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Limiting behavior of global attractors

for singularly perturbed beam equations

with strong damping

Daniel �Sev�covi�c

Abstract. The limiting behavior of global attractors A" for singularly perturbed beam
equations
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is investigated. It is shown that for any neighborhood U of A0 the set A" is included in U
for " small.
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1. Introduction.

Consider the following problems

(1:1)"

8><
>:

"2 @
2u
@t2

+ "� @u@t +A@u
@t + �Au+ g(kuk21=4)A1=2u = 0

u(0) = u0
@u
@t (0) = v0

and

(1:1)0

(
@u
@t + �u+ g(kuk21=4)A�1=2u = 0

u(0) = u0

where g is an increased C1 function, " > 0 is a small parameter, � < 0 and � is
a real unrestricted on the sign. Here A is a sectorial operator in L2(0; l) de�ned by
a di�erential operator @4=@x4 and the boundary conditions corresponding either to
hinged ends, when

(1:2)H u(x) = uxx(x) = 0 at x = 0; l

or to clamped ends, when

(1:2)C u(x) = ux(x) = 0 at x = 0; l:
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Let fS(t); t � 0g be a semidynamical system in a Banach space X (for de�nition,
see, for example, [H, Chapter 4]). A set J � X is called invariant if S(t)J = J
for all t � 0. An invariant set U � X is called a global compact attractor for the
semidynamical system S(t) if it is a compact set in X and limt!1 dist (S(t)B;U)
= 0 for any bounded set B � X , where

dist (A;B) = sup
x2A

inf
y2B

kx� yk:

It is shown (Theorem 3.1) that, for small ", there is a compact global attractor
A" � W 2;2(0; l) � L2(0; l) for a semidynamical system generated by (1:1)". For
" = 0, the problem (1:1)0 also has a compact attractor which can be naturally
embedded into compact set A0 �W 2;2 �L2(0; l).

Let us note that under the assumptions g � 0 and � � 0, the dynamics of
(1:1)"; " � 0, is simple|every trajectory approaches a zero equilibrium state (see
Remark 3.2). On the other hand, if g(0) < 0 is su�ciently small, then the attractor
A"; " � 0, contains 2n� 1 distinct equilibrium states (Remark 3.1) for some n 2 N.
In this case the attractor A" is a union of unstable manifolds for equilibrium states
(see, for example, [BV, Theorem 10.1]).

The purpose of this paper is to obtain some relationships between the attractors
A" and A0 for small ". It is given in terms of upper semicontinuity of A0 at " = 0
with respect to the sets fA"; " > 0g.

In this paper, the following hypotheses are needed:

(H1) g 2 C1(R+ ;R); g0 (r) > 0 for r � 0 and

Z 1

0
g(s) ds > �1

(H2) � > 0; � 2 R:

We can now state our main result.

Theorem 1.1. Suppose that the hypotheses (H1)-(H2) are satis�ed. Then the

attractor A0 is upper semicontinuous at zero with respect to the sets A"; " > 0, i.e.

lim
"�!0+

dist (A";A0) = 0:

In other words, for any neighborhood U of A0, the set A" is included in U for "
small.

As an example for (1:1)" one can consider a problem of a transverse motion, at
a small strain, in the x�y plane, of a viscoelastic beam in a viscous medium whose
resistance is proportional to the velocity. The ends of the beam are �xed at the
points x = 0 and x = l + d, where d is a load (positive or negative) of the beam
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and a stress-free state of the beam occupies the interval [0; l]. Shear deformations
are neglected in this model. Then the equation of the motion in y-direction is

(1.3)
@2u

@t2
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2l%
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Z l

0
u2x dx

!
A1=2u = 0

where E is the Young's modulus, S the cross-sectional area, � the e�ective viscosity,
I the cross-sectional second moment of area, % the mass per unit length and � the
coe�cient of external damping. For details see [F], [B1], [B2] and references therein.

Put " = %
�I > 0. Then the equation (1:1)" follows from (1:3) by a suitably

rescaling the time. The limit " �! 0+ corresponds to the case in which the e�ective
viscosity tends to +1.

In recent years, many authors have studied the attractors for a singularly per-
turbed hyperbolic equation

(1:4)" "2
@2u

@t2
+
@u

@t
��u = f(u):

See, for example, [GT], [ChL] and other references in [HR1] and [HR2]. Hale and
Rougel have shown that the attractors of (1:4)" converge in the Hausdor� topology
towards the one corresponding to " = 0

(1:4)0
@u

@t
��u = f(u):

Clearly, the main di�erence between (1:1)"-(1:1)0 and (1:4)"-(1:4)0 is that (1:4)0
is the quasilinear parabolic equation with an unbounded linear operator ��, while
the problem (1:1)0 is the quasilinear di�erential equation in a Hilbert space with
a bounded operator � � Id.

The paper is organized as follows. De�nitions and notations are recalled in
Section 2. Following the style of Henry's lecture notes [H, Chapter 3, 4], one can
obtain a local and global existence of solutions of (1:1)". Section 3 deals with the
existence and uniform boundedness of attractors A". Section 4 is devoted to the
singular equation (1:1)0. The proof of the existence of A0 is given. In Section 5 we
prove Theorem 1.1.

2. Preliminaries.

Let X = L2(0; l) be a real Hilbert space equipped with its usual scalar product
(�; �) and norm k � k. De�ne A : X �! X ;Au = @4u=@x4 for each u 2 C1B (0; l),
where

C1B (0; l) = f� 2 C1(0; l); � satis�es b.c. Bg;
for B = H or B = C. Let A be the self-adjoint closure in X of its restriction
to C1B (0; l). It is well known that A is a sectorial operator in X (see [H, p. 19]).

Therefore the fractional powers A� can be de�ned. Let X� be a Hilbert space
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consisting of the domain of fractional power A� with the graph norm, i.e. kuk� =

kA�uk for all u 2 X� . Let us note that X� ,! W 4�;2(0; l) for � � 0. We also

have kuk� � �
���
1 kuk� for any 0 � � � � and u 2 X�. Recall that A has

a compact resolvent A�1. Therefore the imbedding X� ,!,! X� is compact,
whenever 0 � � < �.

Let �n; j 2 N, denote the orthonormal basis of X consisting of eigenvectors of
the operators A:

A�n = �n�n; 0 < �1 < �2 < : : : ; �n �! +1 as n �! +1:

Denote by Pm the projector in X onto the space spanned by f�1; : : : ;�mg.
Clearly,

kPmuk� � ����m kPmuk� � ����m kuk� for each u 2 X� and �; � � 0:

Let S(t) be a semidynamical system in a Banach space X .
A set B dissipates a set J if there exists T = T (J) > 0 such that t � T implies

S(t)J � B. A semidynamical system S(t) is called bounded dissipative if there
exists a bounded set B which dissipates all bounded sets.

The omega-limit set is de�ned by


(B) =
\
t�0

cl (
[
s�t

S(s)B) (the closure is taken in X ):

In this paper, the time derivatives will be denoted by

@

@t
(�) = (�)0 :

In order to obtain a local and global existence we rewrite (1:1)" as a �rst order

ordinary di�erential equation in the Hilbert space X = X1=2 �X . This is to do by
letting v = u0. Then we can rewrite (1:1)" as

(2.1)
d

dt
� (t) + L"� (t) +F"(� (t)) = 0; � (0) = �0

where

� (t) = [u(t); v(t)]; L"[u; v] = [�v; "�2A(�u+ v) + "�1�v]

and F"([u; v]) = [0;�"�2g(kuk21=4)A1=2u]:

It is known [M1, Theorem 1.1] that the operator L([u; v]) = [�v;A(�u + v)] is

sectorial in X1=2 �X . Then Theorem 1.3.2 of [H] demonstrates that the operator
L" is sectorial in X . The domain of L" is

D(L") = f[u; v] 2 X1=2 �X1=2; �u+ v 2 D(A)g:
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From now on we restrict "0 by

(H3) �1 � 2 � "0j�j > 0:

Since Re �(A) � �1, then, by looking at the spectrum �(L"), we see that

(2.2) Re �(L") > �

2
for each " 2 (0; "0]:

Since L" is the sectorial operator, then �L" generates an analytic semigroup
exp (�L"). Let ! 2 (0; �=2). Due to the estimate (2.2), it follows that there is
M(") > 0 such that

(2.3) k exp (�L"t)kX �M(") � e�!t for each t � 0:

According to [H, Theorems 3.3.3, 3.3.4, 3.4.1 and 3.5.2], the local existence,
uniqueness, continuous dependence on initial conditions and continuation of solu-
tions od (2.1) immediately follow. More precisely, for each �0 2 X there exists
T = T (�0) > 0 and a unique function � = � (t;�0) such that

� 2 C([0; t1) : X ) \ C1((t0; t1) : X ) for each 0 < t0 < t1 < T;

� (0) = �0;� (t) 2 D(L) for each t 2 (0; T ) and � (t) is the solution of (2.1) on
the interval of existence (0; T ).

If we take the scalar product in X of (1:1)" with u0, we conclude that

(2.4)
1

2

d

dt

n
�kuk21=2 + "2ku0k2 + G(kuk21=4)

o
+ ku0k21=2 + "�ku0k2 = 0

where G is the primitive of g, i.e.

G(r) =
Z r

0
g(s) ds for r � 0:

Thanks to (H1) we infer the existence of C0 > 0 such that

(2.5) g(r) � r �
Z r

0
g(s) ds � �C0 for each r � 0:

From (2.4) we observe that

(2.6)

Z r

0
ku0(s)k21=2 ds+ "2ku0(t)k2 + � � ku(t)k21=2 �

� "2ku0(0)k2 + � � ku(0)k21=2 + G(ku(0)k21=4) + C0

for each t � 0:

Thus the solutions of (1:1)" and (2.1) exist globally on R
+ . Hence the initial

value problem (2.1) generates a semidynamical system fS"(t); t � 0g in X , where
S"(t)� (0) = �"(t;�(0)) for t � 0.

Since there are many estimates in this paper, we will let C0; C1; C2; : : : be generic
positive constants always assumed to be independent of ".
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3. The existence and uniform regularity of global attractors.

Lemma 3.1. The semidynamical system S" is bounded dissipative in X . More

precisely, there exists a constant C1 > 0 such that for any " 2 (0; "] and any

bounded set B � X1=2 �X there is T (";B) > 0 with the property

t � T (";B) implies

"2kvk2 + �kuk21=2 � C1 for each (u; v) 2 S"(t)B:

Proof: De�ne a functional V" : X �! R by

V"(�;	) =
1

2

n
�k�k21=2 + "2k	k2 + G(k�k21=4)

o
+ b"2(�;	)

where b is a positive real satisfying

0 < b < min

(
�;

p
��1
2"0

; (�1 � "0j�j)
�
�1
�

+ "20 +
"20�

2

��1

��1)
:

From (2.4) we obtain

d

dt
V"(u"; u

0

") = �ku0"k21=2 � "�ku0"k2 + b"2ku0"k2 � b � (Au0"; u")�
�b� � (Au"; u")� b"� � (u0"; u")� b � g(ku"k21=4) � ku"k21=4 �

� �ku0"k21=2 � ("� � b"2) � ku0"k2 � b� � ku"k21=2 � b � (A1=2u
0

"; A
1=2u")�

�b"� � (u0"; u") + bC0:

Then we deduce from the Young's inequality

j(�;	)j � (r2k�k2 + r�2k	k2)=2
that

d

dt
V"(u"; u

0

") � �ku0"k21=2 � ("� � b"2) � ku0"k2 � b� � ku"k21=2 + bC0+

+b � (r2ku0"k21=2 + r�2ku"k21=2)=2 + b"j�j � (s2ku0"k2 + s�2ku"k2)=2:

Put r2 = 2=� and s2 =
2"j�j
���1

. Then

d

dt
V"(u"; u

0

") � �(1� b

�
) � ku0"k21=2 � ("� � b"2 � b

"2�2

� � �1
) � ku0"k2�

�b(�� �=4� �=4) � ku"k21=2 + bC0 �

� �
�
�1(1� b

�
) + "� � b"2 � b

"2�2

� � �1

�
� ku0"k2 � b � �

2
� ku"k21=2 + bC0:
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Since b �
�
�1
� + "20 +

"2
0
�2

��1

�
< �1 � "0j�j and b < �, one can easily show that there

are constants C2; C3 > 0 such that

(3.1)
d

dt
V"(u"; u

0

") � �C2(ku
0

"k2 + ku"k21=2) + C3 :

Let us introduce a function

y"(t) = V"(u"(t); u
0

"(t)) + C3 :

Thanks to the inequality

b"2(u
0

"; u") �
"2

2
� ku0"k2 +

"2b2

2 � �1 � ku"k
2
1=2

we have

0 � y"(t) � � � ku"(t)k21=2 + "2ku0"(t)k2 +
1

2
G(ku"(t)k21=4) + C3 :

Since g increases on R+ , there exists an increasing function # 2 C1(R+ ;R+) such
that

0 � y"(t) � #(ku"(t)k21=2 + ku0"(t)k2)

and #
0

(r) � � > 0 for each r � 0.
Then we can rewrite (3.1) as an ordinary di�erential inequality

d

dt
y" � �C2#�1(y") + C3 :

An obvious contradiction argument gives us either 0 � y"(t) � #(C3=C2) for each
t � 0 or there is T ("; y"(0)) > 0 such that 0 � y"(t) � #(C3=C2) + 1 for each
t � T ("; y"(0)). Due to the assumption on b, it follows that

y"(t) � 1

4
(�ku"(t)k21=2 + "2ku0"(t)k2) + C3 � C0=2 :

Thus Lemma 3.1 is proved. �

Consider a solution w" of the following linear strongly damped evolution equation

"2w
00

" +Aw
0

" + � �Aw" + "� � w0" + h" = 0

where

(3.2) h" 2 Lp(R+ ;X) for p = 2 or p =1 :
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Lemma 3.2. Assume p = 2 or p = 1. Then there are constants C4; C5; a > 0
such that

"2kPmw0"(t)k21=2 + � � kPmw"(t)k21 �
� C4("

2kPmw0"(0)k21=2 + � � kPmw"(0)k21) � e�2at + C5kh"k2Lp(R+;X)

for each t � 0; " 2 (0; "0] and m 2 N :

Proof: Put y(t) = Pmw"(t). Clearly, y(t); y0(t) 2 D(A) for each t � 0. Let us
introduce a substitution

z = y0 + a � y
where a is a positive real satisfying

0 < a < min

�
�

2
;
�1 � 2j�j"0

4"20
;
��1
4"0

�"0�
2

+ j�j
��1�

:

Then

(3.3) "2z0 + (A� a"2 + �")z + ((�� a)A+ a2"2 � a�")y + Pmh" = 0

Take the scalar product in X of (3.3) with Az to obtain

1

2

d

dt

n
"2kzk21=2 + (�� a)kyk21 + (a2"2 � a�")kyk21=2

o
+

+kzk21 + (�"� a"2)kzk21=2 + a �
n
(� � a)kyk21 + (a2"2 � a�")kyk21=2

o
=

= �(Pmh"; Az) � 1

2
� kPmh"k2 + 1

2
� kzk21 :

From the assumption a <
�1�2j�j"0

4"2
0

we have

�0(t) + 2a�(t) � kh"(t)k2 for t � 0

where
�(t) = "2kzk21=2 + (� � a)kyk21 + (a2"2 � a�")kyk21=2 :

Therefore

�(t) � �(0) � e�2at +
Z t

0
e�2a(t�s)kh"(s)k2 ds �

� �(0) � e�2at + C
0

5kh"k2Lp(R+;X) :

Since a < �
2 and a"0

�1

� "0�
2 + j�j� < �

4 , then

(�� a)kyk21 + (a2"2 � a�")kyk21=2 �
� �

2
� kyk21 � a"0

�"0�
2

+ j�j
�
� kyk21=2 �

�

4
� kyk21 :
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Then one can easily show that there are C4; C5 > 0 such that

"2ky0(t)k21=2 + � � ky(t)k21 �
� C4("

2ky0(0)k21=2 + � � ky(0)k21) � e�2at + C5kh"k2Lp(R+;X)

as claimed. �

The solution of (2.1) is given by the variation of constants by the formula

S"(t)�0 = exp (�L"t)�0 + U"(t)�0

where U"(t)�0 =
Z t

0
exp (�L"(t� s))

h
0;�"�2g(ku"(s)k21=4)A1=2u"(s)

i
ds :

Put
h
w"(t); w

0

"(t)
i
= U"(t) [u0; v0]. Clearly, w" is a solution of the linear strongly

damped evolution equation

"2w
00

" (t) +Aw
0

"(t) + �Aw"(t) + "�w
0

"(t) + h"(t) = 0

w
0

"(0) = w"(0) = 0

where h"(t) = g(ku"(t)k21=4)A1=2u"(t) and u" is a solution of (1:1)" satisfying the

initial conditions
u"(0) = u0; u

0

"(0) = v0 :

Lemma 3.3. Let " 2 (0; "0] be �xed. Then the set K" =
S
t�0 U"(t)B is bounded

in X1 �X1=2 for any bounded set B � X1=2 �X .

Proof: Let B be a bounded set in X1=2 �X , i.e. there is M1 > 0 such that

"2kvk2 + �kuk21=2 + G(kuk21=4) �M1 for each (u; v) 2 B :

Let (u0; v0) 2 B and u" be a solution of (1:1)" which satis�es the initial data

u"(0) = u0; u
0

"(0) = v0. From (2.6) we have

"2ku0"(t)k2 + �ku(t)k21=2 �M1 + C0 =M
0

1 for each t � 0:

Therefore there exists M2 > 0 such that

kh"k2L1(R+;X) �M2 :

Thanks to Lemma 3.2 (with p =1) we have

"2kPmw0"(t)k21=2 + � � kPmw"(t)k21 � C5M2 for each t � 0 and m 2 N :
Letting m �! 1, we conclude that

"2kw0"(t)k21=2 + � � kw"(t)k21 � C5M2 =M3 for each t � 0:

Then the arbitrariness of (u0; v0) 2 B implies the assertion of Lemma 3.3. �
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Theorem 3.1. Let " 2 (0; "0] be �xed. Then there exists a compact global attrac-

tor A" for S". Moreover, A" is bounded in X1 �X1=2.

Proof: In order to exploit the general results of [GT], we have to show that S" is

bounded dissipative and for any bounded set B � X1=2�X there is a compact set
KB
" which attracts B, i.e.

lim
t!1

dist (S"(t)B; K
B
" ) = 0:

Clearly, by Lemma 3.1, S" is bounded dissipative, i.e. there exists a bounded set

B" which dissipates all bounded sets of X1=2 �X .

Let B be any bounded set in X1=2 �X . From Lemma 3.3 we have that

KB
" =

[
t�0

U"(t)B is bounded in X1 �X1=2 :

Therefore KB
" is compact in X1=2 �X . Since

dist (S"(t)B; K
B
" ) � sup

�2B
k exp (�L"t)�kX �M(") exp (�!t) � sup

�2B
k�kX

where ! 2 (0;
�

2
);

then
lim
t!1

dist (S"(t)B; K
B
" ) = 0:

According to [GT, Proposition 3.1] A" = 
(B") is a compact global attractor
for S". Furthermore, since 
(B") is the bounded and invariant set then we see that

dist (
(B"); K

(B")
" ) = 0:

Thus A" = 
(B") � K

(B")
" . Hence A" is bounded in X1 �X1=2. �

Remark 3.1. In the general case (under the hypotheses H1-H3) the attractor
A"; " > 0, does not reduce to a single point. Indeed, one can consider the case in
which

��
p
�n+1 < g(0) � ��

p
�n

where 0 < �1 < �2 < : : : are eigenvalues of A and �k; k � 1, are corresponding
orthonormal eigenvectors. Since we assumeZ 1

0
g(s) ds > �1 and g is an increasing function,

the domain of g�1 (the inverse function of g) contains a subinterval [g(0); 0). Hence

w�k =

�
�
�
g�1(�� � (�k)1=2)=�1=2k

�1=2 ��k; 0

�
k = 1; 2; : : : ; n

are non-zero equilibrium states for (2.1), " > 0, which are contained in A".
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Remark 3.2. If we restrict g; � by � > ��1 and g(s) = � + k � s, where k > 0 and
� > ��p�1 then it is known ([B2, Theorem 6]) that every solution of (1:1)"; " > 0,
and its time derivative decay to zero, as t �! +1. Due to (4.1) it follows that
every solution of (1:1)0 also decays to zero. Hence, under the above assumption on
� and g, the dynamics of (2.1), " > 0 is very simple|each trajectory approaches
a zero equilibrium state.

From the invariance property of A" and Lemma 3.1, we infer the following

Corollary 3.1.

"2kvk2 + � � kuk21=2 � C1 for each " 2 (0; "0] and (u; v) 2 A" :

The following lemma gives us the uniform estimate of X1 �X1=2|norm of A",
for " 2 (0; "0].

Lemma 3.4. There is C6 > 0 such that

"2ku00" (t)k21=2 + ku0"(t)k21 + ku"(t)k21 � C6

for each " 2 (0; "0]; t 2 R and any orbit

f(u"(t); u0"(t)); t 2 Rg � A" :

Proof: Let m 2 N be an arbitrary integer. We take the projection Pm of (1:1)" to
obtain

"2Pmu
00

" + "�Pmu
0

" +APmu
0

" + �APmu" + g(ku"k21=4)A1=2
Pmu" = 0:

Put w"(t) = Pmu
0

"(t). Then w" satis�es the linear strongly damped equation

"2w
00

" + "�w
0

" +Aw
0

" + �Aw" + h" = 0

where

h"(t) = 2g0(ku"(t)k21=4) � (A1=2u
0

"(t)); u"(t))A
1=2

Pmu"(t)+

+g(ku"(t)k21=4)A1=2
Pmu

0

"(t):

From Corollary 3.1 and (2.6) we infer the existence of C7 > 0 such that

kh"k2L2(R+;X) � C7 for each " 2 (0; "0] :

Obviously, we can choose C7 to be independent of " and m 2 N.
Recall that Pmw" = w". Then by Lemma 3.2, we have

"2kw0"(t)k21=2 + � � kw"(t)k21 �
� C4("

2kw0"(0)k21=2 + � � kw"(0)k21) � e�2at + C5 � C7 :
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Clearly,

kw"(0)k21 = kPmu0"(0)k21 � �2m � ku0"(0)k2
and

kw0"(0)k1=2 = kPmu00" (0)k1=2 =
= "�2kPm("�u0"(0) +Au

0

"(0) + �Au"(0) + g(ku"(0)k21=4)A1=2u"(0))k1=2 �
� "�2f�3=2m ku0"(0)k+ � � �mku"(0)k1=2 + "j�j�1=2m ku0"(0)k+

+�
1=2
m jg(ku"(0)k21=4)j � ku"(0)k1=2g :

Therefore there exists M(m) > 0 and an increasing function � : R+ �! R
+ , which

is independent of ", such that

(3.4)
"2kw0"(t)k21=2 + � � kw"(t)k21 �

� "�4 �M(m) � �("2ku0"(0)k2 + � � ku"(0)k21=2) � e�2at + C5 � C7 :

Let T � 0. We set (�u"(t); �u
0

"(t)) = (u"(t � T ); u
0

"(t � T )) for each t 2 R. Using
the invariance property of A", we have

((�u"(t); �u
0

"(t)); t 2 R) � A" :

Then, from (3.4), we obtain

"2kPmu00" (t)k21=2 + � � kPmu0"(t)k21 =
= "2kPm�u

00

" (t+ T )k21=2 + � � kPm�u
0

"(t+ T )k21 �
� "�4M(m)�("2k�u0"(0)k2 + � � k�u"(0)k21=2) � e�2a(t+T ) + C5 � C7 �

� "�4 �M(m) � �(C1) � e�2a(t+T ) + C5 � C7 :
Then, by letting T �!1, we obtain

"2kPmu00" (t)k21=2 + � � kPmu0"(t)k21 � 1 + C5 � C7 :
Since m 2 N was an arbitrary integer then

"2ku00" (t)k21=2 + � � ku0"(t)k21 � 1 + C5 � C7 for each t 2 R :

According to the equation (1:1)" we have

� � ku"(t)k1 � ku0"(t)k1 + "2ku00" (t)k+ "j�j � ku0"(t)k+
+jg(ku"(t)k21=4)j � ku"(t)k1=2 :

Then, with regard to Corollary 3.1, one can easily �nd the constant C6 > 0, as
claimed. �
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4. Existence of a global attractor for the equation (1:1)0.

We now turn our attention to the limiting equation (1:1)0.

Au0 + �Au+ g(kuk21=4)A1=2u = 0

which is equivalent (0 2 �(A)) to the di�erential equation in X1=2

u0 + �u+ g(kuk21=4)A�1=2u = 0:

According to the assumption on g, a local existence uniqueness and continuation
of solutions of (1:1)0 immediately follow from the theory of semilinear abstract
evolution equations. See, for example, [H, Theorem 3.3.3, 3.3.4, 3.4.1 and 3.5.2].

We �rst give some a priori estimates of solutions of (1:1)0. Take the scalar

product in X1=2 with u to obtain

(4.1)
1

2

d

dt
ku(t)k21=2 + � � ku(t)k21=2 + g(ku(t)k21=4) � ku(t)k21=4 = 0:

Thanks to (2.5) we have

(4.2) ku(t)k21=2 � e�2�tku(0)k21=2 +
C0
�
� (1� e�2�t) :

Hence the solution u(t) exists on R+ . We set S0(t)u0 = u(t), where u(t) is a solution
of (1:1)0 with u(0) = u0. Then, from (4.2), we have that S0 is the bounded

dissipative semidynamical system in X1=2. Recall that the variation of constants
formula gives

S0(t)u0 = e��tu0 + U0(t)u0
where

U0(t)u0 =
Z t

0
e��(t�s)g(ku(s)k21=4)A�1=2u(s) ds:

From (4.2) one can show that

[
t�0

U0(t)B is bounded in X1;

whenever B is bounded in X1=2 :

Again, by [GT, Proposition 3.1], there exists a compact global attractor ~A0 for
S0 which is bounded in X1.

Finally, the attractor ~A0 can be naturally embedded into a compact set A0 in

X1=2 �X . The set A0 is de�ned by

A0 =
n
(�;	) 2 X1=2 �X ; � 2 ~A0 and 	 = ���� g(k�k21=4)A�1=2�

o
:

Obviously, A0 is bounded in X1 �X1=2.
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5. Upper semicontinuity of attractors A" at " = 0.

Recall that we are going to prove the property

lim
"�!0+

dist (A";A0) = 0:

In Lemma 3.4, we have shown that there exists C6 > 0 such that

(5.1)

"2ku00" (t)k21=2 + ku0"(t)k21 + ku"(t)k21 � C6

for each " 2 (0; "0]; t 2 R and any orbit

f(u"(t); u0"(t)); t 2 Rg � A" :

Concerning the attractor A0, we have shown that there is C7 > 0 with the property

ku00(t)k21=2 + ku0(t)k21 � C7

for any orbit

f(u0(t); u
0

0(t)); t 2 Rg � A0 :

The idea of the proof is essentially the same as of [HR1]. Let us consider a se-
quence "n �! 0+ and an orbit

f(un(t); u0n(t)); t 2 Rg � A"n :

Since the set
S
t2R

S
n2N un(t) is bounded in X1 and

ku0n(t)k � C6 for each n 2 N and t 2 R:
By the Ascoli{Arzel�ao's theorem we may thus extract a subsequence fun1g of fung
which converges to �u in the space C(h�1; 1i;X1=2). Again, there is a subsequence

fun2g which converges to �u in C(h�2; 2i;X1=2). Thanks to the Cantor's diago-
nalization process, there is a subsequence funkg of fung such that unk �! �u in

C(J ;X1=2) for any compact interval J � R. Since

sup
n2N

sup
t2R

kun(t)k21=2 < +1 ;

then
sup
t2R

k�u(t)k21=2 < +1 :

On the one hand
@unk
@t �! @�u

@t in D0(I ;X1=2)
(in the sense of distributions) for any bounded open interval I � R.

On the other hand

u
0

nk(t) = �A�1
n
"2nk � u

00

nk(t) + "nk� � u
0

nk(t)
o
� � � unk(t)�

�g(kunk(t)k21=4)A�1=2unk(t) :
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From (5.1) we observe that

"2nkku
00

nk(t)k1=2 �! 0 and "nk j�j � ku
0

nk(t)k �! 0;

as "nk �! 0+ :

Therefore
@�u

@t
= ���u� g(k�uk21=4)A�1=2�u :

Hence �u(t) is the solution of (1:1)0 which exists and is bounded on R. Therefore

f(�u(t); �u0(t)); t 2 Rg � A0 :

Since (unk(�); u
0

nk(�)) �! (�u(�); �u0(�)) in C(J ;X1=2) for any compact interval J 2 R
then we have

(unk(0); u
0

nk(0)) �! (�u(0); �u
0

(0)) 2 A0 in X1=2 �X:

It means that
lim

"�!0+
dist (A";A0) = 0:

Indeed, suppose to the contrary that there exists "n �! 0+; � > 0 and a sequence

(un0; u
0

n0) 2 A"n such that

dist ((un0; u
0

n0);A0) � � :

Obviously, there are orbits f(u"n(t); u
0

"n(t)); t 2 Rg � A"n , for n 2 N, such that

u"n(0) = un0 and u
0

"n(0) = u
0

n0. Then there exists a subsequence "nk with the
property

(unk(0); u
0

nk(0)) �! (�u(0); �u
0

(0)) 2 A0 ;

a contradiction. Hence Theorem 1.1 is proved. �
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