Comment.Math.Univ.Carolinae 52,1 (1991)45-60

Limiting behavior of global attractors
for singularly perturbed beam equations
with strong damping
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Abstract. The limiting behavior of global attractors A. for singularly perturbed beam

equations
%u ou ou
e2 ou ou 2 /2, _
2 +ed 5% + A 5t + aAu + g([Jull{/,) A "u =0
is investigated. It is shown that for any neighborhood U of Ag the set Ac is included in U
for ¢ small.
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1. Introduction.

Consider the following problems

th;“” +56 +aAu+g(||u||1/4)A1/2u:0
(L. u(®) = uo
9u(0) = vy
and
ou A-1/2, =
+aut g(lull} ) A0 =0
(11)0 ot 1/4

u(0) = ug

where g is an increased C' function, € > 0 is a small parameter, & < 0 and § is

a real unrestricted on the sign. Here A is a sectorial operator in £2(0,1) defined by
a differential operator 9% / dz* and the boundary conditions corresponding either to
hinged ends, when

(1.2) g u(z) = ugg(x) =0 at =0,
or to clamped ends, when

(1.2)¢ u(z) = ug(z) =0 at x =0,l.
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Let {S(t);¢t > 0} be a semidynamical system in a Banach space X (for definition,
see, for example, [H, Chapter 4]). A set J C X is called invariant if S(¢t)J = J
for all t > 0. An invariant set Y C X is called a global compact attractor for the
semidynamical system S(t) if it is a compact set in & and lim;—, o dist (S(¢) B, U)
= 0 for any bounded set B C X', where

dist (A, B) = sup inf ||z —y||.

It is shown (Theorem 3.1) that, for small e, there is a compact global attractor
A: € W22(0,1) x £2(0,1) for a semidynamical system generated by (1.1).. For
e = 0, the problem (1.1)g also has a compact attractor which can be naturally
embedded into compact set Ay C W22 x £2(0,1).

Let us note that under the assumptions g > 0 and § > 0, the dynamics of
(1.1)z,e > 0, is simple—every trajectory approaches a zero equilibrium state (see
Remark 3.2). On the other hand, if g(0) < 0 is sufficiently small, then the attractor
Ag,e > 0, contains 2n — 1 distinct equilibrium states (Remark 3.1) for some n € N.
In this case the attractor 4¢ is a union of unstable manifolds for equilibrium states
(see, for example, [BV, Theorem 10.1]).

The purpose of this paper is to obtain some relationships between the attractors
Ae and Ag for small €. Tt is given in terms of upper semicontinuity of Ay at € =0
with respect to the sets {Ag;e > 0}.

In this paper, the following hypotheses are needed:

o
(H1) ge CY R R); ¢/ (r) >0 for r>0 and / g(s)ds > —0
0

(H2) a>0,0 eR

We can now state our main result.

Theorem 1.1. Suppose that the hypotheses (H1)-(H2) are satisfied. Then the
attractor Ag Is upper semicontinuous at zero with respect to the sets Az;e > 0, i.e.

lim  dist (Ae, Ag) = 0.

e—0+F

In other words, for any neighborhood U of Ap, the set A is included in U for ¢
small.

As an example for (1.1); one can consider a problem of a transverse motion, at
a small strain, in the z — y plane, of a viscoelastic beam in a viscous medium whose
resistance is proportional to the velocity. The ends of the beam are fixed at the
points x = 0 and = = [ + d, where d is a load (positive or negative) of the beam
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and a stress-free state of the beam occupies the interval [0,1]. Shear deformations
are neglected in this model. Then the equation of the motion in y-direction is

%u ou &I Ou EI ESd ES [!, 1
13) =5 46—+ -A=—+—A4A == de | AY?u =
(13) oz * 8t+g 8t+g u+<19+219 o o =0

where FE is the Young’s modulus, S the cross-sectional area, £ the effective viscosity,
I the cross-sectional second moment of area, ¢ the mass per unit length and § the
coefficient of external damping. For details see [F], [B1], [B2] and references therein.

Put ¢ = 6_91 > 0. Then the equation (1.1)c follows from (1.3) by a suitably

rescaling the time. The limit e — 0 corresponds to the case in which the effective
viscosity tends to 4oo.

In recent years, many authors have studied the attractors for a singularly per-
turbed hyperbolic equation

(1.4). 220+ D Au= f(u).

See, for example, [GT], [ChL] and other references in [HR1] and [HR2]. Hale and
Rougel have shown that the attractors of (1.4): converge in the Hausdorff topology
towards the one corresponding to ¢ = 0

(1.4)p % — Au = f(u).

Clearly, the main difference between (1.1)¢-(1.1)¢ and (1.4).-(1.4)¢ is that (1.4)g
is the quasilinear parabolic equation with an unbounded linear operator —A, while
the problem (1.1)p is the quasilinear differential equation in a Hilbert space with
a bounded operator « - Id.

The paper is organized as follows. Definitions and notations are recalled in
Section 2. Following the style of Henry’s lecture notes [H, Chapter 3, 4], one can
obtain a local and global existence of solutions of (1.1).. Section 3 deals with the
existence and uniform boundedness of attractors Ac. Section 4 is devoted to the
singular equation (1.1)g. The proof of the existence of Ay is given. In Section 5 we
prove Theorem 1.1.

2. Preliminaries.

Let X = L5(0,1) be a real Hilbert space equipped with its usual scalar product
(-,-) and norm || - ||. Define A : X — X; Au = 8*u/dz* for each u € Cx(0,1),
where

C7(0,1) = {® € C*°(0,1); ® satisfies b.c. B},

for B = H or B = C. Let A be the self-adjoint closure in X of its restriction
to C%(0,1). It is well known that A is a sectorial operator in X (see [H, p.19]).

Therefore the fractional powers A% can be defined. Let X# be a Hilbert space

x(
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consisting of the domain of fractional power A% with the graph norm, i.e. ||ul| g =
|ABul| for all w € XP. Let us note that X? — W*6:2(0,1) for 3 > 0. We also
have [lullg < /\f70||u||g for any 0 < 8 < o and v € X?. Recall that A has

a compact resolvent A~!. Therefore the imbedding X << X B is compact,
whenever 0 < 8 < 0.

Let ®,,j € N, denote the orthonormal basis of X consisting of eigenvectors of
the operators A:

Adp = APy O0< A <X<...; A\p — +00 as n —» +oo.

Denote by P, the projector in X onto the space spanned by {®1,...,®,,}.
Clearly,

Pl < Mo [IBrulls < X7 Jlullo for each u € X7 and 8,0 > 0.

Let S(t) be a semidynamical system in a Banach space X.

A set B dissipates a set J if there exists T = T'(J) > 0 such that ¢ > T implies
S(t)J € B. A semidynamical system S(t) is called bounded dissipative if there
exists a bounded set B which dissipates all bounded sets.

The omega-limit set is defined by

Q(B) = ﬂ cl (U S(s)B) (the closure is taken in X’).
>0 s>t

In this paper, the time derivatives will be denoted by

0 ,
5 (=0

In order to obtain a local and global existence we rewrite (1.1); as a first order
ordinary differential equation in the Hilbert space X' = X1/2 x X. This is to do by
letting v = «/. Then we can rewrite (1.1): as

(21) SO+ LD+ F(D(1) =0; 6(0) =y
where
¢ (t) = [u(t),v(t)); Lelu,v] = [~v,e 2A(au +v) + & 1v]
and  F(fu,e]) = 0, ~ gl )4V %]

It is known [M1, Theorem 1.1] that the operator L£([u,v]) = [—v, A(au + v)] is

sectorial in X'/2 x X. Then Theorem 1.3.2 of [H] demonstrates that the operator
Lc is sectorial in X'. The domain of L. is

D(L:) = {[u,v] € X2 x X2 qu+ve D(A)}.
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From now on we restrict €g by

(H3) A —2-e0ld] > 0.

Since Re o(A) > A1, then, by looking at the spectrum o (L), we see that
(2.2) Re o(L:) > % for each € € (0, 9]

Since L is the sectorial operator, then —L. generates an analytic semigroup
exp (—Le). Let w € (0,a/2). Due to the estimate (2.2), it follows that there is
M(e) > 0 such that

(2.3) |exp (—Let)||x < M(e) -e " for each t > 0.

According to [H, Theorems 3.3.3, 3.3.4, 3.4.1 and 3.5.2], the local existence,
uniqueness, continuous dependence on initial conditions and continuation of solu-
tions od (2.1) immediately follow. More precisely, for each &g € X there exists
T =T (®g) > 0 and a unique function ® = & (¢, ®g) such that

®c C([0,t1) : X)NCy((to,t1) : X) foreach 0<ty<t; <T,

@ (0) = &g, P (t) € D(L) for each ¢t € (0,T) and @ (¢) is the solution of (2.1) on
the interval of existence (0,T).
If we take the scalar product in X of (1.1)c with u/, we conclude that

04) gL allull )y + 1+ Gl )} + 1R + ol = 0
where G is the primitive of g, i.e.
G(r) = /07“ g(s)ds for r > 0.
Thanks to (H1) we infer the existence of Cp > 0 such that
(2.5) g(ry-r> /07" g(s)ds > —Cy for each r > 0.
From (2.4) we observe that

/Wm N ds + [ ()2 + o - @I, <

<[l (O)I7 + a - lu(O)IIF ;5 + G(l[u(0)II3,,) + Co
for each t > 0.

(2.6)

Thus the solutions of (1.1); and (2.1) exist globally on RT. Hence the initial
value problem (2.1) generates a semidynamical system {S¢(t); ¢ > 0} in X', where
Se(t)® (0) = P(t, ®(0)) for t > 0.

Since there are many estimates in this paper, we will let Cy, C'1,C2, ... be generic
positive constants always assumed to be independent of ¢.
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3. The existence and uniform regularity of global attractors.

Lemma 3.1. The semidynamical system S is bounded dissipative in X. More
precisely, there exists a constant C7 > 0 such that for any ¢ € (0,¢] and any
bounded set B C X1/2 x X there is T(e, B) > 0 with the property

t > T'(e, B) implies
2lloll> + allull} ;5 < C1 for each (u,v) € S:(t)B-

PROOF: Define a functional V;z : XY — R by
V@, w) = 5 {all#l 5 + <R + GO12IZ 1)} + be(@, W)

where b is a positive real satisfying

—~— -1
0<b<min{a, oAl ()\—0|5|)<—+ 2+ 62) }

26 )\1
From (2.4) we obtain

Ve, ) = a2 — P+ b2 — b (Au, )~
—ba - (Aue, uz) = bed - (ug,ue) = b-g(llucll} ) - lusll?, <
< — el = (0 = be) - [lugl® = b [lucllF ;o = b- (A ?ug, A 2uz)—
—bed - (ug,ug) + bC).
Then we deduce from the Young’s inequality

(@, )] < (FZ|®1* + 2| 2])/2

that
4y (el < |2 §—b 2 b bC,
o Velue,ug) < —lluclly/ — (€6~ e?) - flucll? = ba - fluel} ;5 + bCo+
b (]} + el lf ) /2 + beld] - (sl + 572 lue?)/2-
Put r? = 2/a and s? —J Then

d / b g . €252 '
g Velus te) < —(1——)- ||us||1/2 (€0 —be —bm)-lluell -

—b(a — a/4 - a/4) ||UE||1/2 +0bCh <

b 5 262 ' o
—(Al(l—a)+56—bs —ba_h>-||ug|| -

| e

’ ||’U’E||%/2 +bCy.
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. (A 2 5852
Since b (a +50+ ar

are constants Cy,C3 > 0 such that

) < A —¢€p|d] and b < «, one can easily show that there

d / /
— Ve(ue,uz) < —Co(llucll? + llucllf o) + Cs .

(3.1) 7 <

Let us introduce a function

Ye(t) = Ve(ue(t), u (t) + Cs..
Thanks to the inequality
2 272
’ e i e%b
be? (e, ) < 5 - Iluell” + 5 - el
we have

/ 1
0 <ye(t) < allus (Bl )5 + e llu- W) + 5Glu= (BT 4) + Cs.

Since g increases on RT, there exists an increasing function ¥ € C*(Rt,Rt) such
that

0 <ye(t) < D(lus(O} 5 + llucOI?)

and ¥ (r) > o > 0 for each r > 0.
Then we can rewrite (3.1) as an ordinary differential inequality

d -

e < —Co0 ™ (ye) + Cs.

An obvious contradiction argument gives us either 0 < y.(t) < 9(C3/C>) for each
t > 0 or there is T'(¢,y-(0)) > 0 such that 0 < y.(t) < 9(C3/C2) + 1 for each
t > T'(e,y:(0)). Due to the assumption on b, it follows that

y=(t) > Z(allus (BT 5 + e|luc(t)]|) + C5 — Co/2.

=1 =

Thus Lemma 3.1 is proved. a

Consider a solution we of the following linear strongly damped evolution equation

EZwZ+Aw’5+a-Awg+56-w’5+hE:0

(3.2) he € Lp(RT;X) for p=2 or p=o00.
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Lemma 3.2. Assume p = 2 or p = co. Then there are constants C4,Cs,a > 0
such that

EZH]mea(t)H%/Q +a- |Prwe(t)|3 <
< C4(52||]me5(0)“%/2 +oa- ||]mea(0)||%) - g2t + C5||ha||%p(R+;X)

for each t > 0; ¢ € (0,e9] and m € N.

ProoF: Put y(t) = Ppwe(t). Clearly, y(t),y'(t) € D(A) for each t > 0. Let us
introduce a substitution
z= y' +a-y

where a is a positive real satisfying

. a )\1 - 2|5|€0 Ck/\l (an -1
— T, P - 6) .
0<a<m1n{2, 46% ’450 5 +||

Then
(3.3) e22 + (A —ae? +6e)z + ((a — a) A + a%c? — ade)y + Ppyhe =0
Take the scalar product in X of (3.3) with Az to obtain

1d
2dt
+|2I1% + (9 = as?)12[13 )5 + a- {

{21212 )5 + (0 = @)lly|} + (0% — ade)llyl|3 o } +

o = )yl + (%<2 — ade)llyll?  } =

—

1
ABmhell? + 5 -

DN | =

= —(Pmhe, Az) <

A1—2]d]eo
45(2)

0 (t) + 2a8(t) < ||he(t)]> for t>0

From the assumption a < we have

where
o(t) = 62||Z||Z{/2 + (= a)llyl|f + (ae® — a56)||y||f/2 :

Therefore
0(t) <6(0) e~ + /0 e (o) 2 ds <
<6(0) e + C5llhellZ, (i) -
Since a < § and 52 (592 +|6]) < &, then
(@ —a)llyllf + (a*? = ade)llyll? ), >

«a 2 Eox 2 (07 2
> 2yl — azo (2% +161) -l > & R
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Then one can easily show that there are Cy, C5 > 0 such that
Ny @I 5 + - ly®IF <
< G OIF 1 +a- lyOIR) -2 + Gkl zr )
as claimed. O

The solution of (2.1) is given by the variation of constants by the formula
Se(t)®o = exp (—L:1)Po + U (1) Py

t
where U (t)® :/0 exp (—Le(t — 5)) [o,—E—Zg(uug(s)||§/4)A1/2u5(s)] ds .

Put [wg(t),w;(t)] = U:(t) [ug, vg]. Clearly, we is a solution of the linear strongly
damped evolution equation

"

2w, (t) + Aw,(t) + cAw. (t) + edw.(t) + he(t) =0
w,(0) = w-(0) =0

where h(t) = g(||u5(t)||%/4)A1/2u5(t) and u, is a solution of (1.1). satisfying the

initial conditions .
ue(0) = ug, u.(0) =wvp.

Lemma 3.3. Let ¢ € (0,eq] be fixed. Then the set K. = |J;~( U:(t)B is bounded
in X' x X1/2 for any bounded set B C X112 x x.

PROOF: Let B be a bounded set in X /2 x X, i.e. there is M7 > 0 such that
[0l + allull? 5 + G(llull2 ;) < My for cach (u,0) € B.

Let (ug,vg) € B and ues be a solution of (1.1). which satisfies the initial data
ue(0) = ug, u.(0) = vy. From (2.6) we have

eluz ()| + ollu(®)l|3 ), < My+Co = My for each t > 0.
Therefore there exists Ms > 0 such that
1hellZ, r+ix) < M2
Thanks to Lemma 3.2 (with p = c0) we have
B (D3 + - Bmwe ()|} < CsMp  for cach ¢ >0 and m € N.
Letting m —» oo, we conclude that
eXlw. ()13 )5 + - w- ()|} < CsMp = M3 for each ¢ > 0.

Then the arbitrariness of (ug,vg) € B implies the assertion of Lemma 3.3. g
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Theorem 3.1. Let € € (0,g¢] be fixed. Then there exists a compact global attrac-
tor A, for S.. Moreover, A, is bounded in X! x x1/2,

PRrOOF: In order to exploit the general results of [GT], we have to show that S, is
bounded dissipative and for any bounded set B C X 1/2 % X thereis a compact set
KB which attracts B, i.e.

. . By _
tlggo dist (Se(t)B, K¢) = 0.

Clearly, by Lemma 3.1, S; is bounded dissipative, i.e. there exists a bounded set
B: which dissipates all bounded sets of X 12y x.
Let B be any bounded set in X2 x X. From Lemma 3.3 we have that

EP = JU.(t)B isbounded in X' x X1/2.
>0

Therefore KB is compact in X/2 x X. Since
dist (S (t) B, K) < sup |lexp (—Lct)®||lx < M(e) exp (—wt) - sup [|P]|x
deB ®cB

where w € (0, =),

N R

then
lim dist (S-(t)B, KP) = 0.
t—o00

According to [GT, Proposition 3.1] A; = Q(B¢) is a compact global attractor
for Se. Furthermore, since Q(B;) is the bounded and invariant set then we see that

dist (Q(B.), KBy o,
Thus A: = Q(B:) C Kg(BE). Hence A is bounded in X! x X1/2 a

Remark 3.1. In the general case (under the hypotheses H1-H3) the attractor
Ae, € > 0, does not reduce to a single point. Indeed, one can consider the case in

which
—ay/ Ant1 < 9(0) < —a/ Ay

where 0 < A < Ao < ... are eigenvalues of A and ®;, k > 1, are corresponding
orthonormal eigenvectors. Since we assume

o0
/ g(s)ds > —oo and ¢ is an increasing function,
0

the domain of g~! (the inverse function of ¢) contains a subinterval [¢(0),0). Hence

wt = {i— (g*l(—a : (A,c)l/Z)/A,lg/z)l/2 : q>k,0} k=1,2,....n

S

are non-zero equilibrium states for (2.1), £ > 0, which are contained in A..
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Remark 3.2. If we restrict g, by § > —A; and g(s) =3+ k- s, where k > 0 and
B > —ay/A1 then it is known ([B2, Theorem 6]) that every solution of (1.1)., € > 0,
and its time derivative decay to zero, as ¢ — +o0o. Due to (4.1) it follows that
every solution of (1.1)¢ also decays to zero. Hence, under the above assumption on
0 and g, the dynamics of (2.1), ¢ > 0 is very simple—each trajectory approaches
a zero equilibrium state.

From the invariance property of A; and Lemma 3.1, we infer the following

Corollary 3.1.

2|v))? + o - ||u||%/2 < Cy foreach €€ (0,e9] and (u,v) € A;.

The following lemma. gives us the uniform estimate of X! x X!/2—norm of A,
for e € (0,e9].

Lemma 3.4. There is Cg > 0 such that

llue @)I1F o + llue(DNIF + llus(0)I[F < Cs
for each € € (0,e0], t € R and any orbit
{(u=(t), uz(8)); t € R} C A: .

PROOF: Let m € N be an arbitrary integer. We take the projection Py, of (1.1)s to
obtain

ePiu; + e0Pmu, + AP, + aAPpue + g(|[ucllf /) A *Prue = 0.
Put we(t) = ]Pmu;(t). Then w, satisfies the linear strongly damped equation
EZU)IE, + Eéw; + Aw’E + aAw: +h: =0
where
he(t) = 29/ (lu=(D1124) - (AV20(0)), s () AV 2Pyuc (8)+
+9(llus (D113 ) AV Pryuc (8).
From Corollary 3.1 and (2.6) we infer the existence of C7 > 0 such that
HhEH%Q(RﬁX) < C7 foreach €€ (0,eq].

Obviously, we can choose C7 to be independent of ¢ and m € N.
Recall that P,,w: = we. Then by Lemma 3.2, we have

201, " (12 2
w1y + a - llwe (Bl <

< Ca(Plwe (017 )5 + @ - [lwe (0)[[F) - e > + C5 - C7 .
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Clearly,
[we (O)IF = IPruc (0)[1F < A%, - [lug (0)]?

and

[we (0)[]y /2 = IPmuz (0)]], /9 =

= &2 [|Pin (20, (0) + Au, (0) + aduc (0) + g([luc ()1} ,) A" *us (0)]]1 2 <

< e QAN I O)]] + o - Amlluae O]y 2 + 218100 [l (0)]]+

A 9 O) 12 ) - e (O)]11 2} -

Therefore there exists M (m) > 0 and an increasing function p : R™ — R, which

is independent of €, such that

2 |wo(t))1? p + - Jwe ()]} <
(3.4) 12 !

<™t M(m) - p(eluc(O)]1” + - uc(0)]F ) - e + Cs - Cr

Let T > 0. We set (us(t),w.(t)) = (ue(t — T),u.(t — T)) for each t € R. Using

the invariance property of A, we have
(), 1. (1)); t € R) C Ae.
Then, from (3.4), we obtain
P (O + - 1Pz (#)1F =
= Pt (t + T )y + - Pmic(t + T)If <
< e M (m)p(e2 ] (0)[|* + @+ e (O)][2 ) - e 2+ T) 4+ C5 - O7 <
<e ™t M(m)-p(Cy)-e 20T 4 o5 Oy
Then, by letting T' — oo, we obtain
EBmug (B)IIF ), + @ IBruc(t)][f < 1+ Cs - Cr .
Since m € N was an arbitrary integer then
Elluz O} o + - lluz(B)l|F <14 C5-C7  for each t € R.
According to the equation (1.1). we have
o lus® < @)l + ez (0] + 6] - [z (8)]|+
+Hg(llus @113 /4] - llue @)l 2 -

Then, with regard to Corollary 3.1, one can easily find the constant Cg > 0, as

claimed.

O
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4. Existence of a global attractor for the equation (1.1)g.

We now turn our attention to the limiting equation (1.1)p.
Au' + aAu + g(||u||%/4)A1/2u =0
which is equivalent (0 € p(A)) to the differential equation in X /2
u' 4+ au + g(||u||%/4)A71/2u =0.

According to the assumption on g, a local existence uniqueness and continuation
of solutions of (1.1)p immediately follow from the theory of semilinear abstract
evolution equations. See, for example, [H, Theorem 3.3.3, 3.3.4, 3.4.1 and 3.5.2].

We first give some a priori estimates of solutions of (1.1)g. Take the scalar
product in X1/2 with u to obtain

1d
2dt
Thanks to (2.5) we have

(4.1) ()l + - ()12 + a2 14) - DI 4 = 0.

o ¢ %0
(42) ()15 < e 22 u(O)]2 + =2 - (1= e 201).

Hence the solution u(t) exists on RT. We set So(t)ug = u(t), where u(t) is a solution
of (1.1)p with u(0) = up. Then, from (4.2), we have that Sy is the bounded
dissipative semidynamical system in X 1/2 Recall that the variation of constants
formula gives

So(t)uo = e~ *"ug + Up(t)uo

where

t
Uo (t)ug = /0 =) g((lu(s) 12 ) A ?u(s) ds.

From (4.2) one can show that

U Up(t)B is bounded in X1,
>0

whenever B is bounded in X'/2.
Again, by [GT, Proposition 3.1], there exists a compact global attractor Ag for
Sp which is bounded in XNI.
Finally, the attractor A4y can be naturally embedded into a compact set Ap in
X2 x X. The set Ay is defined by
Ay = {(@,m) eXY2x X;®e Ay and T = —ad — g(||q>||§/4)A*1/2q>} .

Obviously, Ag is bounded in X' x X1/2,

ol
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5. Upper semicontinuity of attractors A. at ¢ = 0.

Recall that we are going to prove the property

lim dist (Ag, Ag) = 0.

e—0t
In Lemma 3.4, we have shown that there exists C'g > 0 such that
2w (DI} 5 + e (IIF + lus (I < Co
(5.1) for each ¢ € (0,e9], t € R and any orbit
{(ue(t), uc(1)); t € R} C A

Concerning the attractor 4g, we have shown that there is C';7 > 0 with the property

lug(®)113 5 + lluo(B)IIF < Cx
for any orbit
{(uo(t), ug(t)); t € R} C Ag.

The idea of the proof is essentially the same as of [HR1]. Let us consider a se-
quence €, — 07 and an orbit

{(un(t), un(0); ¢ € R} C Ae, .
Since the set U;er Upen un(t) is bounded in X! and

||u;1(t)|| <C¢ foreach n€N and t€eR

By the Ascoli-Arzelao’s theorem we may thus extract a subsequence {up, } of {un}
which converges to 4 in the space C'((—1,1); X1/2). Again, there is a subsequence
{un,} which converges to @ in C((—2,2); X'/2). Thanks to the Cantor’s diago-
nalization process, there is a subsequence {uy,} of {up} such that u,, — u in
C(J; X1/2) for any compact interval J C R. Since

sup sup ||un(t)||%/2 < 400,
neN teR

then
2
sup ||u(t)||1/2 < +00.
teR

On the one hand %3’;& — % in D'(I; X1/2)
(in the sense of distributions) for any bounded open interval I C R.
On the other hand

t, (1) = =ATHE2 o (0) + en 8, (O} = @ un (-

~g(llung (DI ) A~ P, (2) -
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From (5.1) we observe that

emlltn, (D12 — 0 and e, 6] - [luy,, (8] — 0,
as ep, — 0t.
Therefore
@
0

Hence u(t) is the solution of (1.1)g which exists and is bounded on R. Therefore

= —au —g(lal}, A~ a.

{(a(t), @ (t); t € R} C Ap.

Since (unk(),u;lk()) — (a(-),@ (-)) in C(J; X'/?) for any compact interval J € R
then we have

! !

(tny, (0), i, (0)) — (@(0), (0)) € Ag in X2 x X.

It means that
lim dist (Ag, Ag) =0.

e—0t

Indeed, suppose to the contrary that there exists e, — 0+, o > 0 and a sequence
(Uno,ulno) € A, such that

dist ((tn0, tino), Ao) > 0.

Obviously, there are orbits {(ue, (t),u;n (t)); t € R} C A, for n € N, such that
ue, (0) = upo and u;n (0) = “;;0- Then there exists a subsequence e,, with the
property

(uny (0),up, (0)) — (a(0),u (0)) € Ao,

a contradiction. Hence Theorem 1.1 is proved. a
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