is stored in
an OMFI file; a False value indicates that the media data
is stored in a raw data file.

OMFI:MDFL:SampleRate omfi:Rational The native sample rate of the digitized media data.

OMFI:MDFL:Length omfi:Length32
omfi:Length64

Duration of the media in sample units.

Media File Descriptor Class (MDFL)

Is-a-Kind-of Media Descriptor

IsOMFI

SampleRate

Length

Abstract Class

168 Appendix A: OMF Object Classes 9/18/97

If the media data is stored in an OMFI file, the value of the IsOMFI property
must be true. If the media data is stored in a raw data file, the value of the
IsOMFI property must be false. Media data can be stored in a raw data file to
allow an application that does not support OMFI to access it or to avoid dupli-
cating already existing digital media data. However, since there is no Mob ID
stored with raw media data, it is difficult to identify a raw media data file if the
Locator information is no longer valid. The format of the media data in the raw
file is the same as it would be if it were stored in an OMFI Media Data object.

The Media File Descriptor specifies the sample rate and the length in the sam-
ple rate of the media data. The sample rate of the data can be different from the
edit rate of the Source Clip object that references it.

Related Classes
AIFC Audio Descriptor (AIFD), Color Difference Component Image Descriptor
(CDCI), Digital Image Descriptor (DIDD), Locator (LOCR), Media Descriptor
(MDES), RGBA Component Image Descriptor (RGBA), Source Mob (SMOB),
TIFF Image Descriptor (TIFD), WAVE Audio Descriptor (WAVD)

9/18/97 OMF Interchange Specification Version 2.1 169

Media Film Descriptor Class (MDFM)

Describes film media.

Data Model

Implementation

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is MDFM.

OMFI:MDES:Locator omfi:ObjRefArray Text locators contain hints to indicate
where the film is stored. Optional.

OMFI:MDFM:FilmFormat omfi:FilmType Identifies the format of the film; one of
the following:

0 FT_NULL
1 FT_35MM
2 FT_16MM
3 FT_8MM
4 FT_65MM

Optional.

OMFI:MDFM:FrameRate omfi:UInt32 Specifies the frame rate in frames per
second. Optional.

OMFI:MDFM:PerforationsPerFrame omfi:UInt8 Specifies the number of perforations per
frame on the film stock. Optional.

OMFI:MDFM:FilmAspectRatio omfi:Rational Ratio between the horizontal size of the
frame image and the vertical size of the
frame image. Optional.

OMFI:MDFM:Manufacturer omfi:String A string to display to end users, indicating
the manufacturer of the film. Optional.

OMFI:MDFM:Model omfi:String A string to display to end users, indicating
the manufacturer’s brand designation for
the film. Optional.

Media Film Descriptor Class (MDFM)

Is-a-Kind-of Media Descriptor

FrameRate

PerforationsPerFrame

FilmAspectRatio

FilmFormat

Manufacturer

Model

170 Appendix A: OMF Object Classes 9/18/97

Related Classes
Locator (LOCR), Media Descriptor (MDES), Source Mob (SMOB)

9/18/97 OMF Interchange Specification Version 2.1 171

Media Group Class (MGRP)

Provides alternative digital media representations in a Master Mob.

Data Model

Implementation

Rules
1. A Media Group object can only be used in a Mob Slot in a Master Mob.

2. The length of each Source Clip in the Choices set must be the same as the
length of the Media Group object.

3. The length of the StillFrame Source Clip must be 1.

Description
A Media Group object provides a way to access different implementations of
the same media. A Media Group can only occur in a Mob Slot of a Master Mob.
Typically the different implementations vary in media format, compression,
or frame size. The application is responsible for choosing the appropriate im-
plementation of the media.

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is MGRP.

OMFI:CPNT:DataKind omfi:ObjRef HAS-REFERENCE to Data Defintion object that speci-
fies the data kind of the media.

OMFI:CPNT:Length omfi:Length32
omfi:Length64

Duration of the media in edit units.

OMFI:MGRP:Choices omfi:ObjRefArray HAS a set of Source Clips that identify the alternate
representations that may be chosen.

OMFI:MGRP:StillFrame omfi:ObjRef HAS a Source Clip that identifies the media for a
single-frame image representation of the media.
Optional.

Media Group Class (MGRP)

Is-a-Kind-of Segment

Choices

StillFrame Source Clip (SCLP)

Source Clip (SCLP)

172 Appendix A: OMF Object Classes 9/18/97

Related Classes
Master Mob (MMOB), Segment (SEGM), Source Clip (SCLP), Source Mob
(SMOB)

9/18/97 OMF Interchange Specification Version 2.1 173

Media Tape Descriptor Class (MDTP)

Describes audio tape or videotape media.

Data Model

Implementation

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is MDTP.

OMFI:MDES:Locator omfi:ObjRefArray Text Locators provide hints to help find the
physical location of the master videotape.
Optional.

OMFI:MDTP:FormFactor omfi:TapeCaseType Describes the physical size of the tape; may have
one of the following values:

0 3/4 inch videotape
1 VHS video tape
2 8mm videotape
3 Betacam videotape
4 Compact cassette
5 DAT cartridge
6 Nagra audio tape

Optional.

OMFI:MDTP:VideoSignal omfi:VideoSignalType Describes the video signal type; may have one
of the following values:

0 NTSC
1 PAL
2 SECAM

Optional.

Media Tape Descriptor Class (MDTP)

Is-a-Kind-of Media Descriptor

VideoSignal

TapeFormat

Length

FormFactor

Manufacturer

Model

174 Appendix A: OMF Object Classes 9/18/97

Related Classes
Locator (LOCR), Media Descriptor (MDES), Source Mob (SMOB)

OMFI:MDTP:TapeFormat omfi:TapeFormatType Describes the format of the tape; may have one
of the following values:

0 Betacam
1 BetacamSP
2 VHS
3 S-VHS
4 8mm
5 Hi8

Optional.

OMFI:MDTP:Length omfi:UInt32 Tape capacity in minutes. Optional.

OMFI:MDTP:Manufacturer omfi:String Text string to display to end users, identifying
the manufacturer of the tape. Optional.

OMFI:MDTP:Model omfi:String Text string to display to end users, identifying
the manufacturer’s brand designation of the
tape. Optional.

Property Name Type Explanation

9/18/97 OMF Interchange Specification Version 2.1 175

Mob Class (MOBJ)

Describes editing information or media.

Data Model

Implementation

Description
The Mob class is an abstract class that describes editing information or media.
There are several different kinds of Mobs used in OMF Interchange files, but
all Mobs describe time-varying media information.

Mobs have a globally unique ID, and they are the only elements of an OMF file
that can be referenced from outside the file. It is possible to copy Mobs from

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is MOBJ.

OMFI:MOBJ:MobID omfi:UID Unique Mob Identification.

OMFI:MOBJ:Name omfi:String Name of mob for display to end user.
Optional.

OMFI:MOBJ:Slots omfi:ObjRefArray HAS a set of Mob Slots containing media and other
time-varying information.

OMFI:MOBJ:LastModified omfi:TimeStamp Date and time when the Mob was last modified.

OMFI:MOBJ:CreationTime omfi:TimeStamp Date and time when the Mob was originally
created.

OMFI:MOBJ:UserAttributes omfi:ObjRef Specifies a set of user attributes, which provide
additional information about the Mob. The
Attribute Array contains a set of Attributes.
Optional.

Mob Class (MOBJ)
Is-a-Kind-of OMFI Object

MobID

Name

Abstract Class

Slots Mob Slot (MSLT)
ordered

LastModified

CreationTime

UserAttributes Attribute Array (ATTR)

176 Appendix A: OMF Object Classes 9/18/97

one file to another file, but they must be copied in their entirety. It is not
possible for a single Mob to contain OMF objects that are in different files.

The Mob class has the following subclasses:

¥ Composition Mobs, which describe editing information

¥ Master Mobs, which synchronize Source Mobs and provide a layer of in-
direction to make it easy to change Source Mobs without changing Com-
position Mobs that reference them

¥ Source Mobs, which describe media

❑ File Source Mobs, which describe digital media stored in files

❑ Physical Source Mobs, which describe physical media such as video-
tape, audio tape, and film

Mob Slots and Scope

Mob Slots contain segments of media or other time-varying data. A Mob Slot
can contain an externally visible segment or an externally hidden segment.
Mob Slots that are externally visible by definition have a Track Description;
these Mob Slots represent outputs of the Mob. All Mob Slots can be referenced
by other Mob Slots by using Scope References.

Mob Slots are ordered to allow Scope References within one slot to reference
another slot. The Mob defines a scope consisting of the ordered set of Mob
Slots. A Scope Reference object in a Mob Slot can refer to any Mob Slot that
precedes it. A Scope Reference returns the same time-varying values as the
section in the specified Mob Slot that corresponds to the starting point of the
Scope Reference in the Mob Slot and the duration of the Scope Reference. In
addition to Mobs, Nested Scope objects define scopes; however, their scope is
limited to the Components contained within the Nested Scope objectÕs slots.

User Information

The user can specify a name and additional information to identify and pro-
vide information about the Mob. The Name property contains the name speci-
fied by the user and the UserAttributes property contains additional
descriptive information. For each attribute, the user can specify the category
name and the value for the category. This mechanism allows the user to define
categories and provide values for one or more Mobs in the OMF file. User at-
tributes can be used to specify information such as the take number or lighting
conditions of a section of media.

Related Classes
Composition Mob (CMOB), Header (HEAD), Master Mob (MMOB), Mob Slot
(MSLT), Scope Reference (SREF), Source Clip (SCLP), Source Mob (SMOB),
Track Description (TRKD)

9/18/97 OMF Interchange Specification Version 2.1 177

Mob Slot Class (MSLT)

Represents a stream of media in a Mob.

Data Model

Implementation

Description
A Mob Slot object contains a Segment; the Mob Slot binds the Segment to real
time. The Segment by itself has a virtual duration, expressed in edit units. The
Mob Slot defines the edit rate and thus maps the virtual edit units to real time.
If the Mob Slot has a Track Description object, it specifies a track ID and exter-
nal origin to allow Source Clips in other Mobs to reference the Mob Slot .

The Mob Slot specifies the edit rate for the Segment it contains. The Segment
specifies its length in the edit rate set by the Mob Slot . The Segment also spec-
ifies its own data kind.

A Mob Slot may be externally accessible or may be limited to access from with-
in the same Mob The Track Description specifies that the Mob Slot is externally
accessible and specifies the TrackID, TrackLabel, and Origin. These Track
Description properties allow the Mob Slot to be referenced from outside the
Mob.

Mob Slots that are not externally referenceable are typically included in a Mob
to allow more than one other slot to reference the Segment in it. If the referenc-

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is MSLT.

OMFI:MSLT:Segment omfi:ObjRef HAS a Segment that specifies the media or other time-
varying data contained in the Mob Slot.

OMFI:MSLT:EditRate omfi:Rational Specifies the edit rate for the segment.

OMFI:MSLT:TrackDesc omfi:ObjRef HAS a Track Description that specifies that the Mob Slot is
externally accessible and identifies it. Optional.

Mob Slot Class (MSLT)

Is-a-Kind-of OMFI Object

Segment

TrackDesc Track Description (TRKD)

Segment (SEGM)

EditRate

178 Appendix A: OMF Object Classes 9/18/97

es to a Component are in more than one Mob Slot, then you must use a Mob
Slot to share access. If all of the references to a Component are in the same Mob
Slot, then you can use either a Mob Slot or a Nested Scope slot to share access.

Related Classes
Mob (MOBJ), Nested Scope (NEST), Scope Reference (SREF), Segment
(SEGM), Source Clip (SCLP), Track Description (TRKD)

9/18/97 OMF Interchange Specification Version 2.1 179

Nested Scope Class (NEST)

Defines a scope that contains an ordered set of Segments that can be refer-
enced from within the scope but that cannot be referenced from outside of the
scope.

Data Model

Implementation

Rules
1. The length of each Segment object in the set must be equal to the

length of the Nested Scope object.

2. The data kind of the last Segment in the set must be the same as or con-
vertible to the data kind of the Nested Scope object.

Description
A Nested Scope object defines a scope that contains an ordered set of Seg-
ments and produces the value specified by the last Segment in the ordered set.
Nested Scopes are typically included in Composition Mobs to allow more than
one Component to share access to a Segment. You can allow this sharing by
using a Nested Scope object or by using the scope defined by a Mob.

Scopes and Scope References

The Mob defines a scope consisting of the ordered set of Mob Slots. A Scope
Reference object in a Mob Slot can specify any Mob Slot that precedes it. Nest-

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is NEST.

OMFI:CPNT:DataKind omfi:ObjRef HAS-REFERENCE to a Data Definition object that specifies
the data kind of the Nested Scope object.

OMFI:CPNT:Length omfi:Length32
omfi:Length64

Specifies the length of the segment produced by the
Nested Scope object.

OMFI:NEST:Slots omfi:ObjRefArray HAS an ordered set of Segments; the last segment
provides the value for the Nested Scope object.

Nested Scope Class (NEST)

Is-a-Kind-of Segment

Slots Segment (SEGM)ordered

180 Appendix A: OMF Object Classes 9/18/97

ed Scope objects define scopes that are limited to the Components contained
within the Nested Scope objectÕs slots.

A Scope Reference object returns the same time-varying values as the corre-
sponding section of the slot that it references. The time-varying values of a sec-
tion of a slot can be shared by having more than one Scope Reference specify
it. A Scope Reference object specifies the slot by specifying relative scope and
relative slot. The relative scope specifies whether the slot is in the current scope
that contains the Scope Reference, a preceding Nested Scope, or the Mob
scope which is the outermost scope. The relative slot specifies one of the slots
that precedes the slot containing the Scope Reference within the scope speci-
fied by the relative scope.

If a Scope Reference specifies a Mob Slot, the corresponding section of the slot
is the time span that has the equivalent starting position from the beginning of
the Mob Slot and the equivalent length as the Scope Reference object has with-
in its Mob Slot. If the specified Mob Slot has a different edit rate than the Mob
Slot containing the Scope Reference, the starting position and duration are
converted to the specified Mob SlotÕs edit units to find the corresponding sec-
tion.

If a Scope Reference specifies a Nested Scope slot, the corresponding section
of the slot is the one that has the same starting position offset from the begin-
ning of the Segments in the Nested Scope and the same duration as the Scope
Reference object.

Related Classes
Mob Slot (MSLT), Scope Reference (SREF), Segment (SEGM)

9/18/97 OMF Interchange Specification Version 2.1 181

Network Locator Class (NETL)

Provides information to help find the file containing media data.

Data Model

Implementation

Description
The Network Locator (NETL) provides a URL that contains a hint to help an ap-
plication find the file containing the media data.

The Source Mob (SMOB) describing the digital media data HAS a Media De-
scriptor object that optionally HAS a set of Locators.

Related Classes
DOS Locator (DOSL), Locator (LOCR), Mac Locator (MACL), Text Locator
(TXTL), UNIX Locator (UNXL), Windows Locator (WINL)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is NETL.

OMFI:NETL:URLString omfi:String Universal Resource Locator (URL) for file containing the
media data.

Network Locator Class (NETL)
Is-a-Kind-of Locator

URLString

182 Appendix A: OMF Object Classes 9/18/97

OMFI Object Class (OOBJ)

Is the root of the OMF class hierarchy.

Data Model

Implementation

Description
OMFI Object (OOBJ) is an abstract class, which defines the ObjClass proper-
ty. The ObjClass property specifies the class of an object. An objectÕs class is
the most specialized class that it belongs to; you can determine the ancestor
classes that the object belongs to by examining the class hierarchy.

If you are defining private classes, you should make the private classes descen-
dents of the OMFI Object class.

Related Classes
Class Dictionary Entry (CLSD), Header (HEAD)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is OOBJ.

OMFI Object Class (OOBJ)

ObjClass

Abstract Class

9/18/97 OMF Interchange Specification Version 2.1 183

Pulldown Class (PDWN)

Converts between film-speed and tape-speed.

Data Model

Implementation

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is PDWN.

OMFI:CPNT:DataKind omfi:ObjRef HAS-REFERENCE to Data Defintion object
that specifies the data kind of the media.

OMFI:CPNT:Length omfi:Length32
omfi:Length64

Duration of the media in edit units.

OMFI:PDWN:InputSegment omfi:ObjRef HAS a Segment that is either a Source Clip or
Timecode. The length of the Source Clip or
Timecode is in the edit units determined by
the PulldownKind and PulldownDirection.

Pulldown Class (PDWN)

Is-a-Kind-of Segment

InputSegment

PulldownKind

Segment (SEGM)

PulldownDirection

PhaseFrame

184 Appendix A: OMF Object Classes 9/18/97

Description
A Pulldown object provides a mechanism to convert from media between vid-
eo and film rates and describe the mechanism that was used to convert the me-
dia. Pulldown objects are typically used in three ways:

¥ In a tape Source Mob to describe how the videotape was created from film

¥ In a file Source Mob that has digital media at film speed to describe how
the digital media was created from the videotape

OMFI:PDWN:PulldownKind omfi:PulldownKindType Specifies whether the Pulldown object is
converting from NTSC or PAL video and
whether frames are dropped or the video is
played at another speed. Values are:

0 kOMFTwoThreePD
Converting between NTSC video
and film by dropping or adding
frames

1 kOMFPalPD
Converting between PAL video
and film by dropping or adding
frames

2 kOMFOneToOneNTSC
Converting between NTSC video
and film by speeding up or
slowing down the frame rate.

3 kOMFOneToOnePAL
Converting between PAL video
and film by speeding up or
slowing down the frame rate.

4 kOMFVideoTapNTSC
Converting between NTSC video
and film by recording original
film and video sources simulta-
neously.

OMFI:PDWN:PulldownDirection omfi:PulldownDirectionType Specifies whether the Pulldown object is
converting from tape to film speed or from
film to tape speed. Values are:

0 kVideoToFilmSpeed
The InputSegment is at video
speed and the Mob track
containing the PDWN object is at
film speed.

1 kFilmToVideoSpeed
The InputSegment is at film
speed and the Mob track
containing the PDWN object is at
video speed.

OMFI:PDWN:PhaseFrame omfi:PhaseFrameType Specifies the phase within the repeating pull-
down pattern of the first frame after the pull-
down conversion. A value of 0 specifies that
the Pulldown object starts at the beginning
of the pulldown pattern.

Property Name Type Explanation

9/18/97 OMF Interchange Specification Version 2.1 185

¥ In a Mob to create Timecodes tracks at different edit rates

A Pulldown object that contains a Source Clip defines a relationship between
two Source Mobs, a derived Source Mob and a previous generation Source
Mob. The derived Source Mob describes the media that was generated from
the media described by the previous generation Source Mob using a pulldown
mechanism. The derived Source Mob contains a track (Mob Slot) that contains
a Pulldown object. The Pulldown object describes the pulldown mechanism
and has a Source Clip that identifies the previous generation Source Mob. The
Source Clip is specified using the edit rate of the previous generation Source
Mob and does not use the edit rate of the track that contains the Pulldown ob-
ject.

Each kind of pulldown identifies the speed of the tape. If two Source Mobs
have a pulldown relationship, the edit rates of the video tracks should corre-
spond to the frame rate of the media.

Related Classes
Mob Slot (MSLT), Source Clip (SCLP), Source Mob (SMOB)

186 Appendix A: OMF Object Classes 9/18/97

RGBA Component Image Descriptor Class (RGBA)

Describes the media stored with separate color components and a separate al-
pha component associated with the Source Mob.

Data Model

Implementation

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is RGBA.

OMFI:MDES:Locator omfi:ObjRefArray Set of locators that provide hints to help
find the OMFI file or the raw data file that
contains the media data. Optional.

OMFI:MDFL:IsOMFI omfi:Boolean A True value indicates that the media data
is stored in an OMFI file; a False value indi-
cates that the media data is stored in a raw
data file.

OMFI:MDFL:SampleRate omfi:Rational The native sample rate of the digitized
media data.

OMFI:MDFL:Length omfi:Length32
omfi:Length64

Duration of the media in sample units.

OMFI:DIDD:Compression omfi:String Kind of compression and format of
compression information; no compresssion
is allowed for RGBA data; this property
should not be present in an RGBA object.

OMFI:DIDD:StoredHeight omfi:UInt32 Number of pixels in vertical dimension of
stored view. See the Description section of
DIDD class for an explanation of image
geometry.

OMFI:DIDD:StoredWidth omfi:UInt32 Number of pixels in horizontal dimension
of stored view.

RGBA Component Image Descriptor Class (RGBA)

Is-a-Kind-of Digital Image Descriptor

PixelStructure

Palette

PixelLayout

PaletteLayout

PaletteStructure

9/18/97 OMF Interchange Specification Version 2.1 187

OMFI:DIDD:SampledHeight omfi:UInt32 Number of pixels in vertical dimension of
sampled view. Optional; the default value
is StoredHeight. See the Description
section of DIDD class for an explanation of
image geometry.

OMFI:DIDD:SampledWidth omfi:UInt32 Number of pixels in horizontal dimension
of sampled view. Optional; the default
value is StoredWidth.

OMFI:DIDD:SampledXOffset omfi:Int32 X offset, in pixels, from top left corner of
stored view. Optional; the default value is
0.

OMFI:DIDD:SampledYOffset omfi:Int32 Y offset, in pixels from top left corner of
stored view. Optional; the default value is
0.

OMFI:DIDD:DisplayHeight omfi:UInt32 Number of pixels in vertical dimension of
display view. Optional; the default value
is StoredHeight. See the Description
section of DIDD class for an explanation of
image geometry.

OMFI:DIDD:DisplayWidth omfi:UInt32 Number of pixels in vertical dimension of
display view. Optional; the default value is
StoredWidth.

OMFI:DIDD:DisplayXOffset omfi:Int32 X offset, in pixels, from top left corner of
stored view. Optional; the default value is
0.

OMFI:DIDD:DisplayYOffset omfi:Int32 Y offset, in pixels, from top left corner of
stored view. Optional; the default value is
0.

OMFI:DIDD:FrameLayout omfi:LayoutType Describes whether all data for a complete
sample is in one frame or is split into more
than one field. Values are

0 FULL_FRAME: frame contains full
sample in progressive scan lines.

1 SEPARATE_FIELDS: sample consists
of two fields, which when inter-
laced produce a full sample.

2 SINGLE_FIELD: sample consists of
two interlaced fields, but only one
field is stored in the data stream.

3 MIXED_FIELDS.

OMFI:DIDD:VideoLineMap omfi:Int32Array Specifies the scan line in the analog source
that corresponds to the beginning of each
digitized field. For single-field video, there
is 1 value in the array and for interleaved
video, there are 2 values in the array.

OMFI:DIDD:ImageAspectRatio omfi:Rational Describes the ratio between the horizontal
size and the vertical size in the intended
final image.

Property Name Type Explanation

188 Appendix A: OMF Object Classes 9/18/97

OMFI:DIDD:AlphaTransparency omfi:Int32 A value of 1 means that the maximum
Alpha value is transparent. A value of 0
means that the 0 Alpha value is transpar-
ent. Optional.

OMFI:DIDD:Gamma omfi:Rational Specifies the expected output gamma set-
ting on the video display device. Optional.

OMFI:DIDD:ImageAlignmentFactor omfi:Int32 Specifies the alignment when storing the
digital media data. For example, a value of
16 means that the image is stored on 16-
byte boundaries. The starting point for a
field will always be a multiple of 16 bytes.
If the field does not end on a 16-byte
boundary, the remaining bytes are unused.
Optional.

OMFI:RGBA:PixelLayout omfi:CompCodeArray An array of characters that specifies the
order that the color components of a pixel
are stored in the image. Each element in
the array represents a different color com-
ponent. The array can contain the follow-
ing characters:

‘A’ Alpha component
‘B’ Blue component
‘F’ Fill component
‘G’ Green component
‘P’ Palette code
‘R’ Red component
‘0’ no component

Each character except ‘0’ can appear no
more than one time in the array. The array
is terminated by a 0 byte and has a
maximum of 8 elements (including the
terminating byte). Note that a byte with
the ASCII ‘0’ indicates no component, and
a byte with a 0 (ASCII NULL) terminates
the string.

OMFI:RGBA:PixelStructure omfi:CompSizeArray An array of UInt8 that specifies the number
of bits allocated to store each component
in the order specified in the PixelLay-
out property. The array is terminated by a
0 byte and has a maximum of 8 elements
(including the terminating byte). Optional.

OMFI:RGBA:Palette omfi:DataValue An array of color values that are used to
specify an image. Optional.

Property Name Type Explanation

9/18/97 OMF Interchange Specification Version 2.1 189

Description
An RGBA Component Image Descriptor (RGBA) object describes media data
that contains component-based images where each pixel is made up of a red,
a green and a blue value. Each pixel can be described directly with a compo-
nent value or a by an index into a pixel palette.

Properties in the RGBA Component Image Descriptor allow you to specify the
order that the color components are stored in the image, the number of bits
needed to store a pixel, and the bits allocated to each component.

To describe pixels with a pixel palette, the RGBA object should:

¥ Have a ÔPÕ character in the PixelLayout property value and not have a
ÔBÕ, ÔGÕ, or ÔRÕ character in the PixelLayout property value

¥ Include the Palette, PaletteLayout, and PaletteStructure prop-
erties

Related Classes
Color Difference Component Image Descriptor (CDCI), Digital Image Descrip-
tor (DIDD), Image Data (IDAT), JPEG Image Data (JPEG), Source Mob (SMOB)

OMFI:RGBA:PaletteLayout omfi:CompCodeArray An array of characters that specifies the
order that the color components are
stored in the palette. Each element in the
array represents a different color compo-
nent. The array can contain the following
characters:

‘A’ Alpha component
‘B’ Blue component
‘F’ Fill component
‘G’ Green component
‘R’ Red component
‘0’ no component

Each character except ‘0’ can appear no
more than one time in the array. The array
is terminated by a 0 byte and has a
maximum of 8 elements (including the
terminating byte). Note that a byte with
the ASCII ‘0’ indicates no component, and
a byte with a 0 (ASCII NULL) terminates
the string. Optional.

OMFI:RGBA:PaletteStructure omfi:CompSizeArray An array of UInt8 that specifies the number
of bits allocated to store each component
in the order specified in the Palette-
Layout property. The array is terminated
by a 0 byte and has a maximum of 8 ele-
ments (including the terminating byte).
Optional.

Property Name Type Explanation

190 Appendix A: OMF Object Classes 9/18/97

Scope Reference Class (SREF)

Refers to a section in the specified Mob Slot or Nested Scope slot.

Data Model

Implementation

Rules
1. The data kind of the Segment in the referenced slot must be the

same as or convertible to the data kind of the Scope Reference object.

2. The value of RelativeScope must be less than or equal to the number of
Nested Scope objects that contain the Scope Reference. If the Scope Refer-
ence is not contained in any Nested Scope object, then the Relative-
Scope must have a value of 0.

3. The value of RelativeSlot must be greater than 0 and less than or equal
to the number of slots that precede it within the scope specified by Rela-
tiveScope.

Description
A Scope Reference object has the same time-varying values as the section of
the Nested Scope slot or Mob Slot that it references. Scope Reference objects
allow one or more objects to share the values produced by a section of a slot.

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is SREF.

OMFI:CPNT:DataKind omfi:ObjRef HAS-REFERENCE to a Data Definition object that speci-
fies the data kind of the Scope Reference object.

OMFI:CPNT:Length omfi:Length32
omfi:Length64

Specifies the duration of the Scope Reference in the edit
units defined by its context.

OMFI:SREF:RelativeScope omfi:UInt32 Specifies the number of Nested Scopes to pass to find
the Nested Scope or Mob containing the slot.

OMFI:SREF:RelativeSlot omfi:UInt32 Specifies the number of slots that precede the slot
containing the Scope Reference to pass to find the slot
referenced.

Scope Reference Class (SREF)

Is-a-Kind-of Segment

RelativeScope

RelativeSlot
Slot (MLST or NEST)

9/18/97 OMF Interchange Specification Version 2.1 191

Scopes and Scope References

The Mob defines a scope consisting of the ordered set of Mob Slots. A Scope
Reference object in a Mob Slot can specify any Mob Slot that precedes it. Nest-
ed Scope objects define scopes that are limited to the Components contained
within the Nested Scope.

A Scope Reference object returns the same time-varying values as the corre-
sponding section of the slot that it references. The time-varying values of a sec-
tion of a slot can be shared by having more than one Scope Reference specify
it. A Scope Reference object specifies the slot by specifying relative scope and
relative slot. The relative scope specifies whether the slot is in the current scope
that contains the Scope Reference, a preceding Nested Scope, or the Mob
scope which is the outermost scope. The relative slot specifies one of the slots
that precedes the slot containing the Scope Reference within the scope speci-
fied by the relative scope.

If a Scope Reference specifies a mob slot, the corresponding section of the slot
is the one that has the equivalent starting position from the beginning of the
mob slot and the equivalent length as the Scope Reference object has within its
mob slot. If the specified Mob Slot has a different edit rate than the Mob Slot
containing the Scope Reference, the starting position and duration are convert-
ed to the specified Mob Slots edit units to find the corresponding section.

If a Scope Reference specifies a Nested Scope slot, the corresponding section
of the slot is the one that has the same starting position offset from the begin-
ning of the Nested Scope segments and the same duration as the Scope Refer-
ence object has in the specified scope.

Specifying Relative Scope and Relative Slot

Relative scope is specified as an unsigned integer. It specifies the number of
nested scopes that you must pass through to find the referenced scope. A value
of 0 specifies the current scope, that is the innermost Nested Scope object that
contains the Scope Reference or the Mob scope if no Nested Scope object con-
tains it. A value of 1 specifies the scope level that contains the Nested Scope
object that contains the Scope Reference.

Relative slot is specified as a positive integer. It specifies the number of preced-
ing slots that you must pass to find the referenced slot within the specified rel-
ative scope. A value of 1 specifies the immediately preceding slot.

Related Classes
Mob (MOBJ), Mob Slot (MSLT), Nested Scope (NEST), Segment (SEGM)

192 Appendix A: OMF Object Classes 9/18/97

Segment Class (SEGM)

Represents a Component that is independent of any surrounding object.

Data Model

Implementation

Description
Segment is an abstract class; its subclasses include all Components with well-
defined boundaries, that is, those that have well-defined values within their
boundary without needing to be surrounded by other Components in a Se-
quence. This is in contrast with the other subclass of the Component class, the
Transition class. Transition objects may only be used within a Sequence object
and must be preceded and followed by a Segment object. The value produced
by a Transition object is dependent on the values produced by the preceding
and following Segments.

Related Classes
Component (CPNT), Transition (TRAN)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is SEGM.

OMFI:CPNT:DataKind omfi:ObjRef HAS-REFERENCE to a Data Definition object that specifies
the data kind of the Segment.

OMFI:CPNT:Length omfi:Length32
omfi:Length64

Specifies the duration of the Segment in edit units.

Segment Class (SEGM)
Is-a-Kind-of Component

no additional properties

Abstract Class

9/18/97 OMF Interchange Specification Version 2.1 193

Selector Class (SLCT)

Provides the value of a single Segment while preserving references to unused
alternatives.

Data Model

Implementation

Rules
1. The duration of the selected Segment and of each alternative Seg-

ment must equal the duration of the Selector object.

2. The data kind of the selected Segment and of each alternative Segment
must be the same as or convertible to the data kind of the Selector object.

Description
A Selector object provides the value of the selected Segment and preserves ref-
erences to some alternative Segments that were available during the editing
session. The alternative Segments can be ignored while playing a Composition
Mob because they do not affect the value of the Selector object and cannot be
referenced from outside of it. The alternative Segments can be presented to the
user when the Composition Mob is being edited. Typically, a Selector object is
used to present alternative presentations of the same content, such as alternate
camera angles of the same scene.

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is SLCT.

OMFI:CPNT:DataKind omfi:ObjRef HAS-REFERENCE to a Data Definition object that specifies
the data kind of the Selector object.

OMFI:CPNT:Length omfi:Length32
omfi:Length64

Specifies the duration of the Selector object.

OMFI:SLCT:Selected omfi:ObjRef HAS the selected Segment.

OMFI:SLCT:Alternates omfi:ObjRefArray HAS a set of unused alternative Segments. Optional.

Selector Class (SLCT)

Is-a-Kind-of Segment

Selected

Alternates Segment (SEGM)

Segment (SEGM)

194 Appendix A: OMF Object Classes 9/18/97

A Selector object represents an editing decision. This is in contrast with a Me-
dia Group object which presents a group of alternative implementations of the
same media that the application can choose from based on the most appropri-
ate or efficient media format among the alternatives.

Related Classes
Media Group (MGRP), Segment (SEGM)

9/18/97 OMF Interchange Specification Version 2.1 195

Sequence Class (SEQU)

Combines a series of Segments into a single longer Segment, optionally with
Transitions between the Segments.

Data Model

Implementation

Rules
1. The first and last Component in the ordered set must both be Seg-

ment objects. (Neither can be a Transition object.)

2. A Transition object can only appear in a Sequence between two Segment
objects. The length of each of these Segments must be greater than or equal
to the length of the Transition.

3. If a Segment object has a Transition before it and after it, the sum of the
lengths of the surrounding Transitions must be less than or equal to the
length of the Segment that they surround.

4. The length of the Sequence must equal the sum of the length of all Seg-
ments contained in the Sequence minus the sum of the lengths of all Tran-
sitions contained in the Sequence.

5. The data kind of each Component in the Sequence object must be the same
as or convertible to the data kind of the Sequence.

Description
A Sequence object allows you to specify an ordered set of Components in any
context that you can specify a single Segment. The Sequence object is the basic

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is SEQU.

OMFI:CPNT:DataKind omfi:ObjRef HAS-REFERENCE to a Data Definition object that specifies
the data kind of the Sequence object.

OMFI:CPNT:Length omfi:Length32
omfi:Length64

Specifies the duration in edit units of the Sequence
object.

OMFI:SEQU:Components omfi:ObjRefArray HAS an ordered set of Segment objects; optionally sepa-
rated by Transition objects.

Sequence Class (SEQU)

Is-a-Kind-of Segment

Components Component (CPNT)
ordered

196 Appendix A: OMF Object Classes 9/18/97

mechanism for combining sections of media to be played in a sequential man-
ner in a Mob Slot in an OMFI file.

If a Sequence object contains a Segment followed by another Segment, after
the first Segment is played, the following one begins immediately. If a Se-
quence object contains Segment objects only with no Transition objects, the
duration of the Sequence is equal to the sum of the duration of each Segment
that it contains.

If a Sequence object contains a Transition object, the last section of the Segment
that precedes the Transition, the Transition, and the first section of the Segment
that follows the Transition are overlapped. The duration of the Transition de-
termines the duration of the section of the preceding and following Segments
that are overlapped.

Related Classes
Component (CPNT), Segment (SEGM), Transition (TRAN)

9/18/97 OMF Interchange Specification Version 2.1 197

Source Clip Class (SCLP)

Represents the media or other time-varying data described by a section of a
Mob Slot in another Mob.

Data Model

Implementation

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is SCLP.

OMFI:CPNT:DataKind omfi:ObjRef HAS-REFERENCE to a Data Definition object that spec-
ifies the data kind of the Source Clip object.

OMFI:CPNT:Length omfi:Length32
omfi:Length64

Specifies the duration of the Source Clip object and of
the referenced section in edit units determined by the
Source Clip object’s context.

OMFI:SCLP:SourceID omfi:UID In conjunction with the SourceTrackID and StartTime
properties, HAS-REFERENCE to a section of a Mob Slot
within another Mob. The SourceID specifies the
MobID. If the value is 0-0-0, it means that this Mob
describes the original source.

OMFI:SCLP:SourceTrackID omfi:UInt32 Specifies the TrackID of the referenced Mob Slot
within the other mob. If the SourceID has a value 0-0-
0, then SourceTrackID must have a 0 value.

OMFI:SCLP:StartTime omfi:Position32
omfi:Position64

Specifies the offset from the origin of the referenced
Mob Slot in edit units determined by the Source Clip
object’s context. If the SourceID has a value 0-0-0,
then StartTime must have a 0 value.

OMFI:SCLP:FadeInLength omfi:Length32 Specifies the length of an audio fade-in to be applied
to the Source Clip. Optional.

Source Clip Class (SCLP)

Is-a-Kind-of Segment

SourceID

Mob Slot (MSLT)
StartTime

FadeInLength

FadeInType

FadeOutLength

FadeOutType

SourceTrackID

198 Appendix A: OMF Object Classes 9/18/97

Rules
1. The data kind of the Segment contained in the referenced Mob Slot

must be the same as or convertible to the data kind of the Source
Clip object.

2. The fade properties are only allowed when the data kind is omfi:da-
ta:Sound or omfi:data:StereoSound.

Description
A Source Clip object represents a section of media or other time-varying data
described by a Mob Slot in another Mob. In a Composition Mob, Source Clip
objects are used to reference the digitized media data to be played or manipu-
lated.

Although the Source Clip class data model shows that it has a reference to the
Mob Slot object, the implementation does not use an object reference to accom-
plish this. The implementation uses two properties, SourceID and Source-
TrackID, to identify the external Mob and the Mob Slot within it. The
application must find the Mob with the specified ID and find the Mob Slot ob-
ject that has the specified track ID in its Track Description.

The Source Clip represents a section of the media in the Mob Slot. The section
is determined by the Source Clip StartTime and Length properties and the
Track Description Origin property in the referenced Mob Slot. The Track De-
scription Origin represents an offset from the beginning of the Segment con-
tained in the Mob Slot and is expressed in the edit rate of the Mob Slot. The
time specified by this offset is the external reference point. The Source Clip
StartTime property represents an offset from this external reference point
and is expressed in the Source ClipÕs edit rate. The Source Clip Length prop-
erty represents the duration of the referenced section and is expressed in the
Source ClipÕs edit rate.

OMFI:SCLP:FadeInType omfi:FadeType Specifies the type of the audio fade; may have one of
the following values:

0 No fade
1 Linear amplitude fade
2 Linear power fade
3 Linear dB fade

Additional registered and private fade in types may be
defined. Optional.

OMFI:SCLP:FadeOutLength omfi:Length32 Specifies the length of an audio fade-out to be
applied to the Source Clip. Optional.

OMFI:SCLP:FadeOutType omfi:FadeType Specifies the type of the audio fade; may have one of
the following values:

0 No fade
1 Linear amplitude fade
2 Linear power fade
3 Linear dB fade

Additional registered and private audio fade types
may be defined. Optional.

Property Name Type Explanation

9/18/97 OMF Interchange Specification Version 2.1 199

Source Clip objects are leaf objects in the Mob structure. Although they have a
reference to a Mob Slot in another Mob, that Mob Slot object is not part of the
Mob containing the Source Clip object.

Mob References and Chains

One Source Clip object in a Mob refers to a Mob Slot in another Mob by spec-
ifying the second mobÕs Mob ID and the track ID of the Mob Slot in it.

These Mob references, from a Source Clip in one Mob to a Mob Slot in another
Mob form Mob chains that enable one to go from a Source Clip in a Composi-
tion Mob to the digitized media and then to the physical sources that make up
the previous media generation. Mob chains allow you to go

¥ From a Source Clip in a Composition Mob to the Master Mobs that de-
scribe the media; in addition a Source Clip in a Composition Mob can ref-
erence another Composition Mob

¥ From a Source Clip in a Master Mob to the file Source Mob that describes
and locates the digital media

¥ From a Source Clip in the file Source Mob to the physical Source Mob that
describes the previous generation of media

¥ From a Source Clip in the physical Source Mob to another physical Source
Mob that describes a preceding generation media, such as from a video-
tape Source Mob to a film Source Mob

If a Source Mob represents the original media source and there is no previous
generation, then its Source Clips must specify a value 0-0-0 for its SourceID
and 0 values for SourceTrackID and StartTime.

In summary, Source Clips allow you to find the digitized media and the origi-
nal sources used to create the digitized media.

Related Classes
Mob (MOBJ), Mob Slot (MSLT), Track Description (TRKD)

200 Appendix A: OMF Object Classes 9/18/97

Source Mob Class (SMOB)

Represents and describes media data that is either contained in a physical
source, such as tape or film, or contained as digitized media data stored in a
file.

Data Model

Implementation

Description
A Source Mob represents a file containing digitized media or a physical media
source, such as an audio tape, film, or videotape.

If the media described by the Source Mob has been derived from a previous
generation of media, the Mob Slots should contain Source Clips that identify
the Mob that describes the previous generation. The Source Clip SourceID,
SourceTrackID, and StartTime properties identify the Mob. If the Source
Mob describes media that is not derived from a previous generation, the Mob
Slots should contain Source Clips that specify the special MobID 0-0-0.

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is SMOB.

OMFI:MOBJ:MobID omfi:UID Unique Mob identification.

OMFI:MOBJ:Name omfi:String Name of the Mob for display to end user.
Optional.

OMFI:MOBJ:Slots omfi:ObjRefArray HAS an ordered set of Mob Slots that contain
media and other time-varying information.

OMFI:MOBJ:LastModified omfi:TimeStamp Date and time when the Mob was last modified.

OMFI:MOBJ:CreationTime omfi:TimeStamp Date and time when the Mob was originally
created.

OMFI:MOBJ:UserAttributes omfi:ObjRef Specifies a set of user attributes, which provide
additional information about the Mob. The
Attribute Array contains a set of Attributes.
Optional.

OMFI:SMOB:MediaDescription omfi:ObjRef Describes the format of the media associated with
the Source Mob.

Source Mob Class (SMOB)
Is-a-Kind-of Mob

MediaDescription Media Descriptor (MDES)

9/18/97 OMF Interchange Specification Version 2.1 201

The length of the Segment in the Mob Slot indicates the duration of the media.
If you create a Source Mob for a physical media source and you do not know
the duration of the media, specify a length of 24 hours.

If the Source Mob describes media that was derived from a Composition Mob,
the Source Clips should identify the Composition Mob as the source. For ex-
ample, if you create a Source Mob to describe a videotape that was written
from a Composition Mob, the Composition Mob is the previous generation.

Source Media Is Immutable

The media data represented by a Source Mob is immutable. If the media
changes, such as if a videotape is redigitized, you must create a new Source
Mob with a new Mob ID.

Related Classes
Composition Mob (CMOB), Header (HEAD), Master Mob (MMOB), Mob
(MOBJ), Mob Slot (MSLT), Source Clip (SCLP), Track Description (TRKD)

202 Appendix A: OMF Object Classes 9/18/97

Text Locator Class (TXTL)

Provides information to help find a file containing the media data.

Data Model

Implementation

Description
A Text Locator (TXTL) object provides information to the user to help locate the
OMFI file or raw data file containing the digital media data; it is not handled
by applications automatically because the meaning or format of the Name
property value is not defined.

The Source Mob (SMOB) describing the digital media data HAS a Media De-
scriptor object that optionally HAS a set of Locators.

Related Classes
DOS Locator (DOSL), Locator (LOCR), Mac Locator (MACL), Media Descriptor
(MDES), UNIX Locator (UNXL), Windows Locator (WINL)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is TXTL.

OMFI:TXTL:Name omfi:String Text string containing information to help find the raw data
file or OMFI file containing the media data.

Text Locator Class (TXTL)
Is-a-Kind-of Locator

Name

9/18/97 OMF Interchange Specification Version 2.1 203

TIFF Image Data Class (TIFF)

Contains TIFF image data.

Data Model

Implementation

Description
A TIFF Image Data object contains a stream of image media data. It has the
same Mob ID as a Source Mob object in the OMFI file. This Source Mob de-
scribes the format of the image media in its MediaDescription property.
The TIFF format is included for compatibility with OMF Interchange Version
1.0.

The image data is formatted according to the TIFF specification, Revision 6.0,
available from Aldus Corporation. The TIFF object type supports only the
subset of the full TIFF 6.0 specification defined as baseline TIFF in that docu-
ment.

See Appendix C for more information on the TIFF format.

Related Classes
Color Difference Component Image Descriptor (CDCI), Image Data (IDAT),
JPEG Image Data (JPEG), Media Data (MDAT), RGBA Component Image Data
(RGBA), Source Mob (SMOB), TIFF Image Descriptor (TIFD)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is TIFF.

OMFI:MDAT:MobID omfi:UID MobID of the Source Mob describing the media data.

OMFI:TIFF:ImageData omfi:DataValue TIFF format image data.

TIFF Image Data Class (TIFF)
Is-a-Kind-of Media Data

ImageData

204 Appendix A: OMF Object Classes 9/18/97

TIFF Image Descriptor Class (TIFD)

Describes the TIFF media associated with a Source Mob.

Data Model

Implementation

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is TIFD.

OMFI:MDES:Locator omfi:ObjRefArray HAS a set of Locators that provide hints to
help find the OMFI file or the raw data file
that contains the media data. Optional.

OMFI:MDFL:IsOMFI omfi:Boolean A True value indicates that the media data is
stored in an OMFI file; a False value indicates
that the media data is stored in a raw data
file.

OMFI:MDFL:SampleRate omfi:Rational The native sample rate of the digitized media
data.

OMFI:MDFL:Length omfi:Length32
omfi:Length64

Duration of the media in sample units.

OMFI:TIFD:IsUniform omfi:Boolean True for data having the same number of
rows per strip throughout.

OMFI:TIFD:IsContiguous omfi:Boolean True for data stored in contiguous bytes.

OMFI:TIFD:LeadingLines omfi:Int32 Number of leading lines to be thrown away.
Optional.

OMFI:TIFD:TrailingLines omfi:Int32 Number of trailing lines to be thrown away.
Optional.

OMFI:TIFD:JPEGTableID omfi:JPEGTableIDType Registered JPEG table code or JT_NULL.
Optional.

OMFI:TIFD:Summary omfi:DataValue A copy of the TIFF IFD (without the sample
data).

TIFF Image Descriptor Class (TIFD)
Is-a-Kind-of Media File Descriptor

IsUniform

IsContiguous

LeadingLines

TrailingLines

JPEGTableID

Summary

9/18/97 OMF Interchange Specification Version 2.1 205

Description
A TIFF Image Descriptor object describes the TIFF image data associated with
the Source Mob. The image data is formatted according to the TIFF specifica-
tion, Revision 6.0, available from Aldus Corporation. The TIFF object type
supports only the subset of the full TIFF 6.0 specification defined as baseline
TIFF in that document.

Note The TIFF image format has been replaced by the Color Difference
Component Image Descriptor (CDCI) format and the RGBA Compo-
nent Image Descriptor (RGBA) format in the current version of the
specification. The TIFF format is included in this specification for com-
patibility with OMF Interchange Version 1.0.

The JPEGTableID is an assigned type for preset JPEG tables. The table data
must also appear in the TIFF object along with the sample data, but cooperating
applications can save time by storing a preapproved code in this property that
presents a known set of JPEG tables.

Related Classes
Color Difference Component Image Descriptor (CDCI), Image Data (IDAT),
JPEG Image Data (JPEG), RGBA Image Descriptor (RGBA), Source Mob
(SMOB), TIFF Image Data (TIFF)

206 Appendix A: OMF Object Classes 9/18/97

Timecode Class (TCCP)

Stores videotape or audio tape timecode information.

Data Model

Implementation

Description
A Timecode object can typically appear in either a Source Mob or in a Compo-
sition Mob. In a Source Mob, it typically appears in a Mob Slot in a Source Mob
that describes a videotape or audio tape. In this context, it describes the time-
code that exists on the tape. In a Composition Mob, it represents the timecode
associated with the virtual media represented by the Composition Mob. If the
Composition Mob is rendered to a videotape, the Timecode should be used to
generate the timecode on the videotape.

Related Classes
Composition Mob (CMOB), Edge Code (ECCP), Segment (SEGM), Source
Mob (SMOB)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is TCCP.

OMFI:CPNT:DataKind omfi:ObjRef HAS-REFERENCE to a Data Definition object that specifies the
data kind omfi:data:Timecode.

OMFI:CPNT:Length omfi:Length32
omfi:Length64

Duration of contiguous timecode values.

OMFI:TCCP:Start omfi:Position32
omfi:Position64

Specifies the timecode at the beginning of the segment.

OMFI:TCCP:FPS omfi:UInt16 Frames per second of the videotape or audio tape.

OMFI:TCCP:Drop omfi:Boolean Indicates whether the timecode is drop (True value) or
nondrop (False value).

Timecode Class (TCCP)
Is-a-Kind-of Segment

FPS

Flags

Start

9/18/97 OMF Interchange Specification Version 2.1 207

Track Description Class (TRKD)

Specifies that the Mob Slot is externally accessible and the TrackID value
needed to reference it.

Data Model

Implementation

Description
The Track Description specifies that the Mob Slot is externally visible and spec-
ifies the TrackID, TrackLabel, and Origin for the Mob Slot. These Track
Description properties allow the Mob Slot to be referenced from outside the
Mob.

The Origin property specifies an offset in the Segment contained in the Mob
Slot that is the reference point for all Source Clip references to this Mob Slot.
The Origin typically has a value of 0 except in Master Mob objects that refer
to media that has changed. If you are redigitizing data and changing the start-
ing point, you should set the Origin property in the Mob Slot in the Master
Mob so that Source Clips reference the equivalent media in the new Source
Mob as they did in the Source Mob describing the previous version of the dig-
itized data.

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is TRKD.

OMFI:TRKD:Origin omfi:Position32
omfi:Position64

Specifies the offset in the Mob Slot segment expressed in
the Mob Slot’s edit rate that all external references are rela-
tive to.

OMFI:TRKD:TrackID omfi:UInt32 Specifies a positive integer that is unique for all Mob Slots
in the same Mob.

OMFI:TRKD:TrackName omfi:String Specifies a label that can be used to identify the track when
displaying it to the user. Optional.

OMFI:TRKD:PhysicalTrack omfi:UInt32 Specifies the physical output channel for tracks in Source
Mobs.

Track Description Class (TRKD)
Is-a-Kind-of OMFI Object

TrackID

TrackName

Origin

PhysicalTrack

208 Appendix A: OMF Object Classes 9/18/97

The PhysicalTrack property identifies the physical track associated with
the media. For File Source Mobs that describe stereo audio media, the left
channel should have a PhysicalTrack of 1 and the right channel should
have a PhysicalTrack of 2.

Related Classes
Mob (MOBJ), Mob Slot (MSLT), Source Clip (SCLP)

9/18/97 OMF Interchange Specification Version 2.1 209

Transition Class (TRAN)

Specifies the way to change from one Segment to another in a Sequence.

Data Model

Implementation

Description
A Transition object specifies the way to change from one Segment to another
when playing the Sequence in which they occur. A Transition object specifies
the effect to use during the Transition. A Transition object occurs in a Sequence
and must be preceded and followed by a Segment object.

A Transition object specifies that sections of the preceding and following seg-
ments overlap for the duration of the Transition. The effect combines the media
from the overlapping sections in some way.

Transition and Effect Control Arguments

The effect documentation specifies whether an effect is allowed in a Transition
and how the Effect Slots should be treated. Typically, an effect that is allowed
in a Transition will specify that the Effect Slot with the argument ID values -1
and -2 should correspond to the overlapping sections from the preceding and
following Segments. Typically, the default value for the Effect Slot with the ar-

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is TRAN.

OMFI:CPNT:DataKind omfi:ObjRef HAS-REFERENCE to a Data Definition object that specifies the
data kind of the Transition.

OMFI:CPNT:Length omfi:Length32
omfi:Length64

Specifies the duration of the Transition.

OMFI:TRAN:Effect omfi:ObjRef HAS an Effect Invocation that is to be performed during the
Transition.

OMFI:TRAN:CutPoint omfi:Position32 Specifies a cut point to use if replacing the Transition with a
cut.

Transition Class (TRAN)
Is-a-Kind-of Component

Effect

CutPoint

Effect Invocation(EFFE)

210 Appendix A: OMF Object Classes 9/18/97

gument ID value -3 varies from 0.0 to 1.0, but this Effect Slot can be explicitly
overriden by specifying it in the Effect Invocation.

Cut Point

The Transition CutPoint has no direct effect on the results produced by a
Transition. However, the cut point provides information that is useful if an
application wishes to remove the Transition or substitute a cut when playing
the Transition. The cut point is represented as an offset from the beginning of
the Transition. When removing the Transition, an application would change
the Composition Mob so that the preceding Segment ends where the cut point
is located, and the succeeding Segment starts at that location. This can be done
by trimming the end of the preceding Segment by an amount equal to the
Transition length minus the cut point offset, and trimming the beginning of the
succeeding Segment by an amount equal to the cut point offset.

Related Classes
Component (CPNT), Effect Invocation (EFFE), Segment (SEGM)

9/18/97 OMF Interchange Specification Version 2.1 211

UNIX Locator Class (UNXL)

Provides information to help find a UNIX file containing media data.

Data Model

Implementation

Description
The UNIX Locator (UNXL) provides a UNIX pathname that contains a hint to
help an application find the OMFI file or raw data file containing the media da-
ta.

The Source Mob (SMOB) describing the digital media data HAS a Media De-
scriptor object that optionally HAS a set of Locators.

Related Classes
DOS Locator (DOSL), Locator (LOCR), Mac Locator (MACL), Media Descriptor
(MDES), Text Locator (TXTL), Windows Locator (WINL)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is UNXL.

OMFI:UNXL:PathName omfi:String UNIX pathname for raw data file or OMFI file containing
the media data.

UNIX Locator Class (UNXL)
Is-a-Kind-of Locator

PathName

212 Appendix A: OMF Object Classes 9/18/97

Varying Value Class (VVAL)

Specifies a changing data value for the duration of the Component; typically
used to specify values for an effect control slot.

Data Model

Implementation

Rules
1. Control Points must be ordered by their time value.

2. A Varying Value object can only have a data kind that has a defined data
constant format. A Varying Value object cannot have a data kind that spec-
ifies a media stream because these formats do not have a defined constant
format. Data kinds that specify a media stream include: omfi:da-
ta:EdgeCode, omfi:data:Picture, omfi:data:PictureWith-
Matte, omfi:data:Matte, omfi:data:Sound,
omfi:data:StereoSound, and omfi:data:Timecode.

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is VVAL.

OMFI:CPNT:DataKind omfi:ObjRef HAS-REFERENCE to a Data Definition
object that specifies the data kind of the
Varying Value object.

OMFI:CPNT:Length omfi:Length32
omfi:Length64

Specifies the duration of the Varying Value
object in edit units.

OMFI:VVAL:Interpolation omfi:InterpKind Specifies the kind of interpolation to be
used to find the value between Control
Points; may have one of the following
values:

1 Constant interpolation
2 Linear interpolation

OMFI:VVAL:PointList omfi:ObjRefArray HAS a set of Control Points, each of which
specifies a value and a time point at which
the value is defined.

Varying Value Class (VVAL)

Is-a-Kind-of Segment

PointList Control Point (CTLP)
ordered

Interpolation

9/18/97 OMF Interchange Specification Version 2.1 213

Description
A Varying Value object is a segment that returns time-varying values that are
determined by an ordered set of Control Points. Each Control Point specifies
the value for a specific time point within the Segment. The values for time
points between two Control Points are calculated by interpolating between the
two values.

Typically, Varying Value objects are used in Effect Slots to specify the value of
a control argument for the effect, but Varying Value objects can be used in any
context where a Segment is allowed.

Control Points

A Control Point that has a Time value equal to 0.0 represents the time at the
beginning of the Varying Value object; one with a time equal to 1.0 represents
the time at the end of the Varying Value object. Control Points with Time values
less than 0.0 and greater than 1.0 are meaningful but are only used to establish
the interpolated values within the Varying Value objectÑthey do not affect val-
ues outside of the duration of the Varying Value object.

Since time is expressed as a rational value, any arbitrary time can be speci-
fiedÑthe specified time point does not need to correspond to the starting point
of an edit unit of the Segment.

If more than two Control Point objects specify the same value, the last Control
Point determines the value for the time point specified and is used to interpo-
late values after this time point.

Interpolation of Control Values

The following equation specifies the value at time X, by using a linear interpo-
lation and the values specified for time A and time B.

Extrapolation of Control Values

If the first Control Point in a Varying Value object specifies a time value greater
than 0, this value is extrapolated to the 0 time point by holding the value con-
stant. If the last Control Point in a Varying Value object specifies a time value
less than 1.0, this value is extrapolated to the 1.0 time point by holding the val-
ue constant. This extrapolation method of holding values is used if the inter-
polation method specified for the Varying Value object is constant or linear
interpolation.

ValueX

TimeX TimeA–()

TimeB TimeA–()
--- ValueB ValueA–()× ValueA+=

214 Appendix A: OMF Object Classes 9/18/97

Sequence of Varying Value Objects

If you need to specify values for an Effect Slot by using more than one kind of
interpolation, you must use a Sequence object that contains a series of Varying
Value objects in the Effect Slot. Each Varying Value object can have its own in-
terpolation method. Each Varying Value object defines the control argument
values for its section of the Sequence. A time value of 0 specifies the beginning
of the Varying Value object, which, if it is in a Sequence, may not correspond
to the beginning of the Effect Slot . A time value of 1 specifies the end of the
Varying Value object, which, if it occurs in a Sequence, may not correspond to
the end of the Effect Slot .

Quantization Adjustments

The Varying Value object specifies a value for each time point within the Vary-
ing Value object; however, if you are generating a stream of media from the
Composition Mob containing the Varying Value object, it can be important to
adjust values produced by the Varying Value object based on sample-rate
quantization. Within a media sample unit, there can only be a single value of
the Varying Value object when generating that sample.

When the number of samples is large (when quantization error is not notice-
able) it is usually sufficient to express a curve in a sample-rate independent
form, which is converted to the appropriate sampled values when needed.
However, there are often times when the desired sample rate is low enough
that some precise control over how the curve gets sampled is needed for the
right result. In particular, this occurs at video sample rates.

An example using a dissolve can illustrate the quantization problem. It is nat-
ural to think of a dissolve as a mixture between video stream A and video
stream B, where the mix is controlled by a level parameter that goes from 0 to
1 over the duration of the dissolve. However, since the frame at any particular
time freezes the value of the level that was specified at the beginning of the
frame, the first frame of the dissolve will have a value of 0, and the last frame
of the dissolve will be slightly less than 1. This result is incorrect, because the
resulting frame sequence has a value of level which is asymmetrical. Changing
the definition so that the middle of a frame is sampled instead of the beginning
does not solve the problem; instead, it just transforms it into a case where the
level change on the first and last frame of the dissolve is half of that for all the
other frames. This is not correct because it is not uniform.

This error is due to quantization and becomes vanishingly small as the sample
rate increases. But because it is sample-rate dependent, it is not something that
can be accounted for in a sample-rate independent way simply by adjusting
the Time values of the Control Points. Instead, it is up to the software that im-
plements a particular effect to adjust the Control Point mapping for the actual
sample rate at the time of rendering. This mapping adjustment is done by scal-
ing the curve represented by the Varying Value so that the 0 point is moved
back by one sample time before interpolation and quantization is performed.

9/18/97 OMF Interchange Specification Version 2.1 215

The following formula scales a Control Point's Time value from its stored
number in edit units to its actual number in sample units, relative to the begin-
ning of the Varying Value component.

This algorithm makes the level 0 sample be the sample before the Effect Invo-
cation starts and the level 1 sample be the sample after the Effect Invocation
ends. For most effects, this is the desired result. However, some effects, such
as fade-to-black or fade-from-color may need to modify the algorithm so that
the level 0 or level 1 sample is included within the Effect Invocation. The effect
documentation must specify a modified scaling algorithm if it should be used
for the effect.

Related Classes
Constant Value (CVAL), Control Point (CTLP), Data Definition (DDEF), Effect
Definition (EDEF), Effect Invocation (EFFE), Effect Slot (ESLT), Source Clip
(SCLP)

SampleTime
Length SampleRate×

EditRate
-- 

  1+ 
  ControlPointTime× 

  1– 
 =

216 Appendix A: OMF Object Classes 9/18/97

WAVE Audio Data Class (WAVE)

Contains WAVE audio data.

Data Model

Implementation

Description
A WAVE Audio Data object contains digitized audio data in the little-endian
byte ordering (used on the Intel architecture). It contains data formatted
according to the Microsoft/IBM Multimedia Programming Interface and Data
Specifications, Version 1.0, but limited to the section describing the RIFF
Waveform Audio File Format audio data.

The data is contained directly in the WAVE object. No additional data proper-
ties or objects are defined for WAVE data because this format contains all of
the information needed for playback.

Related Classes
AIFC Audio Data (AIFC), AIFC Audio Descriptor (AIFD), Header (HEAD), Media
Data (MDAT), Source Mob (SMOB), WAVE Audio Descriptor (WAVD)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is WAVE.

OMFI:MDAT:MobID omfi:UID MobID of the Source Mob describing the media data.

OMFI:WAVE:AudioData omfi:DataValue WAVE format data.

WAVE Audio Data Class (WAVE)
Is-a-Kind-of Media Data

AudioData

9/18/97 OMF Interchange Specification Version 2.1 217

WAVE Audio Descriptor Class (WAVD)

Describes the WAVE audio media associated with a Source Mob.

Data Model

Implementation

Description
A WAVE Audio Descriptor describes a WAVE object that contains digitized audio
data in the little-endian byte ordering (used on the Intel architecture). It
contains data formatted according to the Microsoft/IBM Multimedia
Programming Interface and Data Specifications, Version 1.0, but limited to the
section describing the RIFF Waveform Audio File Format audio data. The
WAVE file information (without the sample data) is duplicated in the WAVE
Audio Descriptor Summary property to make it more efficient to access this
information.

Related Classes
AIFC Audio Data (AIFC), AIFC Audio Descriptor (AIFD), Locator (LOCR), Media
File Descriptor (MDFL), Source Mob (SMOB), WAVE Audio Data (WAVE)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is WAVD.

OMFI:MDES:Locator omfi:ObjRefArray Set of Locators that provide hints to help find the
OMFI file or the raw data file that contains the media
data. Optional.

OMFI:MDFL:IsOMFI omfi:Boolean A True value indicates that the media data is stored
in an OMFI file; a False value indicates that the media
data is stored in a raw data file.

OMFI:MDFL:SampleRate omfi:Rational The native sample rate of the digitized media data.

OMFI:MDFL:Length omfi:Length32
omfi:Length64

Duration of the media in sample units.

OMFI:WAVD:Summary omfi:DataValue A copy of the WAVE file information without the
sample data.

WAVE Audio Descriptor Class (WAVD)
Is-a-Kind-of Media File Descriptor

Summary

218 Appendix A: OMF Object Classes 9/18/97

Windows Locator Class (WINL)

Provides a Windows shortcut object to help find the file containing the media
data.

Data Model

Implementation

Description
The Windows Locator (WINL) provides data that contains a hint to help an ap-
plication find the OMFI file or raw data file containing the media data.

The Source Mob (SMOB) describing the digital media data HAS a Media De-
scriptor object that optionally HAS a set of Locators.

Related Classes
DOS Locator (DOSL), Locator (LOCR), Mac Locator (MACL), Media Descriptor
(MDES), Text Locator (TXTL), UNIX Locator (UNXL)

Property Name Type Explanation

OMFI:OOBJ:ObjClass omfi:ClassID Class is WINL.

OMFI:WINL:Shortcut omfi:DataValue Contains a Windows shortcut to finding a file. Optional.

OMFI:WINL:PathName omfi:String Windows pathname for file containing the media data.

Windows Locator Class (WINL)
Is-a-Kind-of Locator

Shortcut

PathName

9/18/97 OMF Interchange Specification Version 2.1 219

Appendix B
Data Types

OMF has two sets of types: the data type, which specifies the type of property
values and the data kind, which specifies the type for objects in the Compo-
nent class. The implementation section describing a class lists the data type of
each property that the class includes. Objects that belong either to the class
Component or Control Point have a property that identifies the data kind of
the object. Data kind is used to describe time-varying values produced by
Components that describe media and Components that supply control argu-
ments to Effect Invocations.

The data type is identified by a globally unique text string that starts with the
prefix omfi: and identifies the type. Table 9 lists the data types.

The data kind is specified by a Data Definition object, which contains the
globally unique text string of the data kind. The data kinds defined in this
document start with the prefix omfi:data:. The meaning, internal format,
and size of the data kind are not described in the Data Definition object. This
information is provided in this document or in the documentation provided
with registered or private media formats and Effect Definitions. Table 10 lists
the data kinds.

Table 11 describes the data kind conversions that are allowed in an OMFI file.

220 Appendix B: Data Types 9/18/97

Table 9: Data Types

Data Type Explanation

omfi:ArgIDType Specifies an integer that identifies an Effect Slot.

omfi:AttrKind A 16-bit integer. Values are
0 kOMFNullAttribute Unspecified type
1 kOMFIntegerAttribute Integer value
2 kOMFStringAttribute String value
3 kOMFObjectAttribute Object reference value

omfi:Boolean Specifies either True or False.

omfi:Char Specifies a single character value.

omfi:ClassID Specifies the 4-character class identification.

omfi:ColorSitingType Specifies how to compute subsampled values as a 16-bit enumerated type.
Values are
0 coSiting To calculate subsampled pixels, take the preceding

pixel’s color value, discard the other color values,
and cosite the color with the first luminance value.

1 averaging To calculate subsampled pixels, take the average
of the two adjacent pixel’s color values, and site
the color in the center of the luminance pixels.

2 threeTap To calculate subsampled pixels, take 25 percent of
the previous pixel’s color value, 50 percent of the
first value, and 25 percent of the second value. For
the first value in a row, use 75 percent of that
value since there is no previous value. The
threeTap value is only meaningful when the
HorizontalSubsampling property has a value of 2.

omfi:CompCodeArray Specifies the order in which the RGBA components are stored as an array of
character. Each element in the array represents a different color component.
The array can contain the following characters:

‘A’ Alpha component
‘B’ Blue component
‘F’ Fill component
‘G’ Green component
‘P’ Palette code
‘R’ Red component
‘0’ no component

Each character except ‘0’ can appear no more than one time in the array. The
array is terminated by a 0 byte and has a maximum of 8 elements (including
the terminating byte). Note that a byte with the ASCII ‘0’ indicates no compo-
nent and a byte with a 0 (ASCII NULL) terminates the string.

omfi:CompSizeArray Specifies the number of bits reserved for each component as an array of UInt8
in the order specified in the CompCodeArray. The array is terminated by a 0
byte and has a maximum of 8 elements (including the terminating byte).

omfi:DataValue Specifies media data or a block of data whose type is specified by a data kind.

9/18/97 OMF Interchange Specification Version 2.1 221

omfi:EdgeType Specifies the kind of film edge code as an enumerated Int16. Values are:
0 ET_NULL Invalid edge code
1 ET_KEYCODE Eastman Kodak KEYKODE TM format.
2 ET_EDGENUM4 edge code format: nnnn+nn.
3 ET_EDGENUM5 edge code format: nnnnn+nn.

omfi:EditHintType Specifies hints to be used when editing Control Points. Values are:
0 EH_Proportional
1 EH_RelativeLeft
2 EH_RelativeRight

omfi:FadeType Specifies the type of the audio fade; may have one of the following values:
0 No fade
1 Linear amplitude fade
2 Linear power fade
3 Linear dB fade

Additional registered and private fade types may be defined.

omfi:FilmType Specifies the format of the film as an Int16 enumerated value. Values are:
0 FT_NULL invalid film type
1 FT_35MM 35 millimeter film
2 FT_16MM 16 millimeter film
3 FT_8MM 8 millimeter film
4 FT_65MM 65 millimeter film

omfi:InterpKind Specifies the method to use when interpolating between Control Points.
Values are:

1 Constant interpolation
2 Linear interpolation

omfi:Int8 Specifies an 8-bit integer value.

omfi:Int16 Specifies a 16-bit integer value.

omfi:Int32 Specifies a 32-bit integer value.

omfi:Int32Array Specifies an array of 32-bit integer values.

omfi:JPEGTableIDType Specifies the JPEG tables used in compressing TIFF data.

omfi:LayoutType Describes whether all data for a complete sample is in one frame or is split
into more than one field as an inumerated Int16. Values are:

0 FULL_FRAME: frame contains full sample in progressive scan lines
1 SEPARATE_FIELDS: sample consists of two fields, which when inter-

laced produce a full sample
2 SINGLE_FIELD: sample consists of two interlaced fields, but only one

field is stored in the data stream
3 MIXED_FIELDS

omfi:Length32 Specifies the length of a Component with a 32-bit integer.

omfi:Length64 Specifies the length of a Component with a 64-bit integer.

omfi:ObjRef Specifies another object.

omfi:ObjRefArray Specifies a set of other objects.

Table 9: Data Types (Continued)

Data Type Explanation

222 Appendix B: Data Types 9/18/97

omfi:Position32 Specifies an offset into a Component with a 32-bit integer.

omfi:Position32Array Specifies an array of 32-bit offsets.

omfi:Position64 Specifies an offset into a Component with a 64-bit integer.

omfi:Position64Array Specifies an array of 64-bit offsets.

omfi:ProductVersion Specifies the version number of the application. Consists of 5 16-bit integer
values that specify the version of an application. The first four integers specify
the major, minor, tertiary, and patch version numbers. The fifth integer has
the following values:
0 kVersionUnknown No additional version information
1 kVersionReleased Released product
2 kVersionDebug Development version
3 kVersionPatched Released product with patches
4 kVersionBeta Prerelease beta test version
5 kVersionPrivateBuild

omfi:Rational Specifies a rational number by means of an Int32 numerator and an Int32
denominator.

omfi:String Specifies a string of characters.

omfi:TapeCaseType Describes the physical size of the tape; may have one of the following values:
0 3/4 inch videotape
1 VHS video tape
2 8mm videotape
3 Betacam videotape
4 Compact cassette
5 DAT cartridge
6 Nagra audio tape

omfi:TapeFormatType Describes the format of the tape; may have one of the following values:
0 Betacam
1 BetacamSP
2 VHS
3 S-VHS
4 8mm
5 Hi8

omfi:TimeStamp Specifies a date and time. The timestamp is a four-byte unsigned integer,
followed by a one-byte Boolean value. The integer represents the number of
seconds since January 1, 1970. The Boolean value indicates whether or not
the value is based on Greenwich Mean Time (GMT) time.

omfi:UID Specifies a Mob ID value; a 96-bit value to be interpreted as 3 long values.
The value of the first 32 bits must be a registered application or organization
code. The remainder of the value is assigned by an application.

omfi:UInt8 Specifies an unsigned 8-bit integer.

omfi:UInt16 Specifies an unsigned 16-bit integer.

omfi:UInt32 Specifies an unsigned 32-bit integer.

Table 9: Data Types (Continued)

Data Type Explanation

9/18/97 OMF Interchange Specification Version 2.1 223

omfi:UniqueName Specifies a qualified name which conforms to the OMFI naming conventions.

omfi:VersionType Specifies a 2-byte unsigned OMFI version number.

omfi:VideoSignalType Specifies the type of video signal on the videotape. Values are:
0 NTSC
1 PAL
2 SECAM

Table 9: Data Types (Continued)

Data Type Explanation

224 Appendix B: Data Types 9/18/97

Table 10: Data Kinds

Data Kind Explanation

omfi:data:Boolean Specifies either True or False.

omfi:data:Char Specifies a single character value.

omfi:data:Color Specifies a ColorSpace followed by a series of Rational, with one Ratio-
nal for each color component in the color space. The size of this data
type depends on the color space. If the color space is a 3-component
color space, the size will be 25 bytes (1 byte for the color space, fol-
lowed by 3 8-byte rationals.

omfi:data:ColorSpace Specifies the color space used to describe color as an Int16 enumerated
type. Values are:

0 RGB
1 YUV
2 YIQ
3 HSI
4 HSV
5 YCrCb
6 YDrDb
7 CMYK

omfi:data:DirectionCode Specifies one of 8 directions in a 2-dimensional plane as an Int16
enumerated type. Values are:

0 Right
1 UpperRight
2 Up
3 UpperLeft
4 Left
5 LowerLeft
6 Down
7 LowerRight

omfi:data:Distance Specifies a distance which is relative to the display dimensions of the
image as an omfi:Rational value. A value of 1.0 represents 1/6
the vertical dimension of the image. For the common 4x3 aspect ration,
the horizontal distance equals 8 units and the vertical distance equals 6
units.

omfi:data:Edgecode Specifies a stream of film edge code values.

omfi:data:Int32 Specifies a signed 32-bit integer.

omfi:data:Matte Specifies a stream of media that contains an image of alpha values.

omfi:data:Picture Specifies a stream of media that contains image data.

omfi:data:PictureWithMatte Specifies a stream of media that contains image data and a matte.

9/18/97 OMF Interchange Specification Version 2.1 225

omfi:data:Point Specifies a point relative to the display dimensions of the image as two
omfi:Distance values. The origin is the center of the image; the
first distance represents the horizontal distance (positive values increase
to the right); and the second distance represents the vertical distance
(positive values increase up). For example, for an aspect ration of 4x3,
the upper right corner has a value (4.0,3.0) and the lower left corner
has a value (-4.0,-3.0).

omfi:data:Polynomial Specifies a polynomial value.

omfi:data:Rational Specifies a rational number by means of an Int32 numerator and an
Int32 denominator.

omfi:data:Sound Specifies a stream of media that contains a single channel of sound.

omfi:data:StereoSound Specifies a stream of media that contains two stereo channels of sound.

omfi:data:String Specifies a string of characters.

omfi:data:Timecode Specifies a stream of tape timecode values.

omfi:data:UInt8 Specifies an unsigned 8-bit integer.

Table 11: Data Kind Conversions

Convert from Data Kind Convert to Data Kind Explanation

PictureWithMatte Picture If a PictureWithMatte is used where a Picture is specified, the
matte part is ignored and the picture part is used.

PictureWithMatte Matte If a PictureWithMatte is used where a Matte is specified, the
picture part is ignored and the matte is used.

Picture PictureWithMatte If a Picture is used where a PictureWithMatte is specified, the
picture is used and the matte is assumed to be all fore-
ground.

Matte PictureWithMatte If a Matte is used where a PictureWithMatte is specified, the
Matte is used and the Picture is assumed to be a grayscale
image equivalent to the matte with white as background,
black foreground.

Matte Picture If a Matte is used where a Picture is specified, the Picture is
assumed to be a greyscale image equivalent to the matte
with white as background, black as foreground.

Picture Matte If a Picture is used where a Matte is specified, the matte is
assumed to be the equivalent of using only the luminance
component of the Picture.

Color Picture If a Color is used where a Picture is specified, the Picture is
assumed to have all pixels of the specified color.

Table 10: Data Kinds (Continued)

Data Kind Explanation

226 Appendix B: Data Types 9/18/97

Color Matte If a Color is used where a Matte is specified, the Matte is
assumed to have all pixels be the luminance component of
the specified color.

Color PictureWithMatte If a Color is used where a PictureWithMatte is specified, the
Picture is assumed to have all pixels of the specified color,
and the matte is assumed to be all foreground. A Picture,
Matte, or PictureWithMatte cannot be implicitly converted
to a Color.

Color Rational A color is converted to a Rational by using only the lumi-
nance component

Rational Color A Rational is converted to a color by making a color whose
luminance component is the Rational and whose chromi-
nance components are 0.

Sound StereoSound A Sound is converted to a StereoSound by using half the
original sound on each of the Left and Right parts.

StereoSound Sound A StereoSound is converted to a Sound by adding the Left
and Right parts.

Int32, Int16,
Int8, Uint32,
Uint16, UInt8

Rational Any of the integer types is converted to a Rational by first
converting it to an Int32, and then using the result as the
numerator and setting the denominator to 1.

Rational Int32 A Rational is converted to a Int32 by dividing numerator by
denominator and rounding any fractional part toward nega-
tive infinity.

Table 11: Data Kind Conversions (Continued)

Convert from Data Kind Convert to Data Kind Explanation

9/18/97 OMF Interchange Specification Version 2.1 227

Appendix C
References and Media Formats

This appendix lists references to specifications and standards documents and
describes the formats used to store media data in disk files.

References

Bento®

Bento Specification, Revision 1.0d5 by Jed Harris and Ira Ruben. Apple Comput-
er, Inc.

For a copy of the Bento Specification and the Bento software, you can contact
the OMF DevelopersÕ Desk.

TIFF
TIFF, Revision 6.0, Final - June 3, 1992. Aldus Developers Desk.

OMF Interchange supports the use of TIFF as a media data format for inter-
change of graphic data and video frame data. The TIFF specification, sample
TIFF files, and other TIFF developer information are available on CompuServe
(ÒGo ALDSVCÓ, Library 10) and on AppleLink¨ (Aldus Developers Icon). For
a copy of the TIFF 6.0 specification, call (206) 628-6593. For other information
about the TIFF format, contact:

Aldus Developers Desk
411 First Avenue South
Seattle, WA 98104-2871

228 Appendix C: References and Media Formats 9/18/97

AIFF
Audio Interchange File Format, Apple Computer, Inc., Version 1.

For information on how to get the Audio Interchange File Format (AIFC) spec-
ification, call Apple Computer Customer Assistance at (800) 776-2333.

WAVE Audio File Format
For information or a copy of the WAVE audio file format specification, contact
Microsoft DeveloperÕs Services at (800) 227-4679.

Other References
Joint Photographic Experts Group Standard JPEG-8-R8.

Microsoft/IBM Multimedia Programming Interface and Data Specifications,
Version 1.0.

SMPTE Recommended Practice, RP 146-1987, ÒTransfer of Edit Decision Lists,Ó
Society of Motion Picture and Television Engineers.

Media Formats

TIFF File Format
OMF Interchange extends baseline TIFF 6.0 in order to efficiently store video
frame sequences. OMF Interchange includes a version of the TIFF object type
for TIFF format video data that includes JPEG full motion video media data
and frame information.

The object contains the TIFF image file Header (IFH), followed by a series of
frames, the TIFF image file directory (IFD), reference data including the JPEG
tables, and a frame index.

The IFD can contain baseline TIFF fields, plus JPEG and YCbCr fields, along
with some private tags that OMF Interchange adds to extend TIFF to represent
video. There are restrictions on some of the standard TIFF fields, but these
restrictions limit only the kinds of data that can be written. They do not modify
the meanings of the tags in any way.

Additional IFD Fields

OMF Interchange defines the following additional IFD fields.

9/18/97 OMF Interchange Specification Version 2.1 229

• VideoFrameOffsets

Tag = 34432 (8680.H)

Type = LONG

N = number of frames

This field contains an array of byte offsets to the video frames. The order
of frames in time corresponds to the order of the offsets.

If this field is not present, the file cannot be interpreted as video.

• VideoFrameByteCounts

Tag = 34433 (8681.H)

Type = LONG

N = number of frames

This field contains an array of byte lengths for the video frames. The order
of frames in time corresponds to the order of the lengths.

If this field is not present, the lengths have to be computed by interpreting
the video data.

• VideoFrameLayout

Tag = 34434 (8682.H)

Type = SHORT

N = 1

This field contains the layout of the pixels with respect to a broadcast
video image.

1= Full Frame picture.
The image is not separated into fields, and represents the entire
picture.

2= Single Field, Odd.
The image corresponds to the odd broadcast field, and must be
doubled to be displayed on a monitor.

3= Single Field, Even.
The image corresponds to the even broadcast field, and must be
doubled to be displayed on a monitor.

4= Mixed fields.
The image contains two fields, the odd field first, followed by the even
field. Together, the two images make up a complete broadcast image.

• VideoFrameRate

Tag = 34435 (8683.H)

Type = RATIONAL

N = 1

This field contains the sample rate of the video data. Typical values would
be 2997/100 for NTSC, or 25/1 for PAL.

• JPEGQTables16

Tag = 34436 (8684.H)

Type = LONG

N = number of components

230 Appendix C: References and Media Formats 9/18/97

This field points to a list of offsets to high-precision quantization tables,
one per component. Each table consists of 128 BYTES (one 16-bit value for
each DCT coefficient in the 8x8 block). The quantization tables are stored
in zig-zag order.

The JPEGQTables field is still required, as they are mandatory with the
JPEG extension. Applications that recognize the 16-bit tables can use them
if they choose to.

OMF Interchange imposes the following restrictions on the representation of
video TIFF/JPEG data. These restrictions limit what kinds of data can be
written, but they do not modify the meanings of the tags in any way.

¥ Lossless JPEC (JPECProc = 14) is not supported; JPECProc must equal 1.

¥ JPEGInterchangeFormat and JPEGInterchangeFormatLength
are not supported.

¥ PlanarConfiguration must be 1; only interleaved components are
supported.

¥ Only one strip per image is allowed; RowsPerStrip must equal the
length of the images.

¥ Tiles are not supported.

¥ Compression must be 1 or 6 (none or JPEG).

¥ If Compression is 6 (JPEG), then PhotometricInterpretation must
be 6 (YCbCr).

¥ YCbCr Subsampling must be (2,1); this correspond to the industry-
standard format YUV422.

¥ JPEGRestartInterval is not allowed; there must be explicit markers in
the frame data to prevent wrong interpretation of the data.

¥ All frames must conform to the values speciÞed in the IFD, such as height
and length.

9/18/97 OMF Interchange Specification Version 2.1 231

Appendix D
Changes in Version 2.1

List of Changes

The following sections summarize the technical changes in OMF class hier-
archy in this version of the specifications.

File Version Number
The changes introduced the OMF Interchange Specification Version 2.1 are
minor enhancements to Version 2.0. Consequently, the file version number
stored in the Header object remains 2.0 and is not changed. Any application
that is built using the OMF Interchange DevelopersÕ Toolkit Version 2.0 should
be able to read a file that conforms to the OMF Interchange Specification
Version 2.1 with a few specific exceptions. The exceptions are that it may
ignore the identification information in the Header object, that it cannot handle
any data item or frame index that requires a 64-bit integer, and that it will treat
Pulldown objects as unknown objects.

What’s New?
The following are new features:

¥ Identification information in the Header object

Ñ New OMFI:HEAD:IdentificationList property

Ñ New Identification (IDNT) class

Ñ New omfi:ProductVersion data type

232 Appendix D: Changes in Version 2.1 9/18/97

¥ Support for large media files (greater than 2 gigabytes)

Ñ The following properties can have either an omfi:Length32 or an
omfi:Length64 data type: OMFI:CPNT:Length,
OMFI:MDFL:Length, OMFI:CMOB:DefFadeLength,
OMFI:SCLP:FadeInLength, and OMFI:SCLP:FadeOutLength

Ñ The following properties can have either an omfi:Position32 or
an omfi:Position64 data type: OMFI:ECCP:Start,
OMFI:ERAT:InputOffset, OMFI:ERAT:ResultOffset,
OMFI:SCLP:StartTime, OMFI:TCCP:Start, and
OMFI:TRKD:Origin

Ñ The OMFI:JPEG:FrameIndex property can have either an
omfi:Position32Array or an omfi:Position64Array data
type

¥ Support for user comments on Mobs and tagged user-defined information

Ñ New OMFI:MOBJ:UserAttribute property

Ñ New Attribute (ATTB) class

Ñ New Attribute Array (ATTR) class

Ñ New omfi:AttrKind data type

¥ Improved support for film pulldown conversions

Ñ New Pulldown (PDWN) class

Ñ New omf:PulldownKindType, omfi:PulldownDirection-
Type, and omfi:PhaseFrameType data types

¥ Minor improvements for media handling and storage

Ñ Default audio fades in Composition Mobs; new OMFI:CMOB:Def-
FadeLength, OMFI:CMOB:DefFadeType, and OMFI:CMOB:Def-
FadeEditUnits properties

Ñ Ability to store the film edgecode header; new OMFI:ECCP:Header
property

Ñ Ability to specify CDCI padding bits; new OMFI:CDCI:Padding-
Bits properties

Ñ Ability to specify physical track; new OMFI:TRKD:PhysicalTrack
property

Ñ Ability to specify image geometry using signed offsets; changed data
type for OMFI:DIDD:SampledXOffset, OMFI:DIDD:SampledY-
Offset, OMFI:DIDD:DisplayXOffset, and OMFI:DIDD:Dis-
playYOffset

Ñ Improved set of Locators; new Network (NETL) locator, new
OMFI:MACL:PathName, and OMFI:WINL:PathName properties

What’s Removed?
A few effect definitions have been removed from the Effect Dictionary. The
omfi:effect:VideoFrameMask effect has been replaced by the Pulldown object.
The stereo audio effects have been removed.

9/18/97 OMF Interchange Specification Version 2.1 233

Changes in Version 2.0

This section describes the changes between Version 1.0 and Version 2.0.

The major goals for Version 2.0 of the OMF Interchange specification are to
increase the capabilities available to the end user and to reduce the roadblocks
to digital media data interchange. This version of the specification helps
achieve these goals in the following ways:

¥ Version 2.0 allows more kinds of information to be interchanged between
applications. The most important new kinds of information in this version
are

Ñ Effects

Ñ More comprehensive descriptions of image and video media

¥ Version 2.0 makes it easier for an application to include OMF support,
which subsequently increases the number of applications available to the
end user. The major changes in this version that make it easier to include
OMF support are

Ñ Better class model

Ñ Better description of Mobs and compositions

¥ Version 2.0 enhances existing OMF capabilities and remedies problems
found in earlier versions.

Interchanging Effects
OMF Version 2.0 allows interchange of effects, where as the previous version
allowed interchange for only a very limited number of transition effects.
Effects represent a major part of the value added to the media during the post-
production process. Effects are used as transitions, to layer segments of media,
and to alter segments of media. By allowing effects that are defined in one
application to be generated or altered in another, OMF reduces the amount of
work that must be duplicated when going from one application to another.

The OMF Interchange file has a new model for interchanging effects. The new
effect model allows an effect generated by one application to be understood,
viewed and edited by a second application, significantly simplifying media
production in a multi-vendor environment. Editors will be able to describe
and preview effects on a nonlinear editing system, render and alter them on a
high-end system and then send them back to the editing system for finishing.
Because the OMF specification represents all effects in a common way, details
are retained throughout the transfer process, ultimately saving editors time
and money. Developed in close cooperation with OMF Champions and Part-
ners, the new effect model offers post professionals quicker, more collabora-
tive effects generation.

OMF 2.0's effect representation is sample rate and resolution independent, and
therefore portable to media formats like NTSC, PAL or film, and to different

234 Appendix D: Changes in Version 2.1 9/18/97

play rates. Because effects are represented descriptively rather than rendered
as video, the importing applications can alter parameters to modify the effect,
such as make a page turn faster or alter the curve of the page.

There are also well-defined mechanisms to include rendered versions of
effects. This allows applications that cannot generate an effect to play a prer-
endered version of the effect.

Enhancing Media Support
Certain areas of the 1.0 version of the specification have been significantly
improved as part of OMF 2.0. These areas include: describing video image
media, handling origins of media with different sampling rates, describing
media with interleaved channels, and describing different representations of
the same media.

New Image Format

This version includes a new image format (for moving and still images) that
supersedes and enhances the functionality provided with the TIFF image
format used in the 1.0 version of the OMF specification. The TIFF format is still
supported in OMF 2.0 for compatibility with version 1.0 OMF images.

The goal of the new image format is to simplify the representation of image
data and to be able to store the information required by video formats in
common use. The Version 2.0 image format supports component video, which
is not supported by the previous versionÕs TIFF format. It also eliminates
redundancy and is an efficient storage format for both single and moving
images. It can easily support compressed and uncompressed video, store
images in either a color difference or component video format, and provide
additional information about the sampling process used to create the digital
media from an analog source.

Applications that support OMF must support the TIFF format as well as the
new image format during the 1.0 to 2.0 transition period (this functionality will
be provided in the OMF 2.0 Toolkit). This will allow complete compatibility
with applications that are still using the 1.0 format. After the transition period
ends, which is a year after the publication of the version 2.0 specification,
applications will not be required to continue to support the TIFF format.

Better Support for Media

This version of OMF Interchange has better support for media with different
native sampling rates, media with interleaved channels, and media with more
than one digital representation. The starting time for each track of media can
now be specified independently. This allows sample-accurate starting times to
be specified for each kind of media.

9/18/97 OMF Interchange Specification Version 2.1 235

New structures allow you to include media data that interleaves multiple
channels. For example, media data that has interleaved stereo audio contains
the information required to play two channels of audio.

Sometimes it is desirable to have more than one digital representation for
media. For example, media may need to be stored differently on different
systems for playing efficiency, or media may be stored with different compres-
sions depending on the storage available and the stage of production.

Making It Easier to Add OMF Support
Version 2.0 of the OMF specification (along with the OMF 2.0 Toolkit) is
designed to make it easier to add OMF support to applications by providing
more thorough descriptions and information. The improvements added to this
version were chosen based on the feedback from the OMF Champions who
have already added OMF support to their applications. This version of the
OMF Interchange Specification:

¥ Provides a new class model that makes it possible for a more rigorous def-
inition of the legal structure of OMFI files.

¥ Provides more information on defining compositions

¥ Provides better explanations and examples

¥ Eliminates some object classes

List of Changes
The following sections summarize the technical changes in OMF class hier-
archy in this version of the specifications.

What’s New?

The following new classes are used to describe effects:

¥ Effect Definition (EDEF) class

¥ Effect Invocation (EFFE) class

¥ Effect Slot (ESLT) class

¥ Varying Value (VVAL) class

¥ Constant Value (CVAL) class

¥ Control Point (CTLP) class

¥ Data Definition (DDEF) class

The following new features also help provide effect interchange:

¥ Extended set of data types and data kinds

¥ Effects Dictionary

The following new classes are used for the new image format:

236 Appendix D: Changes in Version 2.1 9/18/97

¥ Media Data (MDAT) class

¥ Image Data (IDAT) class

¥ JPEG Image Data (JPEG) class

¥ Digital Image Descriptor(DIDD) class

¥ RGBA Component Image Descriptor (RGBA) class

¥ Color Difference Component Image Descriptor (CDCI) class

The following new classes are used to improve references from one section of
a Composition Mob to another:

¥ Scope Reference (SREF) class

¥ Nested Scope (NEST) class

¥ Mob Slot (MSLT) class

¥ Edit Rate Converter (ERAT) class

¥ Track Description (TRKD) class

The following new class allows a Master Mob to provide access to multiple im-
plementations of the same media:

¥ Media Group (MGRP) class

The following new classes allow you to specify more descriptive information
about physical sources and include Windows format locator information:

¥ Media Film Descriptor (MDFM) class

¥ Media Tape Descriptor (MDTP) class

¥ Windows Locator (WINL) class

The following classes help provide a better class hierarchy, which makes OMF
easier to understand and use:

¥ Composition Mob (CMOB) class

¥ Master Mob (MMOB) class

¥ Source Mob (SMOB) class

¥ OMFI Object (OOBJ) class

¥ Segment (SEGM) class

Changed Properties

This section highlights property changes for classes that are in both 1.0 and 2.0.

The OMFI:ObjID property has been renamed the OMFI:OOBJ:ObjClass
property, which eliminates the concept of generic properties and makes the
class model easier to understand. The name ObjClass is more descriptive
because the property identifies the class of the object rather than containing an
ID number for the object.

The OMFI:Version property has been removed from all objects except the
HEAD object. All objects in a single OMFI file must conform to the same version
of the specification.

9/18/97 OMF Interchange Specification Version 2.1 237

The OMFI:ObjectSpine and OMFI:ExternalFiles properties have been
removed from the HEAD object. Instead of using the object spine to find objects,
you use the mob and media data indexes in the HEAD object. The external files
index provided information that is easily accessible through the mob indexes.
The Mobs index and the MediaData are now arrays of object references rather
than also containing the MobID values. This reduces the redundancy in the
OMFI file, which minimizes the possibility of creating inconsistent OMFI files.

The omfi:TrackType data type is no longer an enumerated data type. It is
now an object reference to a Data Definition object.

The OMFI:TRAK:FillerProxy property has been replaced with Nested
Scope and Scope References. The Filler class is not used for implicit references.

What’s Removed?

The following object classes are not included in OMF Interchange Specification
Version 2.0:

¥ The TRKG track group class is replaced by Effect Invocation (EFFE), Nested
Scope (NEST), and Media Group (MGRP) classes. In addition, the follow-
ing subclasses of TRKG are also replaced by EFFE: WARP time warp class,
SPED speed class, MASK mask class, REPT repeat class.

¥ The ATTR attribute array class, the ATTB attribute class, and the ATCP clip
attribute class have been removed. These were intended to store private
information. Effects interchange in Version 2.0 eliminates the need for
some of this private data. The remaining private data can be stored using
private properties or new private classes.

¥ The TRAK class has been replaced by the Mob Slot (MSLT) and the Track
Description (TRKD) classes.

¥ The TRKR class has been replaced by the Scope Reference (SREF) class.

238 Appendix D: Changes in Version 2.1 9/18/97

9/18/97 OMF Interchange Specification Version 2.1 239

Appendix E
Effects Dictionary

This appendix describes the registered effects that were specified at the time
this document was published. Contact the OMF DevelopersÕ Desk for docu-
mentation on additional registered effects.

This section provides documentation on the following audio effects:

■ Mono Audio Dissolve

■ Mono Audio Gain

■ Mono Audio Mixdown

■ Mono Audio Pan

This section provides documentation on the following video effects:

■ SMPTE Video Wipe

■ Video Dissolve

■ Video Fade To Black

■ Video Frame Mask

■ Video Repeat

■ Video Speed Control

The Effect Definition section in each dictionary page lists the values of the Ef-
fect Definition (EDEF) properties. It also lists the result data kind of the effect.
Effects dictionary pages are arranged alphabetically by the effect name.

240 Appendix E: Effects Dictionary 9/18/97

Mono Audio Dissolve Effect

Combines two mono audio streams.

Effect Definition
EffectID omfi:effect:SimpleMonoAudioDissolve

EffectName Simple Mono Audio Dissolve

EffectDescription Combines two mono audio streams by using a simple linear equation.

Bypass -1 (in Transitions, substitute a cut)

IsTimeWarp False

Result Data Kind omfi:data:Sound

Control Arguments

Notes
This effect is intended primarily for audio Transitions, but it can be used out-
side of Transitions also.

ArgID Data Kind Description

-1 omfi:data:Sound Input audio Segment “A”, may also be known as “outgo-
ing” for Transitions. This control is required. If it is not
present, then the effect must be a transition effect, so derive
the control from the preceding Segment in the containing
sequence. If the control is not present, and the effect is not
in a transition, the effect is in error.

-2 omfi:data:Sound Input audio segment “B”, may also be known as “incom-
ing” for transitions. This control is required. If it is not
present, then the effect must be a Transition effect, so derive
the control from the preceding segment in the containing
sequence. If the control is not present, and the effect is not
in a transition, the effect is in error.

-3 omfi:data:Rational Level, equal to mix ratio of B/A. Range is 0 to 1. The for-
mula:
P = (Level*B) + ((1-Level)*A)
This control is optional. The default for Effect Invocations
that are not in Transitions is a constant 1/2. The default for
Effect Invocations in Transition is a VVAL with two control
points: Value 0 at time 0, and value 1 at time 1.

9/18/97 Appendix E: Effects Dictionary 241

Mono Audio Gain Effect

Adjusts volume of mono audio Segment.

Effect Definition
EffectID omfi:effect:MonoAudioGain

EffectName Mono Audio Gain

EffectDescription Adjusts the volume of an audio Segment.

Bypass -1

IsTimeWarp False

Result Data Kind omfi:data:Sound

Control Arguments

Notes
This effect is not allowed in Transitions.

ArgID Data Kind Description

-1 omfi:data:Sound Input audio segment.

1 omfi:data:Rational Amplitude multiplier. Range is from 0 to 232-1. Unity gain is
1.

242 Appendix E: Effects Dictionary 9/18/97

Mono Audio Mixdown Effect

Mixes any number of mono audio Segments into a single mono audio output
Segment.

Effect Definition
EffectID omfi:effect:MonoAudioMixdown

EffectName Mono Audio Mixdown

EffectDescription Combines any number of mono audio Segments into a single mono audio out-
put.

Bypass 1

IsTimeWarp False

Result Data Kind omfi:data:Sound

Control Arguments

Notes
1. All Effect Slots must have the data kind omfi:data:Sound or a data

kind that can be converted to omfi:data:Sound.

2. The audio Segments are added together.

3. In a Transition, no Effect Slots may be specified. The effect mixes the over-
lapping sections of the adjacent Segments.

4. Except when the effect is used in a Transition, there must be at least one Ef-
fect Slot.

5. The ArgID values specified in all Effect Slots must form a set of sequential
integers starting at 1 (no duplicates are allowed). Since the Effect Invoca-
tion has an unordered set of Effect Slots, they can appear in any order.

ArgID Data Kind Description

1 omfi:data:Sound First input mono audio Segment. Required except when
effect is used in a Transition.

2 omfi:data:Sound Second input mono audio Segment. Optional.

n omfi:data:Sound Nth input mono audio Segment. Optional.

9/18/97 Appendix E: Effects Dictionary 243

Mono Audio Pan Effect

Converts a mono audio Segment into stereo audio. The amount of data sent to
each channel is determined by the pan control.

Effect Definition
EffectID omfi:effect:MonoAudioPan

EffectName Mono Audio Pan

EffectDescription Splits a mono audio Segment into a L/R stereo pair.

Bypass -1

IsTimeWarp False

Result Data Kind omfi:data:StereoSound

Control Arguments

Notes
This effect is not allowed in Transitions.

ArgID Data Kind Description

-1 omfi:data:Sound Specifies the input audio Segment.

1 omfi:data:Rational Specifies the pan value; it has a range from 0.0 to 1.0. This
value represents the ratio of left/right apportionment of
sound. A value of 0 is full left; a value of 1 is full right, and a
value of 1/2 is half left and half right.

244 Appendix E: Effects Dictionary 9/18/97

SMPTE Video Wipe Effect

Combines two video streams by using a SMPTE video wipe.

Effect Definition
EffectID omfi:effect:SMPTEVideoWipe

EffectName SMPTE Video Wipe

EffectDescription Combines two video streams according to the SMPTE Recommended Practice
for Transfer of Edit Decision Lists.

Bypass -1

IsTimeWarp False

Result Data Kind omfi:data:Picture

Control Arguments

ArgID Data Kind Description

-1 omfi:data:PictureWithMatte Input video segment “A”, may also be known as “outgoing”
for transitions. This control is required. If it is not present,
then the effect must be a transition effect, so derive the con-
trol from the preceding segment in the containing
sequence. If the control is not present, and the effect is not
in a transition, the effect is in error.

-2 omfi:data:PictureWithMatte Input video segment “B”, may also be known as “incoming”
for transitions. This control is required. If it is not present,
then the effect must be a transition effect, so derive the con-
trol from the preceding segment in the containing
sequence. If the control is not present, and the effect is not
in a transition, the effect is in error.

-3 omfi:data:Rational Level, equal to “percentage done.” Range 0 to 1.

1 omfi:data:Int32Boolean SMPTE Wipe Number. No default, must be specified.

2 omfi:data:Boolean Reverse, default FALSE.

3 omfi:data:Boolean Soft, default FALSE.

4 omfi:data:Boolean Border, default FALSE.

5 omfi:data:Boolean Position, default FALSE.

6 omfi:data:Boolean Modulator, default FALSE.

7 omfi:data:Boolean Shadow, default FALSE.

8 omfi:data:Boolean Tumble, default FALSE.

9 omfi:data:Boolean Spotlight, default FALSE.

10 omfi:data:Int32 ReplicationH.

9/18/97 Appendix E: Effects Dictionary 245

Notes
See the SMPTE Recommended Practice, Transfer of Edit Decision Lists, RP-146-
1987 more for information on SMPTE wipes.

11 omfi:data:Int32 ReplicationV

12 omfi:data_Boolean Checkerboard

ArgID Data Kind Description

246 Appendix E: Effects Dictionary 9/18/97

Video Dissolve Effect

Combines two video streams by using a simple linear equation.

Effect Definition
EffectID omfi:effect:SimpleVideoDissolve

EffectName Simple Video Dissolve

EffectDescription Combines two video streams by using a simple linear equation.

Bypass -1 (in Transitions, substitute a cut)

IsTimeWarp False

Result Data Kind omfi:data:PictureWithMatte

Control Arguments

Notes
This effect is intended primarily for video Transitions, but can also be used out-
side of Transitions.

ArgID Data Kind Description

-1 omfi:data:PictureWithMatte Input video Segment “A”, may also be known as “outgoing”
for Transitions. This control is required. If it is not present,
then the effect must be a transition effect, so derive the con-
trol from the preceding segment in the containing sequence.
If the control is not present, and the effect is not in a transi-
tion, the effect is in error.

-2 omfi:data:PictureWithMatte Input video Segment “B”, may also be known as “incom-
ing” for Transitions. This control is required. If it is not
present, then the effect must be a Transition effect, so derive
the control from the preceding segment in the containing
sequence. If the control is not present, and the effect is not
in a transition, the effect is in error.

-3 omfi:data:Rational Level, equal to mix ratio of B/A. Range is 0 to 1. For each
pixel in the result, the output pixel value P is computed by
combining the input pixels A and B with the formula:
P = (Level*B) + ((1-Level)*A)
This control is optional. The default for segment effects is a
constant 1/2. The default for transition effects is a VVAL with
two control points: Value 0 at time 0, and value 1 at time 1.

9/18/97 Appendix E: Effects Dictionary 247

Video Fade To Black Effect

Combines a video stream with black by using a simple linear equation.

Effect Definition
EffectID omfi:effect:VideoFadeToBlack

EffectName Video Fade to Black

EffectDescription Combines a video stream with black by using a simple linear equation

Bypass -1

IsTimeWarp False

Result Data Kind omfi:data:PictureWithMatte

Control Arguments

Notes
1. This effect must map control time 0 to the start of the first frame,

and control time 1 to the start of the last frame.

ArgID Data Kind Description

-1 omfi:data:PictureWithMatte Input video Segment A.

1 omfi:data:Rational Level, equals mix ratio of Black/A. For each pixel in the
result, the output pixel value P is computed by combining
the input pixel A and black pixel Black with the formula:
P = (Level*Black) + ((1-Level)*A)
This control is optional. If Reverse is FALSE, the default for
segment effects is a VVAL with two control points: Value 0 at
time 0, and value 1 at time 1. If Reverse is TRUE, the default
for segment effects is a VVAL with two control points: Value
1 at time 0, and value 0 at time 1.

2 omfi:data:Boolean Reverse (fade from black). If FALSE, then start with the input
video, finish with black. If TRUE, start with black, end with
the input video. This control must be constant (CVAL). This
control is optional. The default is FALSE.

248 Appendix E: Effects Dictionary 9/18/97

Video Pull-Down Frame Mask Effect

Maps an input video Segment to an output video Segment according to a cy-
clical pattern.

Pulldown objects should be used to describe film to video and video to film
conversions. Existing applications will continue to use the Video Frame Mask
effect to describe pulldown, but future releases should use the Pulldown object.

Effect Definition
EffectID omfi:effect:VideoFrameMask

EffectName Video Frame Mask

EffectDescription Changes a Segment of video by duplicating or subtracting frames according
to the repeating bits in a control mask.

Bypass None, use Filler

IsTimeWarp True

Result Data Kind omfi:data:PictureWithMatte

Control Arguments

ArgID Data Kind Description

-1 omfi:data:PictureWithMatte Input video Segment. This control is required.

1 omfi:data:UInt32 Pull-down mask bits. The bits are processed in order, from
the most-significant bit down toward the least-significant bit
as follows: If at any time all of the remaining bits in the mask
are 0, then processing resets to the first bit in the mask.

This value must be constant (CVAL). This control is required,
and must not equal 0.

2 omfi:data:UInt8 Phase offset. Indicates where (as an offset in bits from the
most-significant bit) to start reading the mask on the first
cycle. Range is 0 to 31.

This value must be constant (CVAL). This control is optional,
the default value is constant 0.

3 omfi:data:Boolean Add/Drop indicator. TRUE means when a 1-bit is reached in
the mask, hold the previous frame. FALSE means when a 1-
bit is reached in the mask, skip to the next frame. In both
cases, a 0-bit indicates that the input frame should be cop-
ied to the output segment.
This value must be constant (CVAL). This control is required.

9/18/97 Appendix E: Effects Dictionary 249

Notes
1. Control 2 (Add/Drop) is the general indicator of the ratio. If the

value is TRUE, the output will have more edit units than the input.
If the value is FALSE, the output will have fewer edit units than the
input.

2. This is a single-video-input effect, and is not legal as a transition effect.

3. In Version 2.1 this effect has been replaced by the Pulldown object.

250 Appendix E: Effects Dictionary 9/18/97

Video Repeat Effect

Repeats a segment of video for a given amount of time.

Effect Definition
EffectID omfi:effect:VideoRepeat

EffectName Video Repeat

EffectDescription Loops a segment of video as long as needed to fill the output duration.

Bypass None, use Filler

IsTimeWarp True

Result Data Kind omfi:data:PictureWithMatte

Control Arguments

Notes
This is a single-video-input effect, and is not legal as a transition effect.

ArgID Data Kind Description

-1 omfi:data:PictureWithMatte Input video segment. This control is required.

1 omfi:data:UInt32 Phase Offset. Indicates where (as an offset) to start reading
the input segment on the first loop. Range is 0 to the length
of the input segment.

This control must be constant (CVAL). This control is
optional, the default value is constant 0.

9/18/97 Appendix E: Effects Dictionary 251

Video Speed Control Effect

Changes the speed at which the media is to be played by duplicating or elim-
inating edit units by using a constant ratio.

Effect Definition
EffectID omfi:effect:VideoSpeedControl

EffectName Video Speed Control

EffectDescription Changes a Segment of video by duplicating or subtracting frames according to
the repeating bits in a control mask.

Bypass None, use Filler

IsTimeWarp True

Result Data Kind omfi:data:PictureWithMatte

Control Arguments

Notes
This is a single-video-input effect, and is not legal as a Transition effect.

ArgID Data Kind Description

-1 omfi:data:PictureWithMatte Input video segment. This control is required.

1 omfi:data:Rational Edit ratio. Defines the ratio of output length to input length.
Range is -infinity to +infinity. For example, a ratio of 2/1
means that the output is twice as long as the input,
appearing as a slow motion effect. A ratio of 1/2 would
appear as fast motion since the input segment would be
reduced to half its time. A negative value means that the
frames are played in reverse order. A ratio of -1/1 would
appear as backwards but at the normal frame rate. A ratio of
-1/2 would appear as backwards and fast motion.

This value must be constant (CVAL). This control is required.

2 omfi:data:UInt32 Phase Offset. Specifies that the first edit unit of the output is
actually offset from the theoretical output. For example, if
an input ABCD gets converted with a 2/1 ratio to
AABBCCDD, a phase offset of 1 would make the output
ABBCCDD.

This control must be constant (CVAL). This control is
optional, the default value is constant 0.

252 Appendix E: Effects Dictionary 9/18/97

9/19/97 Appendix F: Class Hierarchy Version 2.1 Beta Test Draft 253

Appendix F

Class Hierarchy
OOBJ

CPNT CTLP DDEF EDEF ESLT HEAD LOCRIDNT MDAT MDES MOBJ MSLT TRKD

SEGM TRAN

ERAT EFFE FILL MGRP NEST SREFCVAL ECCP SLCT JPEG

DOSL MACL NETL UNXL AIFC IDAT

SCLP TCCP VVAL

TIFF WAVE MDFL

AIFD DIDD TIFDSEQU

CDCI RGBA

CMOB MMOB SMOBMDTP

WAVD

MDFM

WXYZ

ABCD

Legend

WXYZ is a subclass
of ABCD

ABCD is an abstract
class

ABCD

WINL

ATTRATTB CLSD

TXTL

PDWN

Class ID Class Name

ATTB Attribute
ATTR Attribute Array
AIFC AIFC Audio Data
AIFD AIFC Audio Descriptor
CDCI Color Difference Component Image Descriptor
CLSD Class Dictionary
CMOB Composition Mob
CPNT Component (abstract)
CTLP Control Point
CVAL Constant Value
DDEF Data Definition
DIDD Digital Image Descriptor (abstract)
DOSL DOS Locator
ECCP Edge Code

Class ID Class Name

EDEF Effect Definition
EFFE Effect Invocation
ERAT Edit Rate Converter
ESLT Effect Slot
FILL Filler
HEAD Header
IDNT Identification
IDAT Image Data
JPEG JPEG Image Data
LOCR Locator (abstract)
MACL MAC Locator
MDAT Media Data (abstract)
MDES Media Descriptor (abstract)
MDFL Media File Descriptor (abstract)

Class ID Class Name

MDFM Media Film Descriptor
MDTP Media Tape Descriptor
MGRP Media Group
MMOB Master Mob
MOBJ Mob (abstract)
MSLT Mob Slot
NEST Nested Scope
NETL Network Locator
OOBJ OMFI Object (abstract)
PDWN Pulldown
RGBA RBGA Component Image Descriptor
SCLP Source Clip
SEGM Segment (abstract)
SEQU Sequence

Class ID Class Name

SLCT Selector
SMOB Source Mob
SREF Scope Reference
TCCP Timecode
TIFD TIFF Image Descriptor
TIFF TIFF Image Data
TRAN Transition
TRKD Track Description
TXTL Text Locator
UNXL UNIX Locator
VVAL Varying Value
WAVD WAVE Audio Descriptor
WAVE WAVE Audio Data
WINL Windows Locator

254 Appendix F: Class Hierarchy 9/12/97

9/18/97 OMF Interchange Specification Version 2.1 255

Glossary
abstract class An abstract class provides a way to refer to a group of classes. An object belong-

ing to an abstract class must also belong to a nonabstract class that is a subclass
of the abstract class.

AIFC The version of the Audio Interchange File Format (AIFF) for both compressed
and uncompressed audio data in big endian byte order. OMF Interchange in-
cludes AIFC as a common interchange format for uncompressed audio data.

Bento A general container format and software API developed by Apple Computer,
Inc. OMF Interchange uses Bento as a storage and access system for the infor-
mation in an OMF Interchange file.

class A class is a category of objects. The objects have common properties, relation-
ships, and semantics. OMF objects do not have behavior because methods
(code to perform actions on objects) are not stored in the object. Applications
using OMF objects must supply the behavior based on the OMF Interface
Specification.

class dictionary A property in an OMF Interchange file header for extending the class hierar-
chy. Applications can add a private class dictionary object that extends the
common hierarchy of classes and subclasses.

class hierarchy The hierarchical list of object classes and subclasses in OMF Interchange that
determines the inherited properties of each class.

Component An abstract class of objects in the OMF Interchange class hierarchy represent-
ing the basic time-varying building block of a composition.

composition An OMF Interchange data structure that logically represents the organization
of all of the components in a time-based media presentation. It contains all the
information necessary for playing or editing a media presentation. A compo-
sition does not contain digital media data. Instead, it includes references to
physical sources, including both sources of digital data and the original sourc-
es.

Composition Mob A mob that describes a composition.

data model The data model is the high-level description that specifies the logical and se-
mantic meaning. In contrast, the implementation is the lower-level description
of a class that specifies the storage details.

digital media data Digital data stored in a file. It can be either data that was digitized, such as vid-
eo frame data and audio samples, or data created in digital form, such as title
graphics or animation frames. It can be stored in either a Media Data object or a
raw data file.

256 Glossary 9/18/97

dissolve A transition video effect in which the pixel-by-pixel display of one segment is
gradually interspersed with and then replaced by the display of another seg-
ment.

DVE Digital video effect.

EDL See edit decision list.

edge code Also called edge number and key number. An alphanumeric identifier that a
film manufacturer places along the edge of film at regular intervals to identify
the frames. One edge number identifies a series of frames. See also frame offset.

edit decision list (EDL) A list of edits made during offline editing and used to direct the online editing
of the master.

edit rate In compositions, a measure of the number of editable units per second in a
piece of media data. See also edit unit; compare with sample rate.

edit unit (EU) A unit of duration representing the smallest interval of time that is recognized
by a composition. A compositionÕs content determines the edit unit. For exam-
ple, a composition describing an NTSC presentation would represent both
video data and audio data in units corresponding to the length of a video
frame display rate of 29.97 frames per second.

effects Composition information for combining media tracks and altering the play-
back of media tracks, such as wipes, dissolves, or volume control data. A com-
position can include transition effects and track effects.

file header An object in each OMF Interchange file containing file-wide information. It can
have properties that provide efficient access to all the mobs in the file and to
all the top-level objects in the file.

file Source Mob A mob for digital media data. A file Source Mob can appear in an OMF Inter-
change file along with the sample data it identifies. If the file Source Mob and
sample data are in an external file, any file containing a composition that uses
the data must include a copy of the file Source Mob. Applications cannot up-
date or change the data associated with file Source Mobs; they must create a
new file Source Mob when the information changes.

Filler A component in a composition that represents an empty portion of a track.

fps Frames per second; a measure of the video display rate.

frame offset A way of indicating a particular frame within the group of frames identified
by the edge number on a piece of film. For example, a frame offset of +12 indi-
cates the twelfth frame from the frame marked by the edge code.

freeze frame A name sometimes used for a video effect that appears to stop the action. Com-
positions can create this effect using a track repeat object, which can specify the
display of a single frame for a period of time.

HAS The HAS relationship is between an object and a property value. A value can be
simple, such as a number or a string, or can be another object. If the value is
another object, then that object is owned by the object that HAS it. In the data
model diagrams, the HAS relationship is indicated by a solid line from a prop-
erty to an object. The HAS relationship is also called CONTAINS or OWNS.

HAS-REFERENCE The HAS-REFERENCE relationship is between an object and a property value
that is another object. An object does not own the other object that it has a ref-
erence to, and more than one object can have a reference to a single object. In
the data model diagrams, the HAS-REFERENCE relationship is indicated by a

9/18/97 OMF Interchange Specification Version 2.1 257

dashed line from a property to an object. The HAS-REFERENCE relationship is
also called DEPENDS-ON or USES.

implementation The implementation is the lower-level description of a class that specifies the
storage details. In contrast, the data model is the high-level description of a class
that specifies meaning.

inheritance Inheritance is the mechanism that defines a relationship between classes where
a subclass inherits the properties, relationships, and semantics of its superclass.

is-an-instance-of The is-an-instance-of relationship is a relationship between an object and a
class. An object Is-an-instance-of a class if the object is in the set defined by the
class.

is-a-kind-of The is-a-kind-of relationship is a relationship between two classes. If a class has
the properties, relationships, and semantics of a second class, then the first
class is-a-kind-of the second class. The first class is called the subclass and the
second class is the superclass.

JFIF JPEG File Interchange Format, a compressed image file format.

JPEG Joint Photographic Experts Group.

layered media A method of creating an effect by combining two Segments of media in a spec-
ified way. For example an application can use this method to superimpose a
chroma key video Segment over another video Segment.

Locator An object that contains information an application or its user could use to help
locate and identify a source of media data.

media The video, audio, graphics, computed effects that combine to form a presenta-
tion.

media data Data from a media source. It can be analog data, such as film frames, tape au-
dio, or videotape video and audio. It can be digital data; either data that was
digitized, such as video frame data and audio samples, or data created in dig-
ital form, such as title graphics or animation frames. See also digital media data.

Media Data object An OMFI object that contains digital media data.

Media Descriptor The element in Source Mob that describes the data from the source. For exam-
ple, a Media Descriptor for video data describes the format of the data and the
compression type. A Media Descriptor for digital data in a file can have loca-
tion hints.

media source See physical source.

media sample data See sample data.

media data index An property in the file header; it is an index to the objects in the file that con-
tain digital media data.

Mob A primary OMF Interchange data structure that includes a unique ID and can
identify a composition or a physical source of media data. The use of mobs
makes it possible to create compositions separately from the digital media data
and to store source information applications can use to recreate media. Com-
position mobs store persistent references to their physical source mobs. A dig-
ital file mob can store a reference to the videotape mob describing its original
analog source.

mob ID The unique ID associated with an OMF Interchange file Mob, having OMF In-
terchange data type omfi:UID.

258 Glossary 9/18/97

motion effect An effect that speeds up or slows down the presentation of media in a track.

NAB National Association of Broadcasters.

NTSC National Television Standards Committee, which established the color TV
transmission system used in the U.S.

NTSC video The color video standard established by the National Television Standards
Committee. This standard calls for 525 lines of information, scanned at a rate
of approximately 29.97 frames per second.

object An object is a member of a class. It has a collection of properties, each of which
has a name and a value. An object is-an-instance-of of a class.

object reference The file-specific, unique, persistent ID value an application uses to access an
object in an OMF Interchange file. During processing, an application can con-
vert an object reference into a pointer to the object, such as a Source Clip.

ordered set An ordered set is an ordered collection of unique values. This is sometimes
used in class definitions to store multivalued properties when ordering is im-
portant.

origin A reference point for measuring sections of digitized sample data. A file mob
value for the start position in the media is expressed in relation to the origin.
Although the same sample data can be redigitized and more sample data
might be added, the origin remains the same so that composition source clips
that reference it remain valid.

PAL Phase Alternating Line, a color TV standard used in many countries. PAL calls
for 625 lines, scanned at a rate of 25 frames per second.

physical Source Mob A mob that represents a physical source, such as a videotape or an audio tape.

physical source The physical source of digital media data. A physical source can be an analog
source from which media data is digitized, such as a videotape, an audio tape,
or a film reel. It can also be a source that is digital in its original form, such as
animation frames or a graphics file.

property Identifies an objectÕs value and the data type of the value. Objects have their
own set of required or optional properties. Many objects have properties that
are inherited from a another class that is higher up in the class hierarchy.

raw media file A file containing digital media data that does not contain any OMFI objects.

repeat effect A type of effect for repeating a frame, so that it appears to ÒfreezeÓ or stop the
frame, or for repeating a series of frames, such as a series of animation frames.

rendered media A computed effect stored in a file and referenced by a composition. Applica-
tions can render effects that they cannot create in during playback.

RGB RGB pixel arrays, a widely used file format for representing the primary colors
red, green, and blue image data for digital use.

RIFF WAVE See WAVE.

sample data Media data created by digitizing from a physical source. A sample is a unit of
data that the digitizing device can measure. Applications can play digital sam-
ple data from files on disk.

sample rate The frequency of the sample units.

9/18/97 OMF Interchange Specification Version 2.1 259

sample units A unit of measure used in digitizing media data from a physical source, such
as a videotape. Media data contains its own sample rate and the size of each
sample in bytes.

SECAM S�quential Couleur � Memoire, a color TV standard developed in France and
used there and in other countries.

Segment Within a composition, a Segment is specifies time-varying media or other in-
formation. A Segment can be used alone in contrast with a Transition, which
can only be used when surrounded by Segments in a Sequence. A typical Seg-
ment is a Source Clip.

Sequence An ordered list of Segments that are optionally connected by Transitions.

set A set is an unordered collection of unique values. This is sometimes used in
class definitions to store multivalued properties.

SMPTE The Society of Motion Picture and Television Engineers.

SMPTE timecode A frame numbering system developed by SMPTE and used primarily for elec-
tronic editing and timing of video programs. It assigns a number to each frame
of video, telling the number of hours, minutes, seconds, and frames; for exam-
ple, 01:42:13:26.

Source Clip One of the lowest level building blocks of a composition. It identifies the mob
ID of a physical source and describes a section of the source.

subclass A subclass is a class that is defined as having the properties, relationships, and
semantics as another class, which is called its superclass. The subclass can have
additional properties, relationships, and semantics that are not in the super-
class.

substitutability The rule of substitutability specifies that an object can be used in place of an ob-
ject of any class that is a superclass of its class.

superclass A superclass is a class that has another class, its subclass, that is defined as hav-
ing the properties, relationships, and semantics as the superclass.

TIFF A tag-based file format for storing and interchanging raster images developed
by Aldus Corporation. The OMF Interchange standard includes TIFF as a com-
mon format for graphic interchange, and it includes TIFF with extensions as a
common format for video frame data.

time code Usually SMPTE timecode, but media data can have any time code associated
with it. During editing, applications can display many types of time code, such
as the time code of a physical source you are editing or the time code for the
point at which an editor is inserting a new segment.

time warp effect A class of effects, where the duration of the input media segments does not
equal the duration of the effect. See also, motion effect, capture mask effect, and
repeat track effect.

track A externally referencable channel in a composition, such as a video track or au-
dio track.

Transition A Transition represents what is to take place as one segment ends and the next
one begins. The simplest transition is a cut, which, in video, is when the first
frame of the starting segment directly follows the last frame of the segment
that is ending.

UID See mob ID.

260 Glossary 9/18/97

value The actual data associated with a particular property in an OMF Interchange
object.

videotape Oxide-coated, plastic-based magnetic tape used for recording video and audio
signals.

VTR Videotape recorder.

WAVE RIFF Waveform Audio File Format. A widely used format for audio data using
little endian byte order. OMF Interchange includes it as a common interchange
format for audio data.

wipe A transition in which a margin or border moves across the screen, wiping out
the image of one segment and replacing it with the image of the next one.

9/18/97 OMF Interchange Specification Version 2.1 261

Index
A

abstract class 29
AIFC Audio Data class 112
AIFC Audio Descriptor class 113
AIFC class 112

class hierarchy position 33, 253
AIFC descriptor 24
AIFC format 14
AIFD class 113

class hierarchy position 33, 253
applications

using OMFI 7
application-specific data 3
ATTB class 114
ATTR class 116
Attribute Array class 116
Attribute class 114
attributes 176
audio

AIFF or AIFC data 108, 112, 113
tracks for channels 18

audio data
required interchange formats 14

audio fade 90
audio fades, default 127

B

Bento 227
Boolean data kind 39
Boolean type 37

C

CDCI class 119
class hierarchy position 33, 253

chains of mobs 46
Char data kind 39
Char data type type 37
class

abstract 29
definition 28

class dictionary
property 49, 154

Class Dictionary Entry class 117
class hierarchy 32

property for extending 49, 154
class model 27

benefits 27
terminology 28

ClassID type 37
CLSD class 117

class hierarchy position 33, 253
CMOB class 126

class hierarchy position 33, 253
Color data kind 39
Color Difference Component Image Descriptor

class 119
ColorSitingType type 37
ColorSpace data kind 39
COMM property 108, 112
CompCodeArray type 37
Component class 124
composition

building blocks 17
definition 5
overview example 22
time managment 26

Composition Mob class 63, 126
composition mobs 43, 63

262 Index 9/18/97

compositions 1
compression 230
CompSizeArray type 37
constant interpolation 83
Constant Value class 128
Constant Values in effects 75
control arguments

varying 81
control arguments in effects 75
Control Point class 130
control points

extrapolation 83
Control Points in effects 81
controls

time-varying in effects 76
converting edit rates 90
converting edit rates to sample rates 93
CPNT class 124

class hierarchy position 33, 253
CTLP class 130

class hierarchy position 33, 253
cut 22
CutPoint in transitions 73
CVAL class 128

class hierarchy position 33, 253

D

data
digital media 47

Data Definition class 132
data file

raw 47
data kind 37, 39
data model 29
data type 37

identification 37
DataValue type 37
DDEF class 132

class hierarchy position 33, 253
defaults 49
definition objects 50
DIDD class 133

class hierarchy position 33, 253
digital data

external 25
internal 25
raw 25

Digital Image Descriptor class 133
digital media data 47

in AIFF format 108, 112, 113
DirectionCode data kind 39
Distance data kind 39
DOS Locator class 138
DOSL class 138

class hierarchy position 33, 253

E

ECCP class 139
class hierarchy position 33, 253

EDEF class 143
class hierarchy position 33, 253

edge code 21
Edge Code class 139
Edgecode data kind 40
EdgeType type 37
edit rate 26

relation to sample rate 93
edit rate converter 90
Edit Rate Converter class 141
EditHintType type 37
editing hints for control points 85
editing information 63
EFFE class 145

class hierarchy position 33, 253
Effect Definition class 143
Effect Invocation

used as segment 21
Effect Invocation class 145
Effect Invocation> class 74
Effect Slot class 149
effects 74

in transitions 78
layered 22
rendered 80
unrecognized 81

ERAT class 141
class hierarchy position 33, 253

ESLT class 149
class hierarchy position 33, 253

EU, see edit unit 26
extensibility of OMF Interchange 3
external file references

overview 3
extrapolation of control points 83

9/18/97 Index 263

F

fade in
audio 90

fade out
audio 90

fades, default audio 127
FadeType type 37
file

byte order 49, 153
index of digital data objects 50, 154
raw data 47
requirements for interchange 51
timestamp 49, 153
version number property 50, 155

file header 49, 152
file Source Mob 44, 47
FILL class 151

class hierarchy position 33, 253
Filler 21
Filler class 151
Film to video conversion 97
FilmType type 37
format description 27, 43, 63

G

graphic
required interchange format 12

H

HAS relationship 29
HAS-REFERENCE relationship 29
HEAD class 152

class hierarchy position 33, 253
Header class 152
Header object 49
hints

editing of control points 85

I

IDAT class 158
class hierarchy position 33, 253

Identification class 156
Identification List 50, 155
IDNT class 156
image

required interchange format 12
Image Data class 158
implementation 29
incremental update 3
index of mobs 50
inheritance

definition 28
Int16 type 38
Int32 data kind 40
Int32 type 38
Int32Array type 38
Integer type 38
Intel byte order 216, 217
InterpKind type 37
interpolation methods 83
is-a-kind-of 28
is-an-instance-of 28

J

JPECProc 230
JPEG class 159

class hierarchy position 33, 253
JPEG Image Data class 159
JPEG table code 204
JPEGInterchangeFormat 230
JPEGInterchangeFormatLength 230
JPEGRestartInterval 230
JPEGTableIDType type 38

K

kind
data 37

L

layered effects 22
layering media with scope references 86
LayoutType type 38
leading lines in video data 204
Length32 type 38

264 Index 9/18/97

linear interpolation 83
live data 20
Locator class 160
LOCR class 160

class hierarchy position 33, 253

M

Mac Locator class 161
MACL class 161

class hierarchy position 33, 253
Master Mob class 162
master mobs 43
Matte data kind 40
MDAT class 164

class hierarchy position 33, 253
MDES class 165

class hierarchy position 33, 253
MDFL class 167

class hierarchy position 33, 253
MDFM class 169

class hierarchy position 33, 253
MDTP class 173

class hierarchy position 33, 253
Media data

definition 6
media data

coexisting representations of 12
concepts and terms 17
digital 47
levels of support 10
sample rate 26

Media Data class 164
Media Data object 47
Media Descriptor class 165
media descriptors

purpose 24
Media File Descriptor class 167
Media Film Descriptor class 169
Media Group class 171
media object

definition 7
media object, see mob
Media Tape Descriptor class 173
MGRP class 171

class hierarchy position 33, 253
MMOB class 162

class hierarchy position 33, 253
mob

mob ID 7

requirements for interchange 51
mob chains 46
Mob class 175
mob index 50
mob references 46
mob slot

definition 18
Mob Slot class 177
mob slots

in source mobs 92
Mob Slots and tracks 64
Mob Slots in composition mobs 63
MobID format 52
MobID match between mob and digital data 52
MOBJ class 175

class hierarchy position 33, 253
mobs 43

composition 43, 63
file source 44
finding digita data 52
immutable source 45
index in header 50
kinds of 43
master 43
physical source 44
primary 50
references to 46
revising 45
source 44

Motorola byte order 112, 113
MSLT class 177

class hierarchy position 33, 253

N

NEST class 179
class hierarchy position 33, 253

nested scope 85
Nested Scope class 179
NETL class 181
Network Locator class 181
NTSC pulldown 98

O

object
definition 28

object-oriented systems

9/18/97 Index 265

introduction 28
objects

defintion 50
ObjRef type 38
ObjRefArray type 38
OMF Interchange

history 3
version 3, 50, 155

OMF Participation Form 269
OMFI

classes of application using 7
concepts and terms 17
levels of media data support 10
media data formats 26

OMFI Object class 182
OOBJ class 182

class hierarchy position 33, 253
Open Media Framework Interchange Format, see

OMF Interchange
ordered set 29
origin

source 93
overlap of media with transitions 70
overlapping transitions

restrictions on 74

P

Participation Form 269
PDWN class 183
physical source mobs 44
Picture data kind 40
PictureWithMatte data kind 40
PlanarConfiguration 230
platforms 1
Point data kind 40
Polynomial data kind 40
portability 1
Position32 type 38
primary mobs index 50
Pulldown class 183
Pulldown objects 97

Q

quantization adjustments in effects 84

R

rate converter 90
rates

edit and sample 93
Rational data kind 40
Rational type 38
raw data file 47
RBGA class 186
references

scope 85
references to mobs 46
rendered effects 80
required interchange formats

list of 12
RGBA class

class hierarchy position 33, 253
RGBA Component Image Descriptor class 186
RIFF WAVE format 14
RowsPerStrip 230

S

sample rate 26
relation to edit rate 93

SCLP class 197
class hierarchy position 33, 253

scope 85
nested 85

Scope Reference class 190
scope references 85
SEGM class 192

class hierarchy position 33, 253
Segment

description 19
Segment class 192
Segments in mob slots 65
Selector class 193
Selectors

using 89
SEQU class 195

class hierarchy position 33, 253
Sequence class 195
Sequencein mob slots 65
sequences

calculating the duration of 70
set 29
sharing media with scope references 86
SLCT class 193

266 Index 9/18/97

class hierarchy position 33, 253
SMOB class 200

class hierarchy position 33, 253
Sound data kind 40
source

origin 93
Source Clip class 197
Source Clip referencing mobs 46
Source Clipin composition mobs 69
Source Clipin mob slots 65
Source Mob class 200
source mobs 44

finding digital data 52
immutability of 45
physical 44

source origin 93
sources 1
specializing information 2, 32
SREF class 190

class hierarchy position 33, 253
SSND property 108, 112
StereoSound data kind 40
String data kind 40
String type 38
subclass

definition 28
subsampling 230
substitutability 29
superclass

definition 28
synchronization 26

of Mob Slots 19

T

TapeCaseType type 38
TapeFormatType type 38
TCCP class 206

class hierarchy position 33, 253
Text Locator class 202
Three-Two pulldown 98
TIFD class 204

class hierarchy position 33, 253
TIFF

information 227
TIFF class 203

class hierarchy position 33, 253
TIFF descriptor 24
TIFF format

additional IFD fields 228

extensions for video data 108, 205
IFD 204

TIFF Image Data class 203
TIFF Image Descriptor class 204
tiles 230
timecode

definition 20
Timecode class 206
Timecode data kind 40
timecodes

in source mobs 92
timestamp

property 49, 153
TimeStamp type 38
time-varying controls in effects 76
track 92

see also, mob slot
Track Description class 207
Track Descriptionin composition mobs 69
Track Descriptions

in mob slots 64
tracks 64
tracks and mob slots 64
trailing lines in video data 204
TRAN class 209

class hierarchy position 33, 253
Transition class 209
transition effects 78
transitions

restrictions of overlapping 74
treating as cuts 73

Transitions in sequences 70
TRKD class 207

class hierarchy position 33, 253
TXTL class 202

class hierarchy position 33, 253
type

data 37

U

UID type 38
UInt16 type 38
UInt8 data kind 40
UniqueName type 38
UNIX Locator class 211
unrecognized effects 81
UNXL class 211

class hierarchy position 33, 253
user attributes 176

9/18/97 Index 267

V

Varying Value class 212
Varying Value control arguments 81
Varying Values in effects 75
version

property for 50, 155
VersionType type 38
video frame data

compression 230
contiguous bytes 204
in YUV422 format 230
leading lines 204
see also TIFF format
trailing lines 204
uniformity 204

video to film conversion 97
VideoSignalType type 38
VVAL class 212

class hierarchy position 33, 253

W

WAVD class 217
class hierarchy position 33, 253

WAVE Audio Data class 216
WAVE Audio Descriptor class 217
WAVE class 216

class hierarchy position 33, 253
WAVE descriptor 24
Windows Locator class 218
WINL class 218

class hierarchy position 33, 253

Y

YUV422 format 230

268 Index 9/18/97

OMF™ Participation Form
To get involved and become an OMF Interchange Sponsor, Partner, or Champion,

 fill in this form and return it to the OMF DevelopersÕ Desk today.

▲ As a Sponsor of the Open Media Framework we understand the importance of a universal digital media
interchange format. We support the OMF Partners and Champions in their effort and agree to help the
OMF effort by encouraging manufacturers to put OMF Interchange compatibility in their products.

▲ As a Partner we agree to participate in the process of developing and revising the OMF Interchange
specification by providing comments and suggestions. We agree to work with Avid engineers to resolve
technical issues and ideas. We recognize that our comments will be factored into the publicly available
specification.

▲ As a Champion of OMF Interchange, we will act as a partner to help support and evolve OMF Interchange.
We will include OMF Interchange compatibility in our products and applications. If we are accepted as
a Champion, we agree to be listed by Avid as a supplier of OMF compatible products.

As a Sponsor, Partner, or Champion, we understand that it is Avid's intent to publish the OMF Interchange format
descriptions and make them freely available to anyone interested in adopting these proposed standards. We also
understand that Avid will retain copyrights to the OMF Interchange Specification in order to protect the integrity of
OMF and Avid's intellectual property rights.

We understand that Avid will make public the names of all organizations participating in the process of establish-
ing OMF standards. We further understand that as a Sponsor or Partner, this agreement does not obligate our or-
ganization to support OMF Interchange standards in our products. We will have the option to adopt the proposed
OMF standards and support them in our products. We may then apply to become an OMF Champion.

We wish to be an OMF: Sponsor Partner Champion Applicant

We support OMF Interchange as a: Vendor User

Name: Title:

Company: World Wide Web URL:

Address:

Address: Country:

Phone: Fax: Email Address:

Description of products/services:

Signature Date:

Please mail or fax this form to: Avid Technology, Inc. OMF DevelopersÕ Desk
1925 Andover St.
Tewksbury, MA 01876
Phone: (800) 949-OMFI International (978) 640-3400 Fax: (978) 640-0065

Please attach a sheet identifying technical and marketing contacts for your organization.

Sponsor: Digital media users who share the vision of digital media interchange
and are actively encouraging vendors to integrate OMF Interchange.

Partner: Manufacturers actively contributing to the creation and evolution of
OMF Interchange.

Champion: Manufacturers supporting OMF Interchange by offering OMF Inter-
change compatibility in their products. You may request a Champion
application by returning this form.

	Title Page
	Copyright
	Table of Contents
	Preface
	About this Document
	Version Information
	How to Use this Document

	Documentation Conventions
	Data Model

	For More Information

	1: Overview
	Goals of OMF Interchange
	History of OMF Interchange
	Version 2.1 and 2.0 Goals
	Key Media Information
	Compositions
	Sources of Media Data
	Information About Previous Generations of Media
	The Source’s Media Data

	Mobs

	OMF Interchange and Media Applications
	File Structure and Access
	Objects, Properties, and Values
	Access to Objects
	Figure 1: An OMF Interchange file can have any num...

	The File Header
	The Class Hierarchy and Object Properties
	Object Classes

	Data Interchange Considerations

	Digital Media Data Formats
	Required Interchange Formats
	Registered Interchange Formats
	Private Interchange Formats
	The Required Formats
	Table 1: OMF Interchange Required Interchange Form...
	Required Video, Graphic, and Still Image Formats
	TIFF Video Format

	Animation Formats
	Required Audio Formats
	AIFC Format
	WAVE Format

	The Registered Formats

	2: Media Concepts
	Composition Building Blocks
	Composition Mobs and Mob Slots
	Segments
	Source Clips to Represent Media
	Timecode
	Edge Code
	Filler
	Effects as Segments

	Transitions
	A Scope Reference

	An Example Composition Mob

	Source Building Blocks
	Mob Slots in Source Mobs
	Media Descriptors
	Media Descriptors for Digital Media Data

	The Digital Media Data
	File Source Mobs and Media Data Objects
	Creating a File Source Mob
	When the Digital Data Is External
	When the Digital Data Is Internal
	Raw Digital Data in a Non-OMF Interchange External...

	Time Management
	Edit Units and Edit Rate
	Sample Units and the Sample Rate

	3: The OMF Class Model
	Benefits of the OMF Class Model
	Elements of Object-Oriented Systems
	Class Model Terminology
	Example Class Model
	The examples in this section are not part of OMF—t...
	Data Model
	Data Model
	Data Model
	Data Model

	OMF Interchange Class Model
	Class Hierarchy
	Figure 2: OMF Class Hierarchy
	Table 2: Class IDs and Full Class Names

	How Classes Are Defined in OMF
	Data Model and Implementation

	Data Model
	Implementation
	Data Model
	Implementation
	Types
	Data Type
	Table 3: Data Types (Continued)

	Data Kind
	Table 4: Data Kinds (Continued)

	Introduction to OMF Classes
	Mob and Header Classes
	Classes Used in All Mobs
	Classes Used in Composition Mobs
	Classes Used in Master Mobs
	Classes Used in Source Mobs
	Classes for Digital Media Data

	4: Mobs and the Header Object
	Mobs
	Figure 3: OMF Interchange File with Mobs and Digit...
	Figure 4: Structure Within a Composition Mob
	Figure 5: Structure Within a File Mob
	Mobs and Immutable Media Data
	Mob References
	Mob Chain to Sources
	Figure 6: Mob Links from Composition to Physical S...

	File Source Mobs and Media Data
	Figure 7: MobID Connection between File Source Mob...

	The Header Object (HEAD)
	Byte Order
	Modification Date
	Class Dictionary Property
	Mob Index
	Media Data Index
	Definition Objects
	Version Number
	Identification List
	Mob Requirements for File Interchange

	From HEAD to Media—an Overview
	Starting with the Header Object
	Figure 8: Header Object
	MobID Match Between File Mob and Digital Data

	Examining the Composition Mob
	Figure 9: Composition Mob with Property Values

	Through the Master Mob to the File Mob
	Figure 10: Source Clip to Master Mob

	File Mob to Data Object
	Figure 11: Master Mob Source Clip to Source Mob an...

	Following the Links to Original Sources
	Figure 12: Source Clip to Videotape Source Mob
	Figure 13: Source Clip to Film Source Mob

	5: Composition Mobs
	Composition Mob Basics
	Figure 14: Composition Mob
	Mob Slots and Track Descriptions

	Simple Composition Mobs and Sequences
	Figure 15: Composition Mob with Object Properties
	Mob Slot and Component Properties
	Figure 16: Composition Mob Showing Video Mob Slot
	Figure 17: Sequence with Object Structure and Time...

	Sequences with Transitions
	Figure 18: Sequence with Transition
	Table 5: Inserting a Transition and Preserving Ove...
	Cuts and the Transition Cut Point
	Treating Transitions As Cuts
	Restriction on Overlapping Transitions

	Effect Invocations
	Figure 19: Examples of Effects
	Example Effect Invocation in a Sequence
	Figure 20: Video Dissolve Effect in Sequence
	Table 6: ArgID Values for Video Dissolve

	Example Effect Invocation in a Transition
	Figure 21: Video Dissolve Effect in Transition
	Table 7: Typical Value for Effect Slots in Transit...

	Rendered Effects
	Dealing with Unrecognized Effects
	Varying Value Control Arguments
	Figure 22: Picture-in-Picture Effect in Sequence
	Control Points
	Interpolating Control Points
	Extrapolation of Control Values
	Sequence of Varying Value Objects
	Quantization Adjustments
	Control Point Editing Hints
	Table 8: Editing Hints

	Scope and References
	Why Use Scope References
	How to Specify Scope References
	Figure 23: Relative Scope and Slot

	Mob Scope and Nested Scope

	Other Composition Mob Features
	Preserving Editing Choices–Selectors
	Using Audio Fade In and Fade Out
	Converting Edit Rates

	6: Describing Media
	Describing Media with Mob Slots
	Timecode and Segment Length
	Sample Rate and Edit Rate
	The Source Origin
	Converting Edit Units to Sample Units

	Describing Media with Master Mobs
	Describing Timecode with Source Mobs
	Figure 24: Describing Timecode in Source Mobs

	Describing Media with Pulldown Objects
	What is Pulldown?
	NTSC Three-Two Pulldown
	Figure 25: Telecine Three-Two Pulldown
	Figure 26: White Flag in Three-Two Pulldown
	Figure 27: Reverse Three-Two Pulldown

	Other Forms of Pulldown

	Pulldown Objects in Source Mobs
	Figure 28: Describing Pulldown in Source Mobs
	Figure 29: Describing Discontinuous Timecode in Vi...

	Describing Media with Media Descriptors
	Describing Image Media
	Properties Describing Interleaving
	Properties Describing Geometry
	Figure 30: Stored, Sampled, and Displayed View

	Properties Describing Sampling
	Properties Describing Alpha Transparency
	Properties Describing Compression
	RGBA Component Image (RGBA) Descriptors
	Color Difference Component (CDCI) Image Descriptor...

	Describing Audio Media
	Describing TIFF Image Media
	Describing Tape and Film

	A: OMF Object Classes
	AIFC Audio Data Class (AIFC)
	Data Model
	Implementation
	Description
	Related Classes

	AIFC Audio Descriptor Class (AIFD)
	Data Model
	Implementation
	Description
	Related Classes

	Attribute Class (ATTB)
	Data Model
	Implementation
	Description
	Related Classes

	Attribute Array Class (ATTR)
	Data Model
	Implementation
	Description
	Related Classes

	Class Dictionary Entry Class (CLSD)
	Data Model
	Implementation
	Description
	Related Classes

	Color Difference Component Image Descriptor Class ...
	Data Model
	Implementation
	Description
	Related Classes

	Component Class (CPNT)
	Data Model
	Implementation
	Description
	Related Classes

	Composition Mob Class (CMOB)
	Data Model
	Implementation
	Description
	Mob Slots and Track Descriptions
	Default Audio Fade Properties

	Related Classes

	Constant Value Class (CVAL)
	Data Model
	Implementation
	Rule
	Description
	Related Classes

	Control Point Class (CTLP)
	Data Model
	Implementation
	Rule
	Description
	Related Classes

	Data Definition Class (DDEF)
	Data Model
	Implementation
	Description
	Related Classes

	Digital Image Descriptor Class (DIDD)
	Data Model
	Implementation
	Rules
	Description
	Compression
	Geometry
	Alpha Transparency

	Related Classes

	DOS Locator Class (DOSL)
	Data Model
	Implementation
	Description
	Related Classes

	Edgecode Class (ECCP)
	Data Model
	Implementation
	Description
	Related Classes

	Edit Rate Converter Class (ERAT)
	Data Model
	Implementation
	Rule
	Description
	Related Classes

	Effect Definition Class (EDEF)
	Data Model
	Implementation
	Description
	Related Classes

	Effect Invocation Class (EFFE)
	Data Model
	Implementation
	Rules
	Description
	Effect Definition
	Effect Slots
	When an effect specifies time-varying control valu...
	Rendered Effects
	Dealing with Unrecognized Effects

	Related Classes

	Effect Slot Class (ESLT)
	Data Model
	Implementation
	Description
	Related Classes

	Filler Class (FILL)
	Data Model
	Implementation
	Description
	Related Classes

	Header Class (HEAD)
	Data Model
	Implementation
	Rules
	Description
	Byte Order
	Modification Date
	Class Dictionary Property
	Media Data Index
	Definition Objects
	Version Number
	Identification List
	OMFI Tree Structure

	Related Classes

	Identification Class (IDNT)
	Data Model
	Implementation
	Description
	Related Classes

	Image Data Class (IDAT)
	Data Model
	Implementation
	Description
	Related Classes

	JPEG Image Data Class (JPEG)
	Data Model
	Implementation
	Description
	Related Classes

	Locator Class (LOCR)
	Data Model
	Implementation
	Description
	Related Classes

	Mac Locator Class (MACL)
	Data Model
	Implementation
	Description
	Related Classes

	Master Mob Class (MMOB)
	Data Model
	Implementation
	Description
	Related Classes

	Media Data Class (MDAT)
	Data Model
	Implementation
	Description
	Related Classes

	Media Descriptor Class (MDES)
	Data Model
	Implementation
	Description
	Related Classes

	Media File Descriptor Class (MDFL)
	Data Model
	Implementation
	Description
	Related Classes

	Media Film Descriptor Class (MDFM)
	Data Model
	Implementation
	Related Classes

	Media Group Class (MGRP)
	Data Model
	Implementation
	Rules
	Description
	Related Classes

	Media Tape Descriptor Class (MDTP)
	Data Model
	Implementation
	Related Classes

	Mob Class (MOBJ)
	Data Model
	Implementation
	Description
	Mob Slots and Scope
	User Information

	Related Classes

	Mob Slot Class (MSLT)
	Data Model
	Implementation
	Description
	Related Classes

	Nested Scope Class (NEST)
	Data Model
	Implementation
	Rules
	Description
	Scopes and Scope References

	Related Classes

	Network Locator Class (NETL)
	Data Model
	Implementation
	Description
	Related Classes

	OMFI Object Class (OOBJ)
	Data Model
	Implementation
	Description
	Related Classes

	Pulldown Class (PDWN)
	Data Model
	Implementation
	Description
	Related Classes

	RGBA Component Image Descriptor Class (RGBA)
	Data Model
	Implementation
	Description
	Related Classes

	Scope Reference Class (SREF)
	Data Model
	Implementation
	Rules
	Description
	Scopes and Scope References
	Specifying Relative Scope and Relative Slot

	Related Classes

	Segment Class (SEGM)
	Data Model
	Implementation
	Description
	Related Classes

	Selector Class (SLCT)
	Data Model
	Implementation
	Rules
	Description
	Related Classes

	Sequence Class (SEQU)
	Data Model
	Implementation
	Rules
	Description
	Related Classes

	Source Clip Class (SCLP)
	Data Model
	Implementation
	Rules
	Description
	Mob References and Chains

	Related Classes

	Source Mob Class (SMOB)
	Data Model
	Implementation
	Description
	Source Media Is Immutable

	Related Classes

	Text Locator Class (TXTL)
	Data Model
	Implementation
	Description
	Related Classes

	TIFF Image Data Class (TIFF)
	Data Model
	Implementation
	Description
	Related Classes

	TIFF Image Descriptor Class (TIFD)
	Data Model
	Implementation
	Description
	Related Classes

	Timecode Class (TCCP)
	Data Model
	Implementation
	Description
	Related Classes

	Track Description Class (TRKD)
	Data Model
	Implementation
	Description
	Related Classes

	Transition Class (TRAN)
	Data Model
	Implementation
	Description
	Transition and Effect Control Arguments
	Cut Point

	Related Classes

	UNIX Locator Class (UNXL)
	Data Model
	Implementation
	Description
	Related Classes

	Varying Value Class (VVAL)
	Data Model
	Implementation
	Rules
	Description
	Control Points
	Interpolation of Control Values
	Extrapolation of Control Values
	Sequence of Varying Value Objects
	Quantization Adjustments

	Related Classes

	WAVE Audio Data Class (WAVE)
	Data Model
	Implementation
	Description
	Related Classes

	WAVE Audio Descriptor Class (WAVD)
	Data Model
	Implementation
	Description
	Related Classes

	Windows Locator Class (WINL)
	Data Model
	Implementation
	Description
	Related Classes

	B: Data Types
	Table 9: Data Types (Continued)
	Table 10: Data Kinds (Continued)
	Table 11: Data Kind Conversions (Continued)

	C: References and Media Formats
	References
	Bento®
	TIFF
	WAVE Audio File Format
	Other References

	Media Formats
	TIFF File Format
	Additional IFD Fields

	D: Changes in Version 2.1
	List of Changes
	File Version Number
	What’s New?
	What’s Removed?

	Changes in Version 2.0
	Interchanging Effects
	Enhancing Media Support
	New Image Format
	Better Support for Media

	Making It Easier to Add OMF Support
	List of Changes
	What’s New?
	Changed Properties
	What’s Removed?

	E: Effects Dictionary
	Mono Audio Dissolve Effect
	Effect Definition
	Control Arguments
	Notes

	Mono Audio Gain Effect
	Effect Definition
	Control Arguments
	Notes

	Mono Audio Mixdown Effect
	Effect Definition
	Control Arguments
	Notes

	Mono Audio Pan Effect
	Effect Definition
	Control Arguments
	Notes

	SMPTE Video Wipe Effect
	Effect Definition
	Control Arguments
	Notes

	Video Dissolve Effect
	Effect Definition
	Control Arguments
	Notes

	Video Fade To Black Effect
	Effect Definition
	Control Arguments
	Notes

	Video Pull-Down Frame Mask Effect
	Effect Definition
	Control Arguments
	Notes

	Video Repeat Effect
	Effect Definition
	Control Arguments
	Notes

	Video Speed Control Effect
	Effect Definition
	Control Arguments
	Notes

	F: Class Hierarchy
	Glossary
	Index

